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Abstract

Balance and walking are fundamental to support common daily activities. Relatively

accurate characterizations of normal and impaired gait features were attained at the

kinematic and muscular levels. Conversely, the neural processes underlying gait

dynamics still need to be elucidated. To shed light on gait-related modulations of

neural activity, we collected high-density electroencephalography (hdEEG) signals

and ankle acceleration data in young healthy participants during treadmill walking.

We used the ankle acceleration data to segment each gait cycle in four phases: initial

double support, right leg swing, final double support, left leg swing. Then, we

processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma

bands, and examined event-related desynchronization/synchronization (ERD/ERS)

across gait phases. Our results showed that ERD/ERS modulations for alpha, beta,

and gamma bands were strongest in the primary sensorimotor cortex (M1), but were

also found in premotor cortex, thalamus and cerebellum. We observed a modulation

of neural oscillations across gait phases in M1 and cerebellum, and an interaction

between frequency band and gait phase in premotor cortex and thalamus. Further-

more, an ERD/ERS lateralization effect was present in M1 for the alpha and beta

bands, and in the cerebellum for the beta and gamma bands. Overall, our findings

demonstrate that an electrophysiological source imaging approach based on hdEEG

can be used to investigate dynamic neural processes of gait control. Future work on

the development of mobile hdEEG-based brain–body imaging platforms may enable

overground walking investigations, with potential applications in the study of gait

disorders.
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1 | INTRODUCTION

Walking is a common activity of daily living and at the same time a

very complex one. Normal gait requires a delicate balance between

various interacting neuronal systems and consists of three primary

components: balance, or standing stability; locomotion, including initi-

ation and maintenance of rhythmic stepping; and the ability to adapt

to the environment (Hamacher et al., 2015). Gait impairments may

strongly restrict the personal independence and affect the quality of

life (Baker, 2018). Gait and balance problems may be precursors of

falls, the most common cause of injuries in the elderly

(Alexander, 1996; Sudarsky, 1990). Furthermore, walking is an impor-

tant indicator of the overall health status. For instance, it has been

shown that the self-selected walking speed correlates with individual

life expectancy in the elderly population (Studenski et al., 2011).

Normal gait has been extensively characterized from a biome-

chanical perspective, leading to the identification of several consecu-

tive phases that occur cyclically (Alamdari & Krovi, 2017;

Schmeltzpfenning & Brauner, 2013; Silva & Stergiou, 2020). First of

all, initiating gait requires a stable upright body position. To start

walking, one leg is raised and directed forward by flexing the hips

and knee. The normal forward step consists of two phases: stance

phase and swing phase. The stance phase occupies 60% of the gait

cycle, during which one leg and foot are bearing most or all of the

bodyweight. The swing phase occupies only 40% of it, during which

the foot is not touching the walking surface and the bodyweight is

supported by the other leg and foot. In a complete two-step cycle,

both feet are simultaneously in contact with the floor for about 25%

of the time. This part of the cycle is called the double-support phase,

to distinguish it from the single-support phase.

At the neural level, gait is orchestrated through the activity of neu-

ral assemblies in cortical and subcortical regions (Bakker, Verstappen,

et al., 2007; Takakusaki, 2017). Those brain regions dynamically

exchange information with each other, and send/sense neural pulses

through the spinal cord to/from the body parts in order to control the

gait process (Takakusaki, 2017). The role of different brain regions in

supporting gait, however, remains insufficiently understood. For

instance, positron emission tomography (PET), functional magnetic reso-

nance imaging (fMRI), and single photon emission computer tomography

(SPECT) studies documented the activation of the primary sensorimotor

cortices (S1/M1), the supplementary motor area (SMA), the thalamus,

and the cerebellum following actual walking (Fukuyama et al., 1997), as

well as during stereotypical lower limb movements (Sahyoun

et al., 2004) and pedaling (Christensen et al., 2000). In addition, the acti-

vation of S1/M1 and SMA has also been observed during imaginary

walk (Jahn et al., 2004; Sacco et al., 2006). PET, fMRI, and SPECT are

not well suited, however, for the study of brain dynamics during actual

walking, which may be key for a better understanding of mechanisms of

gait control (Bakker, Verstappen, et al., 2007). Functional near-infrared

spectroscopy (fNIRS) can be effectively used for the study of brain activ-

ity in mobile conditions, including walking conditions. Notably, the

results obtained with fNIRS during gait were consistent with those

reported in several brain imaging studies (Kurz et al., 2012; Miyai

et al., 2001; Suzuki et al., 2004; Suzuki et al., 2008). However, fNRIS

cannot be used to investigate neural dynamics during gait, as the signals

it measures are mediated by hemodynamic processes (Ferrari &

Quaresima, 2012).

