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A B S T R A C T

Clean combustion, particularly premixed hydrogen combustion aimed at reducing NOx emissions, is prone to
thermoacoustic instabilities that can cause structural vibrations and equipment failures. This study focuses on
a low-order model for a thermoacoustic prototype, a simple quasi-one-dimensional combustor comprising a
plenum, premixing duct, and combustion chamber. Resonant modes of the combustor are identified by solving
a nonlinear eigenvalue problem. Using an adjoint-based sensitivity analysis, the impact of uncertainties in base
flow parameters on resonant frequencies and linear growth rates is assessed. The results obtained highlight
the significant influence of variations in cold gas density within the plenum and premixing duct on the linear
growth rates, potentially explaining discrepancies with literature data. Additionally, structural sensitivities in
both the base and the perturbation flow are examined to evaluate the effects of a generic feedback mechanism
on the eigenvalues. Structural sensitivities at the base-flow level are evaluated as a function of the flame
position, identifying effective stabilizing mechanisms such as heat addition and mass flow rate reduction at
duct intersections. The most stabilizing feedback mechanism is identified as mass fluctuations proportional
to pressure perturbation at the end of the plenum, an effect achievable with Helmholtz resonators. Adjoint
analyses permit uncertainty quantification of base-state parameters and gradient information for optimization
strategies aimed at mitigating thermoacoustic instabilities through efficient and low-cost calculations.

Novelty and significance statement
The novelty of this research lies in its development of a comprehensive adjoint analysis framework for

three types of sensitivity analyses within a thermoacoustic premixed combustor model. This paper uses base-
state sensitivity to quantify the significant effect of base flow uncertainties, such as cold gas properties in
the premixer, on the unstable resonant mode growth rates. In addition to structural perturbation sensitivity
analysis, it uniquely applies structural sensitivity to base flow modifications, uncovering effective steady
control mechanisms like mass suction and heating. The findings identify efficient approaches to mitigate
thermoacoustic instabilities in premixed combustion systems and broaden the scope of potential control
strategies.
1. Introduction

Thermoacoustic instabilities are self-excited oscillations that arise
when pressure oscillations are coupled with heat-release oscillations.
If the pressure oscillations are in phase with the unsteady heat re-
lease rate, instabilities might emerge, causing unwanted consequences
that range from annoying noise to catastrophic structural damage [1].
These phenomena are of paramount importance in various industrial
apparatuses such as gas turbines, rockets, and domestic gas boilers.

Considerable research has been dedicated to modeling and predict-
ing thermoacoustic instabilities both in laboratory setups and industrial
equipment. A thorough summary of the mechanisms of combustion
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instabilities and common methods of analysis has been published
by Culick [2] and Raun et al. [3]. Galerkin techniques have been
used extensively to model combustion instabilities. Balasubramanian
and Sujith [4] used the Galerkin technique to analyze the acoustic
pressure oscillations and ensuing nonlinear dynamics in a Rijke tube. A
drawback of this approach is that the acoustic flow variables (usually
pressure or acoustic velocity oscillations) are represented as a modal
Galerkin expansion, a sum of infinite series. In practice, the result must
be truncated while the discontinuity in the velocity at the compact
heater location needs proper resolution; this might lead to spurious
oscillations arising from the Gibbs phenomenon [5,6]. Sayadi et al. [6]
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highlight clearly the limitations of three different Galerkin approaches
which use the continuous acoustic modes of the chamber, without
he heater, as basis functions), and recommend special attention when

adopting the Galerkin method to study thermoacoustic systems with
discontinuous terms.

Another widely-used modeling approach is the wave-based ap-
roach, initially described by Rayleigh [7]. The Riemann invariants are

used to decompose the flow fluctuations into upstream- and
downstream-traveling components. Crocco and Cheng [8] employed
a wave-based approach to analyze the high-frequency oscillations in
a rocket combustion chamber. This method was later extended to
full acoustic networks by Dowling [5]. With the network modeling
approach, the geometry, boundary conditions, and heat-release source
of the combustion system are modeled as individual elements, each
escribed by a linear transfer function, connected by jump conditions.

The method was adapted by Schaefer and Polifke [9] to treat systems
with duct elements of varying cross-sectional area and arbitrary mean
temperature profiles. Evesque and Polifke [10] applied the wave-based
modeling approach to a generic annular combustor and investigated the
effect of non-identical burners as a means of passive control. Ghirardo
et al. [11] focused on can-annular combustors in the low-frequency
ange, showing that the connection between neighboring cans may
rigger azimuthally-traveling unstable modes.

Identifying possible passive control strategies to suppress thermoa-
coustic instabilities can be done efficiently by conducting sensitivity
analyses. The adjoint method is a powerful tool for solving stability,
receptivity, sensitivity, and control problems in complex systems, with
extensive applications in hydrodynamics stability [12–14]. Previous
djoint-sensitivity work can be broadly subdivided into three types of
nalysis.

• To evaluate eigenvalue variations due to generic base-state modi-
fications 𝛿 𝑈 , possibly related to uncertainties in the measurement
or in the calculation of the base state. Bottaro et al. [15] first ap-
plied the base-state sensitivity analysis to examine the eigenvalues
of the Orr–Sommerfeld operator. They found variations (of given
amplitude) of the basic flow with the most destabilizing effect
on the eigenvalues for the case of the plane Couette flow and
introduced the concept of the 𝛿 𝑈 -pseudospectrum.

• To find the eigenvalue changes due to feedback sources in the
flow disturbances. This is often referred to as structural sensitivity
analysis. Giannetti and Luchini [16] conducted such an analysis
for the case of the flow around a cylinder and identified regions
in which variations, for instance, due to truncation of the domain
or grid resolution, cause the largest eigenvalue drift.

• To evaluate the sensitivity of source terms acting on the steady
equations of the base flow in order to stabilize unstable eigen-
modes. Marquet et al. [17] calculated the sensitivity to a steady
force and gave predictions of possible passive control methods to
suppress the vortex shedding in the wake of a cylinder. Pralits
et al. [18] introduced the idea of structural sensitivity to base-flow
modifications and showed successful examples of its application.
Other steady source terms can easily be envisaged, for the mass
and/or energy conservation equations. Luchini et al. [19] con-
ducted a structural sensitivity analysis for finite-amplitude global
modes on a periodic base flow and showed good comparison with
experiments on the flow control in the cylinder wake.

