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Abstract

Background: In assisted reproduction technology embryo competence is routinely evaluated on morphological
criteria but efficacy remains relatively low. Additional information could be obtained by evaluating pronuclear (PN)
morphology. Up to now controversial results have been reported about the prognostic value of PN score. One of
the main limitations of literature data is the use of different PN classification methods. In this regard, in 2011 the
ESHRE and Alpha Scientists in Reproductive Medicine defined three PN categories to standardize zygote
assessment. In this study we evaluated whether the consensus ESHRE-Alpha system for the pronuclear scoring
could be an useful additional criterion to improve prediction of embryo implantation potential.

Methods: This is a retrospective, longitudinal, observational, cohort study. We included 3004 zygotes from 555
women who underwent ICSI treatment at our Center between January 2014 and June 2019. The PN were
categorized as score 1: symmetrical, 2: non-symmetrical, 3: abnormal. A subset of 110 zygotes did not cleaved. On
day 2–3 1163 embryos were transferred, 232 arrested, and 9 were cryopreserved. Among the 1490 embryos
cultured up to day 5–7, 516 became blastocysts: 123 were transferred on day 5 and 393 were cryopreserved.
Comparisons of age, cleavage and blastocyst rate, quality of embryos, implantation success among PN score groups
were evaluated by chi-square test or Kruskal-Wallis test as appropriate. Potential predictors of embryo implantation
were first tested in univariable analysis using generalized estimating equations taking into account
correlation between embryos originated from the same patient. Then, variables potentially associated with
implantation success (P<0.05) were included in a multivariable analysis for calculating the adjusted odds ratio (OR)
and 95% confidence interval (CI).

Results: There was no significant difference in patients’age, cleavage and blastulation rates, and embryo
morphology among the three PNscore groups. The PN score 1-embryos had a greater implantation success
respect to score 2-3-ones (OR 1.83; 95% CI 1.34-2.50, P=0.0001). Consistently, the pronuclear score remained
predictive of implantation in top quality embryos (OR 1.68; 95%CI 1.17-2.42, P= 0.005).

Conclusions: The consensus pronuclear score may be routinely included among criteria for embryo evaluation to
increase patients’ chance of becoming pregnant.
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Introduction
Identification of the embryo(s) with the highest implant-
ation potential is a challenge not yet achieved in repro-
ductive medicine, and it is a fundamental step for single
embryo transfer approach. During the years, several
approaches have been proposed for embryo viability
evaluation, i.e. embryo morphokinetics, study of
metabolic activity, prolonged culture, and both invasive
and non-invasive preimplantation genetic testing [1–4].
Various embryological parameters are to some extent
predictive of implantation potential. However, the over-
all success of these markers is still limited, with over
50 % of transferred embryos failing to implant. Even in-
vasive preimplantation genetic testing failed to improve
overall pregnancy outcomes in a randomized controlled
trial [5]. Thus, the search for new and reproducible
markers of embryo viability is still in progress. For in-
stance, it has been proposed that additional information
on embryo viability potential could be obtained by evalu-
ating pronuclear (PN) morphology based on zygote fea-
tures 16–18 h after fertilization. Female pronucleus
originates near the second polar body, whereas male
pronucleus appears at the center of the cytoplasm. Fol-
lowing their formation, the female pronucleus migrates
towards the male one until they are in close apposition.
Nucleolar precursor bodies (NPB), randomly allocated
within the pronuclei, appear shortly after fertilization
and persist throughout the first cell cycles [6]. Unlike
what was initially stated [7], the NPB are not precursors
of nucleoli and they structurally support the formation
of functional nucleoli when transcription starts in early
embryos [6]. In the nucleoli, pre-ribosomal RNA (rRNA)
synthesis occurs, the newly synthesized rRNAs are ne-
cessary for the translational process when the embryonic
genome fully activates [8]. The progressive polarization
of NPB controls the design of the embryonic axis, a fun-
damental step for cell determination in the developing
embryo [9]. Alterations of these strictly related events
may have abnormal consequences, including fertilization
failure and uneven cleavage.
Starting from the first observations on PN, different

