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Abstract: Deploying unmanned aerial vehicles (UAVs) as aerial base stations is an exceptional
approach to reinforce terrestrial infrastructure owing to their remarkable flexibility and superior
agility. However, it is essential to design their flight trajectory effectively to make the most of
UAV-assisted wireless communications. This paper presents a novel method for improving wireless
connectivity between UAVs and terrestrial users through effective path planning. This is achieved by
developing a goal-directed trajectory planning method using active inference. First, we create a global
dictionary using traveling salesman problem with profits (TSPWP) instances executed on various
training examples. This dictionary represents the world model and contains letters representing
available hotspots, tokens representing local paths, and words depicting complete trajectories and
hotspot order. By using this world model, the UAV can understand the TSPWP’s decision-making
grammar and how to use the available letters to form tokens and words at various levels of abstraction
and time scales. With this knowledge, the UAV can assess encountered situations and deduce optimal
routes based on the belief encoded in the world model. Our proposed method outperforms traditional
Q-learning by providing fast, stable, and reliable solutions with good generalization ability.

Keywords: UAVs; wireless networks; trajectory design; AI-enabled radios; active inference; world
models; traveling salesman problem

1. Introduction

In recent years, there has been a significant amount of research interest in unmanned
aerial vehicles (UAVs) due to their impressive features, such as their maneuverability,
ease of positioning, versatility, and the high likelihood of line-of-sight (LoS) air-to-ground
connections [1,2]. UAVs are feasibly exploited to alleviate a wide range of challenges in
commercial and civilian sectors [3,4]. It is expected that forthcoming wireless communica-
tion networks will need to provide exceptional service to meet the demands of users. This
presents difficulties for traditional terrestrial-based communication systems, particularly in
hotspot areas with high traffic [5–7]. UAVs have the potential to serve as flying base stations,
providing support to the land-based communication infrastructure without the need for
costly network construction [8]. In addition, their ability to be easily relocated makes them
particularly highly beneficial in the aftermath of natural disasters [9,10]. UAVs can also
be deployed as intermediaries between ground-based terminals, improving transmission
link performance and enhancing reliability, security, coverage, and throughput [11,12]. As
such, UAV-assisted communications are becoming increasingly vital in developing future
wireless systems [13–17].

UAV-aided wireless communications possess a distinct advantage owing to the con-
trollable maneuverability of UAVs, which allows for flexible trajectories. This added degree
of freedom significantly boosts the system’s performance. Therefore, optimizing the UAV’s
trajectory is an indispensable area of focus in this field, as it is paramount to exploit the
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potential of UAV-assisted wireless communications fully [18]. Several studies have looked
into improving system performance through trajectory design. One study, for example,
optimized the trajectory of a UAV to gather received signal strength measurements effi-
ciently and improve the accuracy of spectrum cartography [19]. Another study proposed
a method for planning the trajectory of a UAV to provide emergency data uploading for
large-scale dynamic networks [20]. Multi-hop relay UAV trajectory planning is also crucial
in UAV swarm networks [21]. Joint optimization of the UAV’s trajectory and user associa-
tion was suggested in [22] to maximize total throughput and energy efficiency. Another
study examined joint UAV trajectory design and time allocation for aerial data collection
in NOMA-IoT networks [23]. In a cluster-based IoT network, joint optimization of the
UAV’s hovering points and trajectory was studied to achieve minimal age-of-information
data collection [24]. Autonomous trajectory planning solutions were proposed in [25] to
enable UAVs to navigate complex environments without GPS while fulfilling real-time
requirements. Lastly, the trajectory of a UAV was optimized in [26] to minimize propulsion
energy and ensure the required sensing resolutions for cellular-aided radar sensing.

Traditional methods rely on optimization mathematical models that require precise
information about the system, including the number of users in different areas and net-
work parameters when designing a UAV trajectory. However, this approach may not be
feasible in real-world situations due to the constantly changing environment and limited
battery life, making it difficult to solve these problems using traditional techniques [27].
On the other hand, artificial intelligence (AI) techniques, such as machine learning (ML)
and reinforcement learning (RL), have proven to be effective in addressing challenges
related to sequential decision making. By equipping UAVs with AI capabilities (AI-enabled
UAVs), they can attain a remarkable level of self-awareness, transforming wireless com-
munications [28]. With AI, UAVs can effectively comprehend the radio environment by
discerning and segregating the explanatory factors that are concealed in low-level sensory
signals [29]. However, most ML and RL methods are not capable of adjusting to new
situations that were not included in their initial training. This limitation in generalizing
requires extensive retraining efforts, which can pose challenges for real-time prediction and
decision making [30].

When AI-enabled agents sense and interact with their environment, they struggle with
structuring the knowledge they gather and making logical decisions based on it. One way
to address this is through knowledge representation and reasoning techniques inspired
by human problem-solving to handle complex tasks effectively [31]. Causal probabilistic
graphical models are a prime example of such techniques, which are highly effective in
capturing the hidden patterns in sensory data obtained from the environment. These
models also provide a seamless way to integrate sensory data from various sources [32]. By
statistically structuring the data, they can describe different levels of abstraction that can be
applied across different domains. For instance, when learning a language, one must learn
how sounds form words, how words form sentences, and how grammar characterizes a
language. At every level, the learning process requires making probabilistic inferences
within a structured hypothesis space. Dealing with uncertainty is a common challenge
in AI and decision making, as many real-world problems have incomplete or ambiguous
information. Probabilistic representation is an effective technique that leverages probability
theory to model and reason with uncertainty, enabling AI agents to make better decisions
and operate more efficiently [33].

Active inference is a mathematical framework that helps us understand how living
organisms interact with their environment [34]. It provides a unified approach to modeling
perception, learning, and decision making, aiming to maximize Bayesian model evidence
or minimize free energy [35]. Free energy is a crucial concept that empowers agents
to systematically assess multiple hypotheses concerning behaviors that can effectively
achieve their desired outcomes. Moreover, active inference governs our expectations of
the world around us. Specifically, it posits that our brains utilize statistical models to
interpret sensory information [36]. By using active inference, we can modify our sensory
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input to conform to our preconceived notions of the world and rectify any inconsistencies
between our expectations and reality. Probabilistic graphical models are used to represent
active inference models because they provide a clear visual representation of the model’s
computational structure and how belief updates can be achieved through message-passing
algorithms [37].

Motivated by the previous discussion, we propose a goal-directed trajectory design
framework for UAV-assisted wireless networks based on active inference. The proposed
approach involves two key computational units. The first unit meticulously analyzes the
statistical structure of sensory signals and creates a world model to gain a comprehensive
understanding of the environment. World models are a significant aspect of generative
AI. They play a pivotal role in the development of intelligent systems. Like humans, AI
agents acquire a world model by processing sensorimotor data through interactions with
their environment, which serves as a simulator in their brains [38]. The second is the
decision-making unit seeking to perform actions minimizing a cost function and generating
preferred outcomes. The two components are linked by an active inference process. To
create the world model, the UAV was trained to complete various flight missions with
different realizations (such as the locations of hotspots and users’ access requests) using
the conventional traveling salesman problem with profit (TSPWP) [39] with the 2-OPT
local search algorithm in an offline manner. The TSPWP instances (trajectories) were
turned into graphs and used to build a global dictionary with two sub-dictionaries. The
first sub-dictionary represents the hotspots the UAV needs to serve and their order of
travel. By contrast, the second sub-dictionary shows the trajectories to follow between
two adjacent nodes. The global dictionary consists of letters at multiple levels, tokens, and
words. The world model is created by coupling the two sub-dictionaries, constructing a
detailed representation of the environment at different hierarchical levels and time scales.
The world model is structured in a coupled multi-scale generalized dynamic Bayesian
network (C-MGDBN). This model builds upon the single-scale GDBN, which is a statistical
model that explains how hidden states drive time series observations. However, unlike
the conventional GDBN [40–42], which can only model single-scale data, our enhanced
GDBN representation can encode the dynamic rules that generate observations at different
temporal resolutions, making it far more versatile than traditional GDBNs. With this
superior model, we can simultaneously model a UAV’s behavior at different time scales.
The decision-making unit relies on active inference to select actions based on the current
state of the environment as inferred from the world model. The proposed framework
explains how UAVs navigate their surroundings with a goal in mind, choosing actions that
minimize unexpected or unusual observations (abnormalities), which are measured by
how much they deviate from the expected goal.

The main contributions of this paper can be summarized as follows:

• We developed a global dictionary during training to discover the TSPWP’s best strat-
egy for solving different realizations. The dictionary comprises letters representing the
available hotspots, tokens representing local paths, and words depicting the complete
trajectories and order of hotspots. By studying the dictionary, we can comprehend the
decision maker’s grammar (i.e., the TSPWP strategy) and how it uses the available
letters to form tokens and words.

• We have designed a novel hierarchical representation structuring the acquired knowl-
edge (the global dictionary) in a C-MGDBN to accurately depict the properties of the
TSPWP graphs at various levels of abstraction and time scales.

• We tested the proposed method on different scenarios with varying hotspots. Our
method outperformed traditional Q-learning by providing fast, stable, and reliable
solutions with good generalization ability.

The remainder of the paper is organized as follows. The literature review is presented
in Section 2. The system model and problem formulation are presented in Section 3. The
proposed goal-directed trajectory design method is explained in Section 4. Section 5 is
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dedicated to the numerical results and discussion, and finally Section 6 concludes this
paper by highlighting future directions.

Notations: Throughout the paper, capital italic letters denote constants, lowercase bold
letters denote vectors, and capital boldface letters denote matrices. The shorthand N (µ, Σ)
is used to denote a Gaussian distribution with mean µ and covariance Σ. If X represents a
matrix, the element in its ith row and jth column is denoted by xij, and its ith row vector is
represented by xi.

