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Abstract: This work studies the term structure dynamics in the natural gas futures market, focusing
on the Dutch Title Transfer Facility (TTF) daily futures prices. At first, using the whole dataset, we
compared the in-sample fitting performance of three models: the four-factor dynamic Nelson–Siegel–
Svensson (4F-DNSS) model, the five-factor dynamic De Rezende–Ferreira (5F-DRF) model, and the
B-spline model. Our findings suggest that B-spline is the method that achieves the best in-line fitting
results. Then, we turned our attention to forecasting, using data from 20 January 2011 to 13 May 2022
as the training set and the remaining data, from 16 May to 13 June 2022, for day-ahead predictions.
In this second part of the work we combined the above mentioned models (4F-DNSS, 5F-DRF and
B-spline) with a Nonlinear Autoregressive Neural Network (NAR-NN), asking the NAR-NN to
provide parameter tuning. All the models provided accurate out-of-sample prediction; nevertheless,
based on extensive statistical tests, we conclude that, as in the previous case, B-spline (combined with
an NAR-NN) ensured the best out-of-sample prediction.

Keywords: natural gas; futures prices term structure; Nelson–Siegel–Svensson model; De Rezende–
Ferreira model; B-spline; artificial neural networks (ANN); Nonlinear Autoregressive Neural Networks
(NAR-NNs)

1. Introduction

During recent decades, the liberalization and financialization wave [1,2] generated
a rise in the importance of energy commodities as an alternative asset class within the
global market. Futures markets played a fundamental role in the financialization process
of energy commodities, indirectly fostered by markets increasing liquidity. In fact, the
trading volume of energy futures is constantly expanding, and the increase in the exchange
volumes in the Asia–Pacific (APAC) region is the main driver, with a share of 74% [3] of
the worldwide trading activity in 2021. Furthermore, increasing returns and inflation have
fuelled futures markets’ expansion. Consider, for instance, the Euro area: the size of the
energy derivatives market increased by 30% in the period January–June 2022, with over
1700 firms involved [4].

In this framework, the availability of proper techniques to model and predict energy
futures term structure dynamics is of crucial importance, especially for Western European
countries that, in light of unprecedented events such as the COVID-19 pandemic and the
more recent Russia–Ukraine war, have to face new challenges to calibrate their policy
priorities. As stated in [5], in fact, the European Union is not only one of the major global
energy consumers, but it is highly reliant on Russia for imported gas which is, therefore, an
important pawn in determining related energy policies. Moreover, as highlighted in [6],
the events of the past years have dramatically revealed the many ways in which the energy
transition and geopolitics are entangled, and, as predicted in [7] during the previous Russia–
Ukraine crisis in 2014, natural gas has assumed a pivotal role in the geopolitics of energy
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security in Europe, and it is now the second largest energy commodity behind oil, and
the second fastest rising source of energy demand after renewables [8]. Acquiring proper
knowledge of the term structure of the natural gas (NG) futures market is therefore helpful
in reducing the exposure to price volatility and to assess proper energy policies in light of
its key role in the decarbonization process and in the transition to sustainable development
based on a highly efficient renewable energy system [9,10].

In this perspective, based on the role of energy futures as a hedging tool and indicator
of markets trends, we analyzed the term structure of the NG futures market. The scope
of this paper is twofold. First, we are interested in testing whether models conventionally
employed on the bonds market can be also effective for in-sample fitting in the case of
NG futures. Second, moving to the forecasting issue, we investigate the effectiveness
of a technique combining yield curve models and machine learning. In detail, we used
B-spline [11], four-factor dynamic Nelson–Siegel–Svensson (4F-DNSS) [12], and five-factor
dynamic De Rezende–Ferreira (5F-DRF) [13] models for in-sample fitting and a hybrid
method that combines the above three techniques to a Nonlinear Autoregressive Neural
Network (NAR-NN) for out-of-sample forecasting of NG futures curves. Furthermore,
the NAR-NN is also used in the discussion of the results as a benchmark for day-ahead
predictions for the futures price time series.

The choice of the fitting models has various motivations: they make a parsimonious
use of parameters, being, therefore, easy to handle; in addition, working with fixed-
income assets, these models showed a notable ability to replicate the term structure
dynamics [12,14–25]. Therefore, provided the similarity with the NG futures market in
terms of the varying maturity of the data structure, we tested to what extent the above
models can be reliable on the energy markets too. Furthermore, NAR-NNs, with their ease
of configuration, gave proof of their ability on both one and multi-step ahead forecasts of
time series [26–37], managing highly noisy and volatile data.

So far, the existing literature has mostly focused on the relations between NG and
other commodities or securities (see, for instance, [38–47]), as well as on modeling price
volatility (e.g., [48–55]), demand and supply (e.g., [56–64]), spot prices (e.g., [65–76]) or
futures prices of individual contracts (e.g., [77–79]). Relatively less attention has been paid
to NG futures prices term structure modeling and forecasting and only a few studies have
partly tackled the issues we are dealing with. For example, Chiarella et al. [80] proposed a
two-factor regime-switching volatility model enhanced with the Markov chain Monte Carlo
estimation method to model the forward price curve; Almansour [81] studied futures curve
dynamics with an extension of the Gibson and Schwartz [82] two-factor model in a regime-
switching framework; Leonhardt et al. [83] used a geometric multi-factor model to deal
with cointegration of the term structure, regime switching, and seasonality of futures prices.
Furthermore, Karstanje et al. [84] studied futures prices comovements of the most traded
commodities with a factor approach relying on the Diebold and Li [85] model; Jablonowski
and Schicks [86] introduced a three-factor model based on Heath et al. [87] to describe the
relationship between gas term structure and temperature forecasts. Finally, Tang et al. [88]
developed a predictive method based on artificial neural networks and analyzed the impact
of Google search data and internet news sentiment on the model’s forecasting ability, Li [89]
investigated the abilities of GARCH-type discrete-time models and different Poisson jump-
diffusion models to fit NG futures data, while Horváth et al. [90] analyzed the forward
curves of 24 different commodities with several polynomial interpolation techniques and
provided a comparative study of the predictive abilities of methods based on functional
autoregressive processes, Diebold and Li, and naïve approaches.

In light of the above, our study bring to the related literature some contributions that
can be summarized as follows. First, we analyzed the stylized facts bridging NG futures
and government securities markets to endorse the use of yield curve models in the former.
Second, we used parametric yield curve models for in-sample fitting in the NG futures
market, and third, we discussed a hybrid scheme with NAR-NNs for day-ahead predictions.
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With this aim, we used a dataset of daily prices which spans various market conditions to
validate the adequacy of the framework under very different situations.

The remainder of the paper is organized as follows: Section 2 analyzes the features and
main stylized facts of the data set; Section 3 presents the methodologies in use for modeling
and forecasting, respectively; Section 4 discusses the main results; Section 5 concludes
the paper.

2. Data

We considered the dataset of daily settlement prices, quoted in €/MWh, of the Mc1–
Mc12 natural gas futures contracts expiring in 1 to 12 month(s). The data cover the period
from 20 January 2011 to 13 June 2022 for an overall number of 2916 observations. The
daily futures prices were obtained from the Dutch Title Transfer Facility (TTF), the virtual
trading hub which is the leading European gas trading platform [91], with the highest level
of liquidity and highest share of trade. In 2020, the TTF overtook, for the first time, the
world’s biggest NG market, Henry Hub, in terms of trading volume and open interest, and
reached a new record in 2021, with approximately 1.94 million contracts [92].