classification systems have been proposed taking into
account the PN size, the NPB position and alignment
[10]. Although PN scores have been correlated with em-
bryo development, pregnancy and implantation, to date
there are conflicting evidences on the relationship be-
tween zygote morphology and IVF outcomes [10]. One
of the main limitations of current literature is the use of
different zygote grading systems. To this regard, in 2011
the ESHRE-Alpha consensus defined three PN categories
to standardize the zygote assessment: symmetrical, non-
symmetrical and abnormal [1]. The symmetrical category
includes zygotes showing two polar bodies, two centrally
located and juxtaposed pronuclei, equal size and equivalent

numbers and size of NPB equatorially aligned at the
membrane juxtaposition. All the zygotes that do not have
this ideal configuration belong to the non-symmetrical cat-
egory. The abnormal category includes zygotes with no or
one NPB. No studies verified the efficacy of such classifica-
tion so far.
The aim of this retrospective study was to assess

whether the consensus ESHRE system for the PN scoring
could be a useful additional criterion to improve predic-
tion of the embryo implantation potential.

Methods
Study design, size, duration
This is a retrospective, longitudinal, observational, co-
hort study. We included 3004 zygotes from 555 women
(mean age: 35.6 years; range: 21–43) enrolled at our
center between January 2014 and June 2019. The zygotes
to be included in the study were selected on the basis of
knowledge of their outcome: when 2 embryos from
zygotes with different PN scores were transferred and
only one implanted, these zygotes were excluded from
the study. We included only homologous cycles using
fresh eggs and ejaculated sperm. Another exclusion
criterion was standard IVF, in order to standardize the
fertilization check timing.
Embryo transfers (ET) were routinely performed on

day 2–3 and, when available, two cleavage-stage em-
bryos were transferred. Surplus embryos were cultured
up to day 5–7 and those that developed up to blasto-
cyst stage were cryopreserved. The ET were performed
on day 5 in those cases with at least four good quality
cleavage-stage embryos owing to the benefit from fur-
ther observation in selecting the best embryos to trans-
fer. On day 5 only elective single-embryo transfer were
performed. In the study we included: (i) cleavage-stage
ET; (ii) blastocyst-stage ET. Implantation success of
each transferred embryo was defined as fetal cardiac
activities at 12 weeks of gestation; miscarriages were
excluded.
A STROBE (STrengthening the Reporting of OBserva-

tional studies in Epidemiology) checklist guideline is reported
in Additional File 1.

Outcomes measures
The primary outcome was implantation success in relation
to the PN score of (i) cleavage-stage embryos; (ii)
blastocyst-stage embryos, and their predictive factors. The
secondary outcomes were cleavage rate, quality of embryos,
blastocyst development in relation to the PN score, and
their predictive factors. We also evaluated the outcome of
the newborns collecting their birthweights (expressed as
percentile and SD-score for gestational age, according the
World Health Organization reference curves).
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Patients treatment
Standard controlled ovarian stimulation protocols were
used. Pituitary suppression was achieved with either
Gonadotropin Releasing Hormone agonists or antagonists.
Stimulation with gonadotropins was monitored by meas-
uring serum estradiol levels and follicle growth. The trig-
ger was either recombinant or urinary human chorionic
gonadotropin or agonist trigger. Cumulus-oocyte com-
plexes were collected 36 h later, washed in Sydney IVF
Gamete buffer (Cook Medical, Sydney, Australia) and im-
mediately incubated in Sydney IVF Fertilization medium
(Cook Medical) at 37 °C in a humidified atmosphere of
6 % CO2, 5 % O2 (Galaxy 48R incubators, New Brunswick
Scientific, Edison, NJ, USA).

