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ON THE COHOMOLOGY OF SURFACES WITH pg = q = 2

AND MAXIMAL ALBANESE DIMENSION

JOHAN COMMELIN AND MATTEO PENEGINI

Abstract. In this paper we study the cohomology of smooth projective com-
plex surfaces S of general type with invariants pg = q = 2 and surjective
Albanese morphism. We show that on a Hodge-theoretic level, the cohomol-
ogy is described by the cohomology of the Albanese variety and a K3 surface X
that we call the K3 partner of S. Furthermore, we show that in suitable cases
we can geometrically construct the K3 partner X and an algebraic correspon-
dence in S×X that relates the cohomology of S and X. Finally, we prove the
Tate and Mumford–Tate conjectures for those surfaces S that lie in connected

components of the Gieseker moduli space that contain a product-quotient or
a mixed surface.

1. Introduction

1.1. Let S be a smooth projective complex surface with invariants pg(S) = q(S) =
2, and assume that the Albanese morphism α : S → A is surjective. The results of
this paper are inspired by the following two observations:

(1) The induced map on cohomology α∗ : H∗(A,Z) → H∗(S,Z) is injective.
The orthogonal complement H2

new = H∗(A,Z)⊥ ⊂ H∗(S,Z) is a Hodge
structure of weight 2 with Hodge numbers (1, n, 1), where n = h1,1(S)− 4.
Such a Hodge structure is said to be of K3 type.

(2) Let S′ be a smooth projective complex surface with invariant pg(S
′) =

1. Then Morrison [30] showed that there exists a K3 surface X ′ together
with an isomorphism ι′ : H2(S′,Q)tra → H2(X ′,Q)tra that preserves the
Hodge structure, the integral structure, and the intersection pairing. (Here
( )tra denotes the transcendental part of the Hodge structure, that is, the
orthogonal complement of the Hodge classes.)

These observations lead to the following questions.

1.2. Question A. Let S be as before.

Does there exist a K3 surface X together with an isomorphism
ι : (H2

new)
tra
Q → H2(X,Q)tra that preserves (H) the Hodge structure

or (Z) the integral structure or (P) the intersection pairing?
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1750 JOHAN COMMELIN AND MATTEO PENEGINI

We give an affirmative answer to this question in Theorem 3.12, showing that
there exist an X and an ι that satisfy (H), (Z), and (P). The strategy of the proof
is the same as for Morrison’s result mentioned above.

1.3. Question B. The Hodge conjecture predicts that if ι satisfies (H), then it is
algebraic.

Do there exist X and ι satisfying (H) as above such that ι is alge-
braic?

In general we are not able to answer this question. However, an interesting
class of examples of the surfaces that we consider is formed by so-called product-
quotients : these are surfaces birational to a surface (C × D)/G, where C and D
are curves equipped with a diagonal action by a finite group G (see [3]). In these
cases we give an affirmative answer to Question B in Theorem 4.9. The strategy
boils down to finding appropriate Prym varieties in the Jacobians of C and D and
taking for X the associated Kummer variety.

(Note: Surfaces S for which there is a positive answer to Question B are very
much related to the notion of K3 burgers, as introduced by Laterveer [24].)

1.4. Question C. Since we are not able to settle Question B in general, we may
aim for something weaker, sitting in between Question A.(H) and Question B. We
use the notion of motivated cycles introduced by André [2] (see §5.9 for details).

Do there exist X and ι satisfying (H) as above such that ι is moti-
vated?

Once again, we are not able to give an answer to this question in general. How-
ever, we give sufficient conditions for a positive answer to this question. For exam-
ple, we show that to decide Question C one may replace S with any other surface
in the same connected component of the moduli space of surfaces of general type
(Theorem 5.17). In particular, Question C has a positive answer for every surface S
that lies in the same connected component as a product-quotient surface or a mixed
surface. These last ones are minimal resolutions of quotients (C×C)/G by a mixed
action of a finite group G on C × C, with C a smooth curve (see [14, 15]).

If Question C has a positive answer for the surface S, then we also deduce that
the Tate and Mumford–Tate conjectures hold for models of S over finitely generated
subfields of C (Corollary 5.19).

We summarize these results in the following theorem (the conjunction of Theo-
rems 3.12, 4.9, and 5.17 and Corollary 5.19).

1.5. Theorem. Let S be a smooth projective complex surface with invariants pg(S)
= q(S) = 2, and assume that the Albanese morphism α : S → A is surjective.

(1) Then there exist a K3 surface X and an isomorphism of Hodge structures

ι : (H2
new(S,Q))tra → H2(X,Q)tra.

(2) If S is a product-quotient surface (cf. Definition 2.3) with group G, then
there exist X and ι as above and an algebraic cycle on S×X that induces ι.

(3) If S is in the same connected component of the Gieseker moduli space as
a product-quotient surface or a mixed surface, then ι is motivated (in the
sense of André), and the Tate and Mumford–Tate conjectures hold for S.
That is, the Tate and Mumford–Tate conjectures hold for those S that are
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COHOMOLOGY OF SURFACES WITH pg = q = 2 1751

deformation equivalent to a surface that is of general type with pg = q = 2,
maximal Albanese dimension, and birational to a quotient of a product of
curves.

1.6. Structure of this text. In the next section, “On the classification of surfaces
with pg = q = 2”, we very briefly recall what is known for the surfaces under con-
sideration. It is important to stress that the classification of these surfaces is not
yet complete. Hence we present the state of the art up to now. We shall pay partic-
ular attention to those surfaces which are product-quotients (here a classification
theorem is available) and mixed surfaces (here a classification is still missing, but
it is very likely that it will be available in the next few years), recalling definitions,
important properties, and the associated group theoretical data. Furthermore, we
recall what is known about their moduli space.

In section 3 we discuss the existence of Hodge-theoretical K3 partners for all the
surfaces with pg = q = 2, following Morrison’s theory. In Theorem 3.12 we prove
point (1) of Theorem 1.5.

In section 4 we discuss the problem to find a geometric description where possible
of the Hodge-theoretical K3 partners, proving point (2) of Theorem 1.5. Indeed,
for those surfaces which are product-quotients we are able to find an algebraic
K3 partner.

Finally in the last section we see how the results obtained can be used to prove
that the Tate and Mumford–Tate conjectures hold for these surfaces. As already
mentioned, here we use the notion of motivated cycles introduced by André. Corol-
lary 5.19 proves the last point of Theorem 1.5.

2. On the classification of surfaces with pg = q = 2

2.1. The classification of smooth projective complex surfaces with invariants pg =
q = 2 is not complete, although there has been much progress in recent years. We
give an overview of the current state of the art. Let S be a minimal surface of
general type with pg = q = 2, so that χ(S) = 1− q + pg = 1. Recall the following
classical general inequalities:

• K2
S ≤ 9χ(S) (Bogomolov–Miyaoka–Yau).

• K2
S ≥ 2pg if q > 0 (Debarre).

These yield 4 ≤ K2
S ≤ 9 under our assumptions. Except for the case K2

S = 9,
examples of such surfaces have been constructed for every value of K2

S in this
range. Since we are dealing with irregular surfaces, i.e., with q > 0, a useful tool to
study them is the Albanese map. The Albanese variety of S is the q-dimensional
variety Alb(S) := H0(S,Ω1

S)
∨/H1(S,Z). By Hodge theory, Alb(S) is an abelian

variety. For a fixed base point x0 ∈ S, we define the Albanese morphism as

α = αx0
: S −→ Alb(S), x �→

∫ x

x0

.

The dimension of α(S) (≤ q(S) = 2) is called the Albanese dimension of S and it
is denoted by Albdim(S). If Albdim(S) = 2, we say that S has maximal Albanese
dimension. For surfaces with q(S) = 2, we have two possibilities:

(1) Albdim(S) = 1 and α(S) is a smooth curve of genus 2 or
(2) Albdim(S) = 2 and α is a generically finite cover of an abelian surface.
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1752 JOHAN COMMELIN AND MATTEO PENEGINI

The first case is completely understood: we have a classification theorem; see [35].
However, these surfaces do not have a surjective Albanese map; therefore they fall
outside the scope of this paper and will no longer be considered.

The second case is still open. By [8, section 5] the degree deg(α) of the Albanese
map is a topological invariant. In Table 1 we summarize the state of the art of the
classification using K2

S and deg(α) as main invariants.

Table 1. State of the art of the classification of minimal complex
algebraic surfaces with invariants pg = q = 2. We have indicated,
where possible, the number of families (#) and the dimensions
of the irreducible component containing them (dim). Moreover,
we point out if some members of the family are product-quotient
surfaces (pq) or mixed surfaces (ms); see Definitions 2.3 and 2.4. In
the last column, we give references to more detailed descriptions
of the class. Finally, as a consequence of the present paper, we
put a checkmark in the column mtc if we prove the Tate and
Mumford–Tate conjectures for a class.

№ K2
S deg(α) # dim Name mtc pq/ms Reference

1 8 2 2 02 No [41]

2 8 ≤ 6 4 33, 4 SIP � Yes [35]

3 7 3 1 3 � Yes [6, 40]

4 7 2 ? ≥ 2 ? [42]

5 6 4 1 4 � Yes [38]

6 6 2 1 3 ? [37]

7 6 2 2 42 � Yes [37] [39]

8 5 3 1 4 Chen–Hacon � Yes [36]

9 4 2 1 4 Catanese � Yes [9, 35]

2.2. In the rest of this section we will describe the examples № = 2, 3, 5, 7, 8, 9 of
Table 1 in more detail.

The examples № = 1, 4, 6 will not be treated in this paper for the following
reasons. For the surfaces in № = 4, at the time of writing, very few things are
known about their moduli spaces. Despite the abundance of information about
their moduli, for the surfaces in № = 1 and 6 none of the methods we develop here
seem to work; principally this is due to the small dimensions of their moduli.