2. Literature Review

Solving the trajectory design problem is a crucial and leading research topic in AI-
enabled wireless UAV networks. This problem involves determining the optimal shortest
path for a UAV to cover all targeted hotspot zones (nodes) in a dynamic wireless environ-
ment while adhering to time and mission completion constraints. This section discusses
various techniques proposed in the literature for UAV trajectory design to optimize com-
munication performance efficiently in a flexible wireless environment. These techniques
can be categorized as classical and modern optimization algorithms as depicted in Figure 1.

Traditional Algorithms 

Biologically Inspired  

Advance Algorithms 

Dynamic Programming (DP)

Dijkstra Algorithm

A* Algorithm

D* Algorithm

TSP Algorithm

Genetic Algorithm (GA)

Particle Swarm Optimization (PSO)   

Ant Colony Optimization (ACO)  

Machine Learning (ML) 

Reinforcement Learning (RL)    

Deep Q-Learning (DQL)  

Figure 1. An overview of existing trajectory design algorithms.

In order to meet time constraints for all ground users, a feasible UAV trajectory was
proposed in [43] using traditional dynamic programming (DP). However, due to an increase
in hovering nodes, it may not align with time constraint criteria and may not be suitable
for real-time environments. DP was also used to optimize the UAV trajectory in [44] for
accessing multiple wireless sensor nodes (WSNs) and collecting data under time constraints.
However, the algorithm was inefficient in recognizing and iterating through repeated grids,
requiring high-order gridding for accuracy and resulting in computational complexity. In
the study referenced as [45], the problem of the UAV trajectory was formulated as a mixed
integer linear program (MILP). The trajectory planning is carried out in discrete time steps,
where each step represents the dynamic state of the UAV in the environment. The algorithm
is designed for offline planning to ensure a feasible trajectory is available before the UAV
performs its tasks. However, this algorithm has limitations as it can easily become stuck
due to its blind nature and cannot generate long trajectories in a complex environment.
The Dijkstra algorithm proposed in [46] enables UAVs to perform environmental tasks
efficiently by using the optimal battery level and reaching the target point in the shortest
possible time. However, as the network scale increases, the algorithm takes a long time to
provide a solution, making it unsuitable for real-time trajectory planning. The A* algorithm,
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as discussed in [47], selects suitable node pairs and evaluates the shortest path for UAVs
based on feasible node pairs in a known static environment to address this issue. Although
the A* algorithm does not provide a continuous path, it ensures that the shortest path is
followed in the direction of the targeted node. However, this algorithm is not practical in a
dynamic environment. To overcome this, the D* algorithm and its variants, as reviewed
in [48], are efficient tools for quick re-planning in a cluttered environment. The D* algorithm
updates the cost of new nodes, allowing the use of prior paths instead of re-planning the
entire path. However, D* and its variants do not guarantee the quality of the solution in a
large dynamic environment.

In order to design an effective path planning model for a UAV, the discrete space-based
traveling salesman problem (TSP) [49] is utilized to search for the optimal shortest path
for the UAV to travel through a fixed number of cities, with each city only being visited
once. The UAV must also return to the starting city within a fixed flight time for battery
charging. However, the TSP is an offline algorithm, so when a new city appears in the
UAV’s path, the cost of the new city is updated from the starting point, resulting in the
entire path being replanned from the start to the new end, which is a major drawback. The
TSP is a challenging NP-hard problem and can be difficult to solve in polynomial time
unless P = NP. Two approaches are available when dealing with the challenging NP-hard
problem in TSP. The first involves using heuristics, such as 2-OPT and 3-OPT, to quickly
generate near-optimal tours through local improvement algorithms [50]. The second
approach is to utilize evolutionary optimization algorithms, such as genetic algorithm (GA),
particle swarm optimization (PSO), and ant colony optimization (ACO), which have proven
to be effective in minimizing the total distance travelled by the salesman in real-world
scenarios [51]. While the GA is a good solution for obtaining an appropriate path for a
UAV, it can be relatively slow, making it inefficient for modern path planning problems that
require fast performance [52]. On the other hand, the PSO is good at local optimization and
can be used in combination with a GA that is good at global optimization [53]. The ACO
is also effective in solving the UAV path planning problem, but it requires a significant
amount of data to find the optimal solution, has a slow iteration speed, and demands much
more simulation time [54]. Therefore, a combination of these algorithms may be necessary
to effectively solve the UAV path planning problem.

Reinforcement learning (RL) is a popular AI tool used to tackle complex problems
such as trajectory design and sum-rate optimization, which are critical challenges due to the
continuous environmental variation over time. Indeed, solving mathematical optimization
models is only possible when a priori input data are available or requires too high complex-
ity and computational time. Recent studies [55–57] proposed optimal trajectory design for
UAVs using Q-learning to maximize the sum rate [55], increase the QoE of users [56], and
enhance the number and fairness of users served [57]. However, Q-learning has a drawback
in that the number of states increases exponentially with the number of input variables,
and its memory usage also increases sharply. Due to the mobility of both ground and aerial
users, the curse of dimensionality can cause Q-learning to fail. As a result, solving the
trajectory design problem in a large and highly dynamic environment is a challenging task.
A machine learning (ML) technique has been proposed in [58] to optimize the flight path
of UAVs in order to meet the needs of ground users within specific zones during set time
intervals. Another study in [59] explored a multi-agent Q-learning-based method to design
the UAV’s flight path based on predicting the movement of the user to maximize the sum
rate. Additionally, a meta-learning algorithm was introduced in [60] to optimize the UAV’s
trajectory while meeting the uncertain and variable service demands of the GUs. However,
these reinforcement learning-based solutions can only work in certain environments and
are unsuitable for highly dynamic and unpredictable environments. A deep Q-learning
(DQL) algorithm was introduced in [61] to enable UAVs to provide network service for
ground users in rapidly changing environments autonomously. However, the user mobility
model in this algorithm is simple and does not account for ground users moving to different
positions multiple times, resulting in inadequate trajectory results for different paths.
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In this work, we tackled the challenge of designing a UAV trajectory by treating it as
a traveling salesman with profit problem (TSPWP). We leveraged the potent 2-OPT local
search algorithm to attain an optimal offline solution. We then converted the resulting TSP
instances from diverse examples into graphs and trained the UAV using them. This allowed
the UAV to comprehend the properties of the TSP graphs and establish a world model
that includes a hierarchical and multi-scale representation. This world model empowers
the UAV to figure out the TSP strategy to solve the problem and implicitly discover the
objective function. Our approach enables the UAV to deduce optimal routes by utilizing
the beliefs encoded in the world model when confronted with a new realization. This
significantly helps the UAV ascertain the best solution, even in situations where there are
discrepancies between what it knows and what it sees.

3. System Model and Problem Formulation

Consider a UAV-assisted wireless network, as shown in Figure 2, with a single UAV
acting as a flying base station (FBS) to serve U ground users (GUs) distributed randomly
across a geographical area and requesting uplink data service. GUs that demand the data
service are introduced as active users; others are so-called inactive users, as illustrated
in Figure 2. It is assumed that the GUs are partitioned into N distinct groups, each of
which is defined as a hotspot area. The UAV’s mission is to fly from a start location,
move towards hotspots with high data service requests, and then return to the initial
location within a time period T for battery charging. Thus, the UAV’s initial (l0) and
final (lT ) locations are predefined, represented by l0 = lT = [x0, y0, z0]. It is important
to note that the variable T is directly proportional to the number of available hotspots
(N). As N increases, T also increases and vice versa. The UAV adjusts its deployment
location at each flight slot according to the users realization forming a trajectory denoted
by qu(t) = [xu(t), yu(t), zu(t)]. The sequence tracing UAV’s travels among the available
hotspots during the flight time duration is given by q̄u = [h1, . . . , hN′ ], where hn ∈ N
is the nth hotspot served by the UAV and N′ is the total number of the hotspots served
along the trajectory. Let L be the set of all possible trajectories the UAV might follow and
Pr(hn+1|hn, τhn+1) be the probability to move toward hotspot hn+1 after being in hn (visited
at time T − τhn ), where τhn+1 is the remaining time to go back to the original location after

serving hn+1. The set of available hotspot areas is denoted as N ∆
= {hn = h1, h2, . . . , hN}

and GUs across the total geographical area are denoted as K ∆
= {Kn = K1, K2, . . . , KN},

where Kn is the set of users belonging to the nth hotspot and each GU belongs to a single
hotspot where the coordinate of each GU is given by pkn

= [xkn , ykn ]. Each hotspot n is
characterized by its center pn = [xn, yn] and radius rn representing the coverage range and
the average data rate Rn that depends on the number of active users in hotspot n where
Rn ∈ R, such thatR ∆

= {Rn = R1, R2, . . . , RN}.
To capture the dynamic nature of the network, the UAV flight time (T) is discretized

into a set T of M equal time slots where the length of each time slot is t = ( T
M ). Due to

its short duration, the UAV’s location, uplink data requests and channel conditions are
considered fixed in each t. Furthermore, in the considered network, the UAV assigns a
set of uplink resource blocks (RBs) to serve the active GUs in a specific hotspot (one RB
for each active GU) who transmit their data over the allocated RBs using the orthogonal
frequency division multiple access (OFDMA) scheme.