Standard embryo culture
After 2 h of incubation, the oocytes were denuded in
HEPES-buffered medium (Sydney IVF Gamete medium,
Cook Medical) containing 20 IU/ml of Hyaluronidase
(Origio, Målov, Denmark). ICSI was performed immedi-
ately after denudation. Sperm samples were treated with
a two-layer density gradient system (Sydney IVF Sperm
Gradient, Cook Medical) or via Swim-up using Sydney
IVF Gamete Buffer (Cook Medical). Incubations were
performed at 37 °C in a humidified atmosphere of 6 %
CO2, 5 % O2 (Galaxy 48R incubator; New Brunswick Sci-
entific). Fertilization was assessed 16–18 h after injection
(PN score 1: symmetrical, score 2: non-symmetrical,
score 3: abnormal) [1], and embryos with two pronuclei
were individually cultured from day 1 to day 3 into
Sydney IVF Cleavage medium (Cook Medical) and from
day 3 to day 5–7 in Sydney IVF Blastocyst medium
(Cook Medical).
Standard day 2–3 embryo and blastocyst morpho-

logical assessment was carried out according to the
current consensus system [1]. Arrested embryos were
non-viable embryos in which development arrested for
at least 24 h, or in which all the cells degenerated or
fragmented.

Statistical analyses
Descriptive statistics are reported as means ± standard
deviation (SD) for continuous variables and as absolute
frequencies and percentages for categorical variables.
Comparisons of age, cleavage rate, quality of embryos,
blastocyst development, implantation success among PN
score groups were evaluated by chi-square test or
Kruskal-Wallis test as appropriate.
Potential predictors (PN score, cleavage-stage embryo

morphology, patient’s age, day of ET) of the study pri-
mary outcome (implantation versus non implantation)
were first tested in univariable analysis using generalized
estimating equations (GEE) with a logit link function for
estimating the unadjusted odds ratio (OR) and 95 %

confidence interval (95 % CI) for the success of the
implantation. Then, variables potentially associated with
the success of the implantation in univariable compari-
sons (P < 0.05) were included in a multivariable analysis
for calculating the adjusted OR for the success of the
implantation. GEE models were used in order to take
into account the correlation between embryos originated
from the same patient and an unstructured correlation
matrix was used as correlation structure.
Sensitivity analyses excluding PN score 3 embryos

(n = 21) or including only the top quality embryo (n = 860)
were performed.
Analyses were carried out by MedCalc® software

(Mariakerke, Belgium) and SAS 9.4 (SAS Institute,
Cary, NC, USA). A P value < 0.05 was considered
significant.

Results
Among the embryos originated from the 3004 zygotes
enrolled in the study, 1163 embryos were transferred
into uterus at their cleavage-stage, 1490 were cultured
up to day 5–7, 232 arrested on day 3, 9 were cryopre-
served on day 2–3; 110 zygotes did not cleave. Among
the 1490 embryos whose culture was extended up to day
5–7, 516 became blastocysts: 123 were transferred into
uterus on day 5 and 393 were cryopreserved (226 on day
5, 156 on day 6, and 11 on day 7).

Relationship between PN score and embryo quality at
cleavage stage
A total of 2280 (76 %) score 1, 645 (21 %) score 2, and
79 (3 %) score 3 zygotes were obtained. There was not a
significant difference in patients’ age, cleavage rate and
day 2–3 embryo morphology among the three PN score
groups (Table 1). Moreover, the PN score did not always
correlate with the embryo grade: only 60 % top quality
zygotes formed grade 1 embryos, and 54 % poor quality
zygotes (score 3) became high quality embryos (Fig. 1).

Relationship between PN score and blastocyst
development
Blastocyst development rate was similar among the three
PN score-derived embryo groups, without any statisti-
cally significant differences (Table 1). A total of 1106 PN
score 1-, 346 score 2-, and 38 score 3-derived embryos
were placed in extended culture. We did not find any
reduction of blastulation rates in score 2–3 (132/384,
34 %) groups respect to score 1 (384/1106, 35 %)
(Table 1). Notably, a single NPB was observed in the
majority of the abnormal score 3 PN category (75/79
cases) and 45 % of cases (17/38) developed up to blasto-
cyst stage when prolonged culture was performed.
First, we compared PN score and timing of blastula-

