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Abstract: Multi-drug resistant bacterial strains (MDR) have become an increasing challenge to our
health system, resulting in multiple classical antibiotics being clinically inactive today. As the de-
novo development of effective antibiotics is a very costly and time-consuming process, alternative
strategies such as the screening of natural and synthetic compound libraries is a simple approach
towards finding new lead compounds. We thus report on the antimicrobial evaluation of a small
collection of fourteen drug-like compounds featuring indazoles, pyrazoles and pyrazolines as key
heterocyclic moieties whose synthesis was achieved in continuous flow mode. It was found that
several compounds possessed significant antibacterial potency against clinical and MDR strains of the
Staphylococcus and Enterococcus genera, with the lead compound (9) reaching MIC values of 4 µg/mL
on those species. In addition, time killing experiments performed on compound 9 on Staphylococcus
aureus MDR strains highlight its activity as bacteriostatic. Additional evaluations regarding the
physiochemical and pharmacokinetic properties of the most active compounds are reported and
showcased, promising drug-likeness, which warrants further explorations of the newly identified
antimicrobial lead compound.
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1. Introduction

Over the last twenty years, the number of multidrug-resistant bacterial strains (MDR)
has grown dramatically [1]. Specifically in Europe, antibiotic resistance is responsible for
approximately 33,000 deaths per year, whereas in the USA 2.8 million people are victims
of a bacterial infection resistant to traditional antibiotics annually [2]. Unfortunately,
MDR pathogens (i.e., bacteria resistant to at least three classes of antimicrobial drugs) are
becoming very common, especially in hospitals [3], and bacteria such as Methicillin-Resistant
Staphylococcus aureus (MRSA), Vancomycin-Resistant Enterococci (VRE) and Mycobacteria MDR
are now extremely difficult to treat [4].

At the same time, the amount of antibiotics administered has significantly increased [5],
and consequently a rise in the level of antimicrobial resistance among pathogens has
occurred. Therefore, the identification of novel chemotherapeutic entities has become an
urgent worldwide need [6]. Most of the therapeutic strategies currently used in MDR
treatment are based on natural product derived molecules [7] or newly discovered small
molecules that are able to target multidrug resistance bacteria.

Nitrogen-containing heterocycles are widely distributed amongst the world’s best-
selling drugs because of their ability to target different biological scaffolds, which thus
emerged as promising new chemotypes to treat bacterial infection [8], and pyrazoles are
amongst the most promising scaffolds [9]. In fact, sets of pyrazole derivatives were re-
cently reported as possessing antimicrobial [10,11], antifungal [12,13], anti-Leishmanial [14],
antiviral [15] and antimycobacterial activities [16,17].
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The reduction of the pyrazole ring leads to the pyrazoline scaffold, a five-membered
heterocyclic ring system that has an endocyclic double bond with two adjacent nitrogen
atoms. Pyrazolines are noted for the stability of their ring system and the reactivity
of several sites that permit a series of substitution reactions to take place. Pyrazoline
derivatives are electron-rich compounds displaying a wide variety of biological activities, as
reported recently [18,19]. The fusion of the pyrazole ring with a benzene ring produces the
indazole system, a 10 π-electron heteroaromatic system characterized by three tautomeric
forms generated through prototropic annular tautomerism. This tautomerism along with
the aromaticity of indazoles contributes to their diverse chemical reactivity as well as their
biological properties [20].

