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direction of the secondary vertex relative to the primary vertex. Six of these distributions,
evaluated on the tt̄ simulated sample, are illustrated in Fig. 3.14.

JetFitter, the topological multi-vertex finding algorithm: As opposed to SV1,
which assumes the presence of just one SV in heavy-flavour jets, JetFitter [73] aims at
simultaneously reconstructing the full b-c hadron decay chain, assuming that the decay
vertices lie on the line defined by the trajectory of the b-hadron, initialised as the jet axis.
The assumption implies that all the particles emerging from the decay of the heavy-flavour
hadrons must originate from a point on such line. This constraint allows the reconstruction
of incomplete topologies in which only a single track from the decay of the heavy-flavour
hadron is selected.

A track selection is designed to minimize the tracks not originating from the heavy-flavour
hadrons decay. Tracks compatible with the PV are removed. Then, track pairs are fitted to
identify two-track vertices. Tracks forming two-track vertices located in regions occupied
by the pixel layers are discarded as they likely emerge from interactions with the material.
Tracks forming vertices compatible with photon conversions or K0

S
and ⇤0 decays are also

discarded.

An iterative process of vertex finding and fitting is used to identify the most probable number
of vertices in the decay chain and fit their positions and the b-hadron trajectory. Initially,
all tracks are considered as distinct one-track vertices. A modified Kalman filter [74] fit is
applied, extracting information about the full decay chain, encoded in the position of the
PV, the flight direction of the b-hadron, and the distances of the secondary vertices to the
PV. Vertices with a �2 contribution to the overall fit below a 0.1% probability are removed.

Next, a clustering step evaluates all pairs of vertices to determine the probability that each
pair belongs to a common vertex and that the vertex is part of the decay chain. This is
computed using the same fitting technique. The two vertices with the highest probability
are merged, and the process repeats with the new decay chain structure. The iterations
continue until all pairs of vertices above a certain vertex mass-dependent threshold have
been combined.

In the final stage, tracks that did not form any two-track vertices in the initial iteration
are evaluated if they meet strict pT and IP criteria. The fit procedure is reapplied to see if
these tracks can form additional single-track vertices along the b-hadron trajectory.

The algorithm’s output is a topology where tracks are uniquely associated with vertices
along the path of the b-hadron. Two sets of discriminant variables are extracted to be
inputs for high-level taggers. The first set, including the track multiplicity at the JetFitter
displaced vertices, the invariant mass of tracks associated with these vertices, their energy
fraction and their average three-dimensional decay length significance, is evaluated on all
the jets. Some of these variables are displayed in Fig. 3.15. The second set is related only
to jets in which a single secondary vertex is reconstructed with an intermediate charged



52 Jet flavour-tagging in ATLAS
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Figure 3.14: Properties of secondary vertices reconstructed by the SV1 algorithm for b-jets,
c-jets and light-flavour jets in tt̄ simulated events: (a) the number of two-track vertices
reconstructed within the jet, (b) the transverse decay length, (c) the 3D decay length
significance defined as the significance of the distance between the primary vertex and
displaced vertex, (d) the energy fraction, defined as the energy of the tracks in the displaced
vertex relative to the energy of all tracks reconstructed within the jet, (e) the invariant mass
and (f) the number of tracks associated to the vertex. From [65].
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decay multiplicity and a decay distance similar to b-hadrons’. Such a set was introduced to
improve further the c-tagging performance of the algorithm [69]. It includes the invariant
mass and the energy of the tracks associated to the secondary vertex, as well as their rapidity
with respect to the jet axis and with respect to the heavy-flavour hadron trajectory.
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Figure 3.15: Properties of secondary vertices reconstructed by the JetFitter algorithm
for b-jets, c-jets and light-flavour jets in tt̄ simulated events: (a) the number of two-track
vertices reconstructed within the jet, (b) the transverse decay length, (c) the average 3D
decay length significance, defined as the significance of the average distance between the
primary vertex and displaced vertices, (d) the energy fraction, defined as the energy of the
tracks in the displaced vertex relative to the energy of all tracks reconstructed within the jet,
(e) the invariant mass and (f) the number of tracks associated with the vertex. From [65].
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3.2.3 Soft Muon Tagger: SMT

As anticipated before, soft muons have an enhanced presence in b-jets, due to the semi-
leptonic decays of b-hadrons (BR(b ! µ⌫X) ⇠ 11%) and c-hadrons emerging from decays
of b-hadrons (BR(b ! c ! µ⌫X) ⇠ 10%). SMT [69] uses the features of these soft muons to
improve b-tagging.