Electroencephalography (EEG) is an alternative technique to study

brain activity in mobile conditions. EEG records variations in scalp volt-

ages that are directly produced by neuronal activity in different brain

regions. EEG signals display a combination of slow and fast neuronal

oscillations. In the frequency domain, these oscillations are typically clas-

sified as delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–

30 Hz), and gamma (>30 Hz) oscillations (Mantini et al., 2007). The

power of neural oscillations was found to be modulated by motor

behavior. For instance, alpha and beta power decreases in the contralat-

eral portion of S1/M1 during hand movement, and rebounds when the

movement terminates (Pfurtscheller, 2001). Such event-related effect

can be explained by the change in excitability of local neurons (Neuper

et al., 2006; Stolk et al., 2019), and is often referred to as event-related

desynchronization/synchronization (ERD/ERS; Pfurtscheller & Lopes da

Silva, 1999).

A number of studies have attempted to investigate gait-related

neural dynamics using mobile EEG. Particularly, an ERD/ERS analysis

called gait event-related spectral perturbation (GERSP) was frequently

applied to examine changes of neural oscillations across the gait cycle

(Gwin et al., 2011). For example, a coupling between gait cycle and

electrocortical activity over the central sensorimotor cortex was

observed during treadmill walking (Gwin et al., 2011). Similar studies

identified the suppression of beta-band oscillations during walking

(Seeber et al., 2014) and reported a reverse modulation of low and

high gamma oscillations in central sensorimotor cortex (Seeber

et al., 2015). Notably, a similar modulation pattern was also found

with EEG during pedaling (Storzer et al., 2016). Another EEG study

suggested the involvement of prefrontal, posterior parietal and senso-

rimotor regions in controlling the speed of walking (Bulea et al., 2015).

A more recent study observed unidirectional brain to muscle connec-

tivity during walking (Artoni et al., 2017). It should be noted that EEG

data in almost all studies were analyzed at the sensor rather than at

the source level, limiting the interpretability of the findings in relation

to the underlying neural generators.

In recent years, novel technical developments have opened the

way for the use of EEG as a brain imaging tool (Michel &

Murray, 2012). Specifically, the application of high-density electroen-

cephalography (hdEEG) (Liu et al., 2015) in combination with novel

realistic head modeling methods (Taberna, Guarnieri, & Mantini, 2019;

Taberna, Marino, et al., 2019; Taberna, Samogin, & Mantini, 2021) has

permitted more accurate characterization of neural oscillations in the

source space. For instance, our group has used hdEEG in previous

studies for analyzing the functional dissociation of body movements

(Zhao et al., 2019), the topology of resting-state brain networks (Liu

et al., 2017; Liu et al., 2018), and the assessment of frequency-

dependent connectivity in the human brain (Samogin et al., 2019,

2020). To the best of our knowledge, few studies have used hdEEG to

investigate gait-related neural oscillations in the brain, possibly due to

the presence of large artifacts in mobile conditions (Castermans
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et al., 2014; Nathan & Contreras-Vidal, 2016). Recently, we proposed

an artifact attenuation method that proved particularly effective with

hdEEG data collected in walking participants (Zhao et al., 2021).

The general goal of this study was to characterize frequency-

dependent modulations of neural oscillations in the human brain across

the gait cycle. More specifically, we aimed at examining whether the

main gait-related neural sources were localized in the primary sensori-

motor cortex, and whether the power of neural oscillations was differ-

ent across frequency bands and gait phases. To this end, we performed

hdEEG recordings in a group of healthy participants during treadmill

walking. Based on these hdEEG data, we conducted an ERD/ERS analy-

sis in selected regions of interest (ROIs) and then examined ERD/ERS

maps across different gait phases in alpha, beta, and gamma bands. First,

we verified that the primary neural sources were spatially localized in

the primary sensorimotor cortex, and in particular in the portion associ-

ated with leg movements (Zhao et al., 2019). Next, we specifically tested

the hypothesis that modulations of the alpha-, beta- and gamma-band

neural oscillations were dissociable across gait phases. Overall, our study

aims to contribute to a better understanding of neural processes under-

lying gait performance.