Consequently, in addition to the well-known pyrazoles, both indazole and pyrazo-
line chemotypes represented interesting and privileged chemical scaffolds endowed with
biological activity, including antibacterial properties [21,22]. Due to these considerations,
we selected a small library of fourteen synthetic entities including indazoles, pyrazoles
and pyrazolines (Figure 1) for a detailed antimicrobial evaluation. Amongst these, eight
compounds were 2H-indazoles, including a fused tricyclic system (compound 8), a tetrahy-
droindazole (compound 14), and an unusual bis-indazole (compound 7). The remaining
structures were pyrazoline derivatives: 11 and 12 are 4,5-dihydro-1H-pyrazoles, whereas 9
and 10 possess a pyrazoline ring decorated with a ring-fused imide moiety.
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As is visible in the above figure, all of the selected heterocyclic structures are charac-
terized by a molecular weight below 500 g/mol, a small set of modular aryl or heteroaryl
substituents, as well as a selection of further hydrogen bond donors and acceptors, which
collectively adds to their drug-likeness, which is in agreement with Lipinski’s rules [23,24].
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The synthesis of these pyrazole derivatives exploited continuous flow technology to
streamline their accessibility. Modern drugs and their precursors are oftentimes prepared
via flow-assisted routes [25–28], as this enabling technology offers several advantages
over batch synthesis, including better heat and mass transfer, improved safety profiles
through reactor miniaturisation, the ability to telescope reactions, and facile scalability
via numbering-up or scaling-out approaches [29–33]. In addition, techniques that are
challenging to integrate in batch mode such as photo [34–37] and electrochemistry [38–40]
can be effectively applied in flow mode.

As summarised in Scheme 1, flow protocols reported previously by our group were
exploited to generate the heterocyclic entities studied in this work. These included a high-
temperature approach for accessing 2H-indazoles via a continuous Cadogan reaction [41]
(compounds 1–7). The tricyclic indazole scaffold 8 was accessed by a scalable photochemical
flow route exploiting the in-situ formation of benzyne and its trapping with a proline
derived sydnone [42]. Lastly, an interesting photochemical cycloaddition-based route
converts aryl tetrazoles via nitrile imine dipoles into pyrazolines [43] (compounds 9–12).
The latter approach also allowed for the accessing of pyrazoles 13 and 14 that resulted from
subsequent aerobic oxidation of the selected pyrazolines. All of these flow approaches have
in common that the desired heterocyclic targets can be accessed in good to excellent yields
in a highly reproducible manner.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  3  of  12 
 

 

As  is  visible  in  the  above  figure,  all  of  the  selected  heterocyclic  structures  are 

characterized by  a molecular weight below  500 g/mol,  a  small  set of modular  aryl or 

heteroaryl  substituents,  as well  as  a  selection  of  further  hydrogen  bond  donors  and 

acceptors, which  collectively  adds  to  their drug‐likeness, which  is  in  agreement with 

Lipinski’s rules [23,24]. 

The synthesis of these pyrazole derivatives exploited continuous flow technology to 

streamline their accessibility. Modern drugs and their precursors are oftentimes prepared 

via  flow‐assisted  routes  [25–28], as  this  enabling  technology offers  several advantages 

over batch synthesis,  including better heat and mass  transfer,  improved safety profiles 

through reactor miniaturisation, the ability to telescope reactions, and facile scalability via 

numbering‐up  or  scaling‐out  approaches  [29–33].  In  addition,  techniques  that  are 

challenging to integrate in batch mode such as photo [34–37] and electrochemistry [38–40] 

can be effectively applied in flow mode. 

As summarised in Scheme 1, flow protocols reported previously by our group were 

exploited to generate the heterocyclic entities studied in this work. These included a high‐

temperature approach for accessing 2H‐indazoles via a continuous Cadogan reaction [41] 

(compounds  1–7).  The  tricyclic  indazole  scaffold  8  was  accessed  by  a  scalable 

photochemical  flow  route exploiting  the  in‐situ  formation of benzyne and  its  trapping 

with a proline derived sydnone [42]. Lastly, an interesting photochemical cycloaddition‐

based  route  converts  aryl  tetrazoles  via  nitrile  imine  dipoles  into  pyrazolines  [43] 

(compounds 9–12). The latter approach also allowed for the accessing of pyrazoles 13 and 

14 that resulted from subsequent aerobic oxidation of the selected pyrazolines. All of these 

flow approaches have in common that the desired heterocyclic targets can be accessed in 

good to excellent yields in a highly reproducible manner. 

