

978-1-7281-5200-4/20/$31.00 ©2020 IEEE

Erle-copter Simulation using ROS and Gazebo
Krishneel Kumar, Sheikh Izzal Azid, Adriano Fagiolini, and Maurizio Cirrincione

Krishneel Kumar
School of Engineering and Physics
The University of the South Pacific

Suva, Fiji
krishneel.kumar@usp.ac.fj

Adriano Fagiolini
Department of Engineering

University of Palermo
Palermo, Italy

adriano.fagiolini@unipa.it

Sheikh Izzal Azid
School of Engineering and Physics
The University of the South Pacific

Suva, Fiji
sheikh.azid@usp.ac.fj

Maurizio Cirrincione
School of Engineering and Physics
The University of the South Pacific

Suva, Fiji
maurizio.cirrincione@usp.ac.fj

Abstract— The recent decrease in the price as well as size of
semi-conductor logic and due to significant advancements in
technologies such as microcontrollers, motors and sensors, the
application of quadcopters in several fields has been achieved.
However, testing of quadcopter prototypes still has a risk of
damage due to faults and unexpected behavior. Hence, a
method of testing of quadcopters in simulation mimicking the
actual conditions of the real environment in an actual
hardware test has been proposed. For this purpose, Gazebo
simulator integrated with ROS has been chosen for the
simulation of the path of the quadcopter. Moreover, the
software Matlab/Simulink has been interfaced with Gazebo in
order for the simulation of the quadcopter to be achieved.

Keywords- ROS, Gazebo, UAV, GCS, autonomous vehicle,
simulation, Erle-copter.

I. INTRODUCTION

A quadcopter is a flying object which changes its
attitude and altitude by using four rotating blades [1]. The
four rotors of the quadcopter are directed upwards and are
placed in a square formation, at an equal distance from the
center of mass of the quadcopter [2, 3]. Two major
configurations of the quadcopter are possible: the plus (+)
and the cross (x) configurations. According to [4, 5], an x
configured quadcopter is considered to have more stability
when compared to the + configuration which is more suited
for acrobatic maneuvers.

Due to the recent advancements in technologies like

microcontrollers, motors and sensors, the use of quadcopters
in several fields has widely spread. These applications
include natural disaster management, weather monitoring,
forest fire detection, traffic control, cargo transport,
emergency search and rescue, communication relaying,
security, surveillance, agriculture and academic teaching
such as control engineering.

However, due to the naturally unstable nature of

quadcopters, hardware testing of the quadcopters still poses

a risk of damage because of sudden faults and unexpected.
Thus, a method for testing of quadcopters in simulation,
mimicking the conditions of the real environment in an
actual hardware test has been proposed. This practice is
common also in other fields, such as the industry [6] and
automotive ones [7], were testing on real experimental
setups is only advisable when simulation results show that
the proposed control technique is robustly working. For this
purpose, Gazebo simulator integrated with ROS has been
chosen for the simulation of the path of the quadcopter. The
software Matlab/Simulink has been interfaced with Gazebo
in order to achieve the simulation of the quadcopter.

This paper is organized as follows. ROS and Gazebo are

introduced in Section II. Section III discussed the Gazebo
simulation environment setup. Section IV presents the
simulation steps of the Erle-copter in Gazebo. Finally, in
Section V presents the simulation results obtained from
Gazebo. The paper is concluded in Section VI.

II. ROS AND GAZEBO

Robot Operating System (ROS) is a meta-operating
system used for robots. The services provided by ROS are
similar to any operating system, and may include abstraction
of hardware, control of low level devices, ability to pass
messages between processes and the management of
packages. Moreover, it provides users with libraries and
tools to help build, write and run codes across multiple
computers. With the use of ROS, users are provided with a
variety of communication styles like synchronous RPC style
communication over services, asynchronous streaming of
data over topics and storage of data on a parameter server
[8]. ROS currently works either on systems based on UNIX
platforms or Mac OS systems [8].