2 | METHODS

2.1 | Experiment and data

Twenty-four healthy participants (14 females and 10 males, age 22–

31 years) without any brain-related injury/disease or serious medical

condition were recruited for the experiment. The experimental proce-

dures were approved by the Ethics Committee of the Liguria Region,

Italy (reference: 238/2019) and were conducted in accordance with

the 1964 Helsinki declaration and its later amendments. An informed

consent was obtained from each participant.

During the experiment, the participant was asked to walk on a

Forcelink treadmill (Motek Medical B.V., Houten, the Netherlands)

with normal, self-selected speed (Gwin et al., 2011; Wagner

et al., 2016). The task design consisted of three blocks of walk, each

lasting 2 min, with 1-min rest in-between. During the experiment, we

collected 128-channel hdEEG data using an ActiCHamp amplifier

(Brain Products GmbH, Gilching, Germany). The hdEEG sensors, inte-

grated in an EEG cap with standard 10/20 montage, were connected

to the participant's scalp through a conductive gel. The hdEEG data

were sampled at 1 kHz frequency, using the FCz electrode as physical

reference. Simultaneously with hdEEG signals, we also collected

three-axis acceleration signals from the participant's ankles using a

Trigno wireless platform (Delsys Inc., Natick, MA). Acceleration signals

were sampled at 148 Hz frequency. The temporal jitter between

hdEEG data and acceleration signals was quantified experimentally

and resulted in being below 5 ms. Immediately after the experiment,

we acquired a 3D scan of the participant's head using an iPad (Apple

Inc., USA) equipped with Structure Sensor (Occipital Inc., Boulder,

CO) to extract the locations of the hdEEG electrodes (Taberna,

Marino, et al., 2019; Taberna, Samogin, & Mantini, 2021).

In a separate session, the structural MR image of each partici-

pant's head was collected with a 3 T Philips Achieva MR scanner

(Philips Medical Systems, the Netherlands) using a T1-weighted

magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE)

sequence. The scanning parameters were: repetition time

(TR) = 9.6 ms, echo time (TE) = 4.6 ms, 160 coronal slices, 250 � 250

matrix, voxel size = 0.98 � 0.98 � 1.2 mm3.

2.2 | Behavioral analysis

For each participant, we first calculated the total acceleration of left

and right ankle separately, and then integrated them to obtain

velocity estimates. Data segments with stable velocity were then

isolated and included in further analyses. Acceleration signals were

used to detect gait events for each cycle (e.g., see Figure 1), in line

with previous studies (Jasiewicz et al., 2006; Kotiadis et al., 2010).

These events were: left heel strike (LHS), right heel strike (RHS), left

toe off (LTO), and right toe off (RTO) (Gwin et al., 2011; Seeber

et al., 2014; Wagner et al., 2016). Based on the detected gait

events, we divided each gait cycle into four phases (Figure 1): initial

double support (IDS) between LHS and RTO, right leg swing (RLS)

between RTO and RHS, final double support (FDS) between RHS

and LTO, and left leg swing (LLS) between LTO and LHS (Artoni

et al., 2017; Laribi & Zeghloul, 2020). Based on the ankle accelera-

tion signals, the number of gait cycles and the average walking

speed were also quantified.

F IGURE 1 Analysis of gait phases based on left (red) and right
(blue) ankle acceleration signals. We identified each gait cycle, starting
from a LHS event and ended with the next LHS event. Between the
two LHS events, we detected RTO, RHS, and LTO events,
respectively. The heel strike events (i.e., LHS and RHS) corresponded
to a sharp pulse of the ipsilateral acceleration signal, while the toe off
events corresponded to the start of the gradual increase of the same

signal. These gait events divided a gait cycle in four phases, two of
which corresponding to double support states with two legs (i.e., IDS
and FDS), and the other two corresponding to single support states
with one of the legs swinging off the ground (i.e., RLS and LLS). LHS,
left heel strike; RHS, right heel strike; LTO, left toe off; RTO, right toe
off; IDS, initial double support; RLS, right leg swing; FDS, final double
support; LLS, left leg swing

3406 ZHAO ET AL.
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2.3 | EEG analysis

HdEEG data were analyzed to evaluate dynamic modulations of brain

oscillations in walking conditions. The analysis involved three main

steps: data preprocessing, head model creation, and ERD/ERS imaging

(Liu et al., 2017; Samogin et al., 2019; Samogin et al., 2020; Taberna,

Samogin, Marino, & Mantini, 2021; Zhao et al., 2019).