N
N

N
N

R1

1 (69%); 2 (76%); 3 (72%); 
4 (78%); 5 (80%); 6 (73%);
7 (65%, prepared in batch)

8, 86%

9 (81%); 10 (74%); 11 (79%); 
12 (74%); 13 (79%); 14 (89%);

R2

Approach 1 - Thermal Cadogan Reaction (ref. 41):

Approach 2 - Photochemical Benzyne Trapping with Sydnone (ref. 42):

Approach 3 - Photochemical Click-Reactions (ref. 43):

NO2

N
R

+ P(OEt)3 (2 equiv)
N

N R

100 psi60 min, 

150 oC

UV-photo
flow reactor

Ph

N N
N

N

R

X
+

2 bar 

BPR
N2

UV-photo
flow reactor

2 bar 

BPR

CO2, N2

OH

O

N
N

N

O N
ON

O
+

(2 equiv.)

X = CO2Me, CN, CO(NH)  

Scheme 1. Summary of continuous flow routes towards target compounds 1–14 [41–43]. 

   

Scheme 1. Summary of continuous flow routes towards target compounds 1–14 [41–43].

2. Results
2.1. Antimicrobial Activity

The antibacterial activity of compounds 1–14 was tested by calculating the minimal
inhibitory concentration (MIC) values on a total of eighteen clinical strains, including MDR
isolates, of which twelve belonged to Gram-positive species such as Staphylococcus aureus
(three strains), Staphylococcus epidermidis (three strains), Enterococcus faecalis (three strains)
and Enterococcus faecium (three strains), and six Gram-negative species such as Escherichia
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coli (three strains) and Pseudomonas aeruginosa (three strains). Compounds were considered
poorly active against a specific strain when MIC values higher than 128 µg/mL were
observed. As reported in Table 1, only indazoles 2, 3 and 5, and pyrazoline 9 displayed
interesting antibacterial activity, showing an MIC value equal to or lower than 128 µg/mL.
Table 1 shows MIC values (expressed as µg/mL) obtained for the most active compounds
(values reported in red) and for reference antibiotics (R.A.).

Table 1. MIC values of active compounds against clinically relevant isolates of Gram-positive and
Gram-negative species and those of reference antibiotics expressed in µg/mL.

Strains
MIC (µg/mL)

2 3 5 9 R.A.

S. aureus 18 * >128 >128 128 4 256 (O)
S. aureus 187 >128 >128 128 4 0.5 (O)
S. aureus A * >128 >128 64 4 256 (O)

S. epidermidis 22 * >128 >128 128 4 16 (O)
S. epidermidis 180 >128 >128 128 4 0.25 (O)
S. epidermidis 2R * >128 >128 64 4 256 (O)

E. faecalis 1 ◦ ,# 128 128 >128 4 64 (V); 512 (T)
E. faecalis 50 ◦ >128 128 >128 4 32 (V)
E. faecalis 365 128 128 >128 4 1 (V)

E. faecium 300 ◦ >128 >128 >128 4 256 (V)
E. faecium 364 ◦ >128 >128 >128 4 256 (V)
E. faecium 503 >128 >128 >128 4 1 (V)

E. coli 224 >128 >128 >128 >128 0.125 (I)
E. coli 462 ** >128 >128 >128 >128 16 (I)
E. coli 477 ** >128 >128 >128 >128 16 (I)

P. aeruginosa 1V ** >128 >128 >128 >128 32 (I)
P. aeruginosa 265 **,◦◦ >128 >128 >128 >128 16 (I): 16 (C)

P. aeruginosa 403 >128 >128 >128 >128 1 (I)
Experiments were carried out at least in triplicate; * indicates resistance towards methicillin; ◦ indicates resistance
to vancomycin; # indicates resistance to teicoplanin; ** indicates resistance to imipenem; ◦◦ indicates resistance to
colistin. R.A. (reference antibiotics) were: oxacillin (O), vancomycin (V), teicoplanin (T), imipenem (I) and colistin
(C). Only compounds with MIC values equal or lower than 128 µg/mL are reported (data in red).

In detail, compounds 2, 3, 5 and 9 were found to be inactive against Gram-negative
species, but active towards Gram-positive isolates.

Compound 9 showed the best antibacterial profile, displaying very low MIC values
(4 µg/mL) against all of the selected isolates, as well as the MDR variants of the clinically
relevant Gram-positive species of S. aureus, S. epidermidis, E. faecalis and E. faecium. It is
worthy of note that the potency of compound 9 proved to be very uniform across all strains
of the different species tested and irrelevant to the drug resistance patterns possessed by
the various isolates.