In our network, the air-to-ground signal propagation is adopted and a probabilistic
path loss model subject to random line-of-sight (LoS) and non-line-of-sight (NLOS) condi-
tions is considered [62]. The channel gain between a GU (kn ∈ Kn) and a UAV (u) can be
expressed as:

gkn ,u(t) =
1

K0dα
kn ,u(t)

[PrLoSµLoS + PrNLoSµNLoS]
−1, (1)

where K0 =
( 4π fc

c
)2, fc is the carrier frequency, c is the speed of light, α is the path loss

exponent, and PrLoS and PrNLoS are the LoS and NLoS probabilities, respectively. µLoS and
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µNLoS are additional attenuation factors to the free-space propagation for LoS and NLoS
links, respectively. The distance between a GU (kn) and the UAV at time slot t is given by:

dkn ,u(t) =
√

hu(t)2 +
(
xkn(t)− xu(t)

)2
+
(
ykn(t)− yu(t)

)2. (2)

The average achievable data rate of the set of users in hotspot n is calculated as:

rKn =
Kn

∑
kn=1

rkn =
Kn

∑
kn=1

Bkn log2

(
1 +

pkn gkn ,u(t)
σ2

)
, (3)

where Bkn is the bandwidth of the RB allocated to GU (kn), pkn is the transmit power of GU
(kn), and σ2 = Bkn N0 is the power spectral density of the additive white Gaussian noise
(AWGN).

H

R

UAV

UAV

UAV

UAV-BS Active Ground Users Inactive Ground Users Trajectory Signal

Figure 2. Illustration of the system model.

In this work, we focus on UAV trajectory design that can maximize the total sum-rate
in the cell. Therefore, our optimization objective can be formulated as:

max
qu∈L

rsum =
N′

∑
hn=1

Kn

∑
kn=1

rkn

N′−1

∏
hn=1

Pr(hn+1|hn, τhn+1) (4a)

s.t. ki ∩ k j = φ, i 6= j, ∀i, j ∈ N , (4b)

t(qu) ≤ T, qu ∈ L, (4c)

0 ≤ Pr(hn+1|hn, τhn+1) ≤ 1, 1 ≤ hn ≤ N′ − 1, (4d)

rkn ≥ r0, ∀kn, (4e)

0 ≤ pkn ≤ pmax, ∀kn. (4f)

Constraint (4b) indicates that each GU belongs to a specific hotspot. (4c) implies that the
UAV must go back to the initial location before T, where T is directly proportional to N.
If N increases, T will also increase; if N decreases, T will also decrease. Furthermore, (4e)
represents the sum-rate requirement for each GU and (4f) depicts the power allocation
constraint. It is worth noting that in this paper, the number of hotspots remains constant
in a certain mission (realization). No new hotspots emerge nor do any existing hotspots
disappear while the UAV is solving a specific realization.

The symbols used in the article and their meanings are summarized in Table 1.
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Table 1. Variables Description.

Symbol Meaning

U Ground users (GUs)
N Number of hotspots
T Battery life time
l0 UAV’s initial location
lT UAV’s final location

qu(t) UAV’s trajectory
q̄u Sequence of hotspots served by the UAV
hn nth hotspot served by the UAV
N′ Total number of hotspots served along the trajectory
L Set of possible trajectories to follow by the UAV

Pr(hn+1|hn , τn+1) Probability to move toward hotspot hn+1 after visiting hn at time T − τhn
τhn Remaining time to go back to the original location after serving hn
N The set of available hotspot areas
K The set of GUs distributed across the total geographical area
Kn The set of GUs belonging to the nth hotspot

pkn = [xkn , ykn ] The coordinate of GU kn belonging to the Kn
pn = [xn , yn ] Center of nth hotspot

rn Radius of the nth hotspot
R The set of the average data rate of all the available hotspots
Rn Data rate of the nth hotspot
t Time slot
u UAV

gkn ,u(t) Channel gain between GU (kn) and UAV (u)
K Channel factor
fc Carrier frequency
c Speed of light
α Path loss exponent

PrLoS Probability of line-of-sight
PrNLoS Probability of non-line-of-sight

µLoS Additional attenuation for line-of-sight links
µNLoS Additional attenuation for non-line-of-sight links

dkn ,u(t) Distance between GU kn and UAV u at time t
rKn Achievable data rate in hotspot n
Bkn The bandwidth of the resource block (RB) allocated to user kn
pkn Transmit power of user kn
σ2 Power spectral density of the additive white Gaussian noise
D Training set of realizations representing M examples
L† Set of the sequences of hotspots selected by TSPWP to solve M examples
Q† Set of trajectory instances generated by TSPWP
S Set of clusters generated by GNG
l̃m Generalized letter

Al̃m Adjacency matrix
Al̃ Global adjacency matrix
Πl̃ Global transition matrix
D Degree matrix

Θem Tokens
ΠΘ Tokens transition matrix

wo
T,em Words on order

wp
T,em Words on motion

wc
T,em Coupling word

4. Proposed Goal-Directed Trajectory Design Method

In this section, we propose a goal-directed method for UAV trajectory design based
on active inference. The latter is a model-based data-driven approach that rests upon the
idea of using an internal generative model (world model) to cast the surrounding environ-
ment and planning actions allowing realization goals to be targeted by the agent. First,
we present the perceptual learning of desired observation based on a classical traveling
salesman problem (TSP) with 2-OPT [63]. Then, we show how to build the world model
representing the surrounding environment by encoding the dynamic rules behind the
optimal TSP trajectories.

4.1. TSP with Profits Instances

The traditional TSP is a classic algorithm problem in computer science and operation
research describing how a salesman travels to several vertices (cities) and returns to the
terminal (initial location), aiming to minimize the travel cost (i.e., the travel distance)
while ensuring visiting each city only once [63]. In this work, we adopt the TSP with
profits (TSPWP) with the 2-OPT local search algorithm [39], which is a generalization of
the traditional TSP where the overall goal is the simultaneous optimization of the collected
profit and the travel cost, knowing that each vertex (city) is associated with a profit. Thus,
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TSPWP is used to generate optimal trajectory instances offline that the UAV might follow to
serve more users within a predefined time. Given a list of hotspots where the active users
are distributed, as shown in Figure 2, and the cost (cij) of transiting between each pair of
hotspots, the problem is to find the optimal route that visits each hotspot once and returns
to the origin, providing a maximum sum-rate and a minimum completion time.

Let G = (V , E) be a graph where V = {v1, . . . , vN} is a set of N vertices and E is a set
of edges. Let pn be the center of vn and rKn the profit associated with vn and a cost cij be
associated with each edge (vi, vj) ∈ E , such that:

cij = d(pi, pj) =
√
(xi − xj)2 + (yi − yj)2. (5)

The objective function of the TSPWP with N hotspots can be defined as:

min α ∑
(vi ,vj)∈E

cijxij − β ∑
vj∈V

rKj yj, (6a)

s.t. ∑
vi∈V

vj∈V\{vi}

xij = yi, (6b)

∑
vj∈V

vi∈V\{vj}

xij = yj, (6c)

xij ∈ {0, 1}, (vi, vj) ∈ E , (6d)

yij ∈ {0, 1}, (vi ∈ V), (6e)

α + β = 1. (6f)

Constraints (6b) and (6c) are the assignment constraints where xij is a binary variable
associated with edge (vi, vj), equal to 1 if and only if (vi, vj) is used in the solution, and yi is
a binary variable associated with vertex vi ∈ V, equal to 1 if and only if vi is visited.

4.2. World Model

The proposed approach consists of two computational units. The first unit aims to
learn the surrounding environment by representing the statistical structure of the sensory
signals (world model). The second is the decision-making unit seeking to perform actions
minimizing (or maximizing) a cost function describing preferred outcomes (similar to
rewards in RL). The world model is an internal generative model representing the sur-
rounding environment (both physical and wireless environment) utilized by the UAV to
make predictions about incoming sensory signals. In this subsection, given the TSPWP
instances generated previously from several experiences (i.e., realizations of users distri-
bution and users requests), our objective is to encode the dynamic rules generating those
instances in a probabilistic graphical model capable of reflecting the graph structure of the
TSPWP instances at multiple hierarchical levels and different time scales.

4.2.1. Dictionary Learning

Each TSPWP instance comprises the trajectory the UAV follows to reach the targeted
hotspots in a particular order. Hence, the objective is to form a dictionary capturing
the TSPWP graph structure, allowing one to predict the most probable hotspot to target
conditioned on a specific location and the most probable path to follow to reach that
targeted hotspot. Thus, the dictionary consists of two sub-dictionaries. The first encodes
the rules generated the sequence order of the hotspots that the UAV intends to serve. By
contrast, the second sub-dictionary encodes the rules generated the motion to travel among
to neighboring hotspots. Figure 3 illustrates the process of forming the global dictionary.
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GDBN 2

Coupled Multi-

scale GDBN

Dictionary Formation

Sub-Dictionary 2

Sub-Dictionary 1

𝟏
𝟐

𝟑

𝟒

𝟓

𝟔

Figure 3. The procedure to form the global dictionary.

(1) TSPWP offline execution:
Let D ∆

= {Dm = D1, D2, . . . , DM} be a training set of realizations representing M
examples of users’ distribution in the cell, where Dm is the m-th realization and M is the
total number of realizations. Each realization consists of the number of hotspots and their
locations, the number of users inside each hotspot as well as the users’ access request and
users’ locations. The TSPWP algorithm will be employed offline to solve all the examples
in D. Consequently, let L† ∆

= {Lm = L1, L2, . . . , LM} be a set of the sequences of hotspots
selected by the UAV using TSPWP to solve the M examples, where Lm = {h1, . . . , hN′}
is the m-th sequence of hotspots selected by the UAV to solve the m-th example and let
Q† ∆

= {qm
u = q1

u, q2
u, . . . , qM

u } be the set of trajectory instances generated by the TSPWP,
where qm

u is the m-th TSPWP trajectory generated to solve the m-th example.
(2) Unsupervised Clustering:
For each of the generated trajectories in Q†, a growing neural gas (GNG) is employed

on the generalized errors (GEs) provided by the unmotivated Kalman filter (UKF) [64] to
discover the dynamic rules driving the different trajectories. Let S be the set of clusters
generated by GNG and defined as:

S ∆
= {s f = s1, s2, . . . , sF}, (7)

where s f is the f -th cluster following a Gaussian distribution such that s f ∼ N (µs f , Σs f ),
and F is the total number of clusters. Clustering the trajectory data allows obtaining
knowledge that reveals the latent characteristics of the UAV’s motion.