Existing literature reflects substantial endeavors towards uncer-
tainty quantification and sensitivity analysis in thermoacoustic sys-
tems [20,21]. A comprehensive review of the applications of adjoints to
hermoacoustic problems has been published by Magri [22]. Compared
ith the traditional finite-difference approach, the adjoint method is
ore cost-effective in the analysis of systems that depend on many
arameters. An example of the use of these two approaches will be
hown later on.
 c

2 
Adjoint sensitivity analysis has also been used in shape optimization
f thermoacoustic systems such as the Rijke tube, in swirl combus-

tors [23], also using low-order models [24–26]. Mensah and Moeck
[27] applied the adjoint perturbation theory to a generic annular
combustor model and found the optimal damper arrangements and the
mpedance design to mitigate instabilities. Magri et al. [28] applied

the adjoint analysis to calculate the first variation of the Rayleigh
criterion in both the time and frequency domains. They also proposed
n adjoint Rayleigh criterion, which reflects the effect of unsteady heat
elease rate on the first variation of eigenvalues. Schäfer et al. [29]

developed a hybrid adjoint approach, exploiting the self-adjointness of
duct element and simplifying the derivation of adjoint system, for sen-
sitivity analysis of thermoacoustic network models. By computing the
feedback sensitivity and base-state sensitivity of an annular combustor
network model, they tuned a Helmholtz resonator to achieve passive
control. Juniper [30] developed a pedagogical framework of adjoint
Helmholtz solvers and calculated receptivity, feedback sensitivity, and
base-state sensitivity for a Rijke tube and a rocket engine combustor
model. Base-state sensitivities were calculated to evaluate the effect of
variables such as the time delay in the heat release model, the bound-
ary conditions, and the heat release distribution. Aguilar et al. [25]
calculated feedback sensitivity and base-state sensitivities of reflection
coefficients, time delay, and interaction index of the heat release model
n a one-dimensional two-segment thermoacoustic system. In a later
tudy, Aguilar and Juniper [26] optimized the combustor geometry

based on the sensitivity analysis of a longitudinal bluff-body combustor.
They examined the eigenvalue variation due to the steady base flow
alteration by changing the combustor geometry. This is similar to the
hird type of sensitivity analysis mentioned above, but not quite the
ame, because there is no steady force introduced into the system.
o the authors’ best knowledge, the use of adjoint-based sensitivity

analysis to identify steady forcings to base flow equations that stabilize
hermoacoustic systems has yet to be carried out.

Existing feedback control techniques and devices have been exten-
sively studied. Raghu and Sreenivasan [31] examined a set of active
control methods, including heat addition, force addition, and peri-
odic mass addition, for the suppression of pressure oscillations in a
laboratory scale pipe flow and demonstrated that the combination of
mesh screens and heating coils applied to a large combustion set-up
successfully eliminated undesired pressure oscillations. Dowling and
Morgans [32] summarized the application of feedback control to miti-
gate thermoacoustic instabilities, including the development of control
trategies and controller design. They also demonstrated a case of

feedback control on a full-scale combustion system. Another thorough
review by Zhao and Li [33] described the use and effectiveness of
acoustic dampers in aerospace combustors. Zhao and Morgans [34]
used Helmholtz resonators with tuned geometry to stabilize combustion
systems with multiple unstable modes, validated through numerical
simulations and experiments on a Rijke tube.

The aim of this paper is to show, for a prototypical thermoacoustic
ystem, the application of all three types of adjoint analysis alluded
o above, for the assessment of uncertainties and the identification of

passive control strategies. The structure of the present contribution is
s follows: in Section 2, details of the lumped model of the combustor
y Dowling and Stow [35] are given. Linear stability analysis yields

the eigenspectrum, highlighting some discrepancies with the literature,
particularly with respect to the amplification rate of the eigenmodes. In
Section 3, we investigate the reasons for these discrepancies, relating
hem to base-flow uncertainties by applying the adjoint base-state
ensitivity analysis. In Sections 4 and 5, we aim to find optimal control
trategies to mitigate thermoacoustic instabilities with a focus on the

two most unstable eigenmodes. In Section 4, the sensitivity to struc-
ural modifications in the base flow is evaluated against variations in
he flame position within the combustor. In Section 5, we apply the
tructural sensitivity analysis to evaluate the eigenvalue drift due to
eedback forcings in the disturbance field. Section 6 presents the main
onclusions of the work.
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Fig. 1. Sketch (not-to-scale) of the one-dimensional three-duct combustor geometry,
with notations and boundary conditions. The positions of the ducts’ intersections are
𝑥 = 𝑙1 and 𝑥 = 𝑙2 (where the compact flame is also located); the outlet of the system
is at 𝑥 = 𝑙3.

Table 1
Geometrical parameters of the three-duct combustor.

Section Length Cross-sectional area

Plenum 𝐿1 1.7 m 𝑎1 0.0129 m2

Premixer 𝐿2 0.0345 m 𝑎2 0.00142 m2

Combustion chamber 𝐿3 1.0 m 𝑎3 0.00385 m2

2. The one-dimensional premixed combustion system

2.1. General description

The prototypical thermoacoustic system examined in this work is
the quasi-one-dimensional combustor reported in Dowling and Stow
[35], displayed in Fig. 1. The simplified combustor geometry is based
on the assumption of sufficiently low oscillation frequencies in the
combustor so that radial modes are cut off, and only plane waves
transport acoustic energy.

The system consists of a plenum, a premix duct, and a combustion
chamber, modeled as three straight ducts connected by discontinuities
where jump conditions must be enforced. The area changes, and the
unsteady heat source (modeling the flame) are short enough to be
considered acoustically compact. The compact flame is located at the
outlet of the premixer. The combustor has a choked inlet to model the
flow supplied by a centrifugal blower and an open outlet as the burned
gases are discharged into an open space or another large plenum. The
dimensions of the system are given in Table 1.