Regarding indazole derivatives, compounds 2 and 3 showed some antibacterial activ-
ity, especially against strains of the E. faecalis species, while compound 5 showed a good
inhibitory profile against S. aureus and S. epidermidis species, with MIC values ranging from
64 to 128 µg/mL.

Overall, compound 9, characterized by a pyrazoline ring decorated with a ring-fused
imide moiety, was identified as the most active and promising molecule, surpassing inda-
zole derivatives 2, 3, and 5.

In order to investigate whether the mechanism of action of this specific compound (9)
is based on bacteriostatic or bactericidal effects on S. aureus, one of the most relevant
Gram-positive species in daily clinical practice, time-kill experiments were conducted
on each strain of S. aureus considered in this study. The experiments were performed at
concentrations of 4× MIC values on the 3 MRSA strains (18, 188 and A) selected for the
study, and the results (Figure 2) clearly indicate that compound 9 is bacteriostatic, as it was
able to maintain the concentration of the initial bacterial inoculum virtually unchanged for
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the 24 h of the study. Importantly, the bacteriostatic potency of 9 was uniform on all three
strains tested, as seen in the very similar trends of the time-killing curves obtained.
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Figure 2. Time-killing curves performed with compound 9 at a concentration of 4× MIC on S. aureus
18 (MRSA) S. aureus 187 (MRSA), and S. aureus A (MRSA).

2.2. Pharmacokinetic Properties and Drug-Likeness Prediction

Based on the antimicrobial activity profile, the pharmaceutical relevance of the four
most active compounds (2, 3, 5 and 9), their pharmacokinetics properties, as well as
their drug-likeness, were calculated by SwissADME (University of Lausanne, Switzer-
land) [44–46], and the results are reported in Table 2.

Table 2. Predicted pharmacokinetic and drug-like properties of selected compounds.

2 3 5 9

Physicochemical
Property

MW (g/mol) 278.23 309.11 222.29 333.38
Fraction Csp3 0.07 0.00 0.13 0.25

Rotatable bonds 3 1 1 3
H-bond

acceptors 5 3 1 3

H-bond donors 0 0 0 1
TPSA a (Å2) 27.05 Å2 17.82 Å2 17.82 Å2 61.77 Å2

Lipophilicity
LogP b 4.41 4.12 3.96 3.79

Water solubility
Solubility

(mg/mL) c
0.00555
mg/mL

0.00387
mg/mL

0.0111
mg/mL

0.0118
mg/mL

Solubility moderately moderately moderately moderately
Pharmacokinetics

GI absorption high high high high
BBB permeant yes yes yes yes
Pgp substrate no no no no

CYP1A2
inhibitor yes yes yes no

CYP2C19
inhibitor yes yes yes yes

CYP2C9
inhibitor no no no yes
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Table 2. Cont.

2 3 5 9

CYP2D6
inhibitor yes no yes no

CYP3A4
inhibitor no no no yes

Druglikeness
Lipinski

violations 0 1 violation:
MLogP > 4.15 0 0

Medicinal
chemistry

PAINS alerts 0 0 0 0

Brenk alerts [46] 0 1
(halogenated ring) 0 1

(phthalimide)
a Topological Polar Surface Area. b Predicted according to XLOGP3 program. c Values predicted by ESOL
method [45].

As shown above, the in silico study predicted good drug-like and pharmacokinetic
properties for these compounds, particularly regarding the physicochemical properties of
lipophilicity and water solubility. In detail, the fraction Csp3 is between 0 and 0.25, LogP
values are between 3.79 and 4.41, the number of H bond acceptors are between 1 and 3,
the number of H bond donors are between 0 and 1, and topological polar surface area
(TPSA) is between 17 and 61 Å2. The TPSA of a molecule is defined as the surface sum
over all polar atoms (particularly oxygen and nitrogen, including their attached hydrogen
atoms) and in medicinal chemistry research is used to predict the ability of small molecules
to permeate cell membranes. In general, molecules with TPSA greater than 140 Å2 are
considered unable to permeate lipophilic barriers such as bacterial cell walls. The predicted
TPSA values of compounds 2, 3, 5 and 9 demonstrated a good permeation capacity of
these barriers. It should be noted that compound 9 is the one with the highest TPSA
value (61.77 Å2), and this data could also be correlated with its greater biological activity,
particularly against gram positive species with respect to the derivatives 2, 3 and 5.