Gazebo is a robotics simulator, which can be utilized for

creating applications for real robots in a virtual
environment. This software can be used to simulate robots
with actual world parameters to visualize the behavior of the

259

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on January 26,2023 at 11:08:07 UTC from IEEE Xplore. Restrictions apply.

robot in the actual hardware tests environment. Gazebo-
simulated hardware is designed to reflect the behavior of its
equivalent in reality. Because of this, the client software
uses an interface identical to the real robot [9]. This would
therefore save time and money in carrying out tests directly
on hardware without the knowledge of how the robot would
actually behave in the physical world scenario. An
advantage of using Gazebo software is the capability to
simulate various types of position sensors such as laser
scanning, sonar and Global Positioning System (GPS).
Moreover, in its library it contains robots which are
commonly used and enables realistic simulation of rigid
body physics [9].

Figure 1: Link Between ROS and Gazebo

Fig. 1 shows how Gazebo is interfaced with the autopilot of
the Robot with the help of ROS. In order for the simulation
of the robot to take place in Gazebo, a communication link
must be achieved between the robot in Gazebo and its
autopilot. This is made possible through the use of ROS.

 To simulate the quadcopter in Gazebo, the Erle-copter
model has been utilised which is available in the Gazebo
library. The Erle-copter is the first Linux based smart drone
that utilize robotics frameworks for example the Robot
Operating System (ROS) [10]. The Erlecopter is equipped
with the Erle brain 3, which is the latest edition of the robot
brain from Erle robotics. Table 1 presents the parameters of
the Erlecopter.

Table 1: Erle-copter Parameters

Parameter Name Value

Mass m 1.30 kg

Gravitation constant, g 9.80 m /s2

Length l 0.18 m

Inertia Ix 0.03 kg.m2

Inertia Iy 0.05 kg.m2

Inertia Iz 0.0977 kg.m2

Motor constant kf 8.55x10-6 Nm/rad2

Moment constant km 0.016 Nm/rad2

 In addition, the controller used for the simulation of the
Erle-copter model in Gazebo is the autopilot of the Erle-
copter is called the Ardupilot. Ardupilot is an open source
Autopilot Software Suite for unmanned vehicles and offers:

 Capability of manual to fully autonomous flight
modes including missions that can be
programmable.

 Robot simulation on different simulators.
 Capability of faculty conditions like low battery

and loss of GPS.
 Establishment of connection in real time with the

Ground Control Station (GCS)
 Log mission data which would be useful in the

analysis after tests.

III. GAZEBO SIMULATION ENVIRONMENT SETUP

Firstly, a workspace is created and initialized, and inside
the workspace, the Erle-copter model and resources are
downloaded. The steps listed in the Erle robotics
documentation page for the configuration of the
environment were followed to achieve this. Once the
workspace has been created and initialized, the Erle-copter
can then be launched. In order to launch the Erle-copter in
Gazebo, the following commands are entered into the
terminals in an Ubuntu machine:

In Terminal 1:

In Terminal 2:

This enables the Erle-copter model to be launched in
Gazebo. Fig. 2 shows the Erle-copter model spawned in
Gazebo simulator.

source ~/simulation/ros_catkin_ws/devel/setup.bash
cd ~/simulation/ardupilot/ArduCopter
../Tools/autotest/sim vehicle.sh -j 4 -f Gazebo

source ~/simulation/ros_catkin_ws/devel/setup.bash
roslaunch ardupilot_sitl_gazebo_plugin erlecopter_spawn.launch

260

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on January 26,2023 at 11:08:07 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Erle copter spawned in Gazebo Simulator

 Once the Erle copter model has been launched in Gazebo,
the next step is to load its parameters by using the following
command:

In Terminal 1

IV. ERLE-COPTER SIMULATION IN GAZEBO

To simulate the Erle-copter, Matlab/Simulink should be
interfaced with Gazebo. This is achieved through the ROS
toolbox in the Simulink library. Two main types of
functions, specifically “Publish and Subscribe” functions are
used in Matlab/Simulink and Gazebo to communicate with
each other. This communication is achieved by choosing
appropriate topics and its corresponding message types of
the ROS blocks in the ROS toolbox. The “publish” ROS
block is used to send data from Matlab/Simulink to Gazebo
while the “subscribe” ROS block is used to receive
information from Gazebo. For the purpose of simulating the
Erle-copter in Gazebo, position data generated in
Matlab/Simulink is published to the Erlecopter model in
Gazebo, while the path followed by the Erle-copter takes in
Gazebo is obtained by Matlab/Simulink through the use of
the “subscribe” ROS block.