2.2. The low-order modeling approach

The simple combustion system in Fig. 1 is treated with the lumped
approach described by Dowling and Stow [35]. The flow is described by
a set of equations, including governing equations, boundary conditions,
and jump conditions, with the ideal gas assumption. The equations are
linearized around the base flow; thus, in each duct, the flow variables
are decomposed into a mean steady value plus a perturbation, viz.
𝑝(𝑥, 𝑡) = �̄� + 𝑝′(𝑥, 𝑡), 𝑢(𝑥, 𝑡) = �̄� + 𝑢′(𝑥, 𝑡), 𝜌(𝑥, 𝑡) = �̄� + 𝜌′(𝑥, 𝑡), 𝑇 (𝑥, 𝑡) =
�̄� + 𝑇 ′(𝑥, 𝑡), 𝑄(𝑥, 𝑡) = �̄� + 𝑄′(𝑥, 𝑡), where 𝑄 is the heat release rate
generated by the flame. The base flow parameters, denoted as �̄� =
(�̄�𝑗 , ̄𝑢𝑗 , �̄�𝑗 , �̄�𝑗 , �̄�), are considered uniform and steady in each duct. The
independent perturbation variables are denoted as 𝐪′ = (𝜌′𝑗 , 𝑢′𝑗 , 𝑝′𝑗 ) with
𝑗 = 1, 2, 3 representing each duct.

In the combustion chamber section, the mean temperature is the
same as the flame temperature 𝑇𝑓 , and the mean pressure is the
ambient pressure. At the area-increasing intersection, 𝑥 = 𝑙2, the Borda–
Carnot equation is used; at the sudden contraction in 𝑥 = 𝑙1, the flow
is assumed to behave isentropically. The set of equations used to find
the base state, 𝐁(�̄�) = 0, is given in Supplementary Material Part A.

In each section of the system (denoted by 𝑗 = 1, 2, 3), the perturba-
tions are governed by differential equations representing the conserva-
tion of mass, momentum, and energy:
3 
𝜕 𝜌′𝑗
𝜕 𝑡 + �̄�𝑗

𝜕 𝜌′𝑗
𝜕 𝑥 + �̄�𝑗

𝜕 𝑢′𝑗
𝜕 𝑥 = 0, (1a)

̄𝑗
𝜕 𝑢′𝑗
𝜕 𝑡 + �̄�𝑗 �̄�𝑗

𝜕 𝑢′𝑗
𝜕 𝑥 +

𝜕 𝑝′𝑗
𝜕 𝑥 = 0, (1b)

𝜕 𝑝′𝑗
𝜕 𝑡 + �̄�𝑗

𝜕 𝑝′𝑗
𝜕 𝑥 + 𝛾 ̄𝑝𝑗

𝜕 𝑢′𝑗
𝜕 𝑥 = 0. (1c)

In the system above no summation is intended over the 𝑗 index. A wave
decomposition is introduced for the perturbation variables; pressure,
density, and velocity fluctuations in the frequency domain (𝐪′(𝑥, 𝑡) =
�̂�(𝑥)ei𝜔𝑡) are decoupled as forward and backward traveling acoustic
waves plus an entropy wave convected by the mean flow:

�̂�𝑗 = 𝐴+𝑗e
i𝑘+𝑗𝑥 + 𝐴−𝑗e

i𝑘−𝑗𝑥, (2a)

̂𝑗 =
1
𝑐2𝑗

𝐴+𝑗e
i𝑘+𝑗𝑥 + 1

𝑐2𝑗
𝐴−𝑗e

i𝑘−𝑗𝑥 − 1
𝑐2𝑗

𝐴𝑒𝑗e
i𝑘0𝑗𝑥, (2b)

�̂�𝑗 = − 𝑘+𝑗
�̄�𝑗𝛼+𝑗

𝐴+𝑗e
i𝑘+𝑗𝑥 −

𝑘−𝑗
�̄�𝑗𝛼−𝑗

𝐴−𝑗e
i𝑘−𝑗𝑥, (2c)

where 𝑘±𝑗 = − 𝜔
�̄�𝑗 ± 𝑐𝑗

, 𝑘0𝑗 = − 𝜔
�̄�𝑗

, and 𝛼±𝑗 = 𝜔 + �̄�𝑗𝑘±𝑗 .

At the area decreasing intersection, the flow can be assumed as
isentropic. With mass and energy conservation equations, the jump
conditions at 𝑥 = 𝑙1 read

𝑎1
(

�̄�1�̂�1 + �̂�1�̄�1
)

= 𝑎2
(

�̄�2�̂�2 + �̂�2�̄�2
)

, (3a)

𝛾
�̂�1
�̄�1

−
�̂�1
�̄�1

= 𝛾
�̂�2
�̄�2

−
�̂�2
�̄�2

, (3b)

�̂�1 = 𝐶𝑝�̂�1 + �̄�1�̂�1 = �̂�2 = 𝐶𝑝�̂�2 + �̄�2�̂�2, (3c)

where 𝐻 = 𝐶𝑝𝑇 + 1
2 𝑢

2 is the stagnation enthalpy per unit mass and 𝐶𝑝
the specific heat at constant pressure, assumed constant. The specific
heat ratio is denoted by 𝛾 = 𝐶𝑝∕𝐶𝑣.

At 𝑥 = 𝑙2, where the area increases, the mass, energy, and momen-
tum conservation apply:

𝑎2
(

�̄�2�̂�2 + �̂�2�̄�2
)

= 𝑎3
(

�̄�3�̂�3 + �̂�3�̄�3
)

, (4a)
𝑎2�̂�2�̄�

2
2 + 2𝑎2�̄�2�̄�2�̂�2 = 𝑎3

(

�̂�3 − �̂�2
)

+ 𝑎3�̂�3�̄�
2
3 + 2𝑎3�̄�3�̄�3�̂�3,

(4b)
𝑎2

(

�̄�2�̄�2�̂�2 + �̄�2�̂�2�̄�2 + �̂�2�̄�2�̄�2
)

= 𝑎3
(

�̄�3�̄�3�̂�3 + �̄�3�̄�3�̂�3 + �̄�3�̄�3�̂�3 − �̂�
)

.
(4c)

Note that the heat released by the compact flame is introduced in
the jump condition. This might differ from what Dowling and Stow [35]
did, since it is not clear from their paper whether the area change, from
𝑎2 to 𝑎3, and the energy source term 𝑄 were treated in one step (at
the 𝑥 = 𝑙2 interface) or in two successive steps. In any event, we have
modeled the problem in two ways: one is the fully coupled approach
embodied by Eqs. (4) above, and the second considers two steps (and
two separate sets of equations) with the area change first, and the heat
release term immediately downstream. The results of the two models
are close to one another, and also close to those by Dowling and Stow
[35], but not identical. We have thus decided to maintain only the fully
coupled approach above.