2.3. Definition. Let G be a finite group acting on two compact Riemann surfaces
C1, C2 of respective genera g1, g2 ≥ 2. Consider the diagonal action of G on C1×C2.
In this situation we say for short: the action of G on C1 × C2 is unmixed. By [7]
we may assume w.l.o.g. that G acts faithfully on both factors.

The minimal resolution S of the singularities of T = (C1 × C2)/G is called a
product-quotient surface. If the action of G on the product C1 × C2 is free we will
speak of surfaces isogenous to a product of unmixed type (SIP). In this case T is
already smooth.
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2.4. Definition. Let C be a smooth projective curve, and let G be a finite subgroup
of Aut(C)2�Z/2. Assume that there are elements in G exchanging the two factors
of C × C. In this case we say that the action is mixed.

The minimal resolution of singularities S −→ T = (C × C)/G is called a mixed
surface. A surface isogenous to a product of mixed type (also SIP) is a mixed surface
where G acts freely on C × C.

We denote by G0�G the index two subgroup, i.e., the subgroup of elements that
do not exchange the factors. In general the singularities of T are rather complicated.
Assuming that G0 acts freely, i.e., (C ×C)/G0 is a surface isogenous to a product,
T is smooth and we call it a semi-isogenous mixed surface.

2.5. The families of surfaces № = 2 in Table 1 are all the surfaces isogenous to a
product of unmixed type (see [35]), and a brief description of them can be read from
Table 2. There one can find the genus of C1 and C2, the group G, and the number
of branch points (with multiplicities) of the covering Ci −→ Ci/G for i = 1, 2.
Notice first that the curves Ci/G are elliptic curves for i = 1, 2; second that for a
complete description one needs a system of generators for the group G. The families
of surfaces № = 5, 8, and 9 contain subloci of product-quotient surfaces. To briefly
describe these particular members we add information about the singularities of
(C1 × C2)/G to Table 2.

Table 2. Classification of product-quotient surfaces of unmixed
type with pg = q = 2. In the column labeled η we give the number
of irreducible components of the exceptional divisor of the minimal
resolution of (C1 × C2)/G. The last column (№) mentions the
component of the Gieseker moduli space described in Table 1 that
contains the family of product-quotient surfaces as a subfamily.

K2
S g(C1) g(C2) G branch sing. η dim №

8 3 3 V4 (22), (22) – 0 4 3

8 3 4 S3 (3), (22) – 0 3 3

8 3 5 D4 (2), (22) – 0 3 3

6 4 4 A4 (2), (2) 2× 1
2 (1, 1) 2 2 5

5 3 3 S3 (3), (3) 1
3 (1, 1) +

1
3 (1, 2) 3 2 8

4 3 3 Q8 (2), (2) 4× 1
2 (1, 1) 4 2 9

4 3 3 D4 (2), (2) 4× 1
2 (1, 1) 4 2 9

4 2 2 C2 (22), (22) 4× 1
2 (1, 1) 4 4 9

On the other hand, the families of surfaces № = 3 and 7 contain subloci of mixed
surfaces as shown in [39, 40]. Table 3 describes families of mixed surfaces that are
of interest to us. The surfaces described by the first row are surfaces isogenous
to a product of mixed type. The semi-isogenous mixed surfaces T = (C × C)/G
with pg(T ) = q(T ) = 2 and K2

T > 0 form 9 families [6]. We will not be able to say
anything about the existence of algebraic K3 partners for these surfaces (section 4),
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1754 JOHAN COMMELIN AND MATTEO PENEGINI

but we will study them in section 5. Since the questions studied in section 5 will
turn out to be invariant under deformation we only need to study one subfamily per
component of the Gieseker moduli space. Of the 9 families mentioned above, 4 are
subfamilies of components of the Gieseker moduli space that also contain families
of product-quotient surfaces that we already described (see [6] and [39]). The only
families for which this is not the case are listed in Table 3; they are families in
№ = 2, 3, 7 described in Table 1.

Table 3. The families of mixed surfaces with pg = q = 2 that are
not subfamilies of components of the Gieseker moduli space that
also contain families of product-quotient surfaces that we described
before.

K2
T g(C) G G0 branch dim №

8 2 C4 C2 – 3 2

7 4 C6 C3 (2,−4) 3 3

6 5 D4 (C2)
2 (3,−8) 4 7

6 5 D4 (C2)
2 (3,−8) 4 7

6 5 C2 × C4 C4 (2,−4)2 4 7

2.6. As already remarked, the surfaces in component № = 2 are all isogenous to
a product. Hence the weak rigidity theorem of Catanese [7] tells us that for each
family their moduli space consists of one connected irreducible component in the
subspace M8,2,2 (MK2,pg ,q) of the Gieseker moduli space of surfaces of general type
M8,1 (MK2,χ). Moreover each member of the family is isogenous to a product.

The property of preserving an isotrivial fibration is no longer true for the families
№ = 3, 5, 7, 8, 9. Indeed, their moduli space is bigger in some sense. To be precise
let us first analyze the families of surfaces in Table 2 with K2

S < 8. These families
form an irreducible sublocus of MK2,2,2, but they sit inside a bigger connected
component.

The connected component with K2
S = 4 was studied in [9]. We have that all

three families in Table 2 with K2
S = 4 belong to the same connected component of

dimension 4. The surfaces with K2
S = 5 form an irreducible component of dimen-

sion 2 sitting inside the connected component of Chen–Hacon surfaces described
in [36], which has dimension 4. Finally the family of surfaces with K2

S = 6 is a
2-dimensional irreducible component inside an irreducible component of M6,2,2 of
dimension 4; this component is studied in [38].

The first entry of Table 3 is again isogenous to a product of mixed type. Hence
its moduli space is 3-dimensional and is described by the weak rigidity theorem of
Catanese [7].

The moduli space of the surfaces relative to the second entry of Table 3 is de-
scribed by Pignatelli and Polizzi in [40]. In this case the moduli space is a generically
smooth, irreducible, open, and normal subset of the Gieseker moduli space M7,2,2.
For the general member of the family the Albanese surface is simple, but some
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specific surfaces admit an irrational fibration over an elliptic curve. Finally, the
last three entries of Table 3 are described by Pignatelli in [39], more precisely, in
Proposition 6.5, Corollary 6.6, and Proposition 6.7. There it is shown that these
families are subfamilies contained in the irreducible components Ia and Ib of sur-
faces of general type with pg = q = 2, K2 = 6, and Albanese map of degree 2
studied in [36]. As a last remark, notice that in [36] a third family of these surfaces
is studied, labeled II. This family corresponds to № = 6 in Table 1, and up to now
it is unknown if it contains a subfamily of mixed surfaces.

3. Hodge-theoretic K3 partners

3.1. Let S be a smooth projective complex surface with invariants pg(S) = q(S) =
2, and assume that the Albanese morphism α : S → A is surjective. Recall Ques-
tion A from the introduction:

Does there exist a K3 surface X together with an isomorphism
ι : (H2

new)
tra
Q → H2(X,Q)tra that preserves (H) the Hodge structure

or (Z) the integral structure or (P) the intersection pairing?

In Theorem 3.12 we give an affirmative answer to this question.

3.2. A Hodge lattice V is a free Z-module of finite rank, endowed with a polarized
Hodge structure such that the polarization on V makes V into a lattice—a sym-
metric bilinear form on a free Z-module of finite rank. In particular, the weight (as
Hodge structure) of V is always even.

3.3. Notation. There is some risk of confusing notation: if V is a Hodge lattice,
then V (k) may denote either the k-th Tate twist of the Hodge structure on V or it
may denote the k-th twist of the lattice structure on V . In this paper we use the
notation V (k) only for Tate twists of the Hodge structure.

3.4. Definition. Let V be a Hodge lattice of K3 type (that is, the Hodge structure
on V is of K3 type). A K3 partner of V is a complex K3 surface X together
with an isomorphism of Hodge structures ι : V tra

Q → H2(X,Q)tra. Following the
terminology of Morrison (p. 181 of [30]) we say that a K3 partner (X, ι) is strict
if ι maps the intersection form on V tra

Q to the intersection form on H2(X,Q)tra.
The K3 partner (X, ι) is integral if ι is compatible with an isomorphism of integral
Hodge lattices V tra → H2(X,Z)tra.

3.5. Let Λ denote the even unimodular lattice E8〈−1〉2 ⊕ U3. The lattice Λ goes
by the name K3 lattice, since there is an isometry H2(X,Z) ∼= Λ for every complex
K3 surface X. For an integer d, let Λd denote the lattice E8〈−1〉2 ⊕ U2 ⊕ 〈−2d〉.
Observe that Λd ↪→ Λ. The signature of Λ is (3, 19), whereas the signature of Λd is
(2, 19).

Recall that if M is a lattice, then the pairing on M defines a natural map
M ↪→ M∨, and the cokernel M∨/M is called the discriminant group AM . The
minimal number of generators of AM is denoted by �(AM ).

3.6. Theorem. Let L and M be even lattices with signatures (s+, s−) and (t+, t−),
respectively. Assume that L is unimodular. Then there exists a unique primitive
embedding M ↪→ L if the following conditions hold:

(1) t+ < s+ and t− < s−, and
(2) rk(L)− rk(M) ≥ �(AM ) + 2.
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1756 JOHAN COMMELIN AND MATTEO PENEGINI

Proof. This is a slightly weaker form of Theorem 1.14.4 of [32]. �

The following corollary is part of an observation by Morrison; see Corollary 2.10
of [29].