tion. Among the 384 PN score 1-derived embryos that
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reached the blastocyst stage, 191 (50 %) showed blasto-
coele expansion (grade ≥ 3) on day 5; 77 (20 %) embryos
were early blastocysts on day 5, and 116 (30 %) full blas-
tocysts later on day 6. Similarly, among the 132 PN
score 2- and 3-derived embryos that reached the blasto-
cyst stage, 59 (45 %) showed blastocoele expansion on
day 5, 25 (19 %) were early blastocysts on day 5 (n = 22)
or day 6 (n = 3), and 48 (36 %) full blastocysts later on
day 6 (Fig. 2a).
Second, we stratified embryos according to ICM and

TE morphological grade. From PN score 1-derived em-
bryos there were 232/384 (60 %) ICM grade A blasto-
cysts (153 on day 5, 79 on day 6–7), 68/384 (18 %) ICM
grade B blastocysts (35 on day 5, 33 on day 6–7), and 7/
384 (2 %) ICM grade C blastocysts (3 on day 5, 4 on day
6). Similarly, from PN score 2 and 3-derived embryos
there were 77/132 (58 %) ICM grade A blastocysts (42
on day 5, 35 on day 6–7), 26/132 (20 %) ICM grade B
blastocysts (15 on day 5, 11 on day 6–7), and 4/132

(3 %) ICM grade C blastocysts (2 on day 5 and 2 on day
6–7) (Fig. 2b).
From PN score 1-derived embryos there were 127/384

(33 %) TE grade A blastocysts (89 on day 5, 38 on day
6–7), 154/384 (40 %) TE grade B blastocysts (94 on day
5, 60 on day 6–7), and 26/384 (7 %) TE grade C blasto-
cysts (8 on day 5, 18 on day 6–7). From PN score 2- and
3-derived embryos there were 51/132 (39 %) TE grade A
blastocysts (32 on day 5, 19 on day 6), 49/132 (37 %) TE
grade B blastocysts (24 on day 5, 25 on day 6–7), and 7/
132 (5 %) TE grade C blastocysts (3 on day 5, 4 on day
6–7) (Fig. 2c).

Association between PN score and implantation success
We analyzed 1150 transferred embryos from 476 pa-
tients, in which the outcome for all embryos was known.
Due to the paucity of score 3 PN zygotes, we merged
score 2 (n = 197) and score 3 (n = 21) PN-derived em-
bryos in the subsequent analyses.

Fig. 1 Stacked bar chart showing the morphological grade of cleavage-stage embryos based on their PN score

Table 1 Relationship between PN score and embryo quality parameters

PN score 1 2 3

N. zygotes (%) 2280 (76 %) 645 (21 %) 79 (3 %)

Patients’ age (mean ± SD, years) 35.7 ± 4.4 35.3 ± 4.8 34.4 ± 4.1

Cleavage rate 97 % 96 % 94 %

N. grade 1 embryos (%) 1325/2280 (58 %) 320/645 (52 %) 42/79 (53 %)

N. grade 2 embryos (%) 578/2280 (25 %) 173/645 (27 %) 18/79 (23 %)

N. grade 3 embryos (%) 139/2280 (6 %) 70/645 (11 %) 3/79 (4 %)

N. arrested cleavage-stage embryos (%) 161/2280 (6 %) 55/645 (8 %) 11/79 (14 %)

Blastulation rate 384/1106 (35 %) 114/346 (33 %) 18/38 (47 %)
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A greater implantation success was observed for PN score
1- respect to PN score 2-3-derived embryos (15 and 9%, re-
spectively, P= 0.0121). This behavior was observed for both
ET types, with statistically significant differences reached for
the cleavage-stage group (15% vs. 7 %, P= 0.0043), due to its

numerousness (Fig. 3). Three out of 21 transferred abnormal
score 3 PN zygotes - specifically with a single NPB - were
observed in the implanted embryo group.
Factors associated to the implantation at univariable