The fluctuating heat release rate generated by an unsteady flame is
governed by a time-delayed model correlated with the mass flow rate
in the premixer section:

�̂� = −𝜅�̄�
̂̇𝑚2
̄̇𝑚2

e−i𝜔𝜏 , (5)

where 𝜏 = 0.006 s is the time delay, and the coefficient 𝜅 acts as an
unsteady flame switcher, with its value ranging from 0 to 1 [35].

Choked inlets usually model a compressor exit, where the mass
and energy flow rates are nearly constant. An open outlet can be
approximated with a zero-pressure oscillation. Hence, the boundary
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conditions are:
Choked inlet [36]:
�̂�1(0)
𝜌1

+
�̂�1(0)
𝑢1

= 0, (6a)

�̂�1(0) = 𝑐21 �̂�1(0), (6b)

Open outlet:

�̂�3(𝑙3) = 0. (7)

Eqs. (3)–(7) form the direct system of perturbation flow in the combus-
tor. From the equation of state of ideal gases, with 𝑅𝑔 the perfect gas
constant, the first-order linearization of �̂� yields

�̂� =
�̂�∕𝑅𝑔 − �̄� �̂�

�̄�
, (8)

so that

�̂� =
𝛾

(𝛾 − 1)�̄� �̂� −
𝐶𝑝�̄�
�̄�

�̂� + �̄� ̂𝑢. (9)

With the base flow solutions and the wave decomposition in
Eqs. (2), the stability of the perturbation flow system is solved as an
eigenvalue problem of the form:

(�̄�, 𝜔)𝐱 = 0. (10)

The elements of the vector 𝐱 are the decoupled wave amplitudes 𝐴+𝑗 ,
𝐴−𝑗 , 𝐴𝑒 𝑗 (𝑗 = 1, 2, 3) plus the heat release rate fluctuation �̂�;  is the
coefficient matrix, as outlined below:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Heat release model (Eq. (5))
Mass conservation equation at 𝑥 = 𝑙1 (Eq. (3)(a))

Isentropic condition at 𝑥 = 𝑙1 (Eq. (3)(b))
Energy conservation equation at 𝑥 = 𝑙1 (Eq. (3)(c))
Mass conservation equation at 𝑥 = 𝑙2 (Eq. (4)(a))

Linear momentum conservation at 𝑥 = 𝑙2 (Eq. (4)(b))
Energy conservation equation at 𝑥 = 𝑙2 (Eq. (4)(c))

Choked inlet condition (Eq. (6)(a))
Isentropic inlet condition (Eq. (6)(b))

Open outlet condition (Eq. (7))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴+1
𝐴−1
𝐴𝑒1
𝐴+2
𝐴−2
𝐴𝑒2
𝐴+3
𝐴−3
𝐴𝑒3
�̂�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0.

(11)

The non-zero elements of the matrix  are given in Supplementary
Material Part B. The nonlinear eigenvalue problem is solved by the
inverse iteration algorithm [37]; an advantage of this approach is that
for each eigenmode, the left and right eigenvectors are simultaneously
obtained. Any complex 𝜔 that gives zero determinant of  is an
eigenvalue of the direct system, and the corresponding vector 𝐱 is an
eigenvector.

The spectrum is formed by ten eigenmodes, shown in Fig. 2. The
spectrum shows the trajectories of eigenvalues when the coefficient
𝜅 varies. The unsteady flame position is fixed at 𝑥 = 1.7345 m. The
comparison of the eigenvalues and the trajectories shows that the
frequencies match quite closely those found by Dowling and Stow [35],
whereas the growth rates do not. We also observe that both sets of
results yield the same sign of the growth rates for nine modes out of
ten, when 𝜅 = 1.

The mode shapes of the perturbation variables can be reconstructed
from the eigenvector by the use of Eqs. (2). The absolute values of the
resonant pressure fluctuations, in the presence of unsteady heat release,
are compared with the literature results in Fig. 3. The eigenvalues and
the mode shapes of the modes are found to differ mildly from the results
of the literature. This could stem from differences in the values of the
base flow variables, values not given in the paper by Dowling and Stow
[35]. This points to possible uncertainties in the base flow, affecting the
amplitude of the perturbations and the complex eigenvalues.
4 
Fig. 2. Comparison of the eigenvalue trajectories against literature results [35], with
varying 𝜅, from 𝜅 = 0 (no unsteady heat release at the flame) to 𝜅 = 1. The solid blue
lines represent the trajectories of the present model; the dashed red lines represent the
trajectories reported in Dowling and Stow [35]. The two most unstable eigenmodes are
labeled as TA1 and TA2.

3. Uncertainty in base flow parameters

Our first goal is to identify a possible source of discrepancy in the
eigenvalues between our results and those in Ref. [35]. We thus employ
the adjoint base-state sensitivity analysis to quantify how eigenvalues
are affected by small arbitrary variations in base flow variables �̄�. The
approach used here is similar to the base state sensitivity study carried
out by Aguilar et al. [25] and Juniper [30]. However, the purposes
are different. The authors above have calculated the effect of system
parameters, such as heat release model time delays and reflection
coefficients, with the goal of optimizing the system. Here, we aim to
evaluate the sensitivity of generic modifications to base flow quan-
tities. In a real physical system, generic base flow modifications can
stem from uncertainties in experimental measurements or in numerical
computations.