2.3.1 | Data preprocessing

We first corrected the hdEEG data for bad channels (Guarnieri

et al., 2018), digitally filtered them in the band [1–80] Hz and down-

sampled them to 200 Hz. Then, we applied the multi-step blind source

separation (BSS) approach that we presented in one of our recent

studies (Zhao et al., 2021) to minimize the impact of ocular, movement

and myogenic artifacts that were mixed in the hdEEG signals. Each

step in the approach addressed one of the three artifact categories

using a specific BSS method and an optimized artifact classification

parameter. Specifically, in the first step, we decomposed the data

using FastICA-defl (Hyvarinen, 1999), and the components with maxi-

mum kurtosis (calculated in a 5-s sliding window) greater than 12 were

considered as ocular artifacts. In the second step, we decomposed the

data using FastICA-symm (Hyvarinen, 1999), and the components

with mean sample entropy (calculated in a 20-s sliding window) lower

than 0.8 were considered as movement artifacts. In the last step, we

decomposed the data using independent vector analysis (Anderson

et al., 2011), and the components with a gamma band (30–80 Hz) to a

whole band (1–80 Hz) power ratio higher than 0.5 were classified as

myogenic artifacts. Finally after the artifact attenuation, we re-

referenced the data to the average reference (Liu et al., 2015).

2.3.2 | Head model creation

The calculation of a leadfield matrix, which relates the activity of each

individual brain source to the electrical potentials measured over the

scalp, is required for source signal reconstruction. To calculate such a

matrix we followed three main processing steps: Electrodes position

detection and coregistration; Head tissue segmentation; and Leadfield

matrix calculation (Taberna, Samogin, Marino, & Mantini, 2021).

(1) Electrodes position detection and co-registration. The precise loca-

tions of the EEG electrodes were first detected using SPOT3D tool-

box (Taberna, Guarnieri, & Mantini, 2019; Taberna, Marino,

et al., 2019) from the 3D scans, and then co-registered to the scalp of

each individual MR image; (2) Head tissue segmentation. The individual

MR images were segmented into 12 tissue layers (skin, eyes, muscle,

fat, spongy bone, compact bone, cortical/subcortical gray matter, cer-

ebellar gray matter, cortical/subcortical white matter, cerebellar white

matter, cerebrospinal fluid, and brain stem) using the MR-TIM soft-

ware (Taberna, Samogin, & Mantini, 2021). The conductivity of each

tissue was set according to previous studies (Haueisen et al., 1997;

Holdefer et al., 2006); and (3) Leadfield matrix calculation. We meshed

the tissue layers to 6-mm hexahedrons and positioned source dipoles

in the hexahedrons that were inside the gray matter. To calculate the

leadfield matrix for each participant, we used the Simbio finite ele-

ment method integrated in the FieldTrip toolbox (Vorwerk

et al., 2018).

2.3.3 | ERD/ERS imaging

We fed the individual head model together with the preprocessed

hdEEG data to the exact low-resolution brain electromagnetic

tomography (eLORETA) algorithm (Pascual-Marqui et al., 2011), in

order to estimate neural signals for each voxel in the gray matter.

Based on the estimated neural signals, frequency-dependent modu-

lations of neural oscillations were assessed by conducting an

ERD/ERS analysis.