Only combined muons within a cone of �R < 0.4 from the jet axis are considered, further
subject to selections regarding their pT, IPs and |⌘|. In light-flavour jets, muons meeting
these conditions are predominantly those from the decays of promptW -boson, light hadrons,
light and strange mesons, or ⌧ leptons. Misidentified energetic hadrons that reach the MS
also constitute a small but sizeable background.

A set of variables has been defined to identify muons related to a heavy-flavour hadron semi-
leptonic decay. Nowadays, these variables have been tested to train some yet uncalibrated
versions of the high-level taggers. They include the �R between the muon and the jet
axis, d0, and prelT , the projection of the muon’s pT onto the jet axis (Fig. 3.17). The prelT is
typically larger for particles from the decays of heavy particles, so it’s useful for spotting
muons from semi-leptonic b-hadrons’ decays, but less e↵ective for those from c-hadrons.

3.2.4 The DL1 high-level algorithms

The distinct information provided by low-level taggers, which target specific features of
heavy-flavour jets, is used to train the multivariate high-level algorithms. In Fig. 3.5, two
series of high-level taggers are included: MV2 [75] and DL1 [65]. The former, whose members
consist of BDTs, was used in many ATLAS analyses during Run-2. As MV2 is outperformed
by DL1 and was not used for this research, it is not further detailed.

The DL1 algorithms are fully connected, multi-layer feed-forward NNs. They assign three
scalar outputs to each jet, pb, pc, and pu, which signify the probabilities that they evaluate
for the jet being a b, c, or light-flavour jet. These probabilities are then combined into two
distinct discriminant variables, Db and Dc, as in

Db/c = ln

✓
pb/c

fc/bpc/b + (1� fc/b)pu

◆
, (3.3)

where fc and fb are adjustable parameters governing the trade-o↵ between the rejection
rates of the two classes of background jets9. Selections based on Db and Dc define regions,
allowing for the classification of jets as b or c-tagged with progressively increasing confidence.

The algorithms are trained on a simulated hybrid sample, composed 70% of tt̄ events and
30% of Z 0 events. Both pT and |⌘| of jets are included among the training variables,
allowing the NN to learn their correlations with the low-level taggers’ outputs. However,

9
i.e., c-jets and light-flavour jets when it comes to b-tagging through Db, and b-jets and light-flavour jets

when it comes to c-tagging through Dc.
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Figure 3.16: b-hadrons and c-hadrons originating from b-hadrons’ decays often undergo
semi-leptonic decays. The resulting leptons help identify the b-jets that contain them.

the training dataset is resampled 10 to ensure that the pT and ⌘ distributions of all jet
flavours are uniform, preventing the models from identifying their flavours predominantly
based on the kinematic distributions of the signal and background jets.

The two algorithms most relevant from the standpoint of this research, DL1r and DL1d, are
described in the following paragraphs.

The DL1r algorithm: DL1r, where the r stands for RNNIP, uses as inputs the IP2D, IP3D,
RNNIP, SV1 and JetFitter outputs, along with the jet pT and |⌘|. The network architecture
is schematized in Fig. 3.18. The full list of training variables is found in Tab. 3.1, while
Tab. 3.2 enumerates the hyperparameters that shape the NNs architecture and define its
training campaign. Fig. 3.19 displays the Db and Dc distributions evaluated with the DL1r
algorithm on the tt̄ simulated sample.

The DL1d algorithm: DL1d substitutes the RNNIP outputs within DL1r with a joint ar-
chitecture that integrates DIPS and DL1, as shown in Fig. 3.20. Tracks are processed with a
DIPS block that estimates pb, pc, and pu. The last hidden layer of the block is also concate-
nated11 to a vector created by processing the same jet features used by DL1 through one
layer. The resulting vector is then processed through the NN U , which yields additional
estimates for pb, pc, and pu.

10More information about an analogous resampling procedure is provided in Sec. 4.3.1.
11In this context, concatenating two vectors means joining them together into a higher-dimensional single

vector.
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Figure 3.17: �R (a), prelT (b) and d0 (c) normalised distributions for reconstructed muons
associated to b-jets (blue), c-jets (green) and light-flavour jets (red). From [69].
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Figure 3.18: Architecture of the DL1r algorithm. Image from the ATLAS internal flavour-
tagging documentation web site.
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Input Variable Description