3.1. Base-state sensitivity analysis

Introducing a small deviation 𝛿�̄� of base flow into the direct system,
Eq. (10), causes variations in both eigenfrequency and eigenvector, so
that, upon linearization, we have

𝛿 𝐱 + 𝛿𝐱 = 0, (12)

with

𝛿 =
𝜕(�̄�, 𝜔)

𝜕 ̄𝑞 𝛿 ̄𝑞 + 𝜕(�̄�, 𝜔)
𝜕 𝜔 𝛿 𝜔, (13)

where 𝑞 denotes a component of the vector �̄�, and a sum over all the
components is tacitly assumed.

Left-multiplying Eq. (12) by the adjoint eigenvector, 𝐲†, solution of

∗(�̄�, 𝜔) 𝐲† = 0, (14)

with ∗ denoting conjugate transpose, we have:

𝐲†∗ 𝜕(�̄�, 𝜔)
𝜕 ̄𝑞 𝐱 𝛿 ̄𝑞 + 𝐲†∗ 𝜕(�̄�, 𝜔)

𝜕 𝜔 𝐱 𝛿 𝜔 + 𝐲†∗(�̄�, 𝜔)𝛿𝐱 = 0, (15)

with the last term on the left-hand-side equal to zero by virtue of
Eq. (14).
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Fig. 3. Shapes of the pressure fluctuation eigenmodes (normalized with the respective maximum amplitudes), in the case of heat release located at 𝑥 = 1.7345 m. Above each
individual frame, the oscillation frequency computed by Dowling and Stow [35] is indicated as 𝑓𝐷 𝑆 , while the value found here is denoted simply by 𝑓 . Red curves: mode
shapes from the literature; blue curves: mode shapes predicted by the present study. The two most unstable modes are labeled TA1 and TA2 within the appropriate frames. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The eigenvalue drift due to a generic base flow modification can
thus be written as

𝛿 𝜔 = 𝑞 𝛿 ̄𝑞 , (16)

with the sensitivity defined, for each component of the vector �̄�, by:

𝑞 = −
𝐲†∗ 𝜕(�̄�, 𝜔)

𝜕 ̄𝑞 𝐱

𝐲†∗ 𝜕(�̄�, 𝜔)
𝜕 𝜔 𝐱

. (17)

3.2. Effects of fractional change of base flow on eigenvalues

We evaluate the variation of any eigenvalue due to a fractional
change in the base flow parameters, which can be expressed as

𝛿 𝜔 = 𝑞%
𝛿 ̄𝑞
𝑞
, (18)

with the complex, scaled sensitivities defined by

𝑞% = 𝑞 𝑞 . (19)

These scaled sensitivities represent the response of the given eigenvalue
to a percentage change in the respective base flow parameters.

Figs. 4 and 6 illustrate the sensitivities of complex eigenvalues to
uncertainties in base flow parameters �̄� for the two most unstable
modes, TA1 and TA2, with oscillation frequencies of 171 Hz and
300 Hz, respectively. We choose these two eigenmodes because they
are the two most unstable modes, and they show large discrepancies
5 
in growth rates in the eigenspectrum when compared to the reference
results. We also examine how the sensitivities change with varying
flame positions (𝑙2) from 1.7 m to 1.8 m, corresponding to a premixer
length, 𝐿2, varying from 0 to 0.1 m.

The sensitivities to modifications of mean pressure and mean den-
sity in the combustion chamber (�̄�3 and �̄�3) are zero, as matrix 
does not depend on them. The sensitivity results have been validated
against gradients calculated using the finite difference approach, show-
ing excellent agreement. We also conducted a Taylor test to perform a
debugging check for adjoint codes: if the small deviation in the base
flow quantity is 𝜖 to calculate the sensitivity with the first-order accu-
rate finite difference approach, then the difference of the eigenvalue
drift from that obtained with the adjoint approach ( |𝛿 𝜔𝐹 𝐷 − 𝛿 𝜔𝐴𝐷| )
must increase in proportion to 𝜖2 [20,30]. We show in Fig. 5 an
example of changing base flow parameter �̄�1. It plots the eigenvalue
drift difference for all eigenmodes against 𝜖2 and shows that it is indeed
a straight line through the origin.

Our findings indicate that for both eigenmodes TA1 and TA2, the
relative difference in oscillation frequencies resulting from base-flow
modifications are generally negligible and significantly less pronounced
than the relative difference in growth rates. As shown in Fig. 2, the
growth rates of modes TA1 and TA2 are overestimated by up to approxi-
mately 100 rad/s when compared to Dowling and Stow [35]. However,
comparing oscillation frequencies a good agreement can be noticed; our
uncertainty calculations confirm this observation.

Among the eleven different base flow modifications considered in-
dependently, the effect of mean flow velocity variations in the plenum
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Fig. 4. Sensitivity to uncertainties in different base flow variables for eigenmode TA1, as a function of the position 𝑙2 of the compact flame. Blue curves: sensitivity of oscillation
frequency (𝜔𝑟∕(2𝜋) [Hz]). Red curves: sensitivity of growth rate (−𝜔𝑖 [rad/s]). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 5. The difference between the eigenvalue drift of all eigenmodes, calculated from
a first-order finite difference method with step size 𝜖 (FD) and an adjoint approach
(AD), for changing base-state parameter �̄�1.

is the least significant. A change of 1% in �̄�1 leads to a deviation below
0.0204 rad/s in growth rate and below 0.0011 Hz in oscillation fre-
quencies for mode TA1 for whatever value of 𝑙2 in the range considered;
for mode TA2, a change of 1% in �̄�1 leads to a maximum deviation in
oscillation frequency of 0.0258 Hz, and in growth rate of 0.0281 rad/s.
On the other hand, uncertainties in the mean density in the premixer
section have the most profound effect on the linear growth rates for
6 
both eigenmodes. A 1% under-estimation of �̄�2 yields an increase in
growth rate of up to 300 rad/s for mode TA1 and up to 600 rad/s for
mode TA2. The results reported also show that extending the length of
the premixer section, 𝐿2, helps reducing the influence of �̄�1 and �̄�2 in
altering the eigenvalues.