We initially restricted our analysis to six ROIs that were relevant

to the gait control processes (Bakker, Verstappen, et al., 2007; Seeber

et al., 2015). These ROIs were located at SMA, right M1, left M1, thal-

amus, right cerebellum, and left cerebellum (see Table 1 for MNI coor-

dinates). For each ROI, the MNI coordinates were transformed into

individual space. A representative ROI signal was defined as the first

principal component of signals from the voxels within a 6-mm sphere

centered on the coordinates in individual space. Then, the spectro-

gram of the signal, as estimated using a continuous wavelet transfor-

mation (CWT, number of octaves = 6, voices per octave = 8), was

epoched according to the onset/offset of each gait cycle. After

warping the epochs to a common temporal scale (0%–100% of the

gait cycle), we averaged them to perform an ERD/ERS analysis (Artoni

et al., 2017; Gwin et al., 2011; Seeber et al., 2015). The resulting

ERD/ERS map was then averaged in each gait phase, separately for

alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) bands. The

significance of these ERD/ERS intensities were evaluated using paired

t-tests, corrected for multiple comparisons using the false discovery

rate (FDR) method. Finally, we used a two-way analysis of variance

(ANOVA) for each ROI to test the effect of frequency band and gait

phase, as well as their interaction, on ERD/ERS intensity. To further

test the presence of lateralized ERD/ERS modulations in bilateral ROIs

(i.e., M1 and cerebellum) for each frequency band, we examined the

interaction between ROI side and gait phase by means of a two-way

ANOVA.

TABLE 1 Montreal Neurological Institute (MNI) coordinates for

selected regions of interest (ROIs)

ROI MNI coordinates

Supplementary motor area (SMA) [0, �8, 56]

Left primary motor cortex (left M1) [�34, �12, 68]

Right primary motor cortex (right M1) [34, �12, 68]

Thalamus [0, �18, 11]

Left cerebellum [�27, �80, �38]

Right cerebellum [27, �80, �38]

ZHAO ET AL. 3407
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Next, we extended the ERD/ERS analysis to brain activity

reconstructed in all voxels. Accordingly, we obtained volumetric

ERD/ERS images for each frequency band and gait phase. The volu-

metric images were warped to MNI space, then averaged across par-

ticipants, according to a fixed-effect group analysis. To examine the

main effects and interaction of frequency band and gait phase, we

performed a voxel-wise two-way ANOVA on the ERD/ERS images of

all the participants. The resulting statistical parametric maps were

thresholded at p< :01 and corrected for multiple comparisons using

the FDR method. We also examined spatial similarities of the group-

level ERD/ERS images across frequency bands and gait phases by cal-

culating their spatial correlation.

3 | RESULTS

3.1 | Gait-related neural modulations in ROIs

The analysis of neural signatures in the gait cycle required the detec-

tion of gait events and gait cycles, which was performed using the

acceleration of the ankles. From about 200 up to more than 400 gait

cycles were included for each participant, with average walking speed

ranging between 1.9 and 3.1 km/h (Figure 2, Table S1). Then, we

extracted ERD/ERS values for different motor-related ROIs (Figure 3),

and tested their significance for each frequency band and gait phase

(Figure 4). For the alpha and beta bands, we observed ERS in left/right

M1, SMA, and thalamus during double support phases (IDS and FDS),

and ERD at comparable frequencies during swing phases (LLS and

RLS). The beta ERD in the leg swing phases showed significantly

stronger intensity in the contralateral M1 than the ipsilateral M1

(p< 0:001). For the gamma band, we observed ERS during the leg

swing phases and ERD during the double support phases for SMA and

thalamus. Specifically, the gamma ERS was more prominent in the

thalamus and SMA than in M1 (p¼0:021 and 0:034, respectively).

To evaluate the effects of frequency band and gait phase on neu-

ral power modulations, we performed a two-way ANOVA for each

ROI (Table S2). The results did not show any significant effect of fre-

quency band for the ROIs, whereas significant differences were found

across phases for SMA (p< :001), M1 (p< :001 for both sides), and the

cerebellum (p¼ :01 for the right side, and p< :001 for the left side).

The analysis also revealed a significant interaction between frequency

band and gait phase in SMA, M1, thalamus, and left cerebellum

(p< :001 for all ROIs). For the leg swing phases (RLS and LLS), we

observed stronger beta ERD in contralateral M1 than in ipsilateral

M1. We further examined lateralized ERD/ERS patterns across gait

phases for the bilateral ROIs, as revealed by the interaction between

the ROI side and gait phase using an ANOVA (Table S3). This analysis

evidenced lateralized modulations of ERD/ERS in M1 for alpha

(p¼ :001) and beta bands (p¼ :003), as well as in the cerebellum for

beta (p¼ :004) and gamma bands (p< :001).

