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Flooding is one of the most frequent natural disasters
worldwide, resulting in substantial socioeconomic losses
and public health threats. The EASTERN project pro-
poses an innovative approach exploiting Artificial Intelli-
gence (AI) techniques to combine data collected from Syn-
thetic Aperture Radar (SAR) imaging and ground mea-
surements for real-time flood risk assessment. Specifi-
cally, the goal is to focus on both immediate dangers asso-
ciated with landslides and secondary risks resulting from
the increased prevalence of disease vectors in affected re-
gions. For the first use case, data from GNSS (Global Nav-
igation Satellite System) technologies and interferomet-
ric analysis of synthetic aperture radar images (InSAR)
will be combined to offer complementary insights into
Earth’s surface deformation and identify susceptible loca-
tions prone to landslides. For the second use case, high-
resolution SAR data will be exploited to predict whether a
flooded area may become an ecological niche for arboviro-
sis vectors. The application of advanced AI technologies
for these Earth Observation tasks will allow for a prompt
response to flooding events and will become a valuable
support in the decision-making process of preventing and
mitigating the consequences of extreme weather events.

Disclaimer This short paper is part of the project
EASTERN which has received funding from Cascade
funding calls of the NODES Program, supported by
the MUR - M4C2 1.5 of PNRR funded by the Euro-
pean Union - NextGenerationEU (Grant agreement
no. ECS00000036) [1].

1 Introduction

Earth observation satellites, telecommunications,
global positioning systems, and scientific exploration
missions are only a few among the numerous ap-
plications that provide valuable insights into the
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Earth’s conditions and changes. Optical and radar
imagery along with sensor measurements allow for
the analysis of physical and meteorological factors
affecting the Earth, including increasingly frequent
extreme climate events, which necessitate constant
monitoring to develop effective prevention and
mitigation strategies.

EArth obServation models for weaThER eveNt mit-
igation (EASTERN) is a research project funded by
the Italian Recovery and Resilience Plan through the
NODES ecosystem (Digital and Sustainable North
West). The aim of this project is to develop new inte-
gration and analysis models based on Artificial Intel-
ligence (AI) (in particular Computer Vision) systems
to monitor and mitigate direct and indirect impacts
of extreme weather events. To this end, the charac-
teristics of ground observation systems will be com-
plemented by the potential of orbital observation sys-
tems. The former are precise and provide continu-
ous time measurements but limited spatial informa-
tion as they are local. On the other hand, the latter
have greater geographical coverage and lower instal-
lation costs but present as their main weakness the
non-continuous temporal availability.

The project’s main focus is the monitoring of flood-
ing events, including:
• direct risks caused by the event, such as landslides

• indirect risks from the flooding event, i.e. the in-
crease in cases of the incidence of diseases carried
by vectors that thrive in flooded areas.
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2 Results

2.1 Use case 1 - AI-based landslide
monitoring from satellite and ground
data

GNSS (Global Navigation Satellite System) technolo-
gies and interferometric analysis of synthetic aperture
radar images (InSAR) offer complementary insights
into Earth’s surface deformation [2].

In particular, InSAR combines two SAR images of
the same area taken at different times to measure
their difference in phase and create an interferogram,
which reveals patterns indicating ground deformation
or topography. For effective correlation of two SAR im-
ages, their amplitudes must be coherent, where ampli-
tude refers to the magnitude or strength of the radar
signal reflected by the Earth’s surface. InSAR provides
one-dimensional (1D) Line-Of-Sight (LOS) measure-
ments on extended regions, but it is limited in deter-
mining three-dimensional (3D) displacements, and its
monitoring precision may be affected by factors such
as orbital and atmospheric errors.

On the other hand, GNSS is a good source of high-
precision deformation monitoring data, with higher
temporal resolution than InSAR (e.g. daily or hourly
updates), but only for limited local regions [3]. Com-
bining GNSS and InSAR data offers enhanced tempo-
ral coverage and improved accuracy in deformation
analysis [4]. It plays an important role in disaster re-
sponse and infrastructure stability monitoring appli-
cations [5].

Our objective is to develop a deep learning (DL)
framework to calibrate InSAR measurements lever-
aging a small number of spatially-sparse GNSS mea-
surements as a weak supervision.

The input of the deep neural network consists of In-
SAR measurements structured as (N ×9) point clouds.
Each point of the cloud si ∈ R9 with i = 1 . . . ,N , in-
cludes three spatial (x,y,z) coordinates, and six addi-
tional parameters for ascending and descending mea-
surements (θ,α,DLOS). Indeed, the viewing geometry
of the satellite LOS is defined by the incidence angle
θ (the angle between the local zenith and the looking
vector of the satellite) and the satellite heading α (see
Figure 1).