Kinematics
pT Jet pT

⌘ Jet |⌘|

IP2D, IP3D

log(Pb/Plight) Likelihood ratio of the b-jet to light-flavour jet hy-
potheses

log(Pb/Pc) Likelihood ratio of the b-jet to c-jet hypotheses

log(Pc/Plight) Likelihood ratio of the c-jet to light-flavour jet hy-
potheses

RNNIP

Pb b-jet probability

Pc c-jet probability

Plight light-flavour jet probability

SV1

m(SV) Invariant mass of tracks at the secondary vertex as-
suming pion mass

fE(SV) Jet energy fraction of the tracks associated with the
secondary vertex

NTrkAtVtx(SV) Number of tracks used in the secondary vertex

N2TrkVtx(SV) Number of two-track vertex candidates

Lxy(SV) Transverse distance between the primary and sec-
ondary vertices

Lxyz(SV) Distance between the primary and secondary vertices

Sxyz(SV) Distance between the primary and secondary vertices
divided by its uncertainty

�R(~pjet, ~pvtx)(SV) �R between the jet axis and the direction of the sec-
ondary vertex relative to the primary vertex.

JetFitter

m(JF) Invariant mass of tracks from displaced vertices

fE(JF) Jet energy fraction of the tracks associated with the
displaced vertices

�R(~pjet, ~pvtx)(JF) �R between the jet axis and the vector sum of mo-
menta of all tracks attached to displaced vertices

Sxyz(JF) Significance of the average distance between PV and
displaced vertices

NTrkAtVtx(JF) Number of tracks from multi-prong displaced vertices

N2TrkVtx(JF) Number of two-track vertex candidates (prior to de-
cay chain fit)

N1-trk vertices(JF) Number of single-prong displaced vertices

N�2-trk vertices(JF) Number of multi-prong displaced vertices

Lxyz(2nd)(JF) Distance of 2nd vertex from PV

Lxy(2nd)(JF) Transverse displacement of the 2nd vertex

mTrk(2nd)(JF) Invariant mass of tracks associated with the 2nd ver-
tex

E(2nd)(JF) Energy of the tracks associated with the 2nd vertex

fE(2nd)(JF) Jet energy fraction of the tracks associated with the
2nd vertex

NTrkAtVtx(2nd)(JF) Number of tracks associated with the 2nd vertex

⌘
min,max,avg
trk

(2nd)(JF) Min., max. and avg. pseudorapidity of tracks at the
2nd vertex

Table 3.1: Input variables used by the DL1r algorithm.
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Hyperparameter Value

Number of input variables 31

Number of hidden layers 8

Number of nodes [per layer] [256, 128, 60, 48, 36, 24, 12, 6]

Learning rate 0.01

Training batch size 15 000

Activation function ReLu

Number of training epochs 200

Free (trainable) parameters 59 275

Fixed parameters 1 140

Training sample size 22M jets

Table 3.2: List of optimised hyperparameters shaping the DL1r architecture and defining
its training campaign.

(a) (b)

Figure 3.19: Db and Dc distributions evaluated with the DL1r algorithm on the tt̄ simulated
sample. From [65].
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Figure 3.20: Architecture of the DL1d algorithm. Image from the ATLAS internal flavour-
tagging documentation web site.

Both the pb, pc, and pu estimates have a dedicated loss. That assigned to the DIPS block is
only aware of the features of the tracks, while the loss of the U network is a↵ected by both
the track and jet features. These two terms are then merged into a single loss function,
which is employed to perform full back-propagation, simultaneously optimizing the U and
DIPS parameters. The DIPS loss allows to evaluate the standalone DIPS performance and
helps optimise the related part of the network. The outputs of the U network are then
combined in the Db and Dc discriminant variables. Their distributions, evaluated on the tt̄
simulated sample, are shown in Fig. 3.21.

3.2.5 Performance

The performance of jet flavour-tagging algorithms can be graphically represented through
Receiver Operating Characteristics (ROC) curves. These curves plot the e�ciency of cor-
rectly tagging signal jets against the rejection rates of background jets. These values are
derived by selecting thresholds in the Db and Dc distributions and then calculating the pro-
portion of signal and background jets above it. These proportions are the flavour-tagging
e�ciencies ✏f of the algorithm at the threshold:

✏f =
number of jets of flavour f above the threshold

total number of jets of flavour f
. (3.4)

Each point on the curve corresponds to a specific threshold and, thus, to particular jet
flavour-tagging e�ciencies. The signal jet e�ciency of a given threshold is also called the
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(a) (b)

Figure 3.21: Db and Dc distributions evaluated with the DL1d algorithm on tt̄ simulated
events.

Working Point (WP). The background rejection rates, displayed on the y axis, are computed
as the inverse of the background e�ciencies. A background rejection rate of r indicates that,
in a random set of r background jets, on average, one is mistagged, meaning it is erroneously
identified as signal.