3.2 | Whole-brain analysis of neural sources
during gait

We extended the ERD/ERS analysis to the whole-brain level, by cal-

culating ERD/ERS images across frequency bands and gait phases

(Figure 5). We observed alpha- and beta-band ERS for the two double

support phases (IDS and FDS), as well as alpha- and beta-band ERD

for the two leg swing phases (RLS and LLS), with strong intensity

mainly over the sensorimotor cortex, the premotor cortex, and the

cerebellum. Specifically, the ERS of IDS appeared more in the left sen-

sorimotor cortex, whereas the ERS of FDS was more prominent in the

right sensorimotor cortex. The ERD in the alpha band was more dor-

sal, whereas it was rather ventral and lateralized in the beta band. In

the gamma band, we found an ERS for the two swing phases over the

premotor cortex and close to the thalamus.

As a final analysis step, we assessed differences and similarities of

the ERD/ERS images across frequency bands and gait phases. We

tested differences using a voxel-wise two-way ANOVA with fre-

quency band and phase as factors (Figures 6). According to this analy-

sis, no region had ERS/ERD that was exclusively modulated by the

frequency band. Conversely, significant differences were found across

gait phases in bilateral sensorimotor cortex and cerebellum. We

observed a significant interaction between frequency band and gait

phase in the premotor cortex and the thalamus. In addition, the analy-

sis of similarities between ERD/ERS images evidenced a significant

positive correlation (r¼0:47, p< :001) between adjacent frequency

bands for the same gait phase (Figure 7a), and a significant negative

correlation (r¼�0:29, p< :001) between adjacent gait phases for the

same frequency band (Figure 7b).

4 | DISCUSSION

In this study, we aimed at assessing the spatial distribution of active

neural sources during gait, and at examining how the power of neural

oscillations in the brain was modulated across gait phases. To this

end, we quantified frequency-dependent modulations of neural oscil-

lations during walking using hdEEG. In comparison to previous studies,

our study has two specific merits: it employed advanced techniques
F IGURE 2 Gait performance across participant. (a) Number of
gait cycles of each participant. (b) Walking speed of each participant
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F IGURE 3 Event-related desynchronization/synchronization (ERD/ERS) in different cortical/subcortical regions. The four gait phases are
indicated using dash lines on the time-frequency maps. The regions of interest (ROIs) are selected according to the following MNI coordinates:
SMA [0, �8, 56], right M1 [34, �12, 68], left M1 [�34, �12, 68], thalamus [0, �18, 11], right cerebellum [27, �80, �38], and left cerebellum
[�27, �80, �38]. SMA, supplementary motor area; M1, primary motor cortex; IDS, initial double support; RLS, right leg swing; FDS, final double
support; LLS, left leg swing

F IGURE 4 Event-related
desynchronization/synchronization
(ERD/ERS) across frequencies and gait
phases of different regions of interest
(ROIs). The values represented in the
matrices are the grand mean of the
ERD/ERS values, for each frequency
band and gait phase. α, alpha; β, beta; γ,
gamma; SMA, supplementary motor area;
M1, primary motor cortex; IDS, initial
double support; RLS, right leg swing; FDS,
final double support; LLS, left leg swing.
*pFDR <0.05; **pFDR <0.01; ***pFDR <.001
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for the attenuation of artifacts present in the EEG recordings, and

relied on source-space EEG analyses capable of enhancing the spatial

specificity of neural activity estimates. Our results showed that

ERD/ERS modulations for alpha, beta, and gamma bands were stron-

gest in the primary sensorimotor cortex (M1), but were also found in

premotor cortex, thalamus and cerebellum. We observed a modula-

tion of neural oscillations across gait phases in M1 and cerebellum,

and an interaction between frequency band and gait phase in the

premotor cortex and thalamus. Furthermore, an ERD/ERS lateraliza-

tion effect was present in M1 for the alpha and beta bands, and in the

cerebellum for the beta and gamma bands. We will more extensively

discuss the methodological and neurophysiological aspects related to

our work in the following sections.

4.1 | Methodological considerations

In previous EEG studies conducted in walking participants, the prob-

lem of movement and myogenic artifacts has been often overlooked.