3.7. Corollary. Let M be an even lattice with signature (2, n) for some integer
0 ≤ n ≤ 8. Then there exists a unique primitive embedding M ↪→ Λ into the
K3 lattice introduced above.

3.8. Let L be a lattice with signature (s+, s−), and assume that 2 ≤ s+ ≤ 3
and s− ≤ 19. Define Ω(L) = {x ∈ P(L ⊗ C) | (x, x) = 0, (x, x̄) > 0}. Note that
Ω(L) is an analytic open subset of the quadric in P(L⊗C) defined by the equation
(x, x) = 0. If M ↪→ L is an embedding of two such lattices, then there is a natural
holomorphic map Ω(M) → Ω(L).

Observe that there is a natural bijection⎧⎨
⎩
Hodge structures of K3 type on L such

that for every non-zero x ∈ L2,0 one has
(x, x) = 0, (x, x̄) > 0, and x ⊥ L1,1

⎫⎬
⎭ −→ Ω(L),

obtained by mapping a Hodge structure on L to the point L2,0 in Ω(L).

3.9. We denote with F full
2d,K,C the moduli space of degree 2d primitively polarized

K3 surfaces with full level K-structure for an admissible subgroup K ⊂ SO(Λd)(Ẑ);
see [44] for details.

3.10. Proposition. Let B be a connected algebraic variety over C, and let V/B
be a polarized variation of Z-Hodge structures of weight 2 of K3 type. Let b be
a point of B and assume that Vb is a lattice with signature (2, n) that admits a
primitive embedding Vb ↪→ Λ. Then there is an étale open B◦ → B such that b
lies in the image of B◦, a K3 space f : X → B◦, and a morphism of variations
of Hodge structures V|B◦ → R2f∗Z that is fiberwise a primitive embedding and a
Hodge isometry on the transcendental lattices.

Proof. Let B̃ → B be a universal cover of B, and let b̃ be a point of B̃ lying
above b. Let L denote the lattice underlying the fibre of Vb̃. Fix a primitive
embedding L ↪→ Λ. Under the induced map Ω(L) → Ω(Λ) the Hodge structure on
Vb̃ maps to a point x ∈ Ω(Λ). By the surjectivity of the period map for K3 surfaces
there exists a complex K3 surface X, with H2(X,Z) ∼= Λ, such that the Hodge
structure on H2(X,Z) corresponds to x.

Let d ∈ Z and K ⊂ SO(Λd)(Ẑ) be such that X admits a primitive polarization
of degree 2d with full level K-structure. This means that [X] ∈ F full

2d,K,C. Since L

has signature (2, n) we get a primitive embedding L ↪→ Λd. This yields a diagram

B̃ Ω(L) Ω(Λd)

B K\Ω(Λd)
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The composite map B̃ → K\Ω(Λd) factors via a finite cover BK of B:

B̃ Ω(L) Ω(Λd)

B BK K\Ω(Λd)fin ét

By a theorem of Borel (see Theorem 6.4.1 of [20]) the map BK → K\Ω(Λd) is
algebraic. By Proposition 3.2.11 of [43], there is an open immersion F full

2d,K,C →
ShK(SO(Λd),Ω(Λd)), where the latter is the Shimura variety parameterizing polar-
ized Hodge structures on Λd ⊗Q with a level K-structure.

We now have a diagram

B̃ Ω(L) Ω(Λd)

B BK K\Ω(Λd) ShK(SO(Λd),Ω(Λd))

B◦ F full
2d,K,C

fin ét

◦ ◦

where the bottom right rectangle is cartesian. By our choice of d and K, we know
that [X] ∈ F full

2d,K,C and b ∈ B are in the image of B◦ under the respective maps. In
particular B◦ is non-empty. Pulling back the universal family of K3 surfaces from
F full

2d,K,C to B◦ we end up with a K3 space f : X → B◦ and a morphism of variations

of Hodge structures V|B◦ → R2f∗Z. By construction it is fiberwise a primitive
embedding and a Hodge isometry on the transcendental lattices. �
3.11. Lemma. Let S be a smooth projective complex surface with invariants pg =
q = 2. Let α : S → A be the Albanese morphism, and assume that α is surjective.
Define H2

new = (H∗(A,Z)/tors)⊥ ⊂ H∗(S,Z)/tors. Then H2
new has rank 12 −K2

S.
In particular (H2

new)
tra has signature (2, n) with n ≤ 10−K2

S.

Proof. By our assumptions we have χS = pg − q + 1 = 1. Noether’s formula gives

e + K2
S = 12 · χS = 12. Observe that e =

∑4
i=0(−1)ibi, where b0 = b4 = 1 and

b1 = b3 = 2q = 4. Therefore

b2 = 12−K2
S + 2 · 4− 2 · 1 = 18−K2

S .

Finally, b2 is the sum of the ranks of H2
new and H2(A,Z). The latter has rank 6, and

we conclude that H2
new has rank 12−K2

S . Since (H
2
new)

tra is a transcendental Hodge
structure of K3 type, it must have signature (2, n), with n ≤ rk(H2

new)− 2. �
3.12. Theorem. Let S be a smooth projective complex surface with invariants
pg = q = 2, and let α : S → A and H2

new be as in the preceding Lemma 3.11. Then
there exist a complex K3 surface X and a morphism ι : (H2

new)
tra
Q → H2(X,Q)tra

that preserves (H) the Hodge structure, (Z) the integral structure, and (P) the in-
tersection pairing. In other words, we have a positive answer to Question A of the
introduction.

Proof. Since 4 ≤ K2
S ≤ 9, Lemma 3.11 shows that the lattice (H2

new)
tra has signa-

ture (2, n) with n ≤ 8. Note that (H2
new)

tra is even by the Wu formula: for every
v ∈ H2(S,Z) we have (v, v) ≡ (v, c1(S)) (mod 2), and we have (H2

new)
tra ⊂ c1(S)

⊥
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since (H2
new)

tra is by definition perpendicular to all Hodge classes. The result follows
from Corollary 3.7 and Proposition 3.10. �

3.13. Remark. Let B be a connected component of the Gieseker moduli space of
minimal smooth projective surfaces with invariants pg = q = 2. Assume that
dim(B) > 0. It is natural to ask if there are two classes [S1], [S2] ∈ B such that the
Hodge structures H2

new(S1,Q) and H2
new(S2,Q) are not isomorphic. In other words:

does the “new part” of the Hodge structure have a non-trivial period domain?
If this question has a positive answer, then one may apply the techniques of

Moonen [27] to the universal family over B, which would be particularly relevant
for our results in section 5. For example, if the answer is positive, one may use
a monodromy argument to show that H2(S) is an abelian motive in the sense of
André for all [S] ∈ B.

If B contains a sublocus of product-quotient surfaces, then we can give a positive
answer to this question. (However, in this case we have direct arguments for our
results in section 5 and do not need the techniques of [27].) We have spent ample
time on this question for the three components with K2 = 6 in № = 7 of Table 1,
but we have not been able to answer it in these cases.

4. Algebraic K3 partners

Let S be a smooth projective complex surface with invariants pg(S) = q(S) = 2,
and assume that the Albanese morphism α : S → A is surjective. In this section we
attempt to answer Question B of the introduction:

Does there exist a K3 surface X together with an isomorphism
ι : (H2

new)
tra
Q → H2(X,Q)tra that is algebraic?

Since Theorem 3.12 provides an affirmative answer to Question A, the Hodge
conjecture predicts a positive answer to Question B as well. In Theorem 4.9 we
show that this is indeed the case for certain surfaces that are product-quotients
(cf. Definition 2.3). If the essence of the proof must be captured in one sentence,
it would be the following: the algebraic correspondence inducing ι is built from
the Kummer K3 surface associated with a suitable 2-dimensional isogeny factor of
the product of the Jacobians of the curves that are used in the construction of the
product-quotient surface S.

4.1. Outline of this section. This section is the most technical part of this paper.
It is organized as follows. First we recall some facts about Chow motives of surfaces.
Proposition 4.5 describes a natural decomposition of h2(S,Q) for product-quotient
surfaces S of unmixed type. In Theorem 4.9 we give the general proof for the
existence of an algebraic correspondence inducing ι. This proof relies on a case-by-
case computation, for which we refer to a MAGMA-script with which we tabulate the
output. The final part of this section illustrates this proof by discussing one of the
cases in detail, as an example.

4.2. Chow motives of surfaces. For an introduction to the theory of Chow mo-
tives we refer to the excellent paper [45] of Scholl. Let Mrat denote the category of
Chow motives over C. We recall that Mrat is an additive, Q-linear, pseudoabelian
category (Theorem 1.6 of [45]). There exists a functor h : SmProp/C → Mrat from

the category of smooth projective varieties over C to the category of Chow motives.
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We denote with CHi(X) (resp., CHi(M)) the i-th Chow group of a smooth
projective variety X (resp., a motive M ∈ Mrat). In general, it is not known
whether the Künneth projectors πi are algebraic, so it does not (yet) make sense
to speak of the summand hi(X) ⊂ h(X) for an arbitrary smooth projective variety
X/C. However, a so-called Chow–Künneth decomposition does exist for curves [25],
for surfaces [31], and for abelian varieties [13]. For algebraic surfaces there is in fact
the following theorem, which strengthens the decomposition of the Chow motive.
Statement and proof are copied from Theorem 2.2 of [24].