The network’s output is an (N × 3) array that
represent an estimate of the GNSS displacements
D̂East , D̂North, D̂Up which compose D̂LOS for each point
si . The training supervision is provided by GNSS
ground truth measurements, organized as an (M × 6)
array, where M represents the number of GNSS sta-
tions and it holds M << N . Each station’s entry in-
cludes spatial coordinates to ensure accurate mapping

Figure 1: Schematic view of the interferometric synthetic
aperture radar (InSAR) viewing geometry for Line-Of-Sight
(LOS) measurements on ascending and descending satellite
passes. Image source: [7]

between InSAR and GNSS data, along with ground-
truth measurements for DEast ,DNorth,DUp.

We implement a mapping strategy to pair each of
the N network outputs with the nearest GNSS mea-
surement. The loss function is implemented as L2-
norm between the network output and the respective
ground-truth measurement, where the contribution
of each estimate to the overall loss is weighted in-
versely by the distance to its nearest GNSS measure-
ment. This logic ensures that the closer a GNSS point
is to an InSAR point, the more influence it has on the
calibration of that point.

2.1.1 Data

GNSS The GNSS data set consists of seven stations
along the Razdro-Vipava highway in Slovenia (refer to
Figure 2), recorded under the project GIMS (Geodetic
Integrated Monitoring System) [6]. The data is avail-
able from June 2019 to June 2021. For this study, the
displacement data for each station was reprocessed
to get a temporal resolution of one measurement per
day.

InSAR We adopt InSAR data distributed by the Eu-
ropean Ground Motion Service (EGMS). EGMS uses
Sentinel-1 to provide consistent, standardized in-
formation about ground motion in European coun-
tries [8]. The initial product, known as the Basic Prod-
uct (Level 2a), provides deformation velocity and de-
formation time series measured in the LOS direc-
tion. This product, generated using high-resolution
Sentinel-1 imagery, is ideal for examining local defor-
mation phenomena [9].

It is important to note that the temporal resolution
of InSAR measurements is constrained by the satellite
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Figure 2: The seven GNSS stations available within the
Razdrto-Vipava highway Area are indicated as cyan dots
with their VIP label. The InSAR LOS displacements are
shown in mm for the ascending orbits on February 22nd,
2021 as an example.

revisit period, which is currently six days for Sentinel-
1 satellites. The data from the EGMS portal for the
area of interest included three datasets for ascending
orbits and two for descending orbits. These data were
pre-processed for use as input in the model, combin-
ing the ascending orbits into a single dataset (refer to
Figure 2). A similar procedure was applied to the de-
scending orbits, resulting in a unified dataset for each
orbit type.

2.2 Use case 2 - Flooding events - facing
the spread of insect-borne infectious
diseases

Vector-borne diseases make up more than 17% of in-
fectious diseases [10] and are largely transmitted by
insects. In the last two decades, the geographical ar-
eas have been expanded by the proliferation of these
vectors [11]. Climate change is contributing to this
expansion [12]. Therefore, it is increasingly necessary
to observe weather conditions to monitor insect pop-
ulations and detect epidemic precursors of diseases.
Specifically, areas with pools of stagnant water are
ideal for mosquitoes and other insects to proliferate
[13]. Their monitoring is key to being prepared to
manage emergencies that arise in flooded areas that
were not previously controlled. Indeed, it is known
that the spread of disease vector insects over time has
a significant impact on public health [14] and can
cause overloads in the healthcare system. The most
efficient approaches in reducing contact between vec-
tors and humans remain the elimination or reduction
of insect populations [15] and therefore it is important
to monitor and predict their movements.

To estimate in advance the dynamics of spread and
mitigate the consequences on surrounding popula-
tions [16], new technologies are needed, also based on

remote sensing. Correlations between the presence of
reservoirs, windiness and the spread of vectors such as
the Anopheles mosquito, the main vector of malaria,
have been documented in the literature [17]. Satellite
remote sensing can provide a wealth of information
on the environmental factors that influence the abun-
dance of vector populations, which is closely linked to
the spread of the diseases they transmit [18–20] and
thus enable geospatial analyses to support control and
eradication programmes.

Our objective is to implement Computer Vision
models that correlate the abundance of vectors in
an area with certain environmental predictors (tem-
perature, rainfall, humidity [21] and wind [17]) and
with specific types of land cover [22].

In particular, the ground truth for vector estimation
will be provided by ground traps, while ground cover
mapping will be carried out from SAR images by fine-
tuning pre-trained models [23].

Since wind is one of the key environmental factors
in vector proliferation, we want to add this layer of in-
formation to the modelling. To minimise the amount
of weather data needed at runtime and to allow the
model to be applied in areas that are not monitored
on the ground, we want to extract this information
from satellite images too on flooded surfaces, as it has
been done on lakes [24].

After the model has been defined to locally
(geo)estimate the abundance of vectors, it would be
possible to predict a risk level in a segmented area
and to treat it as a risk factor in epidemiological mod-
els.

2.2.1 Data

SAR Images The dataset used for wind field retrieval
from Sentinel-1 SAR images primarily relies on data
from the Sentinel-1A and Sentinel-1B satellites. The
Sentinel-1 mission provides various data products,
which are made available systematically and free of
charge to users worldwide. These products cater to
both scientific and commercial needs.