Interestingly, except for compound 3, no violations of the Lipinski rules were detected,
and neither were any pan assay interference compound (PAINS) alerts found. All com-
pounds were predicted as moderately soluble and able to penetrate the blood-brain barrier
(BBB) without being substrates for Pgp. According to the calculations, the tested derivatives
may inhibit some cytochrome (CYP) isoforms (1A2, 2C19, 2C9, 2D6, 3A4); in particular,
compound 9 may act as an inhibitor of the CYP3A4 isoform, which warrants further study.

3. Discussion

Amongst the eight 2H-indazoles tested in this study, three compounds (2, 3 and
5) displayed weak to modest activity against different Gram-positive clinical isolates.
Compounds 2 and 3 showed MIC values of around 128 µg/mL, specifically on strains of
the E. faecalis species, while compound 5 displayed a wider spectrum of action, showing
MIC values ranging from 64 to 128 µg/mL on both staphylococcal species evaluated in this
study, i.e., S. epidermidis and S. aureus, including MDR strains. On the contrary, the other
2H-indazoles were found to be inactive. It was found that the substitution on the N-aryl
ring is tolerated in the ortho, meta, and para positions. As the trihalogenated compound
3 is a crystalline material, X-ray diffraction [47] was used to confirm its structure, which
indicates coplanarity of the ring systems (Figure 3), which is also anticipated for compound
2. On the other hand, compound 5 is expected to display the twisting of the ring systems
due to the sterically demanding 2,6-dimethylbenzene system. The weak activity of these
three species may point towards a lack of crucial binding groups including H-bond donors;
however, due to the small size of these molecules, further structural editing will allow for
second-generation compounds that may possess improved antimicrobial activities.
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Figure 3. X-ray structures of indazole 3 (CCDC-2237067, left) and pyrazoline 9 (CCDC-2221468,
right).

Amongst the pyrazolines, compound 9 clearly stands out for its antibacterial activity,
displaying excellent potency against the most relevant clinical species of the genus Staphylo-
coccus, such as S. aureus and S. epidermidis, and of the genus Enterococcus, such as E. faecalis
and E. faecium, including several drug-resistant variants. MIC values reported against all
strains of these four species were very low (4 µg/mL), and interestingly appear to be very
uniform between the two different genera. Moreover, the activity of compound 9 did not
seem to depend on the resistance profiles of the tested strains to current antibiotics, thus
suggesting a new mechanism of action on those species. When the 24-h mechanism of
action of 9 was analyzed on S. aureus (the clinically most relevant species of the genus
Staphylococcus), it was found to be bacteriostatic at 4× MIC concentrations. For all three
strains tested, the inhibitory action of 9 was the highest, and also prevented replication of
the strains for the full duration (24 h) of this study.

Based on these results, it can be postulated that the imide moiety that allows for
strong H-bonding plays a role in this activity, as the N-alkylated derivative 10 was found
to be inactive. The kinked structure of 9 (see X-ray structure in Figure 3) may be a further
advantage, as it provides for more three-dimensionality and, in turn, bioavailability. These
data suggest that compound 9 (either as racemate or individual enantiomers) may serve
as a new antimicrobial lead, and together with its preferrable drug-likeness parameters,
encourages further developments in this direction. Such efforts to elucidate the importance
of both the N-aryl and imide moieties as well as potential off-target activities are currently
underway in our laboratories.

Crucially, the preparation of all these compounds harnessed the benefits of modern
continuous flow reactor technology, thus demonstrating the rapid generation of these
entities at gram-scale, which is crucial for the further synthetic manipulations and addi-
tional testing.