4.3. Theorem. Let S be a smooth projective surface over C. There exists a self-
dual Chow–Künneth decomposition {πi} of S, with the further property that there
is a splitting

π2 = πalg
2 + πtra

2 ∈ CH2(S × S)

in orthogonal idempotents, defining a splitting h2(S) = h2(S)alg ⊕ h2(S)tra with
Chow groups

CHi(h2(S)alg) =

{
NS(S) if i = 1,

0 otherwise

and

CHi(h2(S)tra) =

{
CH2

AJ(S) if i = 2,

0 otherwise.

Here CH2
AJ(S) denotes the kernel of the Abel–Jacobi map.

Proof. The Chow–Künneth decomposition is given in Proposition 7.2.1 of [21].
The further splitting into an algebraic and transcendental component is Propo-
sition 7.2.3 of [21]. �

4.4. Motives of quotient varieties and blow-ups. If X is a smooth projective
variety and G is a finite group that acts on X, then we define h(X/G) = h(X)G.
This leads to a satisfactory theory of motives of quotient varieties, as is explained
in [12]; see also Example 16.1.13 in [18]. Since the intersection theory of quotient
varieties (and more generally Alexander schemes [22, 49]) behaves analogously to
that of smooth varieties, the blow-up formula generalizes to this setting: Let Y be
a variety that is the quotient of a smooth variety by the action of a finite group.
Let X ⊂ Y be a smooth subvariety of codimension r > 1. Consider the blow-up
square

X̃ Ỹ

X Y

Then there is a split exact sequence of motives [25]:

0 → h(X)⊗ L⊕r → (h(X̃)⊗ L)⊕ h(Y ) → h(Ỹ ) → 0.

(Here L denotes the Lefschetz motive, which is the formal dual of h2(P1).) We also
refer to [1] for more information about the motive of the blow-up of a quotient
variety.
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4.5. Proposition. Let S be a product-quotient surface of unmixed type with curves
C1 and C2 and with group G. Then the second Künneth component of S is given
by h2(S) ∼= U ⊕ Z ⊕ E, where

U :=
(
h2(C1)⊗ h0(C2)

)
⊕
(
h0(C1)⊗ h2(C2)

)
,

Z :=
(
h1(C1)⊗ h1(C2)

)G
,

E := Q(−1)⊕η,

and where η is the number of exceptional divisors introduced in the minimal desin-
gularization of the quotient surface.

Proof. Let η denote the number of exceptional divisors introduced in the mini-
mal desingularization of the quotient surface. Recall that for the surfaces that
we are interested in we gave the value of η in Table 2. Observe that h2(S) ∼=
h2((C1×C2)/G)⊕E. Notice that if the action of G on C1×C2 is free, then E = 0.
By the Künneth formula we obtain

h2(C1 × C2) =
(
h2(C1)⊗ h0(C2)

)
⊕
(
h0(C1)⊗ h2(C2)

)
⊕
(
h1(C1)⊗ h1(C2)

)
.

By definition we have h2((C1 ×C2)/G) = h2(C1 ×C2)
G, and since G acts trivially

on h0(Ci) and h2(Ci), we get the result. �

4.6. Remark. Note that we can further decompose the Chow motive Z of Proposi-
tion 4.5 as Z ∼= Z1 ⊕ Z2 where

Z1 := h1(C1)
G ⊗ h1(C2)

G, Z2 :=
⊕

W∈Ĝ−χ1

(
h1(C1)

(W ) ⊗ h1(C2)
(W∨)

)G

,

where Ĝ is the set of isomorphism classes of irreducible representations of G over Q,
χ1 is the trivial representation, and ( )(W ) denotes the W -isotypical component.

4.7. Remark. Observe that if W is a finite-dimensional Q-vector space, then we
may view it as a Chow motive, as follows: It is determined by the identity

HomMrat
(M,W ) = HomMrat

(M,Q)⊗W,

and it is non-canonically isomorphic to Q⊕ dim(W ).
If G is a finite group and W is equipped with a finite-dimensional representation

of G, then we may view the representation G → Aut(W ) as an action of G on the
Chow motive W .

4.8. We now state the main theorem of this section, which gives a partial answer
to Question B of the introduction. The rest of this section is dedicated to its proof.
We refer to §4.17 for an explicit computation that illustrates the general argument
of this proof.

4.9. Theorem. Let S be a minimal surface of general type with pg = q = 2, of
maximal Albanese dimension isogenous to a product of unmixed type. Then there
exist a K3 surface X and a correspondence in S ×X that induces an isomorphism
between H2(X,Q)tra and H2(S,Q)tranew.
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4.10. The proof is done in several steps and will be completed in §4.16. Following
Proposition 4.5 and Remark 4.6 we decompose h2(S) = U ⊕ Z1 ⊕ Z2 ⊕ E. First
of all we see that for i = 1, 2 the quotients Ci/G =: Ei are elliptic curves. The
product E1 ×E2 is the Albanese variety of S, and we have h2(E1 ×E2) = U ⊕Z1.
Secondly, let η be the number of irreducible components of the exceptional divisor
of the minimal resolution of the quotient surface (see Tables 2 and 3; if there is no
branch locus, then η = 0). This gives E = Q(−1)η. For the purpose of this theorem
we are interested in the remaining term Z2. To find an algebraic K3 partner X
for S, we will find an abelian surface A as isogeny factor of J(C1)×J(C2) such that
Z2 = h2(A)tra⊕Q(−1)k for some k ∈ Z≥0. We may then take the minimal resolution
of singularities of the Kummer surface Km(A) = A/〈−1〉 for the K3 surface X. To
find the isogeny factor A, we proceed by decomposing (up to isogeny) the Jacobians
J(Ci) of Ci for i = 1, 2 as products of simple abelian varieties following [34].

4.11. Now let A be an abelian variety of dimension g with a faithful action of a
finite group G. There is an induced homomorphism of Q-algebras

ρ : Q[G] → EndQ(A).

Any element α ∈ Q[G] defines an abelian subvariety

Aα := Im(mρ(α)) ⊂ A,

where m is some positive integer such that mρ(α) ∈ End(A). This definition does
not depend on the chosen integer m.

We will now describe the so-called isotypical decomposition of the abelian vari-
ety A with group action by G. Begin with the decomposition of Q[G] as a product
of simple Q-algebras Q1 × · · · ×Qr. The factors Qi correspond canonically to the
rational irreducible representations Wi of the group G, because each one is gener-
ated by a unit element ei ∈ Qi which may be considered as a central idempotent
of Q[G].

The corresponding decomposition of 1 ∈ Q[G],

1 = e1 + · · ·+ er,

induces an isogeny, via ρ above,

(4.11.1) Ae1 × · · · ×Aer → A,

which is given by addition. Note that the components Aei are G-stable complex
subtori of A with HomG(A

ei , Aej ) = 0 for i �= j. The decomposition (4.11.1) is the
isotypical decomposition mentioned above.

4.12. The isotypical components Aei can be decomposed further, using the decom-
position of Qi into a product of minimal left ideals. Fix an i ∈ {1, . . . , r}, and let
Wi be the irreducible rational representation of G corresponding to the idempo-
tent ei. We will now recall some facts from representation theory; see §12.2 of [46]
for details.

Write Di for the simple algebra EndG(Wi), and observe that Qi = Matni
(D◦

i ) is
a matrix algebra of degree ni over the opposite algebra for some ni ∈ Z≥1. Recall
that the Schur index of Wi is the degree mi of Di over its centre. If χi is the
character of one of the irreducible summands of Wi ⊗Q C, then degχi = mi · ni.
There is a set of primitive idempotents {πi,1, . . . , πi,ni

} in Matni
(D◦

i ) = Qi ⊂ Q[G]
such that

ei = πi,1 + · · ·+ πi,ni
.
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(We warn the reader that the πi,j are not G-equivariant, and hence the abelian
subvarieties Aπi,j are not G-stable.) The abelian subvarieties Aπi,j are mutually
isogenous for j = 1, . . . , ni. Let Bi be any one of these isogenous factors; we call
it a reduced factor of Aei and ni the multiplicity of the reduced factor: Bni

i → Aei

is an isogeny. Replacing the factors in (4.11.1) for every i = 1, . . . , r, we get an
isogeny, called the group algebra decomposition of the G-abelian variety A,

(4.12.1) Bn1
1 × · · · ×Bnr

r → A.

Note that whereas (4.11.1) is uniquely determined, (4.12.1) is not. It depends
on the choice of the πij as well as the choice of the Bi. However, the dimension
and the isogeny class of the abelian varieties Bi are independent of choices.

4.13. Remark. If Di = Q, then we get a G-equivariant isomorphism h1(Aei) ∼=
h1(Bi)⊗Wi of Chow motives, where G acts trivially on h1(Bi).

4.14. While the factors in (4.12.1) are not necessarily easy to determine, we may
compute their dimension in the case of a Jacobian variety. Let C be a compact
Riemann surface equipped with an action of a finite group G and consider the in-
duced action of G on J(C). Define V to be the representation of G on H1(X,Z)
⊗Z Q. We use the same notation as at the beginning of this section, so the quo-
tient C/G has genus g0 and the cover π : C → C/G has r branch points {q1, . . . , qr}
where each qi has corresponding monodromy gi. The tuple (g1, . . . , gr) is called the
generating vector for the action [5].

We now copy equation (2.14) from [5] and explain the notation afterwards: the
Hurwitz character χV associated to V is

(4.14.1) χV = 2χ1 + 2 (g0 − 1) ρ1∗ +
r∑

i=1

(
ρ1∗ − ρ〈gi〉

)
.

Here χ1 is the trivial character on G, and ρ1∗ is the character of the regular repre-
sentation. The character ρH is the induced character on G of the trivial character
of the subgroup H. (When H = 〈gi〉, this subgroup is the stabilizer, or isotropy
group, of a point in the fiber of the branch point qi.)

