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Abstract
The performance of optical cavities in gravitational wave detectors (GWD) is negatively
affected by the growth of ice layers when operating at cryo temperatures. Loss of performance
begins when the ice overlayer is only a few-nm thick. Careful planning is then required to
minimize, monitor and take into account the presence of ultrathin ice on cryo-cooled optical
surfaces. Here we employed spectroscopic ellipsometry (SE) to study icing on the surfaces of
SiO2 and Ti:Ta2O5 thin films, two materials used in the high-reflective mirrors of current GWD.
SE measurements were performed at 75K. The data presented suggest that SE is a most
convenient tool to monitor in operando the ice formation on the surfaces of GWD mirrors.
Furthermore, ultrathin ice layers can affect the evaluation of the optical properties of materials
at low temperatures, a valuable task for those next-generation GWD that will operate at
cryogenic temperatures. The characterization of an ultrathin ice overlayer (<10 nm) allowed to
determine for the first time the low-temperature optical properties of Ti:Ta2O5. The same
approach could be applied to determine the low-temperature optical properties of other
dielectric films, thus helping to screen new materials for cryo-operated GWD mirrors.

Keywords: ultrathin ice, icing, spectroscopic ellipsometry, optical coatings,
cryogenic temperatures, gravitational wave detectors, Einstein Telescope

(Some figures may appear in colour only in the online journal)

1. Introduction

The KAGRA gravitational-wave detector (GWD) is currently
operating at cryogenic temperature [1] and possible future
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detectors, such as the low-frequency interferometer of Einstein
Telescope [2, 3] and LIGO Voyager [4], will also operate at
cryogenic temperature according to their current design. The
low temperature of the mirrors, even in ultra-high vacuum
environment, can induce the physisorption of molecular spe-
cies leading to the growth of a cryodeposit layer over time.
This overlayer, which is predominantly composed of water
ice, adds an undesired contribution to the optical absorption
of the coatings forming the mirrors, and affects their reflectiv-
ity. For instance KAGRA, the most recently-built GWD, has
been reported to suffer from a loss of performance due to
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the progressive growth of an ice layer on the surface of its
main mirrors [5–7]. Given the characteristics of GWD, such
as the very large volume of the chambers that host the main
mirrors, it is unlikely that the issue of icing can be com-
pletely avoided [8], at least with passive methods. Therefore,
it becomes necessary to characterize, monitor and control the
ice layer even when its thickness is very small, as it has been
demonstrated that even a few nm thick ice layer causes large
optical losses in GWD applications [7, 9].

The control of icing is also important to correctly design
the mirrors operating at cryo temperatures. Design relies—
among other things—on the low-temperature optical proper-
ties of the materials composing the mirrors, that are to be
obtained through dedicated characterizations; however, these
can be altered by the presence of ice overlayers, especially
when the materials under investigation are in the form of thin
films.

Spectroscopic ellipsometry (SE) is a well-proven technique
to determine the optical properties and thickness of thin and
ultrathin films [10–13], allowing the determination of the
thickness with a resolution well below 1 nm in single-layer
as well as multi-layer structures [14–16]. Moreover, SE can
be implemented in cryogenic setups, so that SE data can be
acquired while keeping the sample at cryogenic temperatures
[9, 17], and therefore is an ideal tool to characterize and mon-
itor thin and ultrathin ice layers.

In this work, we have characterised with SE the ultrathin ice
layers on surfaces cooled down to liquid nitrogen temperature.
We studied thin films of SiO2 and Ti:Ta2O5, that is, the two
materials that currently constitute the high-reflective mirrors
in GWD. In particular, Ti:Ta2O5 is subject to intense research
with the aim to better understand and improve its optical prop-
erties for the purposes of the GWD [18–21]. To the knowledge
of the authors, we report for the first time the optical properties
of titania-doped tantala at cryogenic temperature in the near-
infrared spectral range. The approach presented in this paper
could be used to determine the low-temperature optical prop-
erties of other materials, that have been proposed for future
cryo-operated GWD mirrors [22–24].