The differences in complex eigenvalues between the present results
and those from the literature stem from the combined effect of all base
flow uncertainties. The sensitivities displayed in Figs. 4 and 6 give an
immediate response for each individual effect; it is the base flow vari-
ables in the premixer (�̄�2, �̄�2, �̄�2, �̄�2, �̄�) which hold the most profound
influence. This is due to the fact that these parameters directly affect
the flame transfer function, which couples the flow in the premixer with
the unsteady heat release. The analysis just presented, thus, furnishes
indications of where flow control efforts could be directed.

4. Structural sensitivity to steady feedback forcings

We now assume a general linear feedback forcing acting on the
steady base-flow equations, and evaluate the corresponding eigenvalue
drift, 𝛿 𝜔. Differently from the previous section, the base flow vari-
ation depends on a particular choice of steady feedback process. In
the previous section, we have derived the eigenvalue drift due to
arbitrary variations of the base flow. Now, we show the expression
of the eigenvalue drift caused by a particular feedback forcing in base
flow [18].

The base flow system in compact form is

𝐁(�̄�) = 0. (20)
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Fig. 6. Same as Fig. 4 for eigenmode TA2.
𝜌

Let us assume that a small term 𝛿𝐇𝐵(�̄�) forces the system, so that the
mean flow is perturbed by 𝛿�̄�, i.e. 𝐁(�̄�+𝛿�̄�) = 𝛿𝐇𝐵(�̄�+𝛿�̄�). Linearization
yields
𝜕𝐁(�̄�)
𝜕 ̄𝑞 𝛿 ̄𝑞 = 𝛿𝐇𝐵(�̄�). (21)

Here, again, summation is tacitly implied on the left-hand-side of the
equation over all the elements of the vector �̄�. Since the base flow
is bounded only by jump conditions and boundary conditions, the
feedback source term is introduced at the duct intersections, where
jump conditions hold, of the form

𝛿𝐇𝐵(�̄�) = 𝛿𝐇𝐵0 �̄� (22)

where 𝛿𝐇𝐵0 is the following coupling coefficient vector,

𝛿𝐇𝐵0 = [0, 0, 0, 𝛿𝑀1, 𝛿𝑀2, 𝛿𝐻1, 𝛿𝐻2, 0, 0, 0, 0, 0, 0], (23)

characterizing feedback mass blowing/suction and feedback
heating/cooling mechanisms proportional to the upstream mass flow
rate ( ̄̇𝑚) and total enthalpy( ̄̇𝑚�̄�), respectively.

We now introduce the test variable, 𝐛†, and left-multiply it by
Eq. (21); by summing Eq. (15) it is found:

𝐛†∗ 𝜕𝐁(�̄�)
𝜕 ̄𝑞 𝛿 ̄𝑞 + 𝐲†∗ 𝜕(�̄�, 𝜔)

𝜕 ̄𝑞 𝐱 𝛿 ̄𝑞 + 𝐲†∗ 𝜕(�̄�, 𝜔)
𝜕 𝜔 𝐱 𝛿 𝜔 = 𝐛†∗𝛿𝐇𝐵0�̄�. (24)

The adjoint base flow system (given in full form in Supplementary
Material Part C) can be formally written as

𝐛†∗ 𝜕𝐁(�̄�)
𝜕 ̄𝑞 = −𝐲†∗ 𝜕(�̄�, 𝜔)

𝜕 ̄𝑞 𝐱. (25)

Then, the eigenvalue drift stems naturally from the identity

𝛿 𝜔 = 𝐇𝐵0
𝛿𝐇𝐵0, (26)
7 
where the sensitivity of the eigenvalue to a structural forcing at the
base flow level is defined by:

𝐇𝐵0
=

𝐛†∗ �̄�

𝐲†∗ 𝜕(�̄�, 𝜔)
𝜕 𝜔 𝐱

. (27)

The structural sensitivity to the feedback forcing at the base flow
level for eigenmodes TA1 and TA2 is now examined. Two types of feed-
back sources are considered at the combustor intersections: steady mass
blowing or suction, and steady heating or cooling. The corresponding
equations are:

�̄�1�̄�1𝑎1 − �̄�2�̄�2𝑎2 = 𝛿𝑀1 ̄̇𝑚, (28a)

�̄�2�̄�2𝑎2 − �̄�3�̄�3𝑎3 = 𝛿𝑀2 ̄̇𝑚, (28b)

�̄�1�̄�1𝑎1�̄�1 − �̄�2�̄�2𝑎2�̄�2 = 𝛿𝐻1 ̄̇𝑚 �̄�1, (28c)

̄2�̄�2𝑎2�̄�2 + 𝑎3�̄� − �̄�3�̄�3𝑎3�̄�3 = 𝛿𝐻2 ̄̇𝑚 �̄�2. (28d)

Figs. 7 and 8 show the sensitivities of angular frequency (blue curves)
and growth rate (red curves) to steady structural feedback for the two
unstable eigenmodes, TA1 and TA2, respectively. The sensitivities are
evaluated with 𝑙2 ranging from 1.7 m to 1.8 m.1 The sensitivity results
reveal that a small, steady mass suction or the introduction of a steady
heat release at the intersections would reduce the growth rate and,
therefore, stabilize the eigenmodes. The former steady mechanism is
achievable with regulated valves, and the latter one can be obtained
with heating coils placed at the duct intersections [31]. For both
eigenmodes, sensitivities vary significantly with the length of the pre-
mixer, highlighting the fact that a stabilizing or destabilizing geometric

1 The results have been validated with the gradient calculated by the finite
difference approach with percentage differences less than (10−3). An example
of comparison between adjoint and finite difference gradient evaluation will
be shown in the next section.
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Fig. 7. Sensitivity of 𝜔 to structural feedback in base flow level, for the eigenmode
TA1, 𝑓 = 171 [Hz], with the variation of the compact flame position (𝑙2). Blue curves:
sensitivity of angular eigenfrequencies (𝜔𝑟); Red curves: sensitivity of growth rate (−𝜔𝑖).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Same as Fig. 7 for mode TA2, 𝑓 = 300 [Hz]. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

configuration for mode TA1 might produce the opposite effect for TA2.
The results confirm our observations in the previous section: variations
of base flow parameters in the premixer, produced at the 1–2 interface
and propagating downstream, resulting in the most significant changes
in the two eigenvalues examined.

