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3.2.3 � Empirical Parameter Deviation Plots

After having investigated which factors influence backdoor 
effectiveness, we shift our focus to examining how the mod-
el’s weights change during the training process when the 
dataset is tainted with backdoor samples. We aim to deter-
mine whether there is an increase in complexity or not.

We use our two measures proposed in Sect. 2, � and � to 
analyze the parameter change. The former, � , monitors the 
change of the weights, for example, whether they increase or 
decrease. The latter, � , measures the change in orientation or 
angle of the classifier. We plot both measures with different 
regularization parameters, trigger size, or visibility with a 
fraction of poisoning points to p = 0.1 in Figs. 9, 10 and 11. 
Within each plot, we also report the backdoor accuracy (BA) 
representing the model’s performance on backdoor samples 
at the end of training.

On linear classifiers, �(w) increases during the backdoor 
learning process. This equals an increase in the weights’ 
values, suggesting that the classifiers become more complex 
while learning the backdoor. However, when investigating 
the RBF SVM, the results are slightly different. Indeed, 
when increasing � and decreasing � , the classifier becomes 
flexible and complex enough to learn the backdoor without 
increasing its complexity. On the other hand, when decreas-
ing � , the model is constrained to behave similarly to a linear 
classifier. In this way, analogously to linear classifiers, the 

model needs to increase its complexity to learn the backdoor. 
When increasing the trigger size or visibility the results are 
similar, thus confirming the previous analysis. However, as 
a result of increasing the attacker’s strength, the backdoor 
accuracy turns out to be higher.

3.2.4 � Explaining backdoor predictions

In the following, we give a graphical interpretation of the 
poisoned convex-classifier’s decision function, expressed by 
its internal weights, for which interpretation of their results 
is easier [26, 27]. We consider the results for a backdoor trig-
ger [1] in a specific position, as its influence on the classifier 
decision is easier to see. Conversely, the backdoor trigger 
by for example Zhong et al. [32] spans the entire image, and 
therefore its influence is harder to spot from the interpret-
ability plots. In particular, given a sample x we aim to com-
pute and show the gradient of the classifier’s decision func-
tion with respect to x. We use an SVM with regularization 
� = 1e−02 for MNIST 7 vs 1 and CIFAR10 airplane vs frog, 
and report the results in Fig. 12. For MNIST, we consider 
the digit 7 with the trigger, showcasing the gradient of the 
clean classifier’s decision function. We present the results of 
the gradient from the clean and poisoned classifiers corre-
sponding to the clean and backdoored inputs. Since we train 
a linear classifier on the input space, the derivative coincides 
with the classifier’s weights. Intriguingly, the classifier’s 

Fig. 11   Backdoor weights deviation for the logistic classifier (LC), 
support vector machine (SVM), the ridge classifier (RC) and SVM 
with RBF kernel on Imagenette tench vs truck poisoned with back-
door trigger [32]. We report the results for visibility c

m
= 10 (top 

row) and c
m
= 75 (bottom row). We specify the regularization param-

eter � and backdoor accuracy (BA) for each setting in the legend of 
each plot
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weights increase in magnitude and now exhibit high val-
ues in the bottom right corner, where the trigger is located. 
From CIFAR10, we show a poisoned airplane. We report 
the gradient mask obtained by considering the maximum 
value for each channel, both for the clean and backdoored 
classifier. Also, in this case, the backdoored model shows 
higher values in the bottom right region, corresponding to 
the trigger location. This means that the analyzed classifiers 
assign high importance to the trigger to discriminate the 
class of the input points.

Summarizing, the plots in Fig. 12 further confirm our 
findings regarding the change of the internal parameters dur-
ing the backdoor learning process. In particular, we have 
seen that less regularized classifiers need to increase their 
weights and thus complexity to learn the backdoor. Con-
versely, when the flexibility of the classifier increases then 

it can learn the backdoor easier without significantly altering 
its complexity.

3.2.5 � Visualizing influential training data points

Influence functions are used in the context of ML to identify 
the training points more responsible for a given prediction 
[13]. In Sect. 2 we have seen how they represent the basis 
of our backdoor learning slope measure. In this section, we 
employ them to show their outcomes and provide further 
insight into the relationship between complexity and back-
door effectiveness. To this end, as in Sect. 3.1, we poison 
10% of the training dataset. According to previous experi-
ments, we employed the backdoor trigger in [1] for MNIST 
and CIFAR10 with trigger size 3 × 3 and 6 × 6 respectively, 
while for Imagenette we employed the trigger in Zhong et al. 