2. Methods

2.1. Materials

The silicon sample for the study of icing was manufactured
by Siltronix and had the following characteristics: P-doped,
resistivity ρ:<1Ω · cm, orientation: (100)+/−0.5◦, thickness:
0.5mm. The titania-doped tantala film was deposited at the
Laboratoire des Matériaux Avancés (http://lma.in2p3.fr/) on
the silicon sample described above, by means of ion beam
sputtering (IBS). IBS was performed inside the so-called
Grand Coater, a custom-made coater machine where the actual
mirrors for GWD are produced [25]. All samples studied in
this work have size of 1×1 cm2.

2.2. Experimental methods

The SE data were acquired by means of a J.A. Woollam
Variable Angle Spectroscopic Ellipsometer (VASE). The

present experiment focuses on the spectral range 1100–
2450 nm, which is suitable for the GWD application as the
operating wavelength for next generation GWD may change
from the current 1064 nm, with 1550 and 2000 nm as likely
options [3]. Acquired SE spectra contain 1 datapoint per nm,
while the spectral bandwidth of the VASE is approximately
2 nm. The samples were cooled in an Oxford CF-V cryo-
stat equipped with optical windows for SE measurements.
The angle of incidence for the SE measurements was 45◦.
A scheme of the experimental setup composed of VASE and
cryostat is shown in figure 1, left. An ellipsometry measure-
ment yields ∆ and Ψ, the so-called ellipsometric angles that
are defined according to the equation:

tanΨei∆ =
|rp|
|rs|

ei(δp−δs) (1)

where rs (rp) is the s- (p)-polarized complex Fresnel reflection
coefficient of the system.

Spectroscopic data are analyzed by fitting an optical model
to experimental data. The quality of data fitting is estim-
ated through minimization of the mean squared error (MSE),
defined as:

MSE

=

√√√√√ 1
2N−M

·
N∑
i=1

(Ψ
exp
i −Ψcalc

i

σ
exp
Ψ,i

)2

+

(
∆

exp
i −∆calc

i

σ
exp
∆,i

)2

(2)

where σexp
Ψ,i and σexp

∆,i are the standard deviations of the experi-
mental Ψi and ∆i, N is the number of (Ψ, ∆) pairs, and M is
the number of fitted parameters in the model.

SE has already been successfully exploited to determine
the optical properties of titania [26–30] and tantala [31–35]
at room temperature; it constitutes a valid tool to investigate
those properties also at cryogenic temperatures.

Samples were pre-treated with a mild annealing at 373K
overnight to reduce ambient molecular contamination [17],
then cooled to 75K. Pressure inside the cryostat was 1.3 ×
10−5 mbar at the beginning of cooling and became lower
than 2.5 × 10−6 mbar at 75K. ∆, Ψ and temperature were
continuously monitored during the cooling, as exemplified
in figure 1(right). The pressure inside the cryostat is higher
than that used in KAGRA, the latter being in the order of
10−8 mbar. Here, we intend to present SE as a convenient tool
to monitor in operando the formation of ultrathin ice layers.
The implications of this work remain valid in the case of lower
pressure, which would cause a lower ice growth rate.

The investigation of icing and optical properties of materi-
als at low temperatures requires two reference datasets at room
temperature, namely, one on the sample in air, and another on
the sample inside the cryostat. This ensures the identification
of any temperature-induced variations in the low-temperature
dataset and also allows one to identify and correct any spuri-
ous effect due to operation of the cryostat, as for example the
windows effects [13].

2
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Figure 1. Left: Simplified scheme of the experimental setup showing the optical cryostat and the geometry for SE measurements. Right:
example of real-time monitoring of ∆ at 1000 nm (upper graph) and temperature (lower graph) when cooling samples down to 75K. The
decrease in ∆ starts from the very early stages of cooling.

Figure 2. SE experimental and model data on Si at RT (left column) and at 75K (right column). The bottom row in the figure represents the
structure of the model used to calculate the SE data reported in the graphs above.