Figure 1 displays the three-dimensional surface plot of NG futures curve data for the
whole period, while the inset highlights the dynamics of the term structure for the period
20 January 2011–27 April 2021, which is visually flattened because of the severe rise in
price level that occurred in 2021–2022. In this temporal frame, states of stability alternated
with turbulence; significant upward and downward shifts of the price level at all of the
maturities can be observed in various periods, such as between mid-2014 and early 2016,
when the global economy faced one of the largest oil price declines due to the global
economic slowdown and the surge in production from American shale producers and
OPEC members.

Figure 1. 3D surface plot of the term structure of natural gas futures prices: the x-axis shows the
time expressed in days, the y-axis represents the maturities from 1 month (Mc1) to 12 months (Mc12),
and the z-axis the price of the contracts in Euros. The data spans 2916 trading days, from 20 January
2011 to 13 June 2022. The inset shows a zoomed-in area with the markets dynamics in the period
20 January 2011–27 April 2021 otherwise flattened.

A similar situation was replicated twice later: in 2017–2018, when OPEC agreed to cut
oil production leading to an increase in the oil price and hence of the natural gas price, and
in 2020–2021, with the most significant reduction in the NG price over the whole time span,
due to the combined effect of the pandemic and the Russia–Saudi Arabia price war—the oil
price dropped down to around 10 $ per barrel, while WTI oil futures price were traded at
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−37.63 $ per barrel for the first time in history, causing the NG price to slide to 4.5 €/MWh
on the European market.

More recently, in the period mid 2021–mid 2022, we observed a turmoil in the NG
market caused by several interconnected factors: (i) the surging energy demand driven
by the global economic recovery after the pandemic and by the hottest summer of the last
century [93]; (ii) low levels of gas storage, with underground storage facilities less than 77%
full throughout 2021 and less than 57% in December 2021 [94]; (iii) a shortage of traditional
energy resources due to the investment contraction in the hydrocarbon sector and poor
renewable performance caused by extreme weather events; (iv) scarce delivery of liquid
natural gas (LNG) to the EU market from the Middle East and North America alongside
the increase in demand and price in the APAC region; (v) the worsening of the Russia–West
relations in connection to sanctions also in the energy sector.

In summary, the observation period poses a rich set of dynamics in the NG term struc-
ture, with futures curves assuming a great variety of shapes: upward sloping (contango),
downward sloping (backwardation), as well as inverted or humped/multi-humped, that
is, conditions all observable in the government bonds market, thus justifying the extension
to the NG market of the framework and the methods discussed in Diebold and Li [85]. We,
therefore, argue that stylized facts in the bonds and in the NG futures market are similar.
To examine these properties, in Table 1 we present the main descriptive statistics of futures
prices and of the daily volatility (σdaily) of futures prices series for each NG futures contract
calculated as the absolute value of price returns, following [95].

Table 1. Descriptive statistics of prices and daily volatility for each natural gas futures contract. For
the price, we reported the mean, the standard deviation (SD), the minimum (Min), and the maximum
(Max) values, while for the daily volatility (σdaily) we examined the mean and the median.

Price σdaily

Maturity Mean SD Min Max Mean Median

Mc1 24.951 20.928 3.509 227.201 2.031 1.167
Mc2 25.244 20.764 4.058 217.293 1.870 1.088
Mc3 25.369 20.170 4.618 210.804 1.743 1.000
Mc4 25.288 19.095 5.406 206.905 1.688 0.942
Mc5 25.170 18.327 7.082 200.902 1.611 0.923
Mc6 24.923 17.376 7.921 199.052 1.557 0.913
Mc7 24.690 16.645 9.194 179.233 1.507 0.906
Mc8 24.605 16.410 10.692 171.752 1.449 0.894
Mc9 24.527 16.078 11.130 154.291 1.405 0.848

Mc10 24.394 15.544 10.828 149.990 1.368 0.806
Mc11 24.190 14.733 10.801 143.515 1.329 0.797
Mc12 23.979 13.750 10.739 130.742 1.299 0.771

The results suggest that the average futures curve has a downward sloping trend and
a slight hump in the short term (see Figure 2a for the visual inspection), with average
prices ranging between a maximum of 25.37 €/MWh at maturity Mc3 and a minimum of
23.98 €/MWh for Mc12. At first glance, the empirical evidence seem to be in contrast to the
feature of the increasing average yield curve characterizing the bond market. Nevertheless,
if we consider the period from January 2011 to September 2021, excluding the most acute
phase of the 2021–2022 downturn, and we plot again the corresponding average futures
curve in that resized time frame (Figure 2b), then the shape is consistent with the increasing
and concave curve which is typical of bond markets.

We can, therefore, argue that the discrepancy originally highlighted in Figure 2a, con-
sidering the whole observation period, is probably due to record-breaking fluctuations of
the TTF futures prices between December 2021 and May 2022, with price peaks reaching
over 200 €/MWh for short and mid-term maturities: the all-time record of 227 €/MWh was
reached on 7 March 2022, that means an average increase of 945% over the same period of
2021 and of 127% over the previous month.
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(a) (b)

Figure 2. Plot of the behavior of the average futures curves in the period January 2011–June 2022
(a) and in the resized period January 2011–September 2021 (b).

It is then reasonable to assume that this record-breaking trend is temporary, reflecting
market players’ concerns in the short to medium term. As soon as the crisis is overcome and
the NG sector restores a secure and stable supply chain and storage, the curve presumably
should turn to contango again, in analogy to the average spot yield curve behavior.

Furthermore, we can observe a trade-off between the volatility and the maturity: price
volatility (daily volatility) is higher for contracts at shorter maturities and decreases for con-
tracts with longer expiration dates; in fact, the standard deviation given in column three of
Table 1 (mean given in column six) spans from a maximum value of 20.93 (2.03) at maturity
Mc1 to a minimum value of 13.75 (1.29) for the maturity Mc12, with an average decrease of
4.0%. This is consistent with the phenomenon known as the Samuelson hypothesis [96],
observed on the bond market as well, i.e., futures price volatility is a decreasing function of
the time to maturity. To prove this assertion, we followed [97,98] and ran the Jonckheere–
Terpstra test (JT test) [99,100] for ordered differences among classes to verify whether the
medians of the time series of daily volatilities across maturity are decreasingly ordered.
At first, we verified whether the σdaily series at each maturity presents homogeneous sta-
tistical features by computing the Jarque–Bera test for normality, the Ljung–Box test for
autocorrelation, as well as the augmented Dickey–Fuller test for stationarity. The results,
summarized in Table 2, indicate that the σdaily time series are not normally distributed, they
are autocorrelated, and they do not contain unit roots.

We then ran the JT test with the null hypothesis H0 that the median values of the
volatility series are the same at all maturities, against the alternative H1, with at least one
strictly decreasing inequality: {

H0 : σ̃12 = σ̃11 = . . . = σ̃1

H1 : σ̃12 ≤ σ̃11 ≤ . . . ≤ σ̃1
(1)

where σ̃i, i = 1 . . . 12, represents the median of the daily volatility time series at maturity i. The
result of the JT test, with the Z statistic equal to 2.59× 108 and a p-value of 2× 10−16, allows
us to reject H0 at the 1% significance level, and thus supports the Samuelson hypothesis.

Another stylized fact shared with the yield curve in the government bond market is
the great variety of shapes exhibited by the NG futures curves. Figure 3 shows five slices
extracted from the 3D surface plot, representing the main trends observed on the NG
market in different periods.
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Table 2. Results of the Jarque–Bera test for normality (JB test), the Ljung–Box test for autocorrelation
(LB test), and the augmented Dickey–Fuller test for stationarity (ADF test) computed on the daily
volatility (σdaily). The symbol * is used to denote the rejection of the null hypothesis H0 (data are
normally distributed in the JB test; the series exhibits no autocorrelation in the LB tests; data series
are not stationary in the ADF test) at the 1% significance level.