5. Sensitivity to structural perturbations

We now evaluate the eigenvalue response to a localized feedback
source acting on the differential equations (1) for the perturbations.

5.1. Derivation of structural sensitivity

In some previous literature (e.g. [25]), the structural sensitivity is
derived based on a Lagrange multiplier framework. In the present work,
the derivation of the structural sensitivity follows Luchini et al. [19]
and Pralits et al. [18] with a method based on the Lagrange identity,
8 
Table 2
Units of the feedback coupling coefficients.
𝛿𝑝 𝛿𝑢 𝛿𝜌 𝛿𝑝 𝛿𝑢 𝛿𝜌 𝛿𝑝 𝛿𝑢 𝛿𝜌

s m−1 kg m−3 m s−1 1 kg m−2 s−1 m2 s−2 m s−1 Pa m2 s−2

also used by Magri and Juniper [38]. Note that the choice of the
derivation method does not lead to different results.

The derivation starts with the direct system in compact form:
 (𝜔, �̄�) �̂� = 0,
 (𝜔, �̄�, �̂�) = 0, (29)

with perturbation variable vector �̂� = (�̂�, ̂𝑢, �̂�); the equation  (𝜔, �̄�, �̂�) =
0 represents the jump conditions, Eqs. (3)–(4), holding at the ducts’
intersections, and  (𝜔, �̄�) is the differential operator matrix defined
by:

 (𝜔, �̄�) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

i𝜔 + �̄� d
d𝑥

�̄� d
d𝑥

0

0 i𝜔 ̄𝜌 + �̄� ̄𝑢 d
d𝑥

d
d𝑥

0 𝛾 ̄𝑝 d
d𝑥

i𝜔 + �̄� d
d𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (30)

Now, we introduce a small structural perturbation localized in space
(via a Dirac delta function 𝛿(𝑥 − 𝑥0), 𝑥0 ≠ 𝑙1 and 𝑥0 ≠ 𝑙2), proportional
to a local fluctuating quantity �̂�, i.e.

𝛿𝐇(�̂�) = 𝛿𝐇0 �̂� 𝛿(𝑥 − 𝑥0), (31)

where 𝛿𝐇0 is the coupling coefficient matrix

𝛿𝐇0 =

⎡

⎢

⎢

⎢

⎣

𝛿𝜌 𝛿𝑢 𝛿𝑝

𝛿𝜌 𝛿𝑢 𝛿𝑝

𝛿(𝜌 + 𝑐2𝜌) 𝛿(𝑢 + 𝑐2𝑢) 𝛿(𝑝 + 𝑐2𝑝)

⎤

⎥

⎥

⎥

⎦

, (32)

which encompasses nine different feedback mechanisms, ,  , and 
denote forcing on the mass, momentum, and energy conservation equa-
tion, respectively. For the forcing of the energy conservation equation,
the feedback coupling coefficient 𝛿(𝑞 + 𝑐2𝑞) includes an additional
term due to the derivation process involving the mass conservation
equation. The units of these coupling coefficients are listed in Table 2.

Paying attention to not confuse the Dirac delta, 𝛿(𝑥 − 𝑥0), with the
𝛿 used to denote small variations, we express the perturbed eigenvalue
problem to first order as

𝛿 �̂� + 𝛿�̂� = 𝛿𝐇0 �̂� 𝛿(𝑥 − 𝑥0), (33a)

𝛿 = 0, (33b)

with the boundary conditions defined as Eqs. (6)–(7). Fixing the base
flow, the above takes the form:

𝜕 (𝜔, �̄�)
𝜕 𝜔 𝛿 𝜔 �̂� + (𝜔, �̄�) 𝛿�̂� = 𝛿𝐇0 �̂� 𝛿(𝑥 − 𝑥0), (34a)

𝜕 (𝜔, �̄�, �̂�)
𝜕 𝜔 𝛿 𝜔 +

𝜕 (𝜔, �̄�, �̂�)
𝜕 ̂𝑞 𝛿 ̂𝑞 = 0. (34b)

We left-multiply by the test variable, �̂�†, and integrate in space, i.e.

∫
[

�̂�†∗ (𝜔, �̄�) 𝛿�̂�
]

d𝑥 + ∫

[

�̂�†∗ 𝜕 (𝜔, �̄�)
𝜕 𝜔 𝛿 𝜔 �̂�

]

d𝑥+

+𝐟†∗
[

𝜕 (𝜔, �̄�, �̂�)
𝜕 𝜔 𝛿 𝜔 +

𝜕 (𝜔, �̄�, �̂�)
𝜕 ̂𝑞 𝛿 ̂𝑞

]

= ∫ �̂�†∗𝛿𝐇0 �̂� 𝛿(𝑥 − 𝑥0)d𝑥.
(35)

We apply integration by parts, for the first term on the left-hand-side
to yield the adjoint equation:

 ∗(𝜔, �̄�) �̂�† = 0. (36)

The boundary terms generated from integration by parts plus the term
𝐟†∗ 𝜕 (𝜔, �̄�, �̂�)

𝜕 ̂𝑞 𝛿 ̂𝑞 give the boundary and jump conditions of the adjoint
system. The detailed equations of the adjoint disturbance system are
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Fig. 9. Validation with first-order finite difference approach, for mass feedback forcing
proportional to pressure oscillations, with 𝛿𝑝 = 1 × 10−7. The structural sensitivity
are shown for the least stable eigenmode TA1 for (a) growth rate and (b) oscillation
frequency. The dashed lines represent the positions of the boundaries of each duct. FD:
finite difference approach; CA: continuous adjoint approach.

listed in Supplementary Material Part D. The eigenvalue drift due to a
localized structural perturbation can finally be written as

𝛿 𝜔 = 𝐇0
𝛿𝐇0, (37)

with the sensitivity function defined by:

𝐇0
=

�̂�†∗(𝑥0) �̂�(𝑥0)

∫

[

�̂�†∗ 𝜕 (𝜔, �̄�)
𝜕 𝜔 �̂�

]

d𝑥 + 𝐟†∗ 𝜕 (𝜔, �̄�, �̂�)
𝜕 𝜔

. (38)