3. Results and discussion

Wefirst investigated icing on a siliconwafer with native silicon
oxide, a task which requires SE data both at room temperat-
ure and at 75K. Modeling the SE data at room temperature
[36] yielded excellent results, as shown in figure 2 (left). The
sample was then cooled and SE data were acquired at 75K
(figure 2, right). ∆ decreased by about 0.8◦ at 1100 nm when
going from RT to 75K, a sizable variation which can be

interpreted through proper data modelling. The optical prop-
erties of Si at 75K, as reported by Frey et al [37], were
fed into the optical model. On the other hand, the optical
response of the ultrathin native SiO2 layer was assumed to be
temperature-independent [38]. The model built by using the
above-mentioned data was not able to reproduce the exper-
imental low-T SE data, as shown in figure 3, right (dashed
curve). Given the experimental conditions (low temperature,
high vacuum environment) we attribute the mismatch to icing,

3
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Figure 3. Left: refractive index of ice at 266K (orange line) and at 75K (light blue line). Right: Experimental ∆ at 75K (blue line);
calculated∆ including the ice layer (red line); calculated ∆ without the ice layer (gray dotted line).

and therefore upgrade the model to take into account an
ultrathin ice overlayer. We note that ∆, much more than Ψ, is
sensitive to small thickness variations when investigating thin
transparent films, therefore, we look mainly at the variations
in ∆ to quantify the presence of ice.

The optical properties of ice have been studied in a num-
ber of different experimental conditions, including pressure,
temperature, and spectral range [39–42]. The refractive index
was found not to vary with the ice phase [42]; it decreases—
alongwith the density—with temperature [41]. In other words,
ice formed at higher temperatures has a higher density and
a higher refractive index with respect to ice formed at lower
temperatures. In our experiments, the ∆ variations associ-
ated to the ice growth occur already during the cooling pro-
cess, i.e. when the temperature decreases, as clearly shown
in figure 1(right), meaning that no single temperature can be
associated to the ice formation in this case. In order to estimate
the refractive index of the ice in our experiments, we conveni-
ently identify two types of ice, namely, the ‘high-temperature’
ice and ‘low-temperature’ ice, that will be described below.
Then, we can safely assume that the refractive index of the ice
in our experiment lies between that of the ‘high-temperature’
ice and ‘low-temperature’ ice.

According to Warren [39, 43], the refractive index of ice at
266Kmonotonously decreases in the spectral range of interest
(1100–2450 nm), and the extinction coefficient remains below
<3× 10−3. In these conditions, the Cauchy dispersion model
is appropriate to describe the optical response of the material.
We useWarren’s data as a reference for the ‘high-temperature’
ice. Kofman et al [41] determined the refractive index of ice
at 632.8 nm at temperatures down to 10K; at that wavelength,
their data indicate that refractive index of ice at 75K is reduced
by about 0.058 with respect to Warren’s data. The refractive
index of ice is featureless and only slighty dispersing from
632 to 2500 nm, therefore we can tentatively derive the refract-
ive index of ‘low-temperature’ ice by subtracting 0.058 from
Warren’s data. The refractive indices corresponding to the
‘high-’ and ‘low-temperature’ ice are reported in figure 3, left.

Having fixed two boundaries for the refractive index of ice
in our experiment, we can now build the optical model and
fit the thickness of the ice overlayer. When considering the

overlayer as entirely composed of ‘low-temperature’ ice, we
obtain a thickness of 4.6± 0.2 nm. Conversely, if we consider
the overlayer as purely ‘high-temperature’ ice, we obtain 4.0±
0.2 nm. The agreement with the experimental data was equi-
valent in the two cases (MSE = 0.42). We can therefore con-
clude that the thickness of the ice overlayer in this experiment
lies between 3.8 and 4.8 nm. By relating such thickness to the
corresponding variation induced in∆, we can estimate that the
lowest detection limit of ice by means of SE in these experi-
mental conditions is well below 1 nm. We note that ice detec-
ted by SE in this work is sufficiently thick to be considered
as a material with clearly-defined, isotropic dielectric proper-
ties, i.e. not the atomic clusters or sub-monolayer entities that
can occur in the very early stages of icing on a clean surface
[44–47]. Similarly, we did not consider any possible chemical
interface between the substrate and the overlayer [48, 49].