(3) Sub-Dictionary 1:
Accordingly, from L† we form a sub-dictionary encoding the decisions made by

the UAV consisting of the sequences of targeted hotspots. We define a letter lm = hm
representing a starting hotspot hm at a given time and a generalized letter defined as:

l̃m = [hm, E(hm, hm′)], (8)

consisting of the letter itself and its derivative illustrating the event of traveling from hotspot
hm to hotspot hm′ . It is of note that a generalized letter l̃m can be seen as a pair of one node
ni = hm and one outgoing arc (ni, nj) from node ni to node nj, as shown in Figure 3. Then,
for each element Lm in L†, we transform the sequence of generalized letters expressing that
experience into the following sequence: {l̃m,τ1 , l̃m,τ2 , . . . , l̃m,τT} describing the transitions
between adjacent event-steps. As mentioned before, the generalized letters of a certain expe-
rience m can be seen as an unweighted graph Gm = (Vm, Em), where Vm = {lm,τ1 , . . . , lm,τT}
is a set of vertices represented by the letters and Em = {l̇m,τ1 , . . . , l̇m,τT} is the set of edges
represented by the letters’ derivatives. The adjacency matrix Al̃m

that captures the pattern
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of co-occurrences in the generalized letters sequence is an τT × τT zero–one matrix defined
as Al̃m

= [aij], where:

aij =

{
1 if (i, j) ∈ E ,
0 Otherwise.

(9)

After executing the M examples, we can form the global adjacency matrix Al̃ = [ai′ ,j′ ]

comprising all the generalized letters (forming a global graph Gglobal = (Vglobal , Eglobal))
that occurred while solving the M examples, such that:

ai′ ,j′ =

{
1 if (i

′
, j
′
) ∈ Eglobal ,

0 Otherwise.
(10)

Where element ai′ ,j′ denotes the number of times that a generalized letter l̃i′ is followed by

generalized letter l̃j′ during two consecutive events in the global graph Gglobal .
The degree of each letter i = lm,τi is the number of its adjacent letters (or the number

of outgoing edges at that letter) calculated as: di = ∑
|Vm |
j=1 ai′ j′ . Considering the degrees of

all letters, we can construct the degree matrix D, which is an |Vm| × |Vm| diagonal matrix
defined as:

Di′ j′ =

{
di′ if i

′
= j

′
,

0 Otherwise.
(11)

Consequently, the global transition matrix can be constructed in the following way:

Πl̃ = D−1Al̃ =


Pr(l̃1|l̃1) Pr(l̃1|l̃2) . . . Pr(l̃1|l̃M′ )

Pr(l̃2|l̃1) Pr(l̃2|l̃2) . . . Pr(l̃2|l̃M′ )
...

...
...

...
Pr(l̃M′ |l̃1) Pr(l̃M′ |l̃2) . . . Pr(l̃M′ |l̃M′ )

, (12)

where 0 ≤ Pr(l̃ĩ|l̃ j̃) ≤ 1 and ∑ J̃
j̃=1

Pr(l̃ĩ|l̃ j̃) = 1, ∀ j̃. During a flight mission that lasts
for a time period T, the order of visited hotspots is recorded in a word called wo

T =
{l̃m,τ1 , l̃m,τ2 , . . . , l̃m,τT}.

(4) Sub-Dictionary 2:
Each event em = E(hm, hm′) can be associated with a local trajectory followed by the

UAV to pass from hm to hm′ , which can be represented by a sequence of discrete clusters.
This is possible after associating the local trajectory with S defined in (7) to form a token
comprising a sequence of letters depicting the firing sequence of clusters (neurons) from S
during a certain event, i.e, em. Hence, we define a token consisting of a set of clusters and
representing a local path between two adjacent hotspots as follows:

Θem = {sem ,t1 , sem ,t2 , . . . , sem ,tτ}, (13)

where sem ,ti ∈ S , and tτ is the duration of event em specified in the number of time slots.
The stochastic process decomposing the interdependent nature of the tokens that make up
the local trajectories can be illustrated in a transition matrix defined as:

ΠΘ =


Pr(Θe1 |Θe1) Pr(Θe1 |Θe2) . . . Pr(Θe1 |ΘeM )
Pr(Θe2 |Θe1) Pr(Θe2 |Θe2) . . . Pr(Θe2 |ΘeM )

...
...

...
...

Pr(ΘeM |Θe1) Pr(ΘeM |Θe2) . . . Pr(ΘeM |ΘeM )

, (14)

where Pr(Θei |Θej) depicts the transition probability from token i to token j, such that

0 ≤ Pr(Θei |Θej) ≤ 1 and ∑J
j=1 Pr(Θei |Θej) = 1, ∀j. During a flight mission of duration
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T, the tokens that represent the entire trajectory are recorded in a word called wp
T =

{Θej , Θej+1 , . . . , ΘeJ}.

4.2.2. The Proposed Hierarchical Graphical Representation

Introducing Multi-Scale GDBN: We can see that the UAV’s dynamic behavior man-
ifests at multiple time scales, namely slot scale and event scale. It is essential to have an
efficient representation that can model this dynamic behavior, including a hierarchical
structure and incorporating Markov chains at various time scales. To achieve this, we
propose to learn two separated dynamic models representing the dynamic behavior of the
UAV when selecting the targeted hotspots (i.e., the sequence of hotspots to serve during the
flight time) and when moving between two consecutive hotspots (i.e., the UAV’s motion
path). The proposed representation considers observations stemming from two different
behavioral processes with different temporal resolutions. The first process determines the
decisions made by the UAV at the event scale, while the second process determines the
UAV’s motion at the finer time scale (slot scale), which is nested within the event scale.

The first dynamic model entails arranging particular elements of the dictionary (sub-
dictionary 1), particularly the generalized letters referenced in (8), into a multi-scale gen-
eralized dynamic Bayesian network (M-GDBN) displayed in Figure 4. The M-GDBN is
a hierarchical probabilistic graphical model that consists of four levels, two of which are
continuous and two of which are discrete. Each level corresponds to a distinct hierarchy
and time scale. Furthermore, M-GDBN explains how the latent state variables and the ob-
servation are probabilistically linked. The explanation for the evolution of hidden variables
at multiple levels is provided based on the following dynamic models:

wo
T = f(1)(wo

T−1) + ηT , (15a)

l̃T,em = f(2)(l̃T,em−1 , wo
T) + ηT,em , (15b)

x̃l
T,em

= g(1)(x̃l
T,em−1

, l̃T,em) + ηT,em , (15c)

z̃l
T,em

= g(2)(x̃l
T,em

) + νT,em . (15d)

The discrete state equations in (15a) and (15b) illustrate how words and generalized let-
ters change over time at various temporal scales. f(1) and f(2) are nonlinear functions that ex-
perience random fluctuations in the states influenced by higher levels and characterized by
ηT ∼ N (0, Q) and ηT,em ∼ N (0, Q). Going down the hierarchy, Equations (15c) and (15d)
stand for the continuous state equation and the observation model, explaining the con-
tinuous state dynamic evolution and the mapping from the continuous state space to the
measurement space, respectively. Observations are subject to random fluctuations playing
the role of observation noise characterized by νT,em ∼ N (0, σ2

z̃T,em
). Equations (15a), (15b),

(15c), and (15d) can be expressed in probabilistic form as Pr(wo
T |wo

T−1), Pr(l̃T,em |l̃T,em−1 , wo
T),

Pr(x̃l
T,em
|x̃l

T,em−1
, l̃T,em), and Pr(z̃l

T,em
|x̃l

T,em−1
), respectively. Thus, the consistent global model

(i.e., the joint distribution function) corresponding to the network in Figure 4 is given by:

Pr
(
W o, L̃, X̃ l , Z̃ l) = ∏

T
Pr
(
wo

T
)

∏
T,em

Pr
(
l̃T,em |wo

T
)
Pr
(

x̃l
T,em
|l̃T,em

)
Pr
(
z̃l

T,em
|x̃l

T,em

)
. (16)

M-GDBN is a directed acyclic graph where every node represents a random variable or
uncertain quantity that can have multiple values. The arcs indicate a direct causal influence
between linked variables, and the strength of these influences is measured by conditional
probabilities. To determine the structure of M-GDBN, a node is assigned to each variable,
and arrows are drawn towards it from nodes that are perceived to be its direct cause. To
determine the strength of direct influences, each variable is assigned a link matrix. This
matrix represents the estimated conditional probabilities of the event based on the parent
set’s value combination.
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𝒘𝑻
𝐨 𝒘𝑻+𝟏

𝐨
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ሚ𝒍𝑻,𝒆𝒎
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𝒍
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𝒍
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𝒍

Figure 4. A multi-scale GDBN representing sub-dictionary 1 that encodes the dynamic rules generat-
ing UAV’s hotspots sequence in different experiences.