Fig. 3.22 shows b-tagging ROC curves for the RNNIP, DL1r and DL1d algorithms evaluated
on jets from the tt̄ simulated sample. Fig. 3.22a compares the performance of DL1r and
RNNIP evaluated on simulated Run-2 events. Two algorithms named SVKine and JFKine

also appear in the plot. These are sub-networks of DL1 that I developed to assess the
standalone jet flavour-tagging performance of the SV1 and JetFitter algorithms. They
are described in full detail in the next section. The ROC curves clearly illustrate the
benefit of combining the low-level information through high-level algorithms: DL1r achieves
background rejections up to 4 times larger than the standalone low-level taggers. Fig. 3.22b
compares the performance of DL1r and DL1d evaluated on simulated Run-3 events. DL1d

surpasses the background rejection rates achieved with DL1r of factors up to 30%.

3.3 Developing SV1 with SVKine (and JFKine)

A consequence of the two-stage approach characterizing the DL1 algorithms is that all the
low-level tagger algorithms must be maintained when a change occurs in one of the sub-
sequent steps involved in the reconstruction of the detector-level and physics objects that
they use.

When I joined the ATLAS Collaboration, a major upgrade of Athena was ongoing, in-
volving substantial changes in the object reconstruction procedure. The e↵ect of these
changes on the jet flavour-tagging algorithms had to be assessed. When deemed necessary,
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(a) (b)

Figure 3.22: (a) b-tagging ROC curves of the DL1r, RNNIP, SVKine and JFKine algorithms
evaluated on simulated jets from the tt̄ sample. The statistical uncertainties of the rejection
rates are calculated using binomial uncertainties and are indicated as coloured bands. The
lower two panels show the ratio of the light-flavour jet rejection and the c-jet rejection of
the algorithms to RNNIP. SV1 and JetFitter have secondary-vertex-finding e�ciencies of
approximately 80% and 90%, respectively; this causes the rapid growth of their light-flavour
jet rejection rates around these values. Figure produced by me and published in [65]. (b)
The light-flavour jet (solid line) and c-jet (dashed line) rejection rates for the DL1r and DL1d

algorithms, evaluated on tt̄ events simulated with the LHC Run-3 conditions. From [64].
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a re-optimization of the parameters defining the flavour-tagging algorithms was performed.

SVKine and JFKine were developed in this context. They are NNs trained only on the
variables listed under the sections Kinematics, SV1 and JetFitter of Tab. 3.1. Their scope
was to guarantee a fast turnaround in the optimization process of SV1 and JetFitter for
the new Athena release. The hyperparameters shaping the architecture of the NNs and
defining their training campaign are enumerated in Tab. 3.3.

Hyperparameter Value

Number of input variables 10/17 SVKine/JFKine

Number of hidden layers 4

Number of nodes [per layer] [36, 24, 12, 6]

Learning rate 0.01

Training batch size 15 000

Activation function ReLu

Number of training epochs 200

Training sample size 9.5M jets

Table 3.3: List of hyperparameters that shape the architecture of the SVKine and JFKine

algorithms and define their training campaign.

SVKine and DL1r were used in concert to test the benefits of relaxing the cut on BVrtScore,
applied in the workflow of the SV1 algorithm to discard two-track vertices not compatible
with the decay of an heavy-flavour hadron (Sec. 3.2.3). The value of such cut, historically,
was tuned before developing the DL1r algorithm. Relaxing it produces two concurring
e↵ects: an increased proportion of reconstructed “good” secondary vertices, composed of
tracks emerging from the decay of heavy-flavour hadrons, at the cost of increasing also the
proportion of “bad” secondary vertices, composed of tracks produced in other processes.
The optimization aimed at identifying the value of the cut that would maximise the jet
flavour-tagging performance of DL1r.

Two WPs of the Single Secondary Vertex Finding (SSVF) step of the SV1 algorithm, referred
to as Standard and a Loose, were defined. They correspond to cut values on BVrtScore

(Eq. 3.2) of 0.015 and 0.005, respectively. Fig. 3.23 illustrates the features of the secondary
vertices reconstructed with the Loose and Standard SV1 WP, as well as those reconstructed
by JetFitter. Three figures of merit were proposed to characterize the quality of the
vertexing performance, all relying on the true information about the process producing the
simulated reconstructed tracks:

• the recall : the ratio of tracks associated to the secondary vertex and produced by
decay products of heavy-flavour hadrons, over the total number of tracks produced
by decay products of heavy-flavour hadrons;
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Figure 3.23: Recall, vertex purity and vertexing e�ciency of secondary vertices recon-
structed with the Loose and Standard working points of the SV1 algorithm, and with
JetFitter. In this figure, B, BC and C tracks indicate tracks known at the truth level
to originate from the decay of b-hadrons, c-hadrons produced in b-hadrons decays, and
other types of c-hadrons respectively. JF stands for JetFitter. Loosening the cut on
BVrtScore increases recall and vertexing e�ciency for all the jet flavours and decreases
vertex purity.