σdaily

Maturity JB Test LB Test ADF Test

Mc1 1.87× 105 * 4.07× 103 * −9.628 *
Mc2 2.35× 105 * 4.23× 103 * −9.376 *
Mc3 3.65× 105 * 3.98× 103 * −9.131 *
Mc4 8.67× 105 * 3.53× 103 * −8.068 *
Mc5 7.79× 105 * 3.91× 103 * −8.485 *
Mc6 8.12× 105 * 4.21× 103 * −8.728 *
Mc7 6.19× 105 * 4.48× 103 * −8.144 *
Mc8 7.13× 105 * 4.78× 103 * −7.911 *
Mc9 7.75× 105 * 5.24× 103 * −8.204 *
Mc10 7.59× 105 * 5.11× 103 * −8.088 *
Mc11 8.23× 105 * 4.92× 103 * −7.952 *
Mc12 1.49× 106 * 4.51× 103 * −7.238 *

Figure 3. Plot of the main futures curves shapes observed on the market at various times
t = 8 February 2012, 19 September 2012, 1 December 2016, 22 July 2019, and 25 August 2021. Time is
represented on the x-axis, while maturities and prices (€/MWh) are on the y-axis and z-axis, respectively.

On 8 February 2012, for instance, curve A was normal, i.e., slightly increasing for longer
maturities; on 19 September 2012 and 1 December 2016, the term structure (see B and C)
was almost flat; on 22 July 2019, the increasing and slightly humped curve D is associated
with the market in contango; on 25 August 2021, the market is in backwardation, as testified
by the decreasing futures curve behavior at longer maturities (see E).

Overall, we can preliminarily conclude that the information-rich content and the simi-
larities highlighted in the previous sections make the NG futures market a fruitful ground
for testing models usually employed to fit and forecast the behavior in the government
bond market.
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3. Modeling Approach
3.1. Parametric Factor Models

The four-factor dynamic Nelson–Siegel–Svensson (4F-DNSS) and the five-factor dy-
namic De Rezende–Ferreira (5F-DRF) are the most flexible exponential parametric models
in the so-called Nelson–Siegel class. They are characterized by an improved fitting abil-
ity with respect to the three-factor Nelson–Siegel [101] model in which they have their
roots, that makes them suitable to describe and replicate the overwhelming majority of
yield curves trends and dynamics, including humps/basins, in the range of short and
long-term maturities.

Let us indicate by p(t) the N × 1 vector of observed gas futures prices available at
maturity m ∈ M = (m1, m2, . . . , mN)

′
, where N is the maximum maturity length in months,

and consider a time horizon of length t, t = 1, . . . , T expressed in days. The price dynamic
is described by:

p(t) = F(t)β + η(t). (2)

The variables in (2) deserve some further explanation. We start with F, which is an
(N × T)× k matrix of factor loadings, with k = 4 or k = 5, depending on the model, that is,
4F-DNSS or 5F-DRF. The generic m-th row is either in the form:

FDNSS
m (t) =

[
1 τ1

1−e−m/τ1
m τ1

1−e−m/τ1
m − e−m/τ1 τ2

1−e−m/τ2
m − e−m/τ2

]
, (3)

in the 4F-DNSS model, i.e., when k = 4, or:

FDRF
m (t) =

[
1 τ1

1−e−m/τ1
m τ2

1−e−m/τ2
m τ1

1−e−m/τ1
m − e−m/τ1 τ2

1−e−m/τ2
m − e−m/τ2

]
, (4)

in the 5F-DRF model, i.e., when k = 5; here, τ1 and τ2 are the decay terms which regulate
the exponential components’ decaying speed.

Three elements characterize the F matrix, that is, the factor loadings, i.e., the building
blocks of futures curves. The first element, and also the first component, in both (3) and (4)
is the level that represents the long-term component, constant for every maturity. The
second element, occupying position 2 in (3) and positions 2 and 3 in (4) is τi(1− e−m/τi )/m,
i = 1, 2, is the slope of the futures curve. It is a proxy of the short-term component, as
it starts at 1 and quickly converges monotonically to zero. Finally, the third element is
[τj(1− e−m/τj)/m]− e−m/τj , j = 1, 2, we find it in positions 3 and 4 in (3) and in positions 4
and 5 in (4), and it represents the curvature of the futures curve. It is a proxy of the medium-
term component of the futures curve as it begins at zero, reaches the maximum value at
medium-term maturities, and monotonically returns to zero at long-term maturities. The
models presented in (3) and (4) consider different combinations of the above elements: the
4F-DNSS uses a single slope and two curvature components, while the 5F-DRF introduces
an additional slope element. Figure 4 shows the behavior of the factor loadings in the case
of the 4F-DNSS (a) and 5F-DRF (b) models.

Turning to β, we have β = [β0 β1 β2 β3]
′
in the 4F-DNSS model, and β = [β0 β1 β2 β3 β4]

′

in the 5F-DRF model. Each element represents the weight associated with the correspond-
ing factor loading, hence, changes in the vector β components impact the level, slope,
and curvature of the NG futures function and, thus, its shape. As a result, all the futures
curve shapes can be replicated by a proper weights calibration and combination with the
corresponding loadings. Finally, η(t) ∼ N (0, Σ) represents the error terms vector, assumed
to be normally distributed with a zero mean vector and a variance–covariance matrix Σ.

Concerning the estimation process of β, we applied an approach organized into two
stages. At first, following [102], we identified for each time t the optimal combination [τ̂1(t),
τ̂2(t)], and hence β̂(t), as the weights vector associated with the lowest root mean square
error (RMSE). Then, we determined the average values of τ̂j (j = 1, 2) to derive the optimal
estimate of β̂∗(t) for each available day. In this way the model maintains a high adaptive
capability and gains in stably estimated parameters.
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(a) (b)

Figure 4. 4F-DNSS (a) and 5F-DRF (b) factor loadings at different times to maturity. In (a,b) we
indicate the average values of τ1 and τ2 determined during the estimation process and used for the
daily fits.

For an easier understanding we are going to provide a more detailed description
of the main steps of the procedure for both the 4F-DNSS and 5F-DRF models in the
following section.

1. Define the set Φj = {mj,k}k=1,...,Nj
of maturities mj,k with j = 1, 2 and Nj equal to

the set’s cardinality; m1,1 represents the lower bound of Φ1 (m1,L) and corresponds
to the first available maturity of the NG futures market, while the upper bound
m1,U is, at the same time, the lower bound of Φ2 (m2,L) and the straddling maturity
between the short and medium-term period. The upper bound of Φ2 (m2,U) is the
longest observed maturity. Values in Φ1 and Φ2 range between the corresponding
lower/upper values by way of the proper step sizes ∆1 and ∆2. Given the absence of
a closed form expression for ∆1 and ∆2, and given the trade-off between the step sizes
discretization level and the speed of the estimation procedure, we conducted different
simulations testing ∆1 and ∆2 in the range [0.25, 1] and [0.25, 1.5], respectively. In this
way, we selected ∆1 = 0.75 and ∆2 = 1 for both the 4F-DNSS and the 5F-DRF models.

2. For each maturity mj,k in the sets Φ1 and Φ2, estimate the vectors τ̂1 and τ̂2 that
maximize the medium-term component:

1− e−mj,k/τj

mj,k/τj
− e−mj,k/τj , k = 1, . . . , Nj; j = 1, 2.