Different modes of Sentinel-1 data acquisition can
produce various products, including SAR Level-0,
Level-1 SLC, Level-1 GRD, and Level-2 OCN. In
particular, for this work, dual-pol (VV-VH) Level-
1 Ground Range Detected (GRD) has been consid-
ered. GRD products are derived from detected, multi-
looked, and projected SAR data onto the ground range
using an Earth ellipsoid model. While these products
may lose phase information, they achieve speckle re-
duction. The typical pixel spacing of GRD data is 10
meters, facilitating high spatial resolution.

A Sentinel-1 GRD dataset of about 500 images has
been considered specifically around several Italian
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lakes, providing a focused geographical context for
the wind field retrieval analysis. The choice of these
lakes is strategic, as they represent a near-use case to
flooding regions. By focusing on these lakes, which
are susceptible to various environmental factors in-
cluding wind dynamics, the wind field retrieval anal-
ysis can provide valuable insights that can be extrap-
olated to regions prone to flooding. VV-polarization
has been considered due to its sensitivity to surface
roughness changes induced by wind, which can be cru-
cial for understanding and predicting wind patterns
over water bodies. Wind-induced surface roughening
can lead to variations in backscatter signals captured
by VV-polarized SAR imagery, making it particularly
relevant for studying wind dynamics over lakeshores
and surrounding areas.

Metereological Data In addition to satellite imagery,
meteorological data play a crucial role in wind field
retrieval analysis. For this study, meteorological data
have been retrieved from the Agenzia Regionale per
la Protezione dell’Ambiente (ARPA) to provide with
ground truth for wind speed and direction measure-
ments.

Training Computer Vision models on Sentinel-1
SAR imagery areas that are close to meteorological
stations we can improve the capabilities of wind field
analysis, allowing a deeper exploration of the interac-
tions between surface roughness, atmospheric condi-
tions, and wind patterns.

Entomological surveillance data In response to
the spread of arboviruses, i.e. viruses transmitted
by blood-feeding arthropod vectors., the continuous
monitoring of specific species has been enhanced in
recent years by zooprophylactic and environmental
monitoring institutes. Among the various mosquitoes,
culex pipiens is the main vector of West Nile Virus
and Usutu Virus [25]. It is of interest to this project
because the biological form Cx. pipiens is predomi-
nantly rural and is more widespread in areas with lit-
tle human activity, where there is non-natural water
stagnation, as may be the case in rural areas impacted
by flooding or in areas with stagnant crops, such as
rice fields.

The available datasets concern the quantity of adult
specimens captured by traps set in the monitored ar-
eas. This type of data is available on a European level
[26], or by requesting access to regional zoo prophy-
lactic institutes.

3 Discussion

The EASTERN project has an ambitious vision, which
intercepts goals 3, 13 and 15 of the UN 2030 Agenda

[27]. The vision is indeed to overcome and comple-
ment, through the use of AI, the ground-based obser-
vation systems by exploiting the potential of orbital
observation systems, e.g. greater geographical cover-
age or lower cost of installation, while minimising the
weaknesses of the Earth Observation systems, such as
non-continuity in time.

For each of the two considered use cases, the project
proposes innovative solutions. For what concerns
landslides (use case 1), useful strategies to integrate
InSAR and GNSS data have been presented in previ-
ous works but they are either based on simplified dif-
ferences among the measured displacements or lever-
age complex mathematical models [4, 28]. In [29]
these two data types are merged through direct data
fusion forming a unified deformation field. Notably,
ground deformation maps have been generated at a
continental scale, encompassing all of Europe in [30].
In this scenario, GNSS data were utilized to detect
and eliminate potential residual atmospheric artifacts
that could impact the quality of the employed MTIn-
SAR (Multi-temporal InSAR) data. Considering the in-
creasing adoption of integrating GNSS and SAR data
for large-scale analyses, DL techniques will offer new
opportunities due to their ability to handle large vol-
umes of complex data and learn hidden patterns.

Among the indirect effects of flooding (studied
in use case 2), the main objective is to train models
able to predict high-resolution mapping of the risk
of proliferation of vectors and their evolution over
time. Defining risk by geographical area provides in-
dications about where traps shall be installed to sup-
port monitoring and preventive measures impacts.
The ecological niche of vectors like mosquitoes has
been correlated with humidity, vegetation coverage,
wing, and other ambiental factors [17, 31, 32]. In lit-
erature, we can find studies relating satellite imagery
and weather data to predict vector populations based
on trap captures [20, 33], mainly relying on vegeta-
tion, land coverage in general and moisture informa-
tion [34], which can be derived from optical satellite
imagery. Our approach aims to extract the predictive
information from SAR images that can provide with
more reliable information regardless of atmospheric
conditions and have a higher penetration capability
through clouds and vegetation. Moreover, SAR images
are able to capture signals about wind speed for their
sensitivity to water surface roughness. We expect that
these advantages of SAR imagery combined with the
predictive power of Computer Vision would make it
easier to evaluate risks associated with specific dis-
eases in flooded areas and be a valid support for local
public health authorities in controlling outbreaks and
formulating well-informed decisions.
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