• the vertex purity : the ratio of tracks associated to the secondary vertex and produced
by decay products of heavy-flavour hadrons, over the total number of tracks associated
to the secondary vertex;

• the vertexing e�ciency : the fraction of jets with at least a reconstructed secondary
vertex.

Choosing the Loose WP increases recall and vertexing e�ciency for all the jet flavours, but
reduces vertex purity.

The increase in vertexing e�ciency achieved when loosening the cut is balanced by the lower
quality of the reconstructed vertices. “Good” secondary vertices were defined as those
formed by at least 50% of tracks from the decays of heavy-flavour hadrons. Figure 3.24
shows the “good” vertexing e�ciency as a function of the BVrtScore cut value for the
di↵erent jet flavours. The e�ciency measured in light-flavour jets decreases more for tighter
cuts when compared to heavy-flavour jets.

SVKine was trained multiple times utilizing the SV1 variables obtained when applying dif-
ferent cut values on BVrtScore. This was done to assess how the interplay between varying
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Figure 3.24: “Good” vertexing e�ciency, i.e., vertexing e�ciency for vertices composed of
at least 50% of tracks stemming from the decay of a heavy-flavour hadron, as a function of
the BVrtScore cut value in b (blue), c (red) and light-flavour jets (black). The Standard
and Loose WPs correspond to cut values of 0.015 and 0.005, respectively.
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(a) (b)

Figure 3.25: pT and |⌘| distributions of jets in the hybrid tt̄ and Z 0 sample used to train
SVKine and JFKine. The c-jets and light-flavour jets spectra are resampled to match the
b-jets’.

vertexing e�ciency, purity and recall a↵ects the jet flavour-tagging information contained
in the reconstructed vertices, when harnessed by a NN capable of exploiting the correlations
among the various vertex features. The training is performed on a hybrid tt̄ and Z 0 sample,
resampled to match the pT and |⌘| distributions of c-jets and light-flavour jets to the b-jets’
(Fig. 3.25).

Fig. 3.26 shows the b-tagging ROC curves computed with the di↵erent versions of SVKine,
when it is evaluated on the simulated tt̄ and Z 0 samples. The mark of the concurring e↵ects
obtained when varying the BVrtScore cut is clearly visible in the behaviour of the light-
flavour jet rejection rate as a function of the b-tagging e�ciency. ROC curves evaluated
using tighter cut values achieve better light-flavour jet rejection rates at lower e�ciency
values. However, these rates drop sooner when approaching higher e�ciencies compared
to algorithms using looser cut values. These drops in rejection rates at increasing e�cien-
cies for loosening BVrtScore cut values, particularly evident when looking at the curve
evaluated on the tt̄ sample, indicate that when SV1 is not capable of providing secondary
vertices, no discriminant information is available. In other words, when SVKine is evaluated
at a b-tagging e�ciency greater than the proportion of b-jets in which a secondary vertex
is reconstructed, it identifies as b-jets also those with no reconstructed secondary vertex,
which cannot be distinguished from the light-flavour jets by the algorithm. This is clear
when comparing SVKine’s Db distributions evaluated on the tt̄ sample using the standard
cut of BVrtScore = 0.015 (Fig. 3.27a) and using no cut at all (Fig. 3.27b). The former
figure displays distributions in which two distinct zones can be identified. Jets with recon-
structed secondary vertices are found at Db values larger than 0. This region is populated
mostly by b-jets, followed by c-jets and a very small amount of light-flavour jets. Jets with
no reconstructed secondary vertex populate the region with Db < 0 instead, which is dom-
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inated by light-flavour jets. b-tagging WPs of SVKine with ✏b values greater than those
corresponding to the drops in the light-flavour jet background rejection rates use thresholds
set in the Db < 0 zone. Any of these thresholds gives a definition of b-tagged jet which
applies to significant fractions of the background jets as well, greatly deteriorating the re-
jection rate. In Fig. 3.27b, no BVrtScore cut is imposed on the reconstructed secondary
vertex. The result is that most of the background jets contain at least a secondary vertex
as well (Fig. 3.24). In this case, the Db distributions are more similar for the di↵erent jet
flavours and the separation between the zones of the distributions populated by jets with
and without reconstructed vertices is less evident.