and multivariable analysis are reported in Table 2. A PN

a

b

c
Fig. 2 Bar graphs comparing blastocysts parameters based on their PN score. Legend: Panel a: timing of blastulation; Panel b: ICM morphological
grade; Panel c: TE morphological grade
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score 1 (OR = 1.76; 95 % CI:1.31–2.37, P = 0.0002), a
cleavage stage embryo morphology equal to 1 (OR =
4.78; 95 % CI:1.84–12.42, P = 0.001), age less than 35
years (OR = 2.85; 95 % CI: 1.91–4.24, P < 0.0001) and ET
on day 5 (OR = 2.12; 95 % CI: 1.32–3.39, P = 0.002) were
factors associated to a successful implantation. A cleav-
age stage morphology equal to 2 showed a trend for the
success of the implantation (OR = 2.43; 95 % CI: 0.90–
6.55, P = 0.08). The multivariable analysis confirmed the
findings of the unadjusted associations.
A sensitivity analysis excluding PN score 3 embryos (n =

21) was also performed and no differences in unadjusted
and adjusted ORs were found (see Additional file 2).
In a sensitivity analysis including only the top quality

embryos (n = 860) we did not find any differences in un-
adjusted and adjusted ORs (Table 3).

Perinatal characteristics of newborns
We excluded from this analysis the outcome of ET of
two embryos with discordant PN scores that resulted in

delivery of only one baby. A total of 104 neonatal out-
comes from PN score 1 embryos (of which 15 from
twin gestations) and 4 from PN score 2 embryos (all
from single pregnancies) were available. As detailed in
Additional file 3 no statistical analyses could be per-
formed due to the small number of evaluable newborns
in PN score 2 group. We observed absence of twin
pregnancies in PN score 2 category: this accounts for
the higher birthweights and longer gestational period in
PN score 2 respect to PN score1 group. In PN score 1
group, 8 pregnancies started as dichorionic-diamniotic
twin pregnancies, but resulted in the live birth of only
one of the fetuses. In fact, in 7 cases there was a spon-
taneous first trimester abortion of one twin, and in one
case the patient opted for an elective pregnancy termin-
ation for a congenital mega bladder. Among singleton
pregnancies, there was another elective termination for
a major central nervous system malformation. No
stillbirths as well as no malformations were recorded
among the newborns of both score groups.

Fig. 3 Bar graph comparing the percentage of embryo implanted accordingly to their PN score

Table 2 Univariable and multivariable analysis of predictors of implantation success for all embryos (n = 1150)

Unadjusted OR (95% CI) p-value Adjusted OR (95% CI) p-value

PN score 2–3 (ref) -

1 1.76 (1.31–2.37) 0.0002 1.83 (1.34–2.50) 0.0001

Cleavage stage morphology 3 (ref) -

1 4.78 (1.84–12.42) 0.001 4.20 (1.68–10.48) 0.002

2 2.43 (0.90–6.55) 0.080 2.16 (0.84–5.59) 0.111

Age ≥ 35 (ref) -

< 35 2.85 (1.91–4.24) < 0.0001 2.87 (1.93–4.27) < 0.0001

ET day Day 2–3 (ref) -

Day 5 2.12 (1.32–3.39) 0.002 1.79 (1.09–2.93) 0.020
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Discussion
To date, literature data about the correlation among
zygote morphology, biological and clinical outcomes are
inconclusive, mainly due to different methods used for
PN scoring, time of PN observation, and insemination
procedure [10].
This is the first study that evaluated the prognostic

effect of the ESHRE consensus PN scoring system by a
multivariable analysis. We did not find any relationship
among PN score, embryo quality at cleavage and blasto-
cyst stages, and blastulation rate, in line with some pre-
vious studies [11–17]. Intriguingly, half embryos from a
single NPB zygote developed up to blastocyst stage and
three successfully implanted. These data suggest that
embryos derived from abnormal PN zygotes have some
development potential, as described in literature using
time-lapse imaging [18].
We demonstrated that the PN score improves predic-

tion of implantation of cleavage-stage good morphology
embryos. Moreover, PN scores 2 and 3 were associated
with a lower implantation success, even though the
morphology of the embryos was good. Based on these
findings we argue that PN score may provide a non-
invasive, early criterion helpful for selecting the best em-
bryo(s) for transfer, particularly when multiple embryos
of similar quality are available.
Overall, the multivariable analysis including potential