4. Materials and Methods
4.1. Bacterial Species Evaluated in this Study

A total of eighteen isolates belonging to a collection of Gram-positive and Gram-
negative species obtained from the School of Medicine and Pharmacy of the University
of Genoa (Italy) were used in this study. All were clinical strains isolated from human
specimens and identified by VITEK® 2 (Biomerieux, Firenze, Italy) or the matrix-assisted
laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric technique
(Biomerieux, Firenze, Italy).

Of the twelve tested Gram-positive organisms, six isolates belonged to the genus
Staphylococcus, and this includes three Staphylococcus aureus strains, two of which were
resistant to methicillin (MRSA) and three Staphylococcus epidermidis isolates, two of which
were resistant to methicillin (MRSE); six strains were of the Enterococcus genus, and included
three Enterococcus faecalis isolates, two of which were resistant to vancomycin (VRE) isolates
(one was also resistant to teicoplanin), and three Enterococcus faecium strains, two of which
were VRE. Among the six Gram-negative strains, three were Escherichia coli (and included
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two strains resistant to carbapenems), and three were Pseudomonas aeruginosa (two of which
were strains resistant to carbapenems and one also to colistin).

4.2. Determination of the Minimal Inhibitory Concentrations (MICs)

The antimicrobial activity of all fourteen compounds was assessed, and for the active
compounds (2, 3, 5 and 9), their MIC values were calculated following the microdilu-
tion procedures detailed by the European Committee on Antimicrobial Susceptibility
Testing EUCAST [48]. Briefly, overnight cultures of bacteria were diluted to yield a stan-
dardized inoculum of 1.5 × 108 CFU/mL. Serial 2-fold dilutions of solutions of all the
compounds (solubilized in DMSO), ranging from 1 to 256 µg/mL, were prepared in 96-
well microplates, while DMSO not containing the tested substances was also used as a
control to verify the absence of antibacterial activity of the solvent used for the experiments.
Aliquots of each bacterial suspension were added to the microplates containing the above-
mentioned serial two-fold dilutions of each compound to yield a final concentration of
about 5 × 105 cells/mL. The plates were then incubated at 37 ◦C. After 24 h of incubation
at 37 ◦C, the lowest concentration of each compound that prevented a visible growth was
recorded as the MIC. All MIC values were obtained in triplicate, and results were expressed
reporting the modal value, which is the value that has been observed most frequently. In
case of equivocal or unclear results, more than three determinations of MIC values were
carried out.

4.3. Killing Curves

Killing curve assays for compound 9 were performed on the three isolates of S. aureus
(two of which were MRSA) selected for the study, as previously reported [49,50].

A mid logarithmic phase bacterial culture was diluted in Mueller–Hinton (MH) broth
(Merck, Darmstadt, Germany) (10 mL) containing 4× MIC of compound 9 to give a final
inoculum of 3.0 × 105 CFU/mL. The same inoculum was added to MH broth as a growth
control. Tubes were incubated at 37 ◦C with constant shaking for 24 h. Samples of 0.20 mL
from each tube were removed at 0, 1, 2, 4, and 24 h, diluted appropriately with a 0.9%
sodium chloride solution to avoid carryover of compound 9 being tested, plated onto MH
plates, and incubated for 24 h at 37 ◦C. Growth controls were run in parallel. The percentage
of surviving bacterial cells was determined for each sampling time by comparing colony
counts with those of standard dilutions of the growth control. Results have been expressed
as log10 of viable cell numbers (CFU/mL) of surviving bacterial cells over a 24 h period.
All time-kill curve experiments were performed in triplicate.

4.4. Preparation of Compounds Used in This Study and Synthetic Methods

The heterocyclic compounds studied in this report were prepared in accordance with
recently published synthetic procedures [41–43]. The following is the characterisation of
most active compounds:

2-(4-(Trifluoromethoxy)phenyl)-2H-indazole, 2: Appearance: beige solid. Isolated
yield: 76% (1.06 g, 3.8 mmol).