3. For every t = 1, . . . , T:

(a) for each component of τ̂1, vary the components of τ̂2 to estimate by OLS
regression different array sets β̂(t), choosing the one with the lowest sum of
squared residuals (SSR), computed as the squared magnitude of the difference
between the vectors of the observed, p(t), and estimated, p̂(t), prices:

SSR(t) =
∥∥∥p(t)− p̂(t)

∥∥∥2
.

Clearly there are as many sets of optimal parameters as the number of τ̂1 values;
(b) choose the optimal β̂, associated with the lowest SSR.

SSR(t) =
∥∥∥[p(t)− p̂(t, β̂(t), τ̂1(t), τ̂2(t))]

∥∥∥2
.

4. Repeat step 3 for each time t (t = 1, . . . , T) to obtain the time series parameters of
both τ̂1(t) and τ̂2(t).

5. Compute the average values τ1(t) and τ2(t) of the decay terms times series of step 4,
then estimate again the set β̂∗(t) for each time t (t = 1, . . . , T) to obtain the final set of
T estimated futures curves.
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3.2. B-Spline Interpolation Method

B-spline [11,103,104] is a powerful modeling tool to fit observable data without strong
functional form assumptions. The B-spline function is:

f (x) =
k+d−2

∑
i=1

πiBi,d(x), (5)

where πi (i = 1, . . . , k + d− 2) are the spline coefficients and Bi,d(x), d ≥ 1 are B-spline
basis functions. Those, in turn, are fully determined once the order d ≥ 1 and the sequence
of nondecreasing real values ξ1 ≤ ξ2 ≤ . . . ≤ ξk is set, acting as control points or knots. To
have a well-defined B-spline of order d and degree d− 1 covering the whole span of knots,
the sequence of knots is extended as following:

ξ1, . . . , ξ1︸ ︷︷ ︸
k−1 times

, ξ1, ξ2, . . . , ξk, ξk, . . . , ξk︸ ︷︷ ︸
k−1 times

.

The i-th B-spline basis of order d is then recursively defined for d > 1 as:

Bi,d(x) = δi,d(x)Bi,d−1(x) + [1− δi+1,d(x)]Bi+1,d−1(x), (6)

with

Bi,1(x) =

{
1, if ξi ≤ x ≤ ξi+1

0, otherwise
, (7)

and

δi,d(x) =


x− ξi

ξi+d−1 − ξi
, ξi 6= ξi+d−1

0, otherwise
. (8)

In practical applications, the choice of the number k of knots is of paramount importance:
too many (too few) knots, in fact, can result in overfitting (underfitting) issues. In general,
the problem is addressed by the use of priors, enforcing smoothness across the coefficients
πi: in general, the closer the consecutive πi are to each other, the smoother the resulting
B-spline is, with lower local variability.

In our study, we selected seven knot points, with three overlapping knots, and we
partitioned the maturity domain [1, 12], that is, from 1 to 12 months, into four sub-periods,
that is, from 1 to 3, 3 to 6.5, 6.5 to 10.5, and 10.5 to 12. This implies that the fitted futures
curves are divided into four segments, each approximated by a set of piecewise basis
functions of the same degree, as shown in Figure 5 where we overlay an NG futures
curve taken as an example from the dataset and the corresponding basis functions used
to approximate it. Cubic B-spline functions were used and the conditions were such as
to assure continuity of the slope (curve segments have the same first derivative at joint,
i.e., the corresponding function is of class C 1) and curvature (curve segments with same
second derivative at joint, i.e., functions belonging to C 2) were applied at each knot, except
to those overlapping; here, the B-spline is of class C 0, that is, curve segments are connected
at the joint.

The estimation of the vector of parameters π(t) was performed for each time t, t = 1, . . . , T,
with the least squares method minimizing the sum of the weighted squared residuals (WSSE):

WSSE(π(t)) =
N

∑
j=1

ω(mj, t)[p(mj, t)− f (mj, t)]2. (9)

where ω(mj, t) is the error weight at maturity mj and time t; p(mj, t) is the NG futures
price observed at maturity mj and time t; while f (mj, t) represents the point on the B-spline
curve at maturity mj and time t.
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Figure 5. Example of an NG futures curve (blue line), the corresponding 4-order basis polynomial
functions (dashed lines), and the ξ1, . . . , ξ7 knots.

3.3. Nonlinear Autoregressive Neural Network (NAR-NN)

An artificial neural network is a system aimed at simulating the human nervous system.
It is characterized by a computational scheme which is not programmed but trained by a
machine learning algorithm. Thanks to its ability in identifying nonlinear relationships
in the data, it can approximate any differentiable function [105] and it is recognized as a
universal approximator [106].

In this work, we explored the potential of Nonlinear Autoregressive Neural Networks
(NAR-NNs), which belong to the class of dynamic recurrent neural networks. The model
portrays a nonlinear relationship between the current xm,t value of the observed univariate
time series, that is, NG futures prices at maturity m ∈ M = (m1, m2, . . . , mN)

′
at time t,

and h past values or feedback delays for each t = 1 + h, . . . , T, capturing the autoregres-
sive properties:

xm,t = g(xm,t−1, xm,t−2, · · · , xm,t−h) + εm,t, (10)

where g(·) represents an unknown nonlinear transfer function that the network tries to
approximate, while εm,t stands for the approximation error at maturity m and time t.

The NAR-NN is made by interconnected processing units, called nodes or neurons [107],
arranged in sequential and fully connected layers: the input layer, one or more hidden
layers, and the output layer.

The network operates in two phases: the open loop phase, during which the network
is created and trained, and the closed loop phase, during which predictions are made. In
the open loop, the network aims at identifying the appropriate transfer function to form
a correct mapping between inputs and target values even in the presence of nonlinear
dynamics, based on a pure feed-forward architecture. In particular, given the {xm,t}T

t=1
time series, the network creates a vector of T − h historical target values, each of which
is associated with the vector (defined input pattern) of h previous target values xm,t−j,
j = 1, . . . , h. Each input pattern is used as the input to the network. Its elements are
multiplied by an assigned weight θi,j (j = 1, . . . , h) and sent to the closest hidden layer.
Then, each hidden node i sums the incoming weighted signals with a bias value θi,0,
according to:

ϕi,t = θi,0 +
h

∑
j=1

θi,j xm,t−j. (11)

The resulting value ϕi,t is processed via the activation function Λχ(·) that applies a
transformation (either sigmoid or linear) and activates (deactivates) the network hidden
neurons. If the value ϕi,t exceeds a given threshold χ, then the hidden node generates a
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response signal which is broadcast either to the nodes of the next hidden layer(s), if there
are any, or to the node of the output layer, where it is processed through an activation
function ψ(·) (usually linear), generating the networks final response x̂m,t:

x̂m,t = ψ

(
γ0 +

n

∑
i=1

γiΛχ(ϕi,t)

)
, (12)

where γi is the weight assigned to the connection between the hidden unit i and the output
unit; and γ0 represents the bias used to optimize the working point of the neuron in the
output unit.

During the training process, to improve the performance and obtain the closest response
to the target values the network determines the best vector ν∗ of weights and bias by means
of a learning algorithm that minimizes the error function:

Err(ν) =
T

∑
t=1+h

(xm,t − x̂m,t)
2, (13)

After the training phase, the neural network is converted into a closed loop network
and, for t > T, the (xm,t−1, xm,t−2, . . . , xm,t−h+1, xm,t−h) original lagged values are used to
generate the first prediction x̂m,t. The forecasted value is fed back to the tap delay line in
the input layer and added to form the new set (x̂m,t, xm,t−1, xm,t−2, . . . , xm,t−h+1), which
produces the next forecast x̂m,t+1. Based on such a recursive approach, new forecasted
values update the previous set of lagged values to make new predictions (x̂m,t+q) in the
next step q.