Figure 3: Publish ROS block for Position data

 Fig. 3 shows how the position data is published to the
Gazebo simulation environment via the publish ROS block
found in the ROS toolbox in Simulink. To achieve this, the
desired position data is published to a ROS topic relating to
the position of the Erle-copter. Moreover, each ROS topic

is accompanied by a particular message type depending on
the ROS topic. Thus to publish the position data to the
Gazebo simulation environment, a particular ROS topic is
chosen and the appropriate message type for the ROS topic
is selected. The ROS topic and the message type for the
publish block used for publishing the position data is shown
below:

Topic: /mavros/setpoint_position/local
Message Type: geometry_msgs/PoseStamped

Figure 4: Subscribe ROS Blocks for Position and Attitude

 Fig. 4 shows the Subscribe ROS blocks to obtain the
linear and angular position data of the Erlecopter from
Gazebo. The linear and angular position data is obtained
directly from Gazebo by subscribing to the below ROS topic
together with its message type:

Topic: /erlecopter/ground_truth/odometry
Message Type: nav_msgs/Odometry

Note: The angular position of the Erle-copter subscribed
from Gazebo is in the form of quaternions. Hence, the
conversion from quaternions to Euler angles is utilized to
obtain the orientation of the Erle-copter in terms of Euler
angles. This is shown in Fig. 4 where a quaternion to Euler
conversion has been used after obtaining the orientation data
of the Erle-copter from Gazebo. The function to achieve this
is as follows:

eul=quat2eul(quat) (1)

V. SIMULATION RESULTS

 Two test cases were chosen for the simulation of the path
of the Erle-copter in Gazebo. Firstly, a square path was
defined and the Erle-copter was commanded to move in the
square path of dimension 5 m x 5 m and at a height of 2 m.
In the second test case, the Erle-copter was commanded to
move in circular path of radius 3 m and a height of 5 m. The
results are obtained from the simulation in Gazebo are

param load /home/simulation/ardupilot/Tools/Frame_params/Erle-Copter.param

261

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on January 26,2023 at 11:08:07 UTC from IEEE Xplore. Restrictions apply.

presented in Fig. 5. to Fig 8.

Figure 5: 3D Plot of Erle-copter moving in Square Path

 Fig. 5 shows the 3D plot of the path of the Erle-copter
subscribed from Gazebo for the square path. The graph in
orange above represents the reference square path while the
graph represented in blue above shows the actual path the
Erle-copter took in Gazebo.

Figure 6: Graph of Erle-copter Path in 2D for Square Path

 Fig. 6 shows the 2D plot of the square path the Erle-
copter was commanded to move in. The dimensions of the
square path were 5 m x 5 m. The graph in blue in Fig.7
represents the reference square path the Erle-copter had to
follow while the graph in red represents the actual path of the
Erle-copter. From the comparison of the reference and the
actual path, it can be said that the Erle-copter was
successfully able to move in the square path initially defined
in the simulation.

Figure 7: 3D Plot of Erle-copter moving in Circular Path

 The 3D plot of the circular path which the Erle-copter was
commanded to move in is represented in Fig. 7. Morover,
the graph in orange in Fig. 7 represents the reference circular
path the Erle-copter was commanded to move whereas the
graph represented in blue in the Fig 7 is the graph of the
actual path the Erlecopter moved in in Gazebo during
simulation

Figure 8: Graph of Erle-copter in 2D for Circular Path

 In Fig 8 shows the 2D plot of the circular path for the
second test case. The radius of the circular path was set to 3
m at a height of 5 m. Furthermore, in Fig 8, the graph
represented in orange is the reference circular path
commanded to the Erle-copter while the actual path of the
Erle-copter in Gazebo is represented by the blue graph in the
Fig 8. The commanded circular path of 3 m for simulation in
gazebo has been achieved as the path taken by the Erle-
copter during the simulation is similar to commanded path.