1H-NMR (400 MHz, CDCl3): δ/ppm 8.37 (d, J = 1.0 Hz, 1H), 7.96–7.90 (m, 2H), 7.76 (dd,
J = 8.8, 1.0 Hz, 1H), 7.72–7.66 (m, 1H), 7.39–7.35 (m, 2H), 7.32 (ddd, J = 8.8, 6.5, 1.1 Hz,
1H), 7.15–7.08 (m, 1H). 13C-NMR (100 MHz, CDCl3): δ/ppm 150.0 (C), 148.4 (C), 139.0 (C),
127.2 (CH), 122.9 (C), 122.8 (2CH), 122.2 (2CH), 122.1 (CH), 120.4 (CH), 120.4 (CH), 120.4 (q,
J = 254 Hz, CF3), 117.9 (CH). 19F-NMR (376 MHz, CDCl3): δ/ppm −58.0 (s). IR (neat)
ν/cm−1: 3133 (w), 3063 (w), 1631 (w), 1520 (m), 1507 (m), 1383 (w), 1263 (m), 1213 (s),
1196 (s), 1155 (s), 1106 (s), 1043 (m), 951 (m), 920 (m), 845 (m), 777 (s), 753 (s), 659 (w), 533 (m),
505 (m). HRMS (Q-TOF) calculated for C14H10F3N2O 279.0740, found 279.0739 (M+H+).

2-(4-Bromo-3,5-difluorophenyl)-2H-indazole, 3: Appearance: beige solid. Isolated
yield: 72% (440 mg, 1.4 mmol).

1H-NMR (400 MHz, CDCl3): δ/ppm 8.37 (s, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.70–7.65
(m, 1H), 7.63–7.59 (m, 2H), 7.34 (dd, J = 8.5, 6.9 Hz, 1H), 7.13 (dd, J = 8.6, 6.5 Hz, 1H).
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13C-NMR (100 MHz, CDCl3): δ/ppm 160.4 (2CF, dd, J = 249, 6 Hz), 150.2 (C), 140.8 (C),
127.9 (CH), 123.4 (CH), 123.1 (C), 120.4 (CH), 120.2 (CH), 118.0 (CH), 104.5 (2CH, dd, J = 28,
3 Hz), 96.8 (C, t, J = 25 Hz). 19F-NMR (376 MHz, CDCl3): δ/ppm −102.3 (m). IR (neat)
ν/cm−1: 3135 (w), 3101 (w), 2921 (w) 1607 (m), 1521 (m), 1491 (s), 1446 (m), 1250 (w),
1203 (w), 1147 (w) 1024 (m), 991 (w), 861 (w), 827 (w), 751 (s). HRMS (Q-TOF) calculated
for C13H8F2BrN2 308.9833, found 308.9836 (M+H+). Crystal data (CCDC-2237067): P21/c;
a 5.83880(10) b 12.60550(10) c 15.24050(10), α = 90◦, β = 91.1760(10)◦, γ = 90◦.

2-(2,6-Dimethylphenyl)-2H-indazole, 5: Appearance: yellow oil. Isolated yield: 80%
(890 mg, 4.0 mmol).

1H-NMR (500 MHz, CDCl3): δ/ppm 8.00 (s, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.78 (d,
J = 8.4 Hz, 1H), 7.30–7.40 (m, 2H), 7.15–7.23 (m, 3H), 2.02 (s, 6H). 13C-NMR (125 MHz,
CDCl3): δ/ppm 149.2 (C), 139.8 (C), 135.6 (2C), 129.4 (CH), 128.2 (2CH), 126.2 (CH),
124.5 (CH), 122.1 (CH), 121.9 (C), 120.4 (CH), 118.1 (CH), 17.2 (2CH3). IR (neat) ν/cm−1:
3058 (m), 2922 (w), 1629 (w), 1518 (s), 1484 (m), 1388 (m), 1186 (m), 954 (m), 776 (s),
758 (s), 734 (m), 441 (m). HRMS (Q-TOF) calculated for C15H15N2 223.1230, found
223.1230 (M+H+).