We examined various network architecture layouts and we chose the optimal one
according to a trial and error approach; in our case, the best solution turned out to be an
NAR-NN made by one hidden layer. We set the number of hidden nodes and feedback
delays in the ranges of [8, 10] and [3, 9], respectively, depending on the 4F-DNSS or 5F-DRF
model and the parameter’s time series. We used the logistic sigmoid activation function for
the hidden nodes:

Λχ(ϕi,t) =
1

1 + e−ϕi,t
, (14)

and a linear activation function for the output nodes.
The training and the learning of the network generally uses the available input data

partitioned into training (70%), validation (15%), and testing (15%) sets. The supervised
learning process was carried out implementing the Levenberg–Marquardt back propagation
learning algorithm (LMBP) [108,109] with the weights update rule:

∆νk = −
(

JT(νk−1)J(νk−1) + µI
)−1

JT(νk−1) ek−1. (15)

where J is the Jacobian matrix of the network errors with respect to the weights and biases;
µ represents the damping factor; I is the Identity matrix; while ek−1 represents the vector
of the training errors at step k− 1. In the initial phase, the algorithm initializes random
weights and calculates the value of the error function; then, the LMBP sets a large µ and
updates weights moving in the steepest-descent direction. If the update fails to reduce
the error, then µ is raised; otherwise, if the error decreases, the damping factor is reduced.
Generally, the training process stops when either the maximum number of training cycles
or the maximum training time is reached, or when a specific level of accuracy is attained.

4. Empirical Study

We present and discuss the results of the estimation of the NG futures prices carried out
with the 4F-DNSS, 5F-DRF, and B-spline models, and then we evaluate the term structure
forecasts obtained with the hybrid scheme, combining the above models with the NAR-NN.
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4.1. Goodness-of-Fit

In this stage we tested the fitting abilities of the above mentioned methods using the
whole dataset. The observation period spans from 20 January 2011 to 13 June 2022.

Table 3 lists the average descriptive statistics of the fitted prices for each available
maturity. The interpretation is twofold: a first reading concerns the models’ performances,
while another relates to the models’ ability to replicate stylized facts.

Table 3. Descriptive statistics of daily fitted futures prices at different maturities obtained with the
4F-DNSS, 5F-DRF, and B-spline models. For each model we report the mean, the standard deviation
(SD), the MSE, and the RMSE at every maturity.

4F-DNSS 5F-DRF B-Spline

Maturity Mean SD MSE RMSE Mean SD MSE RMSE Mean SD MSE RMSE

Mc1 24.944 21.003 0.416 0.645 24.930 20.848 7.6× 10−2 2.7× 10−1 24.950 20.923 7.5× 10−4 2.7× 10−2

Mc2 25.278 20.780 1.579 1.256 25.304 21.033 6.5× 10−1 8.0× 10−1 25.252 20.813 4.8× 10−2 2.2× 10−1

Mc3 25.341 19.975 1.156 1.075 25.352 20.060 5.3× 10−1 7.3× 10−1 25.349 20.066 3.1× 10−1 5.6× 10−1

Mc4 25.267 19.032 1.893 1.376 25.257 18.950 1.4681 1.2117 25.310 19.169 4.0× 10−1 6.3× 10−1

Mc5 25.128 18.199 3.446 1.856 25.107 18.035 1.5893 1.2607 25.162 18.282 2.1× 10−1 4.6× 10−1

Mc6 24.963 17.506 2.151 1.467 24.946 17.354 1.6048 1.2668 24.918 17.331 2.4× 10−1 4.9× 10−1

Mc7 24.791 16.893 1.166 1.080 24.787 16.858 1.2568 1.1211 24.697 16.703 2.2× 10−1 4.7× 10−1

Mc8 24.623 16.302 0.865 0.930 24.634 16.450 3.8× 10−1 6.2× 10−1 24.603 16.385 8.5× 10−2 2.9× 10−1

Mc9 24.464 15.712 0.956 0.978 24.484 16.011 3.5× 10−1 5.9× 10−1 24.523 16.066 7.0× 10−2 2.6× 10−1

Mc10 24.314 15.139 0.906 0.952 24.334 15.435 6.3× 10−1 7.9× 10−1 24.400 15.564 8.0× 10−2 2.8× 10−1

Mc11 24.174 14.621 0.542 0.736 24.179 14.686 5.8× 10−1 7.6× 10−1 24.188 14.726 9.3× 10−3 9.6× 10−2

Mc12 24.044 14.210 1.227 1.107 24.018 13.834 4.8× 10−1 7.0× 10−1 23.979 13.750 1.3× 10−5 3.6× 10−3

By comparison with the descriptive statistics summarized in Table 1, all the models
achieve similar outcomes, faithfully mimicking the observed prices with negligible dif-
ferences at each maturity. Nevertheless, the B-spline model performed better than the
other methods. The B-spline model was 90.41% (83.61%) more effective than the 4F-DNSS
(5F-DRF) model, in terms of the average mean squared error (MSE) performance metric.

Furthermore, the analysis revealed that all the methods were able to replicate the main
stylized facts of the price series: the average curves are humped and slightly decreasing
like the observable one, the volatility decreases at longer maturities, the curve at shorter
maturities is more volatile than at medium and long ones. Additionally, the MSE and
RMSE metrics are very low, confirming the models’ ability to replicate very accurately, on
average, prices’ time series at each maturity. To support this argument, Figure 6 displays
the observed and fitted futures curves and the residuals for three different times: 5 August
2014, characterized by an upward sloping curve; 24 November 2021, featuring an inverted
S-shaped trend; and 13 June 2022, where a humped curve was observed. The above dates
were chosen as representative of the most difficult curve shapes. At a visual inspection,
we note a high degree of accuracy for all the shapes. Moreover, despite the use of constant
decaying parameters, both the 4F-DNSS and 5F-DRF models seem to be flexible enough
to deal with challenging curve dynamics. Nevertheless, the B-spline generated better
approximations, which overlap the observed trends in every case and outperform the
parametric models, which encountered some difficulties, especially in fitting curves with
multiple inflection points.

For an in-depth view of the in-sample outcomes, Table 4 shows the performance metrics
computed on the models’ residuals generated during the estimation process, while Figure 7
presents a 2D visualization of the mean absolute error (MAE) metric generated by the
4F-DNSS, 5F-DRF, and B-spline models.

The B-spline model gives overall superior results, with the lowest errors in the whole
fitting horizon and peaks of limited magnitude in the range [0.0038, 2.8780]. Clusters of
peaks, i.e., departures from the observed values, can be observed at the extremes of the
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time series. These clusters reflect pronounced market volatility associated with specific
historical events.

Figure 6. The first column shows the observed and fitted futures curves with the 4F-DNSS (blue),
5F-DRF (red), and B-spline (green) models; the related residuals curves are shown on the right-hand
side. The days chosen are representative of the most difficult dynamics of the futures curves.

Table 4. Main MSE and RMSE statistics for the 4F-DNSS, 5F-DRF, and B-spline models. For each
metric and model we report the mean, the standard deviation (SD), the minimum (Min), and the
maximum (Max) values.