With this definition of χV in place, we have the equality

(4.14.2) dimBi =
1

2
dimQ πi,jV =

1

2
〈ψi, χV 〉,

where ψi denotes the character of the Q-irreducible representation of G correspond-
ing to Wi. See [23, 33] for details.

4.15. We will now complete the proof of Theorem 4.9. We may calculate the di-
mension of the Bi’s for each class of surfaces in the statement, either by hand or
using the MAGMA script as in [34]. The result of this computation is given in Table 4.

It is a coincidence that in the table all the characters that appear are actually
self-dual and defined over Q. One can check that for each row in the table, there is
only one character χ that appears in column char(C1) such that the dual character
χ∨ appears in column char(C2).

Let W be the irreducible rational representation of G that corresponds to χ. We
will complete the proof by a case distinction. First assume that G �= Q8. In this
case, one may check that the Schur index of W is 1, and in fact D = EndG(W ) = Q.
In other words, we are in the situation of Remark 4.13. Let L1 be a reduced factor
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Table 4. The group algebra decomposition of the Jacobian va-
rieties J(Ci). The columns char(Ci) − χ1 have to be read in the
following way: each list [d, n, k] represents a non-trivial isotypical
factor of J(Ci) corresponding to a simple rational representationW
of G. Here d is the dimension of a reduced factor, n is the multiplic-
ity of the factor, and k is the identifying number according to the
MAGMA character table of the group G of an irreducible character
appearing in W ⊗Q C.

G char(C1)− χ1 J(C1)/E1 char(C2)− χ1 J(C2)/E2

V4 [1, 1, 2], [1, 1, 4] E × L1 [1, 1, 3], [1, 1, 4] E × L2

S3 [1, 2, 3] L2
1 [1, 1, 2], [1, 2, 3] E × L2

2

D4 [1, 2, 5] L2
1 [1, 1, 3], [1, 1, 4], [1, 2, 5] E × E′ × L2

2

A4 [1, 3, 4] L3
1 [1, 3, 4] L3

2

S3 [1, 2, 3] L2
1 [1, 2, 3] L2

2

Q8 [2, 1, 5] A [2, 1, 5] A′

D4 [1, 2, 5] L2
1 [1, 2, 5] L2

2

C2 [1, 1, 2] L1 [1, 1, 2] L2

of J(C1) corresponding with χ, and denote with L2 a reduced factor of J(C2) that
corresponds to χ∨. Thus we have

h1(J(C1))
(W ) ∼= h1(L1)⊗W, h1(J(C2))

(W∨) ∼= h1(L2)⊗W∨,

as motives with an action of G. Consequently, we find that(
h1(J(C1))

(W ) ⊗ h1(J(C2))
(W∨)

)G ∼= h1(L1)⊗ h1(L2)⊗ (W ⊗W∨)G

∼= h1(L1)⊗ h1(L2).

We conclude that Z2
∼= h1(L1) ⊗ h1(L2) ∼= h2(L1 × L2)

tra ⊕ Q(−1)⊕k for some
k ∈ Z≥0, and thus L1 × L2 is the 2-dimensional isogeny factor A of J(C1)× J(C2)
that we are looking for.

4.16. The case G = Q8. In the case where G = Q8, we find that D = EndG(W ) =
H, which has Schur index 2. In this case we cannot use the methods employed so
far to prove that the Jacobian is isogenous to a product of elliptic curves as in all
the other cases.

Nevertheless, in [17] it is proven that in this case the curves C1 and C2, which are
of genus g = 3, admit a bigger automorphism group. Indeed, their automorphism
group is isomorphic to (C4 × C2)� C2, which readily contains Q8. More precisely,
in [17] it is shown that the curves C of genus g = 3 and with automorphism Q8

and (C4 × C2)� C2 give rise to the same subvariety in the moduli space of curves
which is the family (34) of Table 2 in [16]. Therefore, we can try to decompose the
Jacobian of C using this larger group.
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Performing the calculation relative to this larger group we have (in the notation
of Table 4)

(C4 × C2)� C2 [1, 2, 9] L2
1 [1, 2, 9] L2

2.

To conclude, notice that the ninth character of (C4 ×C2)�C2 is not self-dual, but
we have to restrict it to Q8. Recalling that Q8 � (C4 × C2) � C2, one sees that all
the conditions of Problem 5.2 on page 65 of [19] are fulfilled. Hence the restriction
of this character to Q8 is the only 2-dimensional irreducible representation which is
self-dual. We remark that the Li must be CM elliptic curves, since H injects into
M2(End(Li)Q).

Now recall that H ⊗ H ∼= End(χ1 ⊕ χi ⊕ χj ⊕ χk) ∼= M4(Q). We conclude that
h1(L2

1)⊗ h1(L2
2)

∼=
(
h1(L1)⊗ h1(L2)

)
⊗ (χ1 ⊕ χi ⊕ χj ⊕ χk) as Chow motives with

an action of G. In particular we have
(
h1(L2

1)⊗ h1(L2
2)
)G ∼= h1(L1)⊗h1(L2). This

concludes the proof of Theorem 4.9.

4.17. The case K2 = 8 and G = V4. As an illustration of the proof of Theorem 4.9
and in particular the computations performed by the MAGMA script, we will now
study one example in detail. This example will occupy us for the next few pages.

Let E1 and E2 be elliptic curves, marked with two points {pi,1, pi,2} ⊂ Ei.
As a group we take G = V4. Let {αi, βi} be generators of π1(Ei, 0) and let γi,j
be a loop in π1(Ei, 0) around pi,j . Then we define two G-covers fi : Ci → Ei,
using the Riemann existence theorem (see, e.g., [26, section III]), by the following
epimorphisms of groups:
(4.17.1)

π1(E1 − {p1,j}, 0) −→ G

α1 �−→ (0, 1) =: a1

β1 �−→ (0, 0) =: b1

γ1,j �−→ (1, 0) =: c1,j

π1(E2 − {p2,j}, 0) −→ G

α2 �−→ (1, 0) =: a2

β2 �−→ (0, 0) =: b2

γ2,j �−→ (0, 1) =: c2,j

By construction {pi,1, pi,2} ⊂ Ei is the branch locus, and above each pi,j , there
are two ramification points with branching orders 2. Therefore, by the Riemann–
Hurwitz formula the Ci are curves of genus 3.

For a non-trivial element g ∈ G, let χg denote the non-trivial character of G that
annihilates g, let ρ〈g〉 denote the character of G induced from the trivial character
of the subgroup generated by g, and let ρ1∗ be the regular character. We get

Q[G] = Qχ(0,0) ×Qχ(0,1) ×Qχ(1,0) ×Qχ(1,1) .

We proceed by calculating the Hurwitz character (4.14.1) relative to the first
quotient (i = 1). Starting from the ramification data of the curve C1, we get

χ1 = (1, 1, 1, 1), ρ1∗ = (4, 0, 0, 0), ρ〈1,0〉 = (2, 2, 0, 0),

where the induced trivial representation is calculated using the formula of Exercise
3.19(b) in [19]. Therefore, the Hurwitz character is χV = (6,−2, 2, 2). Now we
use equation (4.14.2) to compute that the dimensions of the reduced factors Bχ of
J(C1) are respectively 1, 1, 0, 1 for χ = χ(0,0), χ(0,1), χ(1,0), χ(1,1). Analogously, we
compute that the dimension of the reduced factors Bχ of J(C2) are respectively
1, 0, 1, 1 for χ = χ(0,0), χ(0,1), χ(1,0), χ(1,1).

These results relate to row 1 of Table 4 in the following way: [1, 1, 2] means that
there is a 1-dimensional reduced factor with multiplicity 1 corresponding to the
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second character in the MAGMA character table of V4; this is the character χ(0,1).
This is exactly the isogeny factor Bχ(0,1)

of J(C1). Similarly [1, 1, 3] corresponds

to the isogeny factor Bχ(1,0)
of J(C2). Both J(C1) and J(C2) have an isogeny

factor Bχ(1,1)
, which corresponds to [1, 1, 4] in Table 4 and thus to the elliptic

curves L1 and L2.

4.18. Now we will explain how to construct geometrically the algebraic K3 part-
ner X of S = (C1 × C2)/G and a correspondence that induces the isomorphism
H2

new(S,Q)tra → H2(X,Q)tra. The K3 partner X will turn out to be the minimal
resolution of Kummer surface associated with L1 × L2.

Observe that fi factors as in the following diagram:

(4.18.1)

Ci

Ci/〈(0, 1)〉 Ci/〈(1, 0)〉 Ci/〈(1, 1)〉

Ei

φi,(0,1)

φi,(1,0)

φi,(1,1)

ψi,(0,1)

ψi,(1,0)

ψi,(1,1)

Using the Riemann–Hurwitz formula we compute the following genera for the quo-
tient curves:

g(C1/〈(0, 1)〉) = 2, g(C1/〈(1, 0)〉) = 1, g(C1/〈(1, 1)〉) = 2;

g(C2/〈(0, 1)〉) = 1, g(C2/〈(1, 0)〉) = 2, g(C2/〈(1, 1)〉) = 2.