In Figure 5, there is another multi-scale GDBN that deals with the dictionary com-
ponents concerning the UAV’s dynamic motion (sub-dictionary 2). This second network
has three discrete levels and two continuous levels. The variables at the various levels
explain how the observations (i.e., the UAV’s trajectory) were generated. For instance, at
the word scale, each word is made up of tokens that were realized at different events (event
scale). Each token, in turn, is composed of discrete and continuous letters that generate
observations at different slots.

In order to comprehend the generative process forming the UAV’s global trajectory,
we can refer to the dynamic models below:

wp
T = f(1)(wp

T−1) + ηT , (17a)

ΘT,em = f(2)(ΘT,em−1 , wp
T) + ηT , (17b)

s̃em ,ti = f(3)(s̃em ,ti−1 , ΘT,em) + ηT,em , (17c)

x̃em ,ti = g(1)(x̃em−1,ti−1 , s̃em ,ti ) + ηem ,ti , (17d)

z̃em ,ti = g(2)(x̃em ,ti ) + νem ,ti . (17e)

The discrete state equations in (17a), (17b), and (17c) show how the trajectory words, tokens,
and trajectory clusters change over time at various temporal scales. These equations use
non-linear functions f(1), f(2), and f(3) subject to process noise ηT ∼ N (0, Q). The contin-
uous state equation in (17d) explains how the trajectory states evolve over time, while
(17e) links observations to these states. The equations mentioned earlier can be expressed
probabilistically as follows: Pr(wp

T |w
p
T−1), Pr(ΘT,em |ΘT,em−1 , wp

T), Pr(s̃em ,ti |s̃em ,ti−1 , ΘT,em−1),
Pr(x̃em ,ti |x̃em ,ti−1 , s̃em ,ti ), and Pr(z̃em ,ti |x̃em ,ti ), respectively. The network in Figure 5 has a com-
patible global model, represented by a joint distribution function that can be expressed as:

Pr
(
W p, Φ, S̃ , X̃ , Z̃

)
= ∏

T
Pr
(
wp

T
)

∏
T,em

Pr
(
ΘT,em |w

p
T
)
Pr
(
s̃T,em
|x̃T,em

)
Pr
(
z̃T,em
|x̃T,em

)
. (18)

Coupled-MGDBN: We have organized the dictionaries we obtained into a coupled
multi-scale generalized dynamic Bayesian network (C-MGDBN), which includes the two
dynamic models. The first model represents the sequence of hotspots the UAV selects to
solve the realizations encountered during training, which is structured in sub-dictionary
1. Meanwhile, the second model represents the UAV’s path to travel between consecutive
hotspots, which is structured in sub-dictionary 2. By coupling these two models stochasti-
cally in the C-MGDBN, we can incorporate more complex and sophisticated dynamics and
model stochastic representations of multiple behaviors. Additionally, we have added an
efficient mechanism to the C-MGDBN that captures multiple event and state transitions,
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which help explain how the UAV approached a particular task (such as trajectory design)
in different examples.

𝚯𝒆𝒎 𝚯𝒆𝒎+𝟏

… …

… …

… …

… …
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𝒘𝑻
𝒑

… …

Figure 5. A multi-scale GDBN representing sub-dictionary 2 that encodes the dynamic rules generat-
ing the UAV’s positions to travel among the hotspots in different events.

We coupled the two M-GDBN models mentioned earlier at the event scale as shown in
Figure 6. This was done because multiple events make up a complete mission. We have yet
to investigate coupling at the word scale. However, this coupling technique can be useful
if the UAV is performing various missions. For instance, after serving active users in a
specific cell, the UAV can return to its initial station for recharging before proceeding to
another mission. In this way, by learning the dynamics of real-life scenarios, which include
users’ activities and the emergence of hotspots, the UAV can plan its actions at the word
scale. For the rest of the paper, we will assume that the UAV is making plans at both the
event and slot scales.

… …

… …

ሚ𝒍𝑻,𝒆𝒎
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𝒘𝑻,𝒆𝒎
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… …

… …
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𝒙𝒆𝒎+𝟏,𝒕𝒊−𝟏 𝒙𝒆𝒎+𝟏,𝒕𝒊

𝒛𝒆𝒎+𝟏,𝒕𝒊−𝟏 𝒛𝒆𝒎+𝟏,𝒕𝒊

…

Figure 6. A coupled multi-scale GDBN (C-MGDBN) structures the acquired dictionaries by coupling
the corresponding models at the event scale.

In the C-MGDBN depicted in Figure 6, the current discrete state is influenced by the
state of its own chain and that of the neighboring chain from the previous event step.
To avoid overwhelming complexity, we conducted a meta-clustering process by merging
dependent nodes in the connected network into a single higher-dimensional node. In
other words, Pr(ΘT,em+1 |ΘT,em , l̃T,em), and vice versa Pr(l̃T,em+1 |l̃T,em , ΘT,em). To estimate
these probabilities we need two transition matrices encoding the probabilistic relationships
between words and tokens. Merging letters and tokens allows to simplify the case by
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coupling them into a higher node wc
T,em

= [l̃T,em , ΘT,em ]. The evolution of the coupling
words wc

T,em
can be captured by the transition matrix defined as:

Πwc =


Pr(wc

1|wc
1) Pr(wc

1|wc
2) . . . Pr(wc

1|wc
C)

Pr(wc
2|wc

1) Pr(wc
2|wc

2) . . . Pr(wc
2|wc

C)
...

...
...

...
Pr(wc

C|wc
1) Pr(wc

C|wc
2) . . . Pr(wc

C|wc
C)

, (19)

where 0 ≤ Pr(wc
i |wc

j ) ≤ 1 and ∑J
j=1 Pr(wl

i |wc
j ) = 1, ∀j. Πwc can be considered as a com-

bined transition matrix, formed by coupling (12) with (14).

4.3. Active Inference

During the active inference process, a UAV can learn, adapt, and perceive its body
as a unit while interacting with the environment. The UAV’s world model can be defined
as a partially observable Markov decision process (POMDP). It involves a probability
distribution Pr(Z l ,Z , X̃ l , X̃ ,S , L̃,Al ,Ap,W) that determines the joint probability of the
UAV’s observations, belief states, actions, and words (i.e., policies). In simpler terms, a
word (or policy) refers to a set of actions. This concept is illustrated through events in
Figure 7, and it can be expressed in the following format:

Pr(Z l ,Z , X̃ l , X̃ ,S , L̃,Al ,Ap,W) = Pr(l̃0)Pr(x̃l
0)Pr(wc

0)

Em

∏
em=1

Pr(z̃l
em |x̃el

m
)Pr(x̃l

em |l̃em)Pr(l̃em |wc
em)Pr(wc

em |a
l
em−1

)Pr(al
em−1
|wc

em−1
)×

Pr(s̃0)Pr(x̃0)
Ti

∏
ti=1

Pr(z̃em ,ti |x̃em ,ti )Pr(x̃em ,ti |s̃em ,ti )Pr(s̃em ,ti |a
p
em ,ti−1

)Pr(ap
em ,ti−1

|ap
em ,ti−2

, wc
em−1

).

(20)
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Figure 7. An active multi-scale GDBN involving the active states representing the actions that the
UAV can perform and affect the dynamic rules generating UAV’s positions to travel among the
hotspots in different events.

4.3.1. Action Selection

The UAV performs two types of actions: one related to the targeted hotspot and the
other pertaining to controlling its motion while moving towards it. To do this, the UAV
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relies on two AIn tables to select these actions. The first table encodes the relationship
between the words and the discrete actions at the event scale defined as:

AIn1 =


Pr(al

1|wc
1) Pr(al

2|wc
1) . . . Pr(al

U |wc
1)

Pr(al
1|wc

2) Pr(al
2|wc

2) . . . Pr(al
U |wc

2)
...

...
...

...
Pr(al

1|wc
C) Pr(al

2|wc
C) . . . Pr(al

U |wc
C)

, (21)

where 0 ≤ Pr(al
i |wc

j ) ≤ 1 and ∑J
j=1 Pr(al

i |wc
j ) = 1, ∀j. The other table encodes the relation-

ship between the words and the continuous actions at the slot scale:

AIn2 =


Pr(ap

1 |wc
1) Pr(ap

2 |wc
1) . . . Pr(ap

U |wc
1)

Pr(ap
1 |wc

2) Pr(ap
2 |wc

2) . . . Pr(ap
U |wc

2)
...

...
...

...
Pr(ap

1 |wc
C) Pr(ap

2 |wc
C) . . . Pr(ap

U |wc
C)

, (22)

where 0 ≤ Pr(ap
i |w

c
j ) ≤ 1 and ∑J

j=1 Pr(ap
i |w

c
j ) = 1, ∀j.

The decisions made by the UAV to select actions that represent the targeted hotspot
depend on the current word (i.e., the current location of the UAV), which is determined by
the probability entries in (21). Thus, discrete actions are sampled from:

al
em ∼ Pr(.|wc

em), (23)

where al
em is the selected discrete action at event em that impacts future environmental

hidden states and observations at event em+1. This ensures that the decisions made by
the UAV are targeted towards the desired hotspots. Once the targeted hotspot is chosen
(i.e., al

em ), the UAV will then select a second action (ap
em ) that dictates how it will reach the

targeted hotspot. This action is determined by the UAV’s starting hotspot and UAV’s target
(represented by word wc

em ) and involves a series of actions at a more detailed time scale
(slot scale). At the beginning of event em, the UAV selects the initial continuous action at
the initial time slot t1 of that event according to:

ap
em ,t1

= randint(1, |Ap|), (24)

where Ap = {North, South, East, West}, |Ap| is the total number of available predefined
actions, and randint(1, |Ap|) is a function representing a uniform distribution that generates
an integer uniformly between 1 and |Ap|. During event em, the following continuous
actions in the subsequent time slots ti are chosen based on previous continuous actions and
prediction errors. More details on this will be explained later.