Fig. 12   Input gradients of untainted and poisoned SVMs on pris-
tine (top row) and backdoored (bottom row) test samples. Each row 
shows two sets of three images. Each set contains an example from 
MNIST 7 vs 1 or CIFAR10 airplane vs frog (left), along with the cor-

responding input gradient of the untainted SVM (middle), and of the 
poisoned SVM (right). For CIFAR10, we consider the maximum gra-
dient of each pixel among the three channels

Fig. 13   Influential training points for a high-complexity classifier. Considering an SVM with � = 0.01 trained on MNIST, and with � = 0.1 
trained on CIFAR10, and Imagenette, we show the top 7 most influential training samples on the prediction of the samples with the red border
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[32] with higher visibility (i.e. cm = 75 ). In Figs. 13 and  14, 
considering respectively a high- and a low-complexity clas-
sifier, we report the seven most influential training samples 
on the classification of a randomly chosen test point. For 
high-complexity classifiers, many of these training sam-
ples contain the trigger. In contrast, this is not the case for 
low-complexity classifiers. These results suggest that low-
complexity classifiers rely less on the samples containing 
the backdoor trigger in their predictions.

4 � Related work

We first review the literature about backdoor poisoning 
attacks and defenses. Afterward, we focus on defenses that 
increase the robustness against backdoors by reducing the 
model’s complexity. We conclude the section by discussing 
the relationship between our proposed framework and influ-
ence functions.

Backdoor poisoning. Although backdoors were intro-
duced recently [1, 3, 6], a plethora of backdoor attacks and 
defenses have been published. For a more detailed overview, 
we refer the reader to surveys in this area [3, 4, 36]. Despite 
the quickly-growing literature about this topic, the majority 
of the previous works [21, 33, 37, 38] study different types 
of poisoning attacks, i.e., not backdoors. In contrast, only a 
few works have studied factors that influence the success of 
this attack. Baluta et al. [39] and [40] studied the relation-
ship between backdoor effectiveness and the percentage of 
backdoored samples. Salem et al. [41] experimentally inves-
tigated the relationship between the backdoor effectiveness 
and the trigger size. Similarly, Severi et al. [42] have ana-
lyzed the correlation between the backdoor success and the 

attacker’s strength on malware classifiers. Schwarzschild 
et el. [43] evaluated the performance of backdoor attacks 
when scaling the dataset size while fixing the poison budget. 
Finally, Li et al. [44] demonstrated that the backdoor per-
formance is sensitive to the location of the trigger on the 
attacked image. We instead do not limit our study to neural 
networks but also study other models. Furthermore, we also 
investigate other relevant factors, e.g., regularization and 
visibility, and their interaction at once.

Complexity and backdoor defenses. In this work, we 
have analyzed the relationship between backdoor effective-
ness and different factors, including complexity, controlled 
via regularization and the RBF kernel’s hyperparameter. 
In this study, we have demonstrated that reducing com-
plexity by choosing appropriate hyperparameter values 
improves robustness against backdoors. Our findings align 
with the insights presented in Frnay et al. [45], who sug-
gested that overfitting avoidance techniques like, e.g., regu-
larization, can offer partial mitigation against random label 
noise [46, 47]. Expanding upon their discourse, we apply 
and extend this consideration to the context of backdoor 
attacks, wherein the noise is intentionally and strategically 
introduced to deceive the machine learning model. Some 
of the defenses proposed against backdoors use different 
techniques to reduce complexity. These techniques include 
pruning [48, 49], data augmentation [50, 51] and gradient 
shaping [52]. However, from these works, it remains unclear 
why reducing complexity alleviates the threat of backdoor 
poisoning. To the best of our knowledge, our work is the first 
to investigate this aspect.

Relation to influence functions. Influence functions origi-
nated in robust statistics [53] and were later used as a tool 
to measure the influence of specific training points on the 

Fig. 14   Influential training points for low-complexity classifiers. Considering an SVM with � = 1e − 3 trained on MNIST, and with � = 1e − 5 
trained on CIFAR10, and Imagenette, we show the top 7 most influential training samples on the prediction of the samples with the red border
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classification output [13, 54]. In our work, we clarify that 
influence functions naturally descend from the incremental 
learning formulation in Eq. 1, showing that they quantify the 
velocity with which the classifier will learn new points. As 
seen in Sect. 2, they correspond to the partial derivative of 
the learning curve at the point � = 0 . Moreover, we lever-
aged them by proposing a measure, namely the backdoor 
slope, which quantifies the ability of a classifier to learn 
backdoors. This measure allowed us to study the factors that 
impact backdoor effectiveness.

Several defense approaches confirm that the influence 
functions, or gradients during training, are indeed related to 
backdoor learning. For example, some defenses are directly 
based on the gradient [55], based on gradient differences 
[56, 57], or based on differential privacy that noises the gra-
dients during training [52, 58, 59].

5 � Conclusions, limitations and future work

In this paper, we presented a framework to analyze the fac-
tors influencing the effectiveness of backdoor poisoning. We 
carried out experiments on convex learners, also used in 
transfer-learning scenarios, and neural networks. As in pre-
vious work [7, 13], we focus our analysis on two-class clas-
sification problems for convex learners, and on multiclass 
classification when considering neural networks.