Pushing the preceding diagram through the Jacobian functor, we obtain the dia-
gram

J(Ci)

J(Ci/〈(0, 1)〉) J(Ci/〈(1, 0)〉) J(Ci/〈(1, 1)〉)

Ei

This leads to the following isogenies of abelian varieties:

(4.18.2)

J(C1/〈(0, 1)〉) ∼ E1 × P (ψ1,(0,1)), J(C2/〈(0, 1)〉) ∼ E2,

J(C1/〈(1, 0)〉) ∼ E1, J(C2/〈(1, 0)〉) ∼ E2 × P (ψ2,(1,0)),

J(C1/〈(1, 1)〉) ∼ E1 × P (ψ1,(1,1)), J(C2/〈(1, 1)〉) ∼ E2 × P (ψ2,(1,1)),

where P (ψ) denotes the Prym–Tyurin variety associated to the cover ψ: it is the
kernel of the induced map J(ψ) between the Jacobians (see also [4], paragraph
12.2). Observe that Li is isogenous to P (ψi,(1,1)). Finally by (4.18.2) we have

(4.18.3)
J(C1) ∼ J(C1/〈(0, 1)〉)× P (φ1,(0,1))

∼ E1 × P (ψ1,(0,1))× P (φ1,(0,1)),

(4.18.4)
J(C2) ∼ J(C2/〈(1, 0)〉)× P (φ2,(1,0))

∼ E2 × P (ψ2,(1,0))× P (φ2,(1,0)).
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We now go back to the surface S = (C1 × C2)/V4. Since η = 0, we get

h2(S) ∼= h2(E1 × E2)⊕ h1(P (ψ1,(1,1)))⊗ h1(P (ψ2,(1,1))).

Let us go further and build an algebraic K3 partner of S. To do that we consider
the abelian surface A = P (ψ1,(1,1)) × P (ψ2,(1,1)) and divide modulo the natural
involution ι. In this way we get a singular Kummer surface.

According to the proposition above and Theorem 3 of [47] the minimal resolution
Km(A) of the singularities of A/ι is a K3 surface, and there exists a double cover X
of Km(A) whose transcendental part of H2(X) is isomorphic to the transcendental
part of H2(A). Now consider the following diagram:

C1 × C2 J(C1)× J(C2) A Km(A) X

S A/ι

All the morphisms in this diagram induce correspondences, and by composing these
correspondences we obtain an isomorphism h2(S)tranew → h2(X)tra that induces an
isomorphism of Hodge structures H2

new(S,Q)tra → H2(X,Q)tra.

5. Motivated K3 partners

Let S be a smooth projective complex surface with invariants pg(S) = q(S) = 2,
and assume that the Albanese morphism α : S → A is surjective. In this section we
attempt to answer Question C of the introduction:

Does there exist a K3 surface X together with an isomorphism
ι : (H2

new)
tra
Q → H2(X,Q)tra that is motivated in the sense of Yves

André?

5.1. In this section we prove the Tate and Mumford–Tate conjectures for surfaces
that fall into type № = 3, 4, 6, 8, and 9 of Table 1. We will use the language of
motives and specifically motivated cycles as introduced by André [2].

This section is organized as follows: First we introduce notation and recall the
definition of the Mumford–Tate group and the �-adic monodromy groups. Then
we will recall three conjectures that are connected in the following sense: if two of
the conjectures hold, then so does the third. These conjectures are (i) the Hodge
conjecture, (ii) its �-adic analogue known as the Tate conjecture, and (iii) the
Mumford–Tate conjecture.

Starting from §5.9 we recall the definition of motivated cycles in the sense of
André [2], and we quote the main theorems that describe the resulting category
of motives. Once we have all the machinery in place we turn our attention to the
proof of the Tate and Mumford–Tate conjectures for the surfaces mentioned above.

5.2. Notation. Let K ⊂ C be a field, and let X be a smooth projective variety
over K. We denote with Hi(X) the singular cohomology group Hi

sing(X(C),Q). It
is naturally endowed with a pure Hodge structure of weight i. Let � be a prime
number, and let K̄ ⊂ C be the algebraic closure of K ∈ C. We denote with Hi

�(X)
the �-adic étale cohomology group Hi

ét(XK̄ ,Q�). It is naturally endowed with a
Galois representation Gal(K̄/K) → GL(Hi

�(X)).
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Artin’s comparison theorem between étale cohomology and singular cohomology
gives an isomorphism of vector spaces

Hi
�(X) ∼= Hi

�(XC)
∼−→ Hi(X)⊗Q�

that is functorial in X.
Recall from §4.2 that we denote with CH∗(X) the Chow ring of X with Q-

coefficients. Recall the cycle class map cl : CHi(XC) → H2i(X)(i) for singular

cohomology. There is also a cycle class map cl� : CH
i(X) → H2i

� (X)(i) for étale
cohomology. These are compatible with the comparison isomorphism Hi

�(X) ∼=
Hi(X)⊗Q�; we get the following commutative diagram:

CHi(X) H2i
� (X)(i)

CHi(XC) H2i(X)(i) H2i(X)(i)⊗Q�

cl�

∼

cl ⊗1

5.3. Mumford–Tate groups. Let V be a Q-Hodge structure. There is a repre-
sentation of S = ResC/RGm on V ⊗R: on complex points (z, z̄) acts on v ∈ V pq by

v �→ z−pz̄−qv. (The minus signs are a historical convention.) Write h = hV for this
representation S → GL(V )R.

The Mumford–Tate group of V is the smallest algebraic subgroup G ⊂ GL(V )
over Q such that GR contains the image of hV . We denote the Mumford–Tate
group of V by GMT(V ). Alternatively, GMT(V ) may be defined using the Tan-
nakian formalism. It is the algebraic group over Q associated with the Tannakian
subcategory of Q-HS generated by V . If V is polarizable, then this subcategory
generated by V is semisimple, and hence GMT(V ) is a reductive algebraic group.

Two more remarks are in place: First, observe that GMT(V ) is a connected

algebraic group, since S is connected. Second, note that the subspace V ∩ V 0,0
C of

Hodge classes in V is exactly the space of invariants V GMT(V ).

5.4. �-adic monodromy groups. Let K ⊂ C be a field of finite transcendence
degree over Q. Let � be a prime number, let V be a finite-dimensional Q�-vector
space, and let ρ : Gal(K̄/K) → GL(V ) be a representation that is continuous for
the �-adic topology on V .

The �-adic monodromy group of V is the smallest algebraic subgroup G ⊂ GL(V )
over Q� such that G(Q�) contains the image of ρ. We denote the �-adic monodromy
group of V with G�(V ). In general, the algebraic group G�(V ) is not connected;
the identity component is denoted G◦

� (V ).
An element of V is called a Tate class if it is invariant under an open subgroup

of Gal(K̄/K). In particular, the subspace of Tate classes in V is exactly the space

of invariants V G◦
� (V ).

In general, the algebraic group G◦
� (V ) is not reductive.

5.5. Conjecture (Hodge). Let X be a smooth projective variety over C. Then the
image of cl : CHi(X) → H2i(X)(i) is the subspace of Hodge classes H2i(X)(i) ∩
H2i(X)(i)0,0C .

5.6. Conjecture (Tate). Let X be a smooth projective variety over a number
field K. Then the image of cl� : CH

i(XK̄) → H2i
� (X)(i) spans the space of Tate

classes H2i
� (X)(i)G

◦
� (X).
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5.7. Conjecture (Mumford–Tate). Let X be a smooth projective variety over a
number field K. The comparison isomorphism Hi

�(X) → Hi(X) ⊗ Q� induces an
isomorphism G◦

� (H
i
�(X)) → GMT(H

i(X))⊗Q�.

5.8. Remark. To illustrate how these conjectures fit together, we make the following
claims.

(1) If the Mumford–Tate conjecture is true for X, then the Hodge conjecture
for X is equivalent to the Tate conjecture for X.

(2) If the Tate conjecture is true for all smooth projective varieties X over K,
then the �-adic monodromy groups are reductive. This follows from [28].

(3) If the Hodge and Tate conjectures are true for all X, then the Mumford–
Tate conjecture is true for all X.

5.9. Motivated cycles. LetK be a subfield of C, and letX be a smooth projective
variety over K. A class γ in H2i(X) is called a motivated cycle of degree i if there
exists an auxiliary smooth projective variety Y over K such that γ is of the form
π∗(α ∪ �β), where π : X × Y → X is the projection, α and β are algebraic cycle
classes in H∗(X × Y ), and �β is the image of β under the Hodge star operation.
(Alternatively, one may use the Lefschetz star operation; see section 1 of [2].)

Every algebraic cycle is motivated, and under the Lefschetz standard conjecture
the converse holds as well. The set of motivated cycles naturally forms a graded
Q-algebra. The category of motives over K, denoted MotK , consists of objects
(X, p,m), where X is a smooth projective variety over K, p is an idempotent mo-
tivated cycle on X ×X, and m is an integer. A morphism (X, p,m) → (Y, q, n) is
a motivated cycle γ of degree n−m on Y ×X such that qγp = γ. We denote with
Hmot(X) the object (X,Δ, 0), where Δ is the class of the diagonal in X ×X. The
Künneth projectors πi are motivated cycles, and we denote by Hi

mot(X) the object
(X, πi, 0). Observe that Hmot(X) =

⊕
i H

i
mot(X). This gives contravariant func-

tors Hmot( ) and Hi
mot( ) from the category of smooth projective varieties over K

to MotK .

5.10. Theorem. The category MotK is Tannakian over Q, semisimple, graded, and
polarized. Every classical cohomology theory of smooth projective varieties over K
factors via MotK .

Proof. See théorème 0.4 of [2]. �

5.11. Definition. Let K be a subfield of C. An abelian motive over K is an object
of the Tannakian subcategory of MotK generated by objects of the form Hmot(X),
where X is an abelian variety, or X = Spec(L) for some finite extension L/K, with
L ⊂ C.

We denote the category of abelian motives over K by AbMotK .