MSE RMSE

4F-DNSS 5F-DRF B-Spline 4F-DNSS 5F-DRF B-Spline

Mean 1.3586 8.0050× 10−1 1.3978× 10−1 5.8370× 10−1 3.9148× 10−1 1.4050× 10−1

SD 6.5667 4.5393 9.5190× 10−1 1.0091 8.0460× 10−1 3.4653× 10−1

Min 3.9908× 10−3 3.2177× 10−4 2.5177× 10−5 6.3173× 10−2 1.7938× 10−2 5.0177× 10−3

Max 98.9464 83.6844 17.4452 9.9472 9.14792 4.17675
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Figure 7. MAE time series obtained with the 4F-DNSS (blue), 5F-DRF (red), and B-spline (green)
models in the natural gas futures market.

In summary, the results confirm the adequacy of the techniques to model NG futures
curves, as they are able to effectively replicate all the features and dynamics of the market.

4.2. Out-of-Sample Forecasting

We applied NAR-NNs to perform both direct and indirect out-of-sample forecasts on
the NG futures price term structure. In the former, the neural network was used to predict
prices time series; in the latter, in the way shown by Diebold and Li [85], based on the
data from 20 January 2011 to 13 May 2022, we used the neural network to predict the
vector of parameters of the 4F-DNSS, 5F-DRF, and B-spline models, deriving futures prices
at each forecasting horizon in a second time. The implementation was carried out with
the narnet function of the deep learning toolbox of MATLAB R2022a. The forecasts cover
21 working days: the period 16 May 2022–13 June 2022. The forecasting period is short but
very turbulent, with a variety of behaviors of the future curves.

Finally, we evaluated the effectiveness of the proposed approach using the mean abso-
lute percentage error (MAPE)

MAPE =
100
T

T

∑
t=1

1
M

M

∑
m=1

∣∣∣∣ pt+h,m − p̂t+h,m

pt+h,m

∣∣∣∣, (16)

and the mean squared forecast error (MSFE)

MSFE =
1
T

T

∑
t=1

1
M

M

∑
m=1

(pt+h,m − p̂t+h,m)
2, (17)

as performance metrics. In order to increase the robustness of the analysis and to assess
the accuracy of the results, we also computed the Theil’s inequality coefficient [110], which
returned the level of accuracy of the forecasting methods:
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U2 =

√
T−1

∑
t=1

(
p̂t+h,m − pt+h,m

pt,m

)2

√
T−1

∑
t=1

(
pt+h,m − pt,m

pt,m

)2
(18)

where p̂t+h,m is the forecast at time t + h, for the maturity m. In detail, we employed the
so-called Theil’s U2 statistic [111,112]. Here, perfect forecasting accuracy, that is, p̂t+h,m =
pt+h,m for every t + h and m receives a zero value for the statistics; the value one, on
the other hand, is a kind of threshold of the forecasting accuracy relative to the naïve
approach. In practice, U2 values above (below) 1 indicate a forecasting performance which
is less (more) accurate than the naïve approach. The results of the performance metrics are
reported in Table 5.

Table 5. Comparison of the models’ forecasting performances using different error metrics. Columns
two and three, respectively, show the average MAPE (%) and MSFE values, while column four reports
the Theil’s U2 test score.

Forecasting Model MAPE MSFE Theil’s U2 Score

4F-DNSS/NAR-NN 6.1309 43.4550 0.0644
5F-DRF/NAR-NN 7.6939 85.4639 0.0670
B-spline/NAR-NN 2.7562 9.2254 0.0268

NAR-NN 2.7619 9.4914 0.0280

Based on Table 5, all of the candidate methods achieved satisfying results. In particular,
looking at the MAPE values in column two, we observe that the prediction accuracy ranges
on average between 92.3% and 97.2%. Furthermore, it is possible to rank the models
depending on MAPE: the 5F-DRF/NAR-NN is in fourth place, with the highest MAPE, the
4F-DNSS/NAR-NN is in 3rd place, the NAR-NNs gains second place, while the top position
is taken by the B-spline/NAR-NN. Column four, which reports the Theil’s U2 scores,
confirms the ranking: the 5F-DRF/NAR-NN, in fact, although showing a notable predictive
accuracy, with a score of 0.0670, is in fourth place; the score of the 4F-DNSS/NAR-NN is
slightly better (0.0644); and B-spline/NAR-NN achieves the best overall accuracy score.

Indeed we moved one step further, performing additional tests to validate the forecast-
ing power of all of the competing models. With the adjusted Diebold–Mariano (ADM)
test [113] we pairwise tested the difference in the forecast errors of the prediction models
and we discussed whether those are significantly different from zero. When comparing
two forecasting models, say model 1 and model 2, the null hypothesis H0 is that forecasts of
model 2 are more accurate than those of model 1 at the 95% significance level. The results
are reported in Table 6.

Table 6. Results of the adjusted Diebold–Mariano test. The p-value is accompanied by the * label
when the null hypothesis H0 is accepted at the 95% significance level.

Model 1 Model 2 ADM Statistics p-Value

4F-DNSS/NAR-NN B-spline/NAR-NN 4.2532 0.9998 *
5F-DRF/NAR-NN B-spline/NAR-NN 3.3970 0.9986 *

NAR-NN B-spline/NAR-NN 1.9269 0.9658 *
5F-DRF/NAR-NN 4F-DNSS/NAR-NN −0.1332 0.4477 *
5F-DRF/NAR-NN NAR-NN 3.1252 0.9973 *

4F-DNSS/NAR-NN NAR-NN 4.1745 0.9998 *

The scores of the ADM statistic and the related p-values (columns 3 and 4 of Table 6) are
notably higher than the critical value at the 95% significance level t(0.05, n− 1) = −1.72.
This, in turn, implies that in all of the examined comparisons, we have fallen within the
acceptance region, thus, strongly accepting H0, that is, that forecasts of the model indicated
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in column 2 (Model 2) are more accurate than those of the model indicated in column 1
(Model 1), In detail, the test results over the six different comparisons show that:

- B-spline/NAR-NN is more accurate than 4F-DNSS/NAR-NN;
- B-spline/NAR-NN is more accurate than 5F-DRF/NAR-NN;
- B-spline/NAR-NN is more accurate than NAR-NN;
- NAR-NN is more accurate than 4F-DNSS/NAR-NN;
- NAR-NN is more accurate than 5F-DRF/NAR-NN;
- 4F-DNSS/NAR-NN is more accurate than 5F-DRF/NAR-NN.

We can therefore conclude that B-spline/NAR-NN supersedes both 4F-DNSS/NAR-NN
and 5F-DRF/NAR-NN and, as already testified by the results discussed in the previous
sections, 4F-DNSS/NAR-NN works better than 5F-DRF/NAR-NN. Furthermore, as we
compared the performance of B-spline/NAR-NN to that of the NAR-NN as it is, used
likewise as a benchmark, also in that case, according to the test score, the results highlight
that the combination of B-spline to the neural engine provides better results.

An additional validation of the results has then come from the model confidence set
(MCS) procedure [114]: we constructed a superior set model (SSM) for the dataset under
examination, for which the null hypothesis of equal predictive ability (EPA) is not rejected
at the 95% confidence level, with the punctual mean forecast as loss function, as in [115].
The results are summarized in Table 7.

Table 7. Results of the MCS test at the 95% confidence level.

SSM Rank Loss

B-spline/NAR-NN 1 5.6868
NAR-NN 2 6.2330

The MCS must be interpreted as a confidence interval: in our case, for instance, as we
have set α = 0.05, the MCS1−α contains the best model, with 100 (1− α)% confidence. Ta-
ble 7 simply suggests that, within the examined methods, B-spline/NAR-NN and NAR-NN
are those providing the most reliable forecasts at the 95% confidence level. Nevertheless,
looking at the loss values in column 3 of Table 7, the technique achieving the best re-
sults is the one combining B-spline with NAR-NN, as it is associated with a lower loss
function value.