1-(4-Isopropylphenyl)-3-phenyl-3a,6a-dihydropyrrolo [3,4-c]pyrazole-4,6(1H,5H)-dione,
9: Yellow solid, 81% (3.2 g, 9.6 mmol). 1H NMR (CDCl3, 400 MHz): δ/ppm 8.43 (s, 1H),
7.99 (d, J = 7.1 Hz, 2H), 7.46 (d, J = 8.7 Hz, 1H), 7.44–7.36 (m, 3H), 7.20 (d, J = 8.6 Hz,
2H), 5.11 (d, J = 10.9 Hz, 1H), 4.85 (d, J = 10.9 Hz, 1H), 2.87 (hept, J = 6.9 Hz, 1H), 1.23 (d,
J = 7.0 Hz, 6H).

13C NMR (CDCl3, 100 MHz): δ/ppm = 172.6 (C), 171.5 (C), 142.5 (C), 142.3 (C),
142.1 (C), 130.3 (C), 129.4 (CH), 128.6 (2CH), 127.1 (2CH), 127.0 (2CH), 114.4 (2CH), 66.9 (CH),
54.6 (CH), 33.4 (CH), 24.1 (CH3), 24.1 (CH3). IR (neat): 3255 (broad), 2959 (m), 2869 (w),
1784 (s), 1610 (w), 1514 (s), 1381 (m), 1342 (m), 1207 (m), 1192 (m), 827 (m), 736 (m) cm–1.
HRMS (ESI+): m/z [M+H]+ calcd for C20H20N3O2: 334.1550; found: 334.1551. Crystal
data (CCDC-2221468): P21/c; a 17.3845(5) b 6.2983(2) c 15.8490(3), α = 90◦, β = 100.537(2)◦,
γ = 90◦.

Solvents were purchased from Sigma–Aldrich and Fisher Scientific, and used with-
out further purification. Substrates and reagents were purchased from Alfa Aesar, Fisher
Scientific, Fluorochem, or Sigma–Aldrich, and used as received. 1H NMR spectra were
recorded with 400 and 500 MHz instruments and are reported relative to residual solvent:
CHCl3 (δ = 7.26 ppm). 13C NMR spectra were recorded with the same instruments (100 and
125 MHz) and again are reported relative to CHCl3 (δ = 77.16 ppm). Data reported for 1H
NMR are as follows: chemical shift (δ/ppm) (multiplicity, coupling constant (Hz), integra-
tion). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet,
p = pentet, h = heptet, m = multiplet. Data for 13C{1H} NMR are reported in terms of
chemical shift (δ/ppm) and multiplicity (C, CH, CH2, or CH3). COSY, HSQC and HMBC,
experiments were used in the structural assignment. IR spectra were recorded with a Bruker
Platinum spectrophotometer (neat, ATR sampling) with the intensities of the characteristic
signals being reported as weak (w, <20% of the tallest signal), medium (m, 21−70% of the
tallest signal), or strong (s, >71% of the tallest signal). High-resolution mass spectrometry
(HRMS) was performed using the indicated techniques with a micromass LCT orthogonal
time-of-flight mass spectrometer with leucine-enkephalin (Tyr-Gly-Phe-Leu) as an internal
lock mass. For UV/Vis measurements, a Shimadzu UV-1800 UV spectrophotometer was
used. Continuous-flow experiments were performed with a Vapourtec E-Series system
equipped with a UV150 photoreactor in combination with a high-power LED emitting light
at 365 nm wavelength and a medium-pressure Hg-lamp (combined with a low-pass filter).

5. Conclusions

In summary, we report on the identification of new indazole and pyrazoline deriva-
tives that possess promising antimicrobial activities, particularly against gram positive
bacteria. The most promising lead compound 9 is characterized by a bicyclic pyrazo-
line scaffold featuring an imide moiety. Significant activity against several drug-resistant
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staphylococcus and enterococcus strains was found for this species, reaching MIC values
of 4 mg/mL. Physicochemical and pharmacokinetic data was collected using Swiss ADME
as a tool indicating that the four most active structures (2, 3, 5 and 9) display good drug-
likeness properties. The synthesis of all compounds was facilitated by continuous flow
approaches to streamline and expedite the generation of these azacyclic structures. Our
results showcase the value of screening synthetic small molecules to identify new antibi-
otic lead compounds whose further studies are currently underway in our laboratories.
Additional studies are necessary to identify the exact mechanism of action of this class
of molecules.
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