262

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on January 26,2023 at 11:08:07 UTC from IEEE Xplore. Restrictions apply.

Figure 9: ROS Computation Graph

Fig. 9 shows the ROS visualization graph (rqt_graph)
which provides a Graphical User Interface plugin useful in
visualizing the ROS computational graph. Fig. 9 illustrates
how the simulation is executed and how each component is
linked to the other. In the mavros block, the two topics used
for publishing and subscribing of data are shown.
Moreover, the tf block in Fig. 9 is a package that allows the
user to keep track of multiple coordinate frames over some
time period. Moreover, it also allows users to transform
points and vectors between any two coordinate frames at
any desired point in time.

VI. CONCLUSION

The simulation of the Erle-copter in Gazebo via ROS was
presented and the software Matlab/Simulink was utilized to
carry out the simulation of the Erle-copter in Gazebo.
Furthermore, ROS toolbox in Simulink was used to achieve
communication between Gazebo and Matlab/Simulink.
Two simulation test cases were chosen: which were firstly,
commanding the Erle-copter to follow a square path of
dimensions 5 m by 5 m at a height of 2 m while the second
test case commanded the Erle-copter to follow a circular
path of radius 3 m at a height of 5 m. The simulation results
of these test cases have been presented the results can be
concluded that the Erle-copter was able to follow the
commanded paths in both the test cases.

REFERENCES

1. A. Lebedev, "Design and Implementation of a
6DOF Control System for an Autonomous
Quadrocopter", 2013.

2. A. Gibiansky, "Quadcopter Dynamics, Simulation,
and Control. 2012," URL:
http://andrew.gibiansky.com/blog/physics/quadcop
ter-dynamics, (12.5. 2016.).

3. T. Luukkonen, "Modelling and control of
quadcopter", 2011.

4. S. Ghazbi, Y. Aghli, M. Alimohammadi and A.
Akbari, "Quadrotors Unmanned Aerial Vehicles: A
Review", International Journal on Smart Sensing
and Intelligent Systems, vol. 9, no. 1, pp. 309-333,
2016.

5. S. Gupte, P. I. T. Mohandas, and J. M. Conrad, "A
Survey Of Quadrotor Unmanned Aerial Vehicles,"
in Proceedings of IEEE Southeastcon, pp. 1-6,
Orlando, Florida, March 15-18, 2012.

6. A. Fagiolini, G. Dini, A. Bicchi, "Distributed
intrusion detection for the security of industrial
cooperative robotic systems" (2014) IFAC
Proceedings Volumes (IFAC-PapersOnline), 19,
pp. 7610-7615.

7. D. Caporale, A. Fagiolini, L. Pallottino, A. Settimi,
A. Biondo, F. Amerotti, F. Massa, S. De Caro, A.
Corti, A. Venturini, L. "A Planning and Control
System for Self-Driving Racing Vehicles", IEEE
4th International Forum on Research and
Technologies for Society and Industry, 2018,

8. S. Cousins, "Welcome to ROS Topics [ROS
Topics]," in IEEE Robotics & Automation
Magazine, vol. 17, no. 1, pp. 13-14, March 2010.

9. I Alonso, M. Fernandez, J. Maestre, M. Fuente
"Service Robotics within the Digital Home",
Springer, 2018.

10. "Erle-Copte Erle Robotics Docs",
Docs.erlerobotics.com, 2018. [Online]. Available:
http://docs.erlerobotics.com/erle_robots/erle_copte
r. [Accessed: 13- May- 2018].

263

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on January 26,2023 at 11:08:07 UTC from IEEE Xplore. Restrictions apply.