4.3.2. Prediction and Perception

The UAV can anticipate the outcomes of joint actions at different time scales and
levels of hierarchy. On a long-term scale, the UAV expects an increase in the number of
served users after each event and every discrete action representing the targeted hotspots.
This helps the UAV achieve its primary goal. On a smaller scale, while moving towards
the targeted hotspot, the UAV anticipates reaching its second goal with each continuous
action it takes during each time slot. Hence, the predictions are performed at two different
temporal scales.

At the event scale, to predict the coupling word wc
T,em

, UAV employs a particle fil-

ter (PF) that propagates a set {wc(n)
T,em

, ω
l(n)
T,em
}N

n=1 of equally weighted particles sampled
from the matrix Πwc defined in (19). The UAV expresses its belief of how a specific
word changes into another based on the performed action through a probabilistic form
Pr(wc(n)

T,em
|wc(n)

T,em−1
, al

T,em−1
). The predicted coupled word comprises the predicted general-



Sensors 2023, 23, 6873 17 of 36

ized letter (l̃(n)T,em
) and predicted token (Θ(n)

T,em
) since the word is formed by coupling these

two components. For each propagated particle, UAV employs a Kalman filter (KF) to
predict the continuous state x̃l(n)

T,em
explaining the dynamics of the data rate. The KF relies

on the dynamic model defined in (15c), which can be represented by the probability dis-
tribution Pr(x̃l(n)

T,em
|x̃l(n)

T,em−1
, l̃(n)T,em

). The posterior refers to the updated belief that forms after
considering previous observations. It is connected to predictions and can be expressed as
follows: π(x̃l

T,em
) = Pr(x̃l(n)

T,em
, l̃(n)T,em

|z̃l
T,em−1

). As the UAV obtains new observations, diag-
nostic messages propagating in a bottom–up manner can be used to update the posterior
according to:

π(x̃l
T,em

) = π(x̃l
T,em

)× λ(x̃l
T,em

), (25)

where λ(x̃l
T,em

) = Pr(zl
T,em
|x̃l

T,em
). Likewise, particles weights are updated at the higher

level following:
ω

l(n)
T,em

= ω
l(n)
T,em
× λ(l̃T,em), (26)

where:
λ(l̃T,em) = λ(x̃l

T,em
)Pr(x̃l

T,em
|l̃T,em) = Pr(zl

T,em
|x̃l

T,em
)Pr(x̃l

T,em
|l̃T,em), (27)

and Pr(x̃l
T,em
|l̃T,em) ∼ N (µl̃T,em

, σl̃T,em
).

On the other hand, at the slot scale, the UAV predicts the consequence of the continuous
actions following the same approach explained earlier. By employing another PF, the
UAV can predict the evolution of the discrete states sem ,ti realizing the discrete zone of
the UAV’s trajectory forming a token Θem . The UAV believes that the discrete states
evolve in accordance with Pr(sem,ti

|sem,ti−1
, Θem , ap

em ,ti−1
). The PF propagates a set of particles

representing the predicted discrete states, {s(n)em ,ti
, ω

(n)
em ,ti
}N

n=1, that are sampled using the
transition matrix ΠΘ defined in (14). Consequently, a bank of KFs is employed to predict
the continuous states representing the UAV’s positions using the dynamic model defined
in (15d), which can be expressed as Pr(x̃em ,ti |x̃em ,ti−1 , s(n)em ,ti

). The posterior associated with
the predicted states is given by:

π(x̃em ,ti ) = Pr(x̃(n)em ,ti
, s(n)em ,ti

|z̃em ,ti−1
) =

∫
Pr(x̃em ,ti |x̃em ,ti−1 , s(n)em ,ti

)λ(x̃(n)em ,ti−1
)dx̃em ,ti−1 , (28)

where λ(x̃(n)em ,ti−1
) = Pr(z̃em ,ti−1

|x̃em ,ti−1) is the diagnostic message propagated in a bottom–
up manner after observing z̃em ,ti−1 at time slot ti−1. When a new observation is received,
diagnostic messages can be utilized to update the UAV’s belief in hidden states. The belief
in continuous states can be corrected by updating the posterior using:

π(x̃em ,ti ) = π(x̃em ,ti )× λ(x̃(n)em ,ti
). (29)

Meanwhile, the belief in discrete states can be updated by adjusting the weights of the
particles following:

ω
(n)
em ,ti

= ω
(n)
em ,ti
× λ(s̃em ,ti ), (30)

where λ(s̃em ,ti ) = λ(x̃em ,ti )Pr(x̃em ,ti |sem ,ti ).

4.3.3. Abnormality Measures and Action Update

At each level of the hierarchy, the messages that predict what should happen are
compared to the sensory messages that report what is actually happening. This comparison
results in several indicators of abnormalities and prediction errors. We can determine
how well the current observations match the model’s predictions by examining these
indicators at each level. Additionally, we can use the prediction errors to figure out how
to prevent these abnormalities from occurring in the future. The observations of the UAV
are influenced by its actions. Thus, if an abnormality is detected, it means that the actions
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taken were incorrect. The UAV can use the prediction errors to make necessary corrections
and prevent abnormalities in the future.

The UAV has the capability to evaluate ongoing actions by utilizing an abnormality
indicator that calculates the difference between predicted states and observations. This is
achieved through the calculation of the Bhattacharyya distance as follows:

Υx̃em ,ti
= −ln

(
BC
(
π(x̃em ,ti ), λ(x̃(n)em ,ti

)
))

= −ln
∫ √

π(x̃em ,ti )λ(x̃(n)em ,ti
)dx̃em ,ti , (31)

where BC is the Bhattacharyya coefficient. It is to note that during exploration, the UAV’s
expected states realize the target position, while during exploitation, the UAV’s expected
states are guided by the tokens.

The abnormality indicator defined in (31) is associated with prediction errors calcu-
lated as:

Ex̃em ,ti
= [x̃em ,ti , Ėx̃em ,ti

] = [x̃em ,ti , H−1Ez̃em ,ti
], (32)

where Ez̃em ,ti
∼ N (µEz̃em ,ti

, ΣEz̃em ,ti
) depicts the prediction errors computed in the observa-

tion space, which is characterized by the following statistical properties:

µ̃Ez̃em ,ti
= z̃em ,ti −Hx̃em ,ti , (33a)

ΣEz̃em ,ti
= HΣEz̃em ,ti

Hᵀ + R, (33b)

where (33a) is the Kalman innovation and (33b) is the innovation covariance.
In case the UAV encounters abnormal situations, it can use prediction errors to rectify

its previous actions through first-order Euler integration following:

ap
em ,ti

= ap
em ,ti−1

+ ∆ti µ̇x̃em ,ti
, (34)

where ∆ti is the step size.
On the other hand, the UAV can assess the discrete actions representing the targeted

hotspots only after completing a full mission that includes a sequence of events. This is
because the UAV needs to determine if the selected hotspots were efficiently reached in their
designated order to achieve the intended goal of maximizing the sum rate. As previously
stated, a series of actions (or generalized letters) form a word, and the UAV checks whether
the resulting word fulfills the intended goal. Therefore, to evaluate the formed word, it is
necessary to consider the cumulative abnormality indicator. This indicator adds up the
abnormalities that measure the divergence between what was expected and what was
observed at each event. The abnormality indicator itself is defined as:

Υx̃T,em
= −ln

(
BC
(
π(x̃T,em), λ(z̃T,em)

))
= −ln

∫ √
π(x̃T,em)λ(z̃T,em)dx̃T,em . (35)

while the cumulative abnormality indicator is defined as follows:

Υx̃T =
E

∑
em=1

Υx̃T,em
, (36)

where E is the total number of events that occur during the flight mission, which lasts for a
duration of T.

In case the UAV detects a high cumulative abnormality, this indicates that the entire
mission was unsuccessful. In this case, the UAV must correct the action selection process
by updating its strategy of forming the word. This can be done by updating the active
inference table defined in (21) as follows:

Pr(al
em |w

c
em) = Pr(al

em |w
c
em)− γ, (37)
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where the gradient γ determines the amount by which the probability should be decreased.
Additionally, if the mission is successful with minimal abnormalities, the transition

matrix specified in (12) will be modified as follows:

Pr(l̃i|l̃j) = Pr(l̃i|l̃j) + γ̄, (38)

where i and j are part of the successful word representing the sequence of hotspots visited
by the UAU during its successful mission and γ̄ is the gradient that determines the amount
by which the probability should be increased.

5. Numerical Results and Discussion

In this section, we will thoroughly assess how well the proposed framework performs
in designing a trajectory for the UAV that effectively allows it to attain the highest total
sum-rate possible with the cell. In our simulations, we examined a situation where a single
UAV is providing service to several users who are located in different hotspots across a
square geographic area of 1000× 1000 m2. The main simulation parameters are listed in
Table 2. It is assumed that the altitude of the UAV remains constant at zu = 100 m [65].
Throughout the training process, we place a total of N = 80 hotspots in various random
locations across the geographical area. The frequency of user presence and requests within
each hotspot adheres to the Poisson distribution. We generated a training setD that consists
of M examples corresponding to different realizations. Each realization (m) consists of
seven hotspots picked randomly from the N total hotspots, and the users’ requests in
each hotspot were generated following Poisson distribution. The TSPWP method was
used to solve the M examples in D, generating M trajectories (TSPWP instances) and M
sequences of the order in which the hotspots are visited, which were saved in L+ and Q+,
respectively.

Table 2. Simulation Parameters.