All in all, a better understanding of the results can be gained with an example: Figure 8a,b
compare futures curves observed on two days taken at random from our sample (7 and
13 June 2022) with those predicted according to the proposed methodology. Figure 8c,d
show the average forecasted curves along with the average RMSFE generated by the models
for each maturity, respectively. At first sight, the approaches generated accurate parameters
and curves forecasts, with predicted futures prices being close enough to the observed ones
for each available maturity, without notable spikes or outliers.

Nevertheless, it is worth highlighting some differences among the models in terms of
smoothness and accuracy. In fact, factor models combined with neural networks produced
smooth curves which, however, struggle to follow the shapes of the observations; on the
contrary, those of the B-spline/NAR-NN and NAR-NNs appear more rough, although they
follow the original futures curves trends more faithfully.

The curves predicted by means of B-spline/NAR-NN and NAR-NN alone are sys-
tematically closer to the observable ones at all the maturities than those obtained with
either the 4F-DNSS/NAR-NN or 5F-DRF/NAR-NN models. These models, in fact, are
characterized by higher error rates for every maturity, as testified by the RMSFE, with
futures prices significantly under/overpredicted. Furthermore, although the 5F-DRF model
exhibited superior in-sample fitting performance compared to that of 4F-DNSS, however,
the same did not happen with the forecast. In fact, the 4F-DNSS/NAR-NN combination
showed a consistent improvement of predictive performance (+20%) compared to the
5F-DRF/NAR-NN, whose predictions were characterized by larger errors across all the
maturity spectrum.
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(a) (b)

(c) (d)

Figure 8. Comparison of day-ahead forecasts in some worst cases (a,b). Average predictions (c) and
average RMSFE (d) generated by the 4F-DNSS (blue), 5F-DRF (red), B-spline (green), and NAR-NNs
(violet) models.

Overall, the reason for the weaker performances of both the factor models can be
probably found in the volatility of the β observed along the forecasting period, since those
models carry out a single approximation of the whole futures curve, which is therefore very
challenging to manage and predict even with the aid of a flexible tool such as the neural
network. On the contrary, with the B-spline/NAR-NN combination it is possible to capture
the dynamics of futures curves, thanks to the local piecewise approximation.

To conclude, empirical evidence proved the effectiveness of the proposed framework
for both modeling and predictive analysis, delivering, in the end, results which are very
close to the true values, even under extreme conditions such as those affecting the NG
futures market in the period 2021–2022. Among all the models, the B-spline model emerged
as the best model for in-sample fitting. Furthermore, its joint use with NAR-NNs made this
the best model also for out-of-sample day-ahead predictions within the NG futures market.

5. Concluding Remarks

In this study we addressed the problem of modeling and predicting futures prices
term structure in the natural gas (NG) market. With this aim, we proposed a framework
based on the use of interest rate models, given the similarities between the NG futures and
fixed-income markets, and machine learning techniques as well. In particular, we used two
models in the Nelson–Siegel family for fitting purposes, i.e., the four-factor dynamic Nelson–
Siegel–Svensson (4F-DNSS) and the five-factor dynamic De Rezende–Ferreira (5F-DRF),
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as well as B-spline, investigating their ability to replicate trends and dynamics of the NG
futures market. Moreover, for the estimation procedure of the factor models we discussed a
methodology based on time-varying parameters and fixed decay terms to ensure both high
interpolating performances and parameter stability for the predictive process. Relative to
the out-of-sample forecasting process, we conducted day-ahead predictions by means of
Nonlinear Autoregressive Neural Networks (NAR-NNs) used in two ways: in the first case,
we used them to predict model parameters’ time series and then derive the prices, while in
the second case we used NAR-NNs to directly predict prices’ time series.

We provided empirical evidence of the ability of the suggested framework to achieve
very satisfying results for both in-sample fitting and forecasting purposes within the NG fu-
tures market, even under extreme conditions, such as geopolitical turmoils and huge price
jumps. The 4F-DNSS, 5F-DRF, and B-spline models demonstrated high levels of flexibility
as well as adaptability to a wide variety of dynamics and trends characterizing the NG
futures term structure, which resulted in very small magnitudes of the error metrics. Nev-
ertheless, the B-spline model performed substantially better than the parametric models,
especially in representing the medial and final parts of futures curves, properly replicating
all the observed curve shapes, even the ones with multiple inflection points. Further-
more, the predictive performance clearly demonstrated the consistency of the implemented
forecasting strategy. In this way, our results highlight that the hybrid B-spline/NAR-NN
method is the preferable approach for day-ahead forecasting as it provides the lowest
errors, outperforming both the 4F-DNSS/NAR-NN and 5F-DRF/NAR-NN combinations
as well as the NAR-NN directly employed on the data.

The satisfying results obtained herein lay the groundwork for further experimental
investigations oriented to the use of more sophisticated machine learning techniques, as
well as for further research to enhance fitting and prediction of NG futures prices. In fact,
all of these topics represent a part of our ongoing research.
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70. Čeperić, E.; Žiković, S.; Čeperić, V. Short-term forecasting of natural gas prices using machine learning and feature selection

algorithms. Energy 2017, 140, 893–900. [CrossRef]
71. Dolatabadi, S.; Narayan, P.; Nielsen, M.; Xu, K. Economic significance of commodity return forecasts from the fractionally

cointegrated VAR model. J. Futures Mark. 2018, 38, 219–242. [CrossRef]
72. Berrisch, J.; Ziel, F. Distributional modeling and forecasting of natural gas prices. J. Forecast. 2022, 41, 1065–1086. [CrossRef]
73. Kwas, M.; Rubaszek, M. Forecasting Commodity Prices: Looking for a Benchmark. Forecasting 2021, 3, 447–459. [CrossRef]
74. Li, J.; Wu, Q.; Tian, Y.; Fan, L. Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and

deep belief network. Energy 2021, 227, 120478. [CrossRef]
75. Wang, J.; Cao, J.; Yuan, S.; Cheng, M. Short-term forecasting of natural gas prices by using a novel hybrid method based on a

combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network. Energy 2021, 233, 121082. [CrossRef]
76. Pei, Y.; Huang, C.; Shen, Y.; Wang, M. A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional

Network. Energies 2023, 16, 2321. [CrossRef]
77. Borovkova, S.; Mahakena, D. News, volatility and jumps: The case of natural gas futures. Quant. Financ. 2015, 15, 1217–1242.

[CrossRef]
78. Jana, R.; Ghosh, I. A residual driven ensemble machine learning approach for forecasting natural gas prices: Analyses for pre-and

during-COVID-19 phases. Ann. Oper. Res. 2022. [CrossRef]
79. Li, R.; Song, X. A multi-scale model with feature recognition for the use of energy futures price forecasting. Expert Syst. Appl.

2023, 211, 118622. [CrossRef]
80. Chiarella, C.; Clewlow, L.; Kang, B. Modelling and Estimating the Forward Price Curve in the Energy Market; Technical Report 260;

University of Technology Sydney: Sydney, Australia, 2009.
81. Almansour, A. Convenience yield in commodity price modeling: A regime switching approach. Energy Econ. 2016, 53, 238–247.

[CrossRef]
82. Gibson, R.; Schwartz, E. Stochastic Convenience Yield and the Pricing of Oil Contingent Claims. J. Financ. 1990, 45, 959–976.