5.12. Example. If C/K is a curve, then H1
mot(C) is an abelian motive: it is iso-

morphic to H1
mot(J(C)), where J(C) denotes the Jacobian of C.

If X/K is a K3 surface, then H2
mot(X) is an abelian motive, by théorème 7.1

of [2].
The Lefschetz motive Q(−1) is abelian, because any class of a hyperplane section

in an abelian variety A will give a splitting H2
mot(A) ∼= M ⊕Q(−1).

5.13. Theorem. The Hodge realization functor H : AbMotC → Q-HS is a full
functor.
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Proof. See théorème 0.6.2 of [2]. �

5.14. Theorem. Let B be a reduced connected scheme of finite type over C. Let
f : X → B be a smooth projective morphism, and let ξ be a global section of the
sheaf R2if∗Q(i). If there is a point 0 ∈ B(C) such that ξ0 is motivated, then ξb is
motivated for all b ∈ B(C).

Proof. See théorème 0.5 of [2]. �

5.15. By Theorem 5.10, the singular cohomology and �-adic cohomology functors
factor via MotK . This means that if M is a motive, then we can attach to it
a Hodge structure H(M) and an �-adic Galois representation H�(M). The com-
parison isomorphism between singular cohomology and �-adic cohomology extends
to an isomorphism of vector spaces H�(M) ∼= H(M) ⊗ Q� that is natural in the
motive M .

We shall write GMT(M) for GMT(H(M)). Similarly, we write G�(M) (resp.,
G◦

� (M)) for G�(H�(M)) (resp., (G◦
� (H�(M)))). The Mumford–Tate conjecture ex-

tends to motives: for the motive M it asserts that the comparison isomorphism
H�(M) ∼= H(M)⊗Q� induces an isomorphism G◦

� (M) ∼= GMT(M)⊗Q�.

5.16. We now have the notation and theory in place to answer Question C (see §1.4)
about surfaces of general type with pg = q = 2. We give a partial answer to this
question in the following results.

5.17. Theorem. Let α : S → B be a smooth projective family of surfaces of general
type with invariants pg = q = 2 and dominant Albanese morphism. Assume that
B is connected, and assume that there is one point 0 ∈ B such that the motive
H2

mot(S0) of the fibre S0 is an abelian motive. Then for every point b ∈ B, there
exist a K3 surface Xb and an isomorphism of motives H2

mot(Sb)
tra
new

∼= H2
mot(Xb)

tra.
In particular, the motive H2

mot(Sb) is abelian.

Proof. The main idea of the proof is as follows: Using Proposition 3.10 we construct
a family X → B of Hodge-theoretic K3 partners. We then use Theorem 5.13 to
prove that H2

mot(S0)
tra
new is isomorphic to H2

mot(X0)
tra
new. Finally, this isomorphism

spreads out to the other fibers via Theorem 5.14. We now make this sketch precise.
By replacing α : S → B with the pullback along B̃ → B, we may and do assume

that B is simply connected. Let V denote the subvariation of Hodge structures
of R2α∗Q whose fiber Vb at a point b ∈ B is H2(Sb,Q)new. Fix a point b ∈
B. By Proposition 3.10 we find that there are an open B◦

b ⊂ B such that b ∈
B◦

b , a K3 space f : X → B◦
b , and a morphism of variations of Hodge structures

ι : V|B◦
b
→ R2f∗Q that is fiberwise a primitive embedding and a Hodge isometry

on the transcendental lattices. We may view ι as a global section of the sheaf
V∨|B◦

b
⊗ R2f∗Q which is a subsheaf of R4(α, f)∗Q(2). Note that we may and do

assume that b ∈ B◦
0 ; indeed, if b /∈ B◦

0 , then we first prove the statement for all
points in B◦

0 and then rerun the proof with a point 0′ ∈ B◦
b ∩B◦

0 .
Recall from Example 5.12 that H2

mot(X0) is an abelian motive. Also note that
H2

mot(S0) is abelian by assumption. Hence ι0 is motivated, by Theorem 5.13. By
Theorem 5.14, we see that ιb is motivated as well. This means that we obtain an
isomorphism H2

mot(Sb)
tra
new → H2

mot(Xb)
tra. In particular, the motive H2

mot(Sb)
tra
new is
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abelian. To conclude that H2
mot(S) is abelian, observe that H

2
mot(S)

∼= H2
mot(S)

tra
new⊕

H2
mot(S)

tra
old⊕Q(−1)r. The term H2

mot(S)
tra
old is abelian, because it is the part coming

from the Albanese surface, whose motive is abelian by definition. �

5.18. Lemma. Let S′ be a smooth surface, and let G be a finite group acting
faithfully on S′. Let S be the resolution of singularities of S′/G. If H2

mot(S
′)

is an abelian motive, then H2
mot(S) is an abelian motive. In particular, this is the

case if S is one of the surfaces mentioned in Tables 2 and 3.

Proof. (Note that for i �= 2, the motives Hi
mot(S

′) and Hi
mot(S) are always abelian

motives.)
We have H2

mot(S
′/G) = H2

mot(S
′)G, which is an abelian motive, because it is a

submotive of the abelian motive H2
mot(S

′).
By the blow-up formula for motives of quotient varieties (see §4.4) we see that

H2
mot(S) is the sum of H2

mot(S/G) and (Tate twists of) the motives of centers of
blow-ups. Since the center of blow-up in this case is zero-dimensional, we conclude
that H2

mot(S) is a sum of H2
mot(S/G) and a Tate motive. Hence it is an abelian

motive. �

5.19. Corollary. Let K be a finitely generated subfield of C. Let S be a surface of
general type over K with invariants pg = q = 2 and dominant Albanese morphism.
Assume that S lies in one of the connected components of the Gieseker moduli space
of surfaces of general type that contain a surface that is either a product-quotient
or a mixed surface (that is, one of the types № 2, 3, 5,7, 8, or 9 in Table 1). Then
the Tate and Mumford–Tate conjectures are true for S.

Proof. We first prove the Mumford–Tate conjecture for S. Let A be the Albanese
variety of S. By Lemma 5.18 we may apply Theorem 5.17 to see that there exists
a K3 surface X such that H2

mot(S)
tra
new

∼= H2
mot(X)tra. Possibly after replacing K

by a finitely generated extension we may assume that X is defined over K. Hence
the motive Hmot(S) is an object in the Tannakian subcategory of MotK generated
by Hmot(A) and Hmot(X). Therefore it suffices to prove the Mumford–Tate conjec-
ture for Hmot(A) ⊕ Hmot(X). This follows from the main result of [10]. (See also
[48] and [11] for more general results on the Mumford–Tate conjecture for direct
sums of abelian motives.)

Recall that the Hodge conjecture is true for S, by the Lefschetz-(1, 1) theorem.
Therefore the Tate conjecture for S is true, since it follows from the conjunction of
the Hodge conjecture and the Mumford–Tate conjecture. Indeed, if γ ⊂ H2

� (S)(1)
is a Tate class, then this means that it is fixed by G◦

� (S). We have just proven the
Mumford–Tate conjecture for S, so we know that G◦

� (S)
∼= GMT(S) ⊗ Q�. This

means that γ ∈ H2
� (S)(1)

∼= H2(S)(1)⊗Q� is a Q�-linear combination of GMT(S)-
invariant classes in H2(S)(1). Those GMT(S)-invariant classes are precisely Hodge
classes, and by the Lefschetz-(1, 1) theorem we know that they are in the image
of the cycle class map. We conclude that γ is in the Q�-span of the image of the
�-adic cycle class map. �
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[2] Yves André, Pour une théorie inconditionnelle des motifs (French), Inst. Hautes Études Sci.
Publ. Math. 83 (1996), 5–49. MR1423019

[3] I. Bauer and R. Pignatelli, The classification of minimal product-quotient surfaces with
pg = 0, Math. Comp. 81 (2012), no. 280, 2389–2418, DOI 10.1090/S0025-5718-2012-02604-4.
MR2945163

[4] Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der
MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302,
Springer-Verlag, Berlin, 2004. MR2062673

[5] S. Allen Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl.
Algebra 69 (1991), no. 3, 233–270, DOI 10.1016/0022-4049(91)90021-S. MR1090743

[6] Nicola Cancian and Davide Frapporti, On semi-isogenous mixed surfaces, Math. Nachr. 291

(2018), no. 2-3, 264–283, DOI 10.1002/mana.201600436. MR3767139
[7] Fabrizio Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces,

Amer. J. Math. 122 (2000), no. 1, 1–44. MR1737256
[8] F. Catanese, A superficial working guide to deformations and moduli, Handbook of moduli.

Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 161–215.
MR3184164

[9] Ciro Ciliberto and Margarida Mendes Lopes, On surfaces with pg = q = 2 and non-birational
bicanonical maps, Adv. Geom. 2 (2002), no. 3, 281–300, DOI 10.1515/advg.2002.014.
MR1924760

[10] Johan Commelin, The Mumford-Tate conjecture for the product of an abelian surface and a
K3 surface, Doc. Math. 21 (2016), 1691–1713. MR3603933

[11] Johan Commelin, The mumford–tate conjecture for products of abelian varieties,
arXiv:1804.06840, 2018.