Specifically, artifact attenuation was either not performed (Gwin

et al., 2011; Nathan & Contreras-Vidal, 2016; Oliveira et al., 2017;

Seeber et al., 2014; Seeber et al., 2015; Wagner et al., 2016), or

single-step BSS was used to attenuate ocular, movement and myo-

genic artifacts that were mixed in the EEG recordings (An et al., 2019;

Artoni et al., 2017; Bradford et al., 2016; Cortney Bradford

et al., 2019; Gwin et al., 2011; Snyder et al., 2015), It has, however,

been shown that, since BSS methods perform differently when sepa-

rating the different kinds of artifacts (Barban et al., 2021; Fitzgibbon

et al., 2007), the use of a single BSS method is suboptimal (Barban

et al., 2021; Zhao et al., 2021). In the present study, we employed a

novel multi-step BSS approach that attenuated different kinds of arti-

facts with artifact-specific filtering methods and classification parame-

ters to minimize the impact of these artifacts in our mobile hdEEG

data (Zhao et al., 2021).

Furthermore, a large number of movement-related EEG studies

analyzed recordings in terms of scalp maps (Espenhahn et al., 2017;

Pfurtscheller, 2001; Pfurtscheller & Lopes da Silva, 1999), or used BSS

techniques to extract sensor-level components associated with neural

activity (Artoni et al., 2017; Gwin et al., 2011; Snyder et al., 2015;

Wagner et al., 2016). As such, they did not exploit the potential of

F IGURE 5 Event-related desynchronization/synchronization (ERD/ERS) maps for different frequency bands and gait phases. The values
represented in each map are the grand mean of the ERS/ERD values, for specific frequency bands (α, β, and γ) and gait phases (IDS, RLS, FDS, and
LLS). α, alpha; β, beta; γ, gamma; IDS, initial double support; RLS, right leg swing; FDS, final double support; LLS, left leg swing
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F IGURE 6 Dissociation of alpha,
beta, and gamma oscillations across gait
phases. The maps were generated by
performing a voxel-wise two-way
ANOVA with frequency and phase as
factors on the event-related
desynchronization/synchronization
(ERD/ERS) maps of all the participants.
The maps were thresholded at p < 0.01,

with FDR correction

F IGURE 7 Similarities between event-related desynchronization/synchronization (ERD/ERS) maps across frequencies and gait phases, as
measured by spatial correlation. The values of the correlation matrices are grouped (a) across gait phase and then frequency band, and (b) across
frequency band and then gait phase. α, alpha; β, beta; γ, gamma; IDS, initial double support; RLS, right leg swing; FDS, final double support; LLS,
left leg swing
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EEG as a brain imaging technique (Michel & Murray, 2012). In a previ-

ous study, we showed that hdEEG, when combined with advanced

techniques for head modeling and source localization, can be used to

reveal movement-related neural dynamics in the human brain (Zhao

et al., 2019). Specifically, we demonstrated that hand, foot and lip

movements were characterized by specific neural signatures both in

the frequency and space domains.

4.2 | Active neural sources during gait

We observed that gait-related neural modulations in alpha, beta, and

gamma bands were most prominent in brain regions supporting sen-

sory and motor functions (Figure 5). Consistent results were found

both in our previous hdEEG study, in which participants performed

leg movements while sitting (Zhao et al., 2019), and also in a number

of magnetoencephalography studies on voluntary movement of body

parts such as the finger, hand, and foot (Cheyne, 2013;

Pfurtscheller, 2001; Pfurtscheller & Lopes da Silva, 1999; Sebastiani

et al., 2014). Specifically, we observed that leg swing phases pres-

ented a sensorimotor ERD in the alpha and beta bands. Such an ERD

during movement may directly indicate an increased recruitment of

neurons in specific cortical regions for supporting the leg swing

(Neuper et al., 2006; Pfurtscheller & Lopes da Silva, 1999), or may

result from increased uncertainty estimates between sensory predic-

tion and actual sensory input of the swinging leg (Tan et al., 2016).

We also found that the alpha ERD during IDS and FDS was rather

dorsal, whereas the alpha ERS during RLS and LLS was more ventral

and lateralized. This finding suggests that the alpha oscillations may

be related not only to sensorimotor processing, but also to other func-

tions necessary for efficient motor control: for example, previous EEG

studies documented a relationship between alpha oscillations and

attention during performance of sensorimotor tasks (Babiloni

et al., 2004; Deiber et al., 2012; Magosso et al., 2019; Neuper

et al., 2006).

4.3 | Modulation of neural oscillations across
frequency bands and gait phases

We also evaluated the voxel-wise differences across frequency

bands and gait phases (Figure 6) and the global spatial similarity of

ERD/ERS images (Figure 7). The ANOVA revealed significant modu-

lation of brain oscillations across gait phases in bilateral sensorimo-

tor cortex and cerebellum, as well as a significant interaction

between phase and frequency in the premotor cortex and thalamus.