confounding factors associated with the occurrence of
pregnancy found that the PN score 1- along with top
quality cleavage stage embryo morphology, patient’s age
less than 35 years and ET on day 5 - was predictive of
embryos’ implantation success.
The 2 and 3 PN patterns may be characterized by

asynchrony in the formation and polarization of pro-
nuclei. Such alteration of sequential, linked events can
be at the origin of chromosomal abnormalities, whose
consequences may appear at the implantation phase,
after the embryonic genome activation [19–21]. This
proposition would explain why we found a significant
positive association between PN score 1 and implant-
ation, without any evident effect of PN morphology on
in vitro embryo developmental potential.

At pronuclear stage check, most embryos are at S or
G2 phase when chromosomes are interconnected via
nucleoli. As it has been already reported by some
authors [22–24], if zygotes have different PN size and
non-synchronous NPB there is an increased risk of
embryo aneuploidy, due to aberrant chromosome dupli-
cation and division. Therefore, in absence of a genetic
embryo assessment the PN score may help selection of
those top quality embryos that have a chromosomal
euploid set.
As observed in this study, top quality zygotes can be-

come low quality embryos as well as top quality embryos
can develop from low quality zygotes. In other words,
neither zygote, nor embryo morphology alone are fully
predictive of IVF outcome. Therefore, we believe that a
combination of assessments and scores, including the PN
score, may be helpful in non-invasive embryo selection.
Time-lapse monitoring of embryo development showed

that PN morphology changes within a short time, at 16–
20 h after ICSI, mostly from an asymmetry of NPB towards
a symmetric or perfectly aligned distribution [18]. There-
fore, a single microscopy observation may be misleading
and such changes may partially explain the contradictory
literature, where some authors reported no benefit when
static observations of PN were performed [14, 25, 26].
Despite the dynamicity of the PN formation, our findings
could be nonetheless useful for the majority of laborator-
ies without of time-lapse technology availability. Certainly,
the lack of standardization in the observation timing
remains a critical issue for PN scoring, including the
variability due to the method used for insemination. In
fact, pronucleus development has an average delay of 4 h
after conventional IVF as compared to ICSI, likely because
the spermatozoon needs time to pass through the cumu-
lus and corona cells and the zona pellucida [27]. This is
the reason why we have excluded standard IVF cycles. We
believe that the retrospective nature of this study could
hardly have affected the reliability of our findings since at
our laboratory all procedures were done by the same em-
bryologists, who did not change throughout the duration
of the study and applied the same protocols, including
consistent timing of PN assessment.

Table 3 Univariable and multivariable analysis of predictors of implantation success for top quality embryos (n = 860)

Unadjusted OR
(95% CI)

p-value Adjusted OR
(95% CI)

p-value

PN score 2–3 (ref) -

1 1.60 (1.12–2.30) 0.011 1.68 (1.17–2.42) 0.005

Age ≥ 35 (ref) -

< 35 2.81 (1.86–4.25) < 0.0001 2.80 (1.85–4.23) < 0.0001

ET day Day 2–3 (ref) -

Day 5 1.88 (1.16–3.04) 0.010 1.71 (1.03–2.84) 0.039
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Conclusions
This is the first study of correlation between PN morph-
ology and embryo implantation success, applying the PN
score system proposed by ESHRE and a multivariable
analysis which evaluated various potential confounding
factors. Although validation through randomized per-
spective studies is needed, our findings suggest that the
PN score could represent the earliest point at which the
quality of the fertilized oocyte can be non-invasively
evaluated and that the PN score may be routinely in-
cluded among criteria for embryo evaluation. In this
way, an evaluation based on the combination of both
zygote and cleavage-stage morphology could assist in
selecting the top quality embryo(s) with the highest
chances of implantation. This could be of great value for
all laboratories performing clinical IVF without any pre-
implantation genetic testing means.
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