5.2. Validation with finite difference approach

The sensitivity results are validated with the gradient calculated
with a first-order finite difference approach. With the finite difference
approach, a set of jump conditions at position 𝑥0 is added to the system:

(�̄� ̂𝜌 + �̄� ̂𝑢)|𝑥0+𝑥0− = 𝛿𝑞𝑞(𝑥0), (39a)

(�̄� ̄𝜌 ̂𝑢 + �̂�)|𝑥0+𝑥0− = 𝛿𝑞𝑞(𝑥0), (39b)

(�̄� ̂𝑝 + 𝛾 ̄𝑝 ̂𝑢)|𝑥0+𝑥0− = (𝛿𝑞 + 𝑐2𝛿𝑞)𝑞(𝑥0). (39c)

The eigenvalue change due to each feedback disturbance can be
evaluated individually at each discrete position 𝑥0. Suppose that the
length of the combustor is discretized into 𝑛 points; a first order finite-
difference approach requires solving nonlinear eigenvalue problems at
each discretized point in the combustor and for each feedback mecha-
nism, hence, a total number of 18𝑛 times. With the adjoint approach,
the sensitivity information is obtained by first solving the direct and
adjoint nonlinear eigenvalue problem a single time for each eigenmode.
The structural sensitivity, as a function of 𝑥0, is then evaluated 𝑛 times
from the direct and adjoint modes. A sample comparison of results is
displayed in Fig. 9, highlighting the good agreement between adjoint
sensitivity results and results from the finite-difference approach. A
similar agreement is obtained for all other feedback sources. Once the
adjoint system is established, the method proposed yields sensitivity
information rapidly. On the other hand, deriving adjoint equations
requires some effort.

5.3. The structural sensitivity of the most unstable eigenmodes

Figs. 10 and 11 show the structural sensitivity defined by Eq. (38)
for the two most unstable eigenmodes, TA1 and TA2. We aim to
identify possible feedback mechanisms in the perturbation flow that can
stabilize the system. The red curves illustrate the structural sensitivity
of the growth rate; the blue curves illustrate the structural sensitivity
of the oscillation frequency.
9 
The nine feedback mechanisms can be evaluated comparatively;
mass forcing proportional to pressure oscillations appears to have a
very significant effect on the eigenvalue, for both modes. Such an
effect can be generated by a Helmholtz resonator [30,33,39], consisting
of a cavity connected to a narrow neck or a small opening. When
acoustic waves reach the resonator, the air in the neck oscillates in and
out of the cavity, inducing mass flow disturbances. Such disturbances
compress the air in the cavity, exciting the resonant frequency of the
Helmholtz resonator. When the pressure oscillations in the combustion
system match the resonant frequency of the resonator, the air in the
neck oscillates, converting the acoustic energy into kinetic energy and
subsequently dissipating it into heat, thereby reducing the amplitude
of the pressure oscillations. Focusing on the sensitivity of growth rates,
it can be seen that a strong stabilizing effect for the leading unstable
mode can be achieved by putting a Helmholtz resonator in the premixer
or in the combustion section. In practice, the resonator should be tuned
so that the phase between the mass disturbances and the pressure
oscillations favors suppression of the instability [31].

Reducing mass flow rate disturbances with a feedback term acting
on the local velocity oscillations at the inlet of the premixer or adding
a force proportional to the local pressure oscillations at the outlet of
the premixer also help stabilizing the critical unstable eigenmodes.
Active flow control devices are available to achieve these feedback
mechanisms, with actuators and sensors specifically designed, such
as synthetic jets [40] and loudspeaker–microphone devices [41]. The
structural sensitivity analysis also reveals that introducing a feedback
forcing proportional to the unsteady heat release has a minor effect on
the system’s stability.

6. Summary and conclusions

In this study, an adjoint sensitivity analysis was applied to a pro-
totypical thermoacoustic system. We analyzed the eigenvalues of the
system and identified the most unstable resonant modes. By focusing on
the two least stable modes, we investigated three types of sensitivities,
using the adjoint method.

First, we compared our eigenvalue spectra with those in the litera-
ture and found discrepancies, mainly in the growth rates of the resonant
disturbances. Since we believe that these discrepancies might be due
to inconsistencies in base flow parameters, we evaluated the effect of
generic base-flow modifications on the eigenvalues; our findings indi-
cated that the mean densities of the cold gaseous fuel within the pre-
mixing duct had the most significant impact on complex eigenvalues,
particularly on altering growth rates. Additionally, we demonstrated
that extending the length of the premixer duct significantly reduces the
sensitivity of eigenvalues to mean density variations.

Then, we examined the use of steady forcing terms on the base
flow equations to stabilize critical eigenmodes. The sensitivity analysis
indicated that steady mass reduction or introducing steady heat release
at both ducts’ intersections can stabilize the unstable eigenmodes.
The stabilizing effect is more significant when the premixer duct is
relatively short, i.e., the flame position moves upstream.

Finally, we assessed the sensitivities of the two most unstable eigen-
modes to feedback disturbances. We found that mass fluctuation feed-
back proportional to local pressure perturbations, achievable through
a Helmholtz resonator placed in the premixer and/or the combus-
tion chamber, can have a strong effect in stabilizing the instabilities.
The structural sensitivity analysis also revealed that active control
approaches, such as reduction in mass flow rate fluctuations, propor-
tional to velocity disturbances, and the imposition of an external force,
proportional to pressure perturbations, are viable options to modify the
system’s stability.

In conclusion, even though our model problem is not very high
dimensional, our findings highlight the effectiveness of adjoint-based
sensitivity analysis in explaining and quantifying uncertainties in a
thermoacoustic system, and in suggesting effective control strategies for
mitigating temporally growing modes.
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Fig. 10. The structural sensitivity of eigenvalue to nine different feedback mechanisms placed at position 𝑥0. Eigenmode TA1, 𝑓 = 171 [Hz]. Blue curves: structural sensitivity of
the oscillation frequency (𝜔𝑟∕2𝜋 [Hz]); red curves: structural sensitivity of the growth rate (−𝜔𝑖 [rad/s]). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. Same as Fig. 10 for eigenmode TA2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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