Parameter Value Parameter Value

Pu 1 W α 2
BRB 180 KHz σ2 −104 dBm
µLos 3 µNLos 23

N 80 M 1000

We evaluated the TSPWP performance by conducting a thorough analysis of com-
pletion time and cost with profit metrics for different numbers of hotspots to determine
the optimal α and β values mentioned in (6a). In Figure 8, we see how the completion
time of TSPWP was impacted by various α and β values, as well as changes in the number
of hotspots. Meanwhile, Figure 9 displays the TSPWP performance in terms of cost with
profit for different α and β settings while also altering the number of hotspots. It is evident
from Figure 8 that the completion time increases as the number of hotspots increases, as
having more hotspots makes the trajectory longer. It is worth noting that the cost with
profit rose gradually as the number of hotspots increased, especially between five and
twenty, as shown in Figure 9. However, after twenty hotspots, the cost with profit slightly
rose due to the reduction of profit (i.e., the accumulated sum-rate) from the cost (i.e., the
traveling distance between the hotspots). This effect became stable for higher hotspots and
had a minimal impact on the overall cost with profit. By analyzing the data, we have found
that the ideal α and β values for achieving both minimal completion time and maximum
profit with cost are 0.9 and 0.1, respectively. Therefore, we will use these values when
implementing TSPWP with 2-OPT.



Sensors 2023, 23, 6873 20 of 36

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

0.5

1

1.5

2

2.5

3
10

4

Figure 8. TSPWP’s completion time performance for varying alpha and beta values, as well as
changes in the number of hotspots.
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Figure 9. TSPWP’s cost with profit performance for varying alpha and beta values, as well as changes
in the number of hotspots.

To solve each realization m, we used the TSPWP with α = 0.9 and β = 0.1, as previ-
ously mentioned. The TSPWP with 2-OPT gave us the solution (i.e., the TSPWP instance),
which includes the trajectory and the order of the hotspots to visit. We then created two
sub-dictionaries from the M TSPWP instances. The first sub-dictionary comprised all the
words that made up the TSPWP trajectories, which use letters to represent the hotspots
(explained in Section 4.2.1). The second sub-dictionary contained all the tokens that showed
the path between two adjacent letters (hotspots), as described in Section 4.2.1.

In the example shown in Figure 10a, there is one realization with seven hotspots
scattered randomly in the geographic area. Each hotspot has some active users who need
resources. The goal is to start from the initial station at the origin, visit each hotspot only
once, serve the users there, and then return to the origin within a specific time frame.
The realization depicted in Figure 10a is used as input to the TSPWP with 2-OPT method.
Latter will produce the TSPWP instance, which includes the trajectory and the order of
visited hotspots, as demonstrated in Figure 10b. To create the global dictionary, TSPWP
instances from M examples are utilized, which include sub-dictionary 1 and sub-dictionary
2. Sub-dictionary 1 records the events that take place during the flight mission, such as
when the UAV reaches hotspot j after departing from hotspot i. The process of detecting
different events and forming a word representing the sequence of hotspots served during a
flight mission is illustrated in Figure 11a. In this process, hotspots are considered as letters,
and the full trajectory represents a word. The first event occurs after reaching the letter “g”
starting from “o”. The second event occurs after reaching “f” from “g”, and so on for the
third and subsequent events. The final event occurs when the UAV returns to the initial
location, represented by the letter “o”, starting from “a”. Therefore, the word describing
the mission is defined as “w = o, g, f, e, d, c, b, a, o”. By contrast, if we cluster the trajectory
data (which include positions and velocities), we can see the resulting clusters in Figure 11b.
Each event that was previously detected will be linked to the set of clusters that form the
path from one letter to another, as illustrated in Figure 11b. A token is created for each
event, and all the tokens are combined to form the resulting word, which represents the
path followed during the mission. Throughout the training process, the same procedure
is carried out for M examples in order to create the words that indicate the sequence of
targeted hotspots and the words that describe the movement from one hotspot to the next.
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These two sets of words are coupled statistically to create a world model that the UAV
will use during the active inference (testing) process to plan a suitable trajectory based on
encountered situations (realizations).
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Figure 10. An example of one realization: (a) Seven hotspots scattered randomly across the geograph-
ical area labeled with different letters, and each has a varying number of active users requesting
service. (b) The trajectory provided by the TSPWP.

Let us take a look at how a UAV, using active inference, completes a mission. For
instance, suppose there are 11 hotspots in a given testing scenario as shown in Figure 12.
The UAV will rely on the world model, made up of two sub-dictionaries, that it learned
during training to successfully navigate the testing scenario. First, the UAV examines the
current letters and matches them against the words listed in sub-dictionary 1. This process
helps to establish how closely they resemble each other in the current testing scenario.
After that, the UAV chooses the closest word from the dictionary and uses it as a starting
point to create the initial graph. The goal is to expand the graph by adding new letters
to form a word that enables an efficient trajectory to reach all hotspots (letters) and serve
their users as quickly as possible. To achieve this, one letter is added during each iteration,
with the number of iterations depending on the size of the reference graph and the number
of new letters required to include all available letters in the current configuration. To
update the graph and make it directed, one link must be removed from the reference graph,
and two links must be added to the newly added letter or node at every iteration. The
transition matrix, which encodes the probabilistic relationships among the letters, is crucial
at each step and can be found in Figure 13. This matrix determines whether it is possible
to transition from a letter already present in the reference graph to the newly added letter.
The transition matrix is learned after solving M examples during training and allows for
the generation of words based on probability entries.
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Figure 11. The process of forming the dictionary: (a) The events that have been occurred during
the flight and the generated word consisting of the letters visited by the UAV. Event 1 occurs after
reaching letter g starting from letter o. Event 2 occurs after reaching letter f from g. Event 3 occurs after
reaching letter e from f. Event 4 occurs after reaching letter d from e. Event 5 occurs after reaching
letter c from d. Event 6 occurs after reaching letter b from c. Event 7 occurs after reaching letter a
from b. Event 8 occurs after returning to the origin from a. (b) The clusters obtained after clustering
the trajectory. Clusters are labeled as letters. The generated tokens each consist of several letters
corresponding to a specific event and thus explaining the path to follow between two adjacent letters.
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Figure 12. An example of a testing realization including 11 hotspots.
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Figure 13. The transition matrix encoding the probabilities of passing from one letter to another
based on the examples solved during training.

Figure 14 displays all the available pathways from the 11 hotspots to other letters.
Depending on the current letter, one can determine which letters are reachable. For instance,
if one starts at letter 1 (the initial location), one cannot transition to letter 6, but one can
transition to the other 9 letters with varying probabilities. Similarly, if one reaches letter
2, one cannot go towards letters 3, 4, 8, and 10, and so on. It is worth noting that the
probability values provided by the world model prevent unnecessary transitions that will
not help the UAV reach its desired goal.

The example shown in Figure 15a expresses a word generated by the UAV through
the proposed method but before it fully converged. The generated word is not optimal as it
contains hotspots in the wrong order, which causes the mission to take longer and increases
the time needed to return to the initial location. Furthermore, Figure 15b shows that the
UAV detected abnormalities during most of the operation events. When the UAV detects
abnormalities in its position, it is usually because it is not close enough to its goal. The UAV
aims for a specific letter that represents its target. It is drawn towards that goal and then
assesses its distance from the goal after each continuous action that represents its velocity.
If there are any abnormalities, the UAV can use prediction errors to correct its actions and
adjust its path to reach the targeted letter. For instance, during event 1, the UAV perceived
high abnormalities and prediction errors while it was still far from the intended letter, with
the starting letter being 1 and the targeted being 10. However, utilizing the prediction error,
the UAV was able to adjust its actions and reach the destination faster. This resulted in the
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abnormality signals gradually decreasing until they reached zero, indicating that the UAV
had indeed arrived at the targeted destination.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 14. The transition probabilities suggested by the world model to generate a word that might
solve the current realization: (a) Possible letters to target starting from letter 1. (b) Possible letters to
target starting from letter 2. (c) Possible letters to target starting from letter 3. (d) Possible letters to
target starting from letter 4. (e) Possible letters to target starting from letter 5. (f) Possible letters to
target starting from letter 6. (g) Possible letters to target starting from letter 7. (h) Possible letters to
target starting from letter 8. (i) Possible letters to target starting from letter 9. (j) Possible letters to
target starting from letter 10. (k) Possible letters to target starting from letter 11.
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Figure 15. A word generated using active inference before convergence: (a) The trajectory followed
by the UAV based on active inference before the convergence. (b) The abnormalities that occurred
during the flight mission.

Figure 16a presents another example of a word created by the UAV after convergence.
The proposed approach enabled the UAV to design a trajectory that is comparable to the
one generated by the TSPWP with 2-OPT, with a similar completion time. It is noticeable
that the UAV was successful in reducing high abnormalities in various events, as depicted
in Figure 16b, compared to the example shown before convergence. This reduction is due
to the UAV’s ability to differentiate between similar events encountered before and deduce
the optimal path immediately.
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Figure 16. A word generated using active inference after convergence: (a) The trajectory followed
by the UAV based on active inference before the convergence. (b) The abnormalities that occurred
during the flight mission.