[12] Sebastian del Baño Rollin and Vicente Navarro Aznar, On the motive of a quotient variety,
Collect. Math. 49 (1998), no. 2-3, 203–226. MR1677089

[13] Christopher Deninger and Jacob Murre, Motivic decomposition of abelian schemes and the
Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219. MR1133323

[14] Davide Frapporti and Roberto Pignatelli, Mixed quasi-étale quotients with arbitrary sin-
gularities, Glasg. Math. J. 57 (2015), no. 1, 143–165, DOI 10.1017/S0017089514000184.
MR3292683

[15] Davide Frapporti, Mixed quasi-étale surfaces, new surfaces of general type with pg = 0 and
their fundamental group, Collect. Math. 64 (2013), no. 3, 293–311, DOI 10.1007/s13348-013-
0084-5. MR3084399

[16] Paola Frediani, Alessandro Ghigi, and Matteo Penegini, Shimura varieties in the Torelli
locus via Galois coverings, Int. Math. Res. Not. IMRN 20 (2015), 10595–10623, DOI
10.1093/imrn/rnu272. MR3455876

[17] Paola Frediani, Matteo Penegini, and Paola Porru, Shimura varieties in the Torelli lo-
cus via Galois coverings of elliptic curves, Geom. Dedicata 181 (2016), 177–192, DOI
10.1007/s10711-015-0118-0. MR3475744

[18] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-
Verlag, Berlin, 1998. MR1644323

[19] William Fulton and Joe Harris, Representation theory: A first course, Graduate Texts
in Mathematics, vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991.
MR1153249

[20] Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics,
vol. 158, Cambridge University Press, Cambridge, 2016. MR3586372

Licensed to University Degli Studi di Genova. Prepared on Tue Feb 21 07:46:51 EST 2023 for download from IP 130.251.46.204.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=1423019
https://www.ams.org/mathscinet-getitem?mr=2945163
https://www.ams.org/mathscinet-getitem?mr=2062673
https://www.ams.org/mathscinet-getitem?mr=1090743
https://www.ams.org/mathscinet-getitem?mr=3767139
https://www.ams.org/mathscinet-getitem?mr=1737256
https://www.ams.org/mathscinet-getitem?mr=3184164
https://www.ams.org/mathscinet-getitem?mr=1924760
https://www.ams.org/mathscinet-getitem?mr=3603933
https://www.ams.org/mathscinet-getitem?mr=1677089
https://www.ams.org/mathscinet-getitem?mr=1133323
https://www.ams.org/mathscinet-getitem?mr=3292683
https://www.ams.org/mathscinet-getitem?mr=3084399
https://www.ams.org/mathscinet-getitem?mr=3455876
https://www.ams.org/mathscinet-getitem?mr=3475744
https://www.ams.org/mathscinet-getitem?mr=1644323
https://www.ams.org/mathscinet-getitem?mr=1153249
https://www.ams.org/mathscinet-getitem?mr=3586372


1772 JOHAN COMMELIN AND MATTEO PENEGINI

[21] Bruno Kahn, Jacob P. Murre, and Claudio Pedrini, On the transcendental part of the motive
of a surface, Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser.,
vol. 344, Cambridge Univ. Press, Cambridge, 2007, pp. 143–202. MR2187153

[22] Shun-Ichi Kimura, A cohomological characterization of Alexander schemes, Invent. Math.
137 (1999), no. 3, 575–611, DOI 10.1007/s002220050336. MR1709866

[23] Herbert Lange and Anita M. Rojas, Polarizations of isotypical components of Jacobians with
group action, Arch. Math. (Basel) 98 (2012), no. 6, 513–526, DOI 10.1007/s00013-012-0400-4.

MR2935657
[24] Robert Laterveer, Algebraic cycles and triple K3 burgers, Ark. Mat. 57 (2019), no. 1, 157–

189, DOI 10.4310/ARKIV.2019.v57.n1.a9. MR3951279
[25] Ju. I. Manin, Correspondences, motifs and monoidal transformations (Russian), Mat. Sb.

(N.S.) 77 (119) (1968), 475–507. MR0258836
[26] Rick Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics,

vol. 5, American Mathematical Society, Providence, RI, 1995. MR1326604
[27] Ben Moonen, On the Tate and Mumford-Tate conjectures in codimension 1 for varieties

with h2,0 = 1, Duke Math. J. 166 (2017), no. 4, 739–799, DOI 10.1215/00127094-3774386.
MR3619305

[28] Ben Moonen, A remark on the Tate conjecture, J. Algebraic Geom. 28 (2019), no. 3, 599–603.
MR3959072

[29] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), no. 1,
105–121, DOI 10.1007/BF01403093. MR728142

[30] David R. Morrison, Isogenies between algebraic surfaces with geometric genus one, Tokyo J.
Math. 10 (1987), no. 1, 179–187, DOI 10.3836/tjm/1270141802. MR899482

[31] J. P. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990),
190–204, DOI 10.1515/crll.1990.409.190. MR1061525

[32] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications
(Russian), Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238. MR525944

[33] Jennifer Paulhus, Decomposing Jacobians of curves with extra automorphisms, Acta Arith.
132 (2008), no. 3, 231–244, DOI 10.4064/aa132-3-3. MR2403651

[34] Jennifer Paulhus and Anita M. Rojas, Completely decomposable Jacobian varieties in

new genera, Exp. Math. 26 (2017), no. 4, 430–445, DOI 10.1080/10586458.2016.1199981.
MR3684576

[35] Matteo Penegini, The classification of isotrivially fibred surfaces with pg = q = 2, with an
appendix by Sönke Rollenske, Collect. Math. 62 (2011), no. 3, 239–274, DOI 10.1007/s13348-
011-0043-y. MR2825713

[36] Matteo Penegini and Francesco Polizzi, On surfaces with pg = q = 2, K2 = 5 and Albanese
map of degree 3, Osaka Journal of Mathematics 50 (2013), no. 3, 643–686. MR3128997

[37] Matteo Penegini and Francesco Polizzi, Surfaces with pg = q = 2, K2 = 6, and Albanese
map of degree 2, Canad. J. Math. 65 (2013), no. 1, 195–221, DOI 10.4153/CJM-2012-007-0.
MR3004463

[38] Matteo Penegini and Francesco Polizzi, A new family of surfaces with pg = q = 2 and K2 = 6
whose Albanese map has degree 4, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 741–762, DOI
10.1112/jlms/jdu048. MR3291798

[39] Roberto Pignatelli, Quotients of the square of a curve by a mixed action, further quotients
and albanese morphisms, arXiv:1708.01750, 2017.

[40] Roberto Pignatelli and Francesco Polizzi, A family of surfaces with pg = q = 2, K2 =
7 and Albanese map of degree 3, Math. Nachr. 290 (2017), no. 16, 2684–2695, DOI
10.1002/mana.201600202. MR3722504

[41] Francesco Polizzi, Carlos Rito, and Xavier Roulleau, A pair of rigid surfaces with pg = q = 2
and k2 = 8 whose universal cover is not the bidisk, International Mathematics Research
Notices, posted on 2018, DOI 10.1093/imrn/rny107.

[42] Carlos Rito, New surfaces with K2 = 7 and pg = q ≤ 2, Asian J. Math. 22 (2018), no. 6,

1117–1126, DOI 10.4310/AJM.2018.v22.n6.a7. MR3919554
[43] Jordan Rizov, Moduli of k3 surfaces and abelian varieties, PhD thesis, University of Utrecht,

2005.
[44] Jordan Rizov, Moduli stacks of polarized K3 surfaces in mixed characteristic, Serdica Math.

J. 32 (2006), no. 2-3, 131–178. MR2263236

Licensed to University Degli Studi di Genova. Prepared on Tue Feb 21 07:46:51 EST 2023 for download from IP 130.251.46.204.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/mathscinet-getitem?mr=2187153
https://www.ams.org/mathscinet-getitem?mr=1709866
https://www.ams.org/mathscinet-getitem?mr=2935657
https://www.ams.org/mathscinet-getitem?mr=3951279
https://www.ams.org/mathscinet-getitem?mr=0258836
https://www.ams.org/mathscinet-getitem?mr=1326604
https://www.ams.org/mathscinet-getitem?mr=3619305
https://www.ams.org/mathscinet-getitem?mr=3959072
https://www.ams.org/mathscinet-getitem?mr=728142
https://www.ams.org/mathscinet-getitem?mr=899482
https://www.ams.org/mathscinet-getitem?mr=1061525
https://www.ams.org/mathscinet-getitem?mr=525944
https://www.ams.org/mathscinet-getitem?mr=2403651
https://www.ams.org/mathscinet-getitem?mr=3684576
https://www.ams.org/mathscinet-getitem?mr=2825713
https://www.ams.org/mathscinet-getitem?mr=3128997
https://www.ams.org/mathscinet-getitem?mr=3004463
https://www.ams.org/mathscinet-getitem?mr=3291798
https://www.ams.org/mathscinet-getitem?mr=3722504
https://www.ams.org/mathscinet-getitem?mr=3919554
https://www.ams.org/mathscinet-getitem?mr=2263236


COHOMOLOGY OF SURFACES WITH pg = q = 2 1773

[45] A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991), Proc. Sympos. Pure
Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163–187, DOI
10.1090/pspum/055.1/1265529. MR1265529

[46] Jean-Pierre Serre, Linear representations of finite groups, translated from the second French
edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New
York-Heidelberg, 1977. MR0450380

[47] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry,

Iwanami Shoten, Tokyo, 1977, pp. 119–136. MR0441982
[48] Adrian Vasiu, Some cases of the Mumford-Tate conjecture and Shimura varieties, Indiana

Univ. Math. J. 57 (2008), no. 1, 1–75, DOI 10.1512/iumj.2008.57.3513. MR2400251
[49] Angelo Vistoli, Alexander duality in intersection theory, Compositio Math. 70 (1989), no. 3,

199–225. MR1002043

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut, Ernst-Zermelo-

Straße 1, D-79104 Freiburg, Germany

Email address: jmc@math.uni-freiburg.de
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