[CrossRef]
83. Leonhardt, D.; Ware, A.; Zagst, R. A Cointegrated Regime-Switching Model Approach with Jumps Applied to Natural Gas

Futures Prices. Risks 2017, 5, 48. [CrossRef]
84. Karstanje, D.; van der Wel, M.; van Dijk, D. Common Factors in Commodity Futures Curves. January, 2023. Available online:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2558014 (accessed on 14 May 2023).
85. Diebold, F.; Li, C. Forecasting the term structure of government bond yields. J. Econom. 2006, 130, 337–364. [CrossRef]
86. Jablonowski, C.; Schicks, M. A Three-Factor Model on the Natural Gas Forward Curve Including Temperature Forecasts. J.

Energy Mark. 2017, 10, 87–105. [CrossRef]
87. Heath, D.; Jarrow, R.; Morton, A. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent

Claims Valuation. Econometrica 1992, 60, 77–105. [CrossRef]
88. Tang, Y.; Wang, Q.; Xu, W.; Wang, M.; Wang, Z. Natural Gas Price Prediction with Big Data. In Proceedings of the 2019 IEEE

International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5326–5330. [CrossRef]
89. Li, B. Pricing dynamics of natural gas futures. Energy Econ. 2019, 78, 91–108. [CrossRef]
90. Horváth, L.; Liu, Z.; Rice, G.; Wang, S. A functional time series analysis of forward curves derived from commodity futures. Int.

J. Forecast. 2020, 36, 646–665. [CrossRef]
91. Heather, P. European Traded Gas Hubs: German Hubs about to Merge; Techreport; The Oxford Institute for Energy Studies: Oxford,

UK, 2021.
92. Intercontinental Exchange. ICE Announces Record Activity in TTF and JKM Gas Complexes as They Evolve into Global Benchmarks;

Techreport; Intercontinental Exchange (ICE): Atlanta, GA, USA, 2021.
93. Copernicus Climate Change Service (C3S). Summer 2022 Europe’s Hottest on Record; Copernicus Climate Change Service (C3S):

Brussels, Belgium, 2022.
94. Gas Infrastructure Europe (GIE). Gas Storage Inventory; Gas Infrastructure Europe (GIE): Brussels, Belgium, 2022.
95. Bessembinder, H.; Coughenour, J.; Seguin, P.; Smoller, M. Is There a Term Structure of Futures Volatilities? Reevaluating the

Samuelson Hypothesis. J. Deriv. 1996, 4, 45–58. [CrossRef]
96. Samuelson, P.A. Proof That Properly Discounted Present Values of Assets Vibrate Randomly. Bell J. Econ. Manag. Sci. 1973,

4, 369–374. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2019.04.167
http://dx.doi.org/10.1016/j.eneco.2006.04.003
http://dx.doi.org/10.1155/2012/289810
http://dx.doi.org/10.1016/j.jngse.2013.07.002
http://dx.doi.org/10.1016/j.eneco.2014.09.015
http://dx.doi.org/10.1371/journal.pone.0142064
http://dx.doi.org/10.1016/j.energy.2017.09.026
http://dx.doi.org/10.1002/fut.21866
http://dx.doi.org/10.1002/for.2853
http://dx.doi.org/10.3390/forecast3020027
http://dx.doi.org/10.1016/j.energy.2021.120478
http://dx.doi.org/10.1016/j.energy.2021.121082
http://dx.doi.org/10.3390/en16052321
http://dx.doi.org/10.1080/14697688.2014.986513
http://dx.doi.org/10.1007/s10479-021-04492-4
http://dx.doi.org/10.1016/j.eswa.2022.118622
http://dx.doi.org/10.1016/j.eneco.2014.06.016
http://dx.doi.org/10.1111/j.1540-6261.1990.tb05114.x
http://dx.doi.org/10.3390/risks5030048
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2558014
http://dx.doi.org/10.1016/j.jeconom.2005.03.005
http://dx.doi.org/10.21314/JEM.2017.165
http://dx.doi.org/10.2307/2951677
http://dx.doi.org/10.1109/BigData47090.2019.9006195
http://dx.doi.org/10.1016/j.eneco.2018.10.024
http://dx.doi.org/10.1016/j.ijforecast.2019.08.003
http://dx.doi.org/10.3905/jod.1996.407967
http://dx.doi.org/10.2307/3003046


Energies 2023, 16, 4746 22 of 22

97. Duong, H.; Kalev, P. The Samuelson hypothesis in futures markets: An analysis using intraday data. J. Bank. Financ. 2008,
32, 489–500. [CrossRef]

98. Jaeck, E.; Lautier, D. Samuelson hypothesis and electricity derivative markets. In Proceedings of the 31st International French
Finance Association Conference, AFFI 2014, Aix-en-Provence, France, 20–21 May 2014; p. 24.

99. Jonckheere, A. A Distribution-Free k-Sample Test Against Ordered Alternatives. Biometrika 1954, 41, 133–145. [CrossRef]
100. Terpstra, T. The asymptotic normality and consistency of kendall’s test against trend, when ties are present in one ranking. Indag.

Math. 1952, 55, 327–333. [CrossRef]
101. Nelson, C.; Siegel, A. Parsimonious Modeling of Yield Curves. J. Bus. 1987, 60, 473–489. [CrossRef]
102. Castello, O.; Resta, M. Modeling the Yield Curve of BRICS Countries: Parametric vs. Machine Learning Techniques. Risks 2022,

10, 36. [CrossRef]
103. Curry, H.; Schoenberg, I. On spline distributions and their limits: The Polya Distribution Functions. Bull. Am. Math. Soc. 1947,

4, 109.
104. Curry, H.; Schoenberg, I. On Pólya frequency functions IV: The fundamental spline functions and their limits. J. D’Anal. Math.

1966, 17, 71–107. [CrossRef]
105. Reed, R.; Marks, R. Neural Smithing: Supervise Learning in Feedforward Artificial Neural Networks; The MIT Press: Cambridge, CA,

USA, 1999.
106. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
107. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958,

65, 386–408. [CrossRef]
108. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168.

[CrossRef]
109. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.

[CrossRef]
110. Theil, H. Economic Forecasts and Policy; Technical Report; Netherland School of Economics: Rotterdam, The Netherlands, 1958.
111. Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification. J. Mark. Res. 1973, 10, 444–446. [CrossRef]
112. Granger, C.; Newbold, P. Some comments on the evaluation of economic forecasts. Appl. Econ. 1973, 5, 35–47. [CrossRef]
113. Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. .

[CrossRef]
114. Hansen, P.; Lunde, A.; Nason, J. The model confidence set. Econometrica 2011, 79, 453–497. [CrossRef]
115. Hansen, P.; Lunde, A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? J. Appl. Econom. 2005,

20, 873–889. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jbankfin.2007.06.011
http://dx.doi.org/10.1093/biomet/41.1-2.133
http://dx.doi.org/10.1016/S1385-7258(52)50043-X
http://dx.doi.org/10.1086/296409
http://dx.doi.org/10.3390/risks10020036
http://dx.doi.org/10.1007/BF02788653
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1177/002224377301000413
http://dx.doi.org/10.1080/00036847300000003
http://dx.doi.org/10.1016/S0169-2070(96)00719-4
http://dx.doi.org/10.2139/ssrn.522382
http://dx.doi.org/10.1002/jae.800

	Introduction
	Data
	Modeling Approach
	Parametric Factor Models
	B-Spline Interpolation Method
	Nonlinear Autoregressive Neural Network (NAR-NN)

	Empirical Study
	Goodness-of-Fit
	Out-of-Sample Forecasting

	Concluding Remarks
	References