Our analysis shows that the effectiveness of backdoor 
attacks inherently depends on (i) the complexity of the target 
model, (ii) the fraction of backdoor samples in the training 
set, and (iii) the size and visibility of the backdoor trigger. 
By analyzing the influence of the first factor on backdoor 
learning, we are the first to unveil a region in the hyper-
parameter space where the accuracy on clean test samples 
remains high while the accuracy on backdoor samples is 
low. Specifically, we discovered that the target model needs 
to significantly increase the complexity of its decision func-
tion to learn backdoors, which is only possible when the 
model is not regularized enough. Conversely, when raising 
the model’s regularization, we can keep high performance 
on clean samples and be unaffected by potential backdoor 
attacks. However, increasing the attacker’s strength, i.e., the 
last two factors, makes the attack more effective, shrinking 
this region and thus exposing the model to greater vulner-
ability. We, therefore, conclude that a prudent strategy to 
preserve robustness against potential poisoning attacks is to 
regularize as much as possible during the hyperparameter 
optimization phase, thereby reducing the backdoor learn-
ing slope while ensuring that the trade-off with accuracy 
remains acceptable.

The study of more factors, like, for example, the dimen-
sionality of the data, is straightforward using the proposed 
framework but left for future work. Our current results 

already provide important insights and provide a starting 
point to derive guidelines for designing models that are more 
robust against backdoor poisoning.

Appendix A: Datasets

The MNIST dataset [18] contains 70,000 observations repre-
senting 28 × 28 grayscale images of handwritten digits from 
0 to 9. The CIFAR10 dataset [19] contains 60,000 colour 
images of size 32 × 32 pixels divided in 10 classes, each 
with 6000 observations. Finally, the Imagenette dataset [20] 
is a subset of 10 classes (i.e., tench, English springer, cas-
sette player, chain saw, church, French horn, garbage truck, 
gas pump, golf ball, parachute) from Imagenet. We use the 
320px version, where the shortest side of each image is 
resized to that size.

Appendix B: Additional Experimental 
Results

In the paper, we have shown the backdoor learning curves 
only for some classifiers. Here, we report them for all the 
classifiers considered in this work. As we will discuss later 
in this section, these results confirm the ones obtained in the 
paper. In particular, here we consider:

•	 Support vector machine (SVM) with � ∈ {100, 0.1} 
for MNIST, � ∈ {10000, 0.1} for CIFAR10, and 
� ∈ {100000, 1} for Imagenette.

•	 Ridge classifier (RC) with � ∈ {1000, 1} for MNIST, 
� ∈ {10000, 1} for CIFAR10, and � ∈ {100000, 1} for 
Imagenette.

•	 Logistic classifier (LC) with � ∈ {10, 0.01} for MNIST, 
� ∈ {10000, 100} for CIFAR10, and � ∈ {100000, 10} for 
Imagenette.

•	 SVM with an RBF kernel, where � ∈ {1, 0.01} and 
� = 5e−04 for MNIST, � ∈ {100, 1} and � = 1e−03 for 
CIFAR10, and � ∈ {10, 0.1} and � = 1e−05 for Imagen-
ette.

Moreover, we compare the results obtained on the class 
pairs considered in the paper ( 7 vs 1 on MNIST, airplane vs 
frog  on CIFAR10 and Imagenette tench vs truck) with the 
ones obtained on different pairs.

Backdoor learning curves and backdoor learning slope. 
In Figs. 15, 16, 17, 18, 19 and 20 we report the backdoor 
learning curves for each classifier and dataset pair. In 
Figs. 21, 22 and 23, we report the backdoor learning slope, 
computed with p = 0.1 , for all the considered classifiers and 
all subset pairs. The results do not show significant variation 
with respect to the ones reported in the paper.
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Empirical parameter deviation plots. In Figs. 24, 25 and 
26, shows how the classifiers’ parameters change when the 
classifiers learn the backdoors. This analysis is carried out 
with p = 0.1 . The results do not vary significantly across 

different classifiers and class pairs. The only exception is 
MNIST 5 vs 2 . The untainted classifier is already quite com-
plex; therefore, it does not increase its complexity when it 
learns the backdoor.

Fig. 15   Backdoor learning curves for different classifiers trained on 
MNIST 3-0. Darker lines represent a higher fraction of poisoning 
samples p injected into the training set. We report the loss on the 

clean test samples (TS) with a dashed line and on the test samples 
with the backdoor trigger (TS+BT) with a solid line

Fig. 16   Backdoor learning curves for different classifiers trained on MNIST 5-2. See the caption of Fig. 15 for further details
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Fig. 17   Backdoor learning curves for different classifiers trained on CIFAR10 bird vs dog. See the caption of Fig. 15 for further details
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Fig. 18   Backdoor learning curves for different classifiers trained on CIFAR10 airplane vs truck. See the caption of Fig. 15 for further details
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Fig. 19   Backdoor learning curves for different classifiers trained on Imagenette cassette player vs church. See the caption of Fig. 15 for further 
details

Fig. 20   Backdoor learning curves for different classifiers trained on Imagenette tench vs parachute. See the caption of Fig. 15 for further details
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