The identification of these gait-related regions is consistent with

fMRI and SPECT studies on leg movement (Christensen

et al., 2000; Sahyoun et al., 2004) and imagery of walking (Bakker

et al., 2008; Bakker, de Lange, et al., 2007; Jahn et al., 2004; Sacco

et al., 2006). The spatial similarity analysis indicated significant pos-

itive correlations between adjacent bands in the same gait phase.

This is also in line with a spatial similarity analysis on neighboring

frequency bands, conducted under controlled movement conditions

(Zhao et al., 2019). A significant but less strong negative spatial cor-

relation was observed between adjacent gait phases in the same

frequency band, which might be associated with lateralized activa-

tions of left and right leg movements.

Neural activity during walking was examined in further detail for

selected cortical and subcortical ROIs that have been previously

reported to be related to gait performance (Bakker, Verstappen,

et al., 2007). In cortical ROIs, we generally observed that alpha, beta,

and gamma oscillations were modulated by the gait phase (Figure 3) in

accordance with previous EEG studies (Seeber et al., 2014; Artoni

et al., 2017). The modulations of alpha and beta bands in M1 showed

clear lateralization effects during gait, similarly to what was previously

observed with hdEEG for controlled foot movements (Zhao

et al., 2019). Specifically, the beta ERD in the leg swing phases had a

significantly stronger intensity in contralateral than ipsilateral M1

(Figure 4). This was not surprising, because beta ERD in one cerebral

hemisphere is typically associated with the movement of the contra-

lateral part of the body (Neuper et al., 2006; Pfurtscheller & Lopes da

Silva, 1999; Stolk et al., 2019). The power fluctuations in the gamma

band were more prominent in the SMA, and negatively correlated

with the changes of alpha and beta power (Seeber et al., 2014, 2015).

Dynamic modulations were also expected in subcortical regions such

as the thalamus and cerebellum. The thalamus was found to be

involved in the generation and monitoring of movement performance

(Sommer, 2003). Previous self-paced movement studies reported

alpha and beta ERD in the thalamus during motor preparation

(Paradiso et al., 2004) and execution (Zhao et al., 2019). In our study,

the ERD/ERS pattern in the thalamus was like the one in SMA, but

with a stronger modulation in gamma than in alpha and beta bands

(Figure 4). Electrophysiological signals produced by the cerebellum

were previously reported to be detectable using EEG or MEG

(Andersen et al., 2020), yet very little about these signals during gait is

known. It should also be considered that the EEG signal measured

close to the cerebellum is vulnerable to interference from neck muscle

activations during walking (Richer et al., 2019). Although we used a

validated approach to attenuate the impact of such artifacts in hdEEG

signals (Zhao et al., 2021), the ERD/ERS results obtained for cerebellar

regions should be interpreted cautiously.

4.4 | Limitations

We acknowledge that our current study has a number of limitations.

First, our analysis was based on four gait phases due to the limitation

of gait phase analysis using acceleration signals only. The use of a

three dimensional infrared camera system (Pfister et al., 2014) or foot

switches (Yan et al., 2021) could permit a detection of more gait

phases (Silva & Stergiou, 2020), and may further improve the reliabil-

ity of our source images in some brain regions such as the cerebellum.

Secondly, our study only included a treadmill walking task; future

investigation of overground free walking may reveal further informa-

tion regarding the neural processes of gait control in circumstances

3412 ZHAO ET AL.
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which require adaptation of stepping. Lastly, we examined gait-related

neural dynamics in terms of band-limited power modulations; future

analyses could also be conducted to evaluate frequency-dependent

functional connectivity (Arce-McShane et al., 2016; Samogin

et al., 2019, 2020) during gait performance.

5 | CONCLUSION

The findings presented in this study demonstrate that hdEEG record-

ings, in combination with appropriate artifact suppression and source-

level analysis, allow the investigation of the event-related synchroni-

zation (ERS) and de-synchronization (ERD) dynamics across the gait

cycle. Our future work will focus on the development of mobile

hdEEG-based brain–body imaging (MoBI) platforms to enable over-

ground walking investigations, with potential applications in the study

of gait disorders.
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