Figure 17 displays the updated transition matrix for 11 letters, which includes corrected
probability entries detailing the possible transitions between the available letters. This
updated transition matrix was rectified using the one exhibited in Figure 13.
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Figure 17. The updated transition matrix encoding the probabilities of passing from one letter to
another after convergence to solve the example shown in Figure 12.
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The process of creating new words is shown in Figure 18. The first step is to select
a reference word from the dictionary by comparing the available letters in the current
realization with the encoded words in the dictionary. The UAV selects the word with the
highest probability of being a match based on the similarity of its letters to the available
ones. The matching letters from the most similar word are then used as a reference for
creating new words. This reference word is represented graphically as a closed loop, as
demonstrated in Figure 18a. The initial graph is expanded by adding one letter at a time, as
illustrated in the figure. This insertion approach dramatically reduces the likelihood of the
UAV needing to determine the optimal visiting order. For instance, if there are 11 nodes to
visit, and each node must be visited only once, there are approximately 11! (∼39 million)
possible word combinations for which to find the correct order, which is a time-consuming
and challenging task, particularly when using a trial-and-error method. However, the
proposed word formation mechanism decreases the number of possible combinations from
11! to just 40. In Figure 18a, there are six potential ways to create a new word by adding
the first letter to the reference graph. Figure 18b has seven possible words, while the other
graphs feature eight, nine, and ten options. The total number of combinations is 40, which
is calculated by adding the number of edges in each graph.

(a) (b) (c)

(d) (e) (f)

Figure 18. This is a graphic explanation of the process for creating new words from a base word found
in the dictionary: (a) The reference word is represented graphically, and the new letters encountered
in the new situation should be added to the reference graph. (b) The updated graph (word) after
adding letter 7. (c) The updated graph (word) after adding letter 3. (d) The updated graph (word)
after adding letter 6. (e) The updated graph (word) after adding letter 4. (f) The updated graph
(word) after adding letter 5.

In Figure 19, one can see different examples with different numbers of hotspot areas.
The trajectories generated by the proposed method (AIn) and the TSPWP using 2-OPT are
also shown, along with their respective completion times. It is evident that the proposed
approach produces alternative solutions when compared to the TSPWP with 2-OPT. In
some cases, it also results in a quicker completion time as shown in Figure 19c,d,f. This
highlights the adaptability of the proposed method in deriving reasonable solutions that
surpass those of the TSPWP.
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Figure 19. The figure displays various examples with varying numbers of hotspot areas, along with
the solutions produced by the proposed method (AIn) and the TSPWP utilizing 2-OPT.
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As shown in Figure 20, we tested the scalability of the proposed method (AIn) and
compared the cumulative sum-rate convergence for various hotspots. We observed that
as the number of hotspots increased, the cumulative sum-rate also increased. However, it
took longer to find the best solution and reach convergence with more hotspots. This is
because there were more possible generated words to test, which takes longer. By contrast,
Figure 21 shows the cumulative abnormality for various numbers of hotspots. The trend
of the cumulative abnormality is contrary to the cumulative sum-rate. It begins with high
values and gradually decreases until reaching quasi-zero at convergence. As the number of
hotspots increases, the time taken to reach quasi-zero abnormality also increases.
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Figure 20. Convergence of the proposed approach (AIn) in terms of sum-rate for different numbers
of hotspots.
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Figure 21. Cumulative abnormality convergence of the proposed approach (AIn) for different
numbers of hotspots.

In Figure 22, we can see the average sum-rate of the proposed method at convergence
for various numbers of hotspots, compared to the analytical sum-rate. It is clear that the
proposed approach achieves the expected analytical sum-rate after convergence, regardless
of the number of hotspots.
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Figure 22. The average sum-rate of the proposed approach (AIn) compared to the analytical value
for various number of hotspots.

Comparison with Modified Q-Learning

In this section, we compare the performance of the proposed approach (AIn) with a
modified version of the conventional Q-learning (QL) [66]. To ensure a fair comparison,
the modified-QL follows the same logic as the proposed approach. Thus, the modified
version uses two probabilistic q-tables—one for mapping discrete states (hotspots) to
discrete actions (targeted letters) and another for mapping discrete environmental regions
to continuous actions (velocity). Unlike traditional QL, the q-values in these tables are
represented as probability entries that range between 0 and 1.

As in the proposed method, we can see that the discrete states stand for the letters,
and the discrete environmental regions stand for the clusters. In addition, the available
letters during a specific realization make up the discrete action space, while four continuous
actions representing different directions (Up, Down, Left, Right) make up the continuous
action space. The reward function in modified-QL was designed using the TSPWP instances.
If the modified-QL behaves similarly to the TSPWP, it will receive a positive reward (+1).
Otherwise, the reward is zero.

In Figure 23, an example similar to the one in Figure 10a is shown to illustrate how
the modified-QL algorithm solved the mission both before and after convergence. Prior
to convergence (Figure 23a), the modified-QL selected the wrong order of letters to visit,
leading to a longer completion time. However, after convergence (Figure 23b), the algorithm
discovered the correct order of letters, resulting in a reduced completion time, although it
still fell short of the completion time achieved by the TSPWP with 2-OPT due to a slight
deviation from the correct path. It is important to note that the agent’s movement was
limited to traveling between two boundaries to simplify the process, which reduced the
environmental states it could discover. Consequently, the modified-QL agent’s movements
were guided by the TSPWP through positive and zero rewards.

Figure 24 displays the gathered sum-rate in relation to the number of iterations, pro-
viding insight into the modified-QL’s overall performance and scalability with varying
numbers of hotspots. It is clear that as the number of hotspots increases, both the collected
sum-rate and the time to converge will also increase with the modified-QL. Despite requir-
ing more iterations, the modified-QL achieved the same sum-rate at convergence as the
proposed method.
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Figure 23. An example of the realization shown in Figure 12: (a) The trajectory followed by the
UAV using the modified-QL before convergence. (b) The trajectory followed by the UAV using the
modified-QL after convergence.
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Figure 24. Convergence of the modified-QL in terms of sum-rate for different numbers of hotspots.
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In Figure 25, we compared the convergence time of the proposed method (AIn) to
that of the modified-QL, as we varied the number of hotspots. The results show that the
proposed method requires less time to converge than the modified-QL. This difference was
more noticeable as we increased the number of hotspots, with the gap between the two
trends increasing. The modified-QL took longer to converge as we increased the number of
hotspots, and it did so at a faster rate than AIn due to its random nature, which led to a
higher number of possible words to try compared to AIn.
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Figure 25. The convergence time of the proposed approach (AIn) compared to the convergence time
of the modified-QL for different numbers of hotspots.

Figure 26 compares the completion time of our proposed method, AIn, to that of
modified-QL and TSPWP with 2-OPT as the number of hotspots varies. The results show
that modified-QL took longer to complete the missions due to slight deviations from the
reference trajectories designed by TSPWP. These deviations were caused by the random
actions performed before the convergence. On the other hand, AIn is able to complete
missions faster than modified-QL thanks to its ability to deduce certain paths based on the
world model and calculate prediction errors to correct continuous actions. This allows AIn
to reach the target destination more quickly.
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Figure 26. The performance of the proposed approach (AIn) in terms of completion time after
convergence compared with TSPWP for different numbers of hotspots.

6. Conclusions and Future Directions

This paper studied the trajectory design problem in UAV-assisted wireless networks.
In the considered system, a single UAV provides on-demand uplink communication ser-
vice to ground users by flying around the environment. To solve this problem, we have
proposed a goal-directed method based on active inference, consisting of two computation
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units. The first unit builds a world model to understand the surrounding environment,
while the second unit makes decisions to minimize a cost function and achieve preferred
outcomes. The world model represents a global dictionary that has been learned from
instances generated by the TSPWP using a 2-OPT algorithm to solve various offline ex-
amples. The dictionary includes letters for hotspots, tokens for local paths, and words for
complete trajectories and order of hotspots. By analyzing the dictionary, we can under-
stand the decision maker’s grammar, specifically the TSPWP strategy, and how it utilizes
the available letters to form tokens and words. To accurately represent the properties of
TSPWP graphs at different levels of abstraction and time scales, we developed a novel
hierarchical representation called the coupled multi-scale generalized dynamic Bayesian
network (C-MGDBN) that structures the gathered knowledge (i.e., the global dictionary).

Simulation results indicate that the proposed method performs better than the tra-
ditional Q-learning algorithm. It provides quick, stable, and alternative solutions with
good generalization capabilities. Additionally, the results demonstrate that our approach
can be scaled up to larger instances, despite being trained on smaller ones, proving its
effectiveness in generalization. Furthermore, we have proven that our method can solve a
complex problem (known as NP-hard) by significantly reducing the number of actions the
UAV needs to take to solve a specific example.

In future work, we plan to tackle the challenge of determining the optimal solution
when there are more hotspot areas but a fixed flight duration. We will also address
the challenge of new hotspots appearing and old ones disappearing while the UAV is
completing its current mission. Lastly, we will investigate coupling at the word scale in
future studies.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
LoS Line of sight
NOMA Non-orthogonal multiple access
GPS Global positioning system
IoT Internet of things
AI Artificial intelligence
ML Machine learning
RL Reinforcement learning
TSPWP Travelling salesman problem with profits
GDBN Generalized dynamic Bayesian network
C-MGDBN Coupled multi-scale generalized dynamic Bayesian network
DP Dynamic programming
WSN Wireless sensor node
MILP Mixed integer linear programming
TSP Travelling salesman problem
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GA Genetic algorithm
PSO Particle swarm optimization
ACO Ant colony optimization
QoE Quality of experience
QL Q-learning
DQL Deep Q-learning
FBS Flying base station
GU Ground users
RB Resource block
OFDMA Orthogonal frequency division multiple access
NLoS Non-line-of-sight
AWGN Additive White Gaussian Noise
C-GDBN Coupled Generalized dynamic Bayesian network
M-GDBN Multi-scale generalized dynamic Bayesian network
GNG Growing neural gas
POMDP Partially observable Markov decision process
KF Kalman filter
PF Particle filter
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