The method used to study icing on a well-known system
(silicon/silicon oxide) can be generalized to investigate the
low-temperature optical properties of other materials. Here,
we consider the case of titania-doped tantala, a material which
is a key component of the mirrors for GWDs. The broadband
optical properties of this sample in ambient atmosphere and
at room temperature were carefully determined in a previ-
ous work [21, 50]. However, unlike the case of silicon, the
broadband optical properties of titania-tantala at low temperat-
ures have not been reported yet. Previous data on pure tantala,
obtained within a very limited temperature range, suggest that
the temperature-induced variation in the refractive index of
that material are small [51]; as a consequence, the need to dis-
tinguish those variations from spurious effects at low temper-
atures (i.e. the growth of an ice overlayer) is evident. We build
on the knowledge previously validated on silicon to determ-
ine both the optical constants of titania–tantala at 75K, and
the thickness of the ice overlayer that forms on top of it. The
titania–tantala film was grown on a silicon substrate which is
identical to the one considered in the first part of this work.
The SE measurements inside the cryostat, both at room tem-
perature and at 75K, followed the same procedures described
earlier for the silicon sample. An optical model was built
where the two unknown parameters were the thickness of the
ultrathin ice layer and the refractive index of the titania-tantala;
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Figure 4. Left: experimental (continuous lines) and best-fit model (red dotted lines) SE data of annealed titania:tantala coating at 75K.
Right: refractive index of titania:tantala calculated at room temperature (black line), at 75K without considering the ultrathin ice layer (grey
dotted curve), and at 75K considering the ultrathin ice layer (blue curve). The table inset reports the refractive index of titania:tantala at
1550 and 2000 nm, obtained from the model with ice. At 75K, the measured thickness of the ice layer was 8.5± 0.8 nm.

concerning the refractive index of ice, the ‘high-temperature’
and ‘low-temperature’ cases were replicated to estimate the
uncertainty on the results.

The model agreement with the experimental data was good
(MSE= 1.7), as reported in figure 4(left). Themeasured thick-
ness of ice layer was 8.5± 0.8 nm. The refractive index of the
titania:tantala decreased slightly when going from RT to 75K,
as reported in figure 4(right). On the other hand, if the presence
of ice is not taken into account, the resulting refractive index at
75K (gray dotted line in figure 4, right) turns out to be higher
than that at room temperature, that is, the sign of the variations
in refractive index changes when ice is not considered. The
model without ice resulted inMSE= 3.4, that is, twice as large
as that obtained from the model with ice. Therefore, the most
accurate determination of refractive index at low temperature
is achieved by taking into account the presence of an ice over-
layer. The information on the refractive index of titania–tantala
determined in this work can be combined with the mechanical
loss measured at cryogenic temperatures [52–55], to provide
a comprehensive description of the materials’ properties for
mirrors in cryogenic GWD [56].

4. Concluding remarks

The first cryo-operated GWD has shown that the formation
of cryodeposits on the surface of cooled mirrors has detri-
mental effects on the performance of GWD [5]. More gener-
ally, ultrathin ice layers also hinder the evaluation of optical
properties of materials at cryo temperatures. Therefore, in
both cases, it is necessary to detect and monitor the thick-
ness of the ultrathin ice layers. In this work, we proved that
ultrathin (<10 nm) ice layers can easily and unambiguously
be identified on surfaces of thin films of oxides by means
of SE. Samples were kept at low temperatures by means of
a suitable cryostat. By quantifying the presence of ice, the
accuracy in determining the temperature-dependent optical
properties of materials for GWD mirrors is improved. In
this way we obtained the first characterization of the low-
temperature optical properties of titania-doped tantala, a stra-
tegic material for GWD. We note that the same approach can

be applied to any dielectric thin film indicated as a potential
candidate for the high-index constituent of mirror coatings
[24]. The results of this work suggest that SE—or even
single-wavelength ellipsometry—is most suitable to monitor
in operando the growth of ice layers on the mirrors of future
GWDworking at low temperatures, such as the low-frequency
detector of the Einstein Telescope according to its current
design [3].
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