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Abstract: Conventional mechanical recycling technologies cannot recycle all types and amounts of
generated plastic waste. Pyrolysis can convert these municipal mixed plastic streams into products
with significant calorific value, which are likely to be used as energy sources. The present work
describes a technology used to expand the portfolio of technical approaches to drive plastics circularity,
i.e., thermochemical recycling. A base case scenario considered a capacity of 1.000 kg/h of municipal
plastic waste, consisting of a mixture of polypropylene (PP), polystyrene (PS), polyethylene (PE),
and plastic associated with paper, which were converted into non-condensable gases, oil, and char
through a pyrogasification system. Based on mass and energy balances and experimental data from
the literature, a total of 199.4 kg (48 MJ/kg) of liquid fuel and 832.85 kg (16 MJ/kg) of gas could be
obtained with no need for external heating sources. The thermal requirement for the pyrolysis of
1.000 kg of municipal plastic waste (1.316 MJ) was supplied by the gasification of a fraction of the
produced pyrolysis oil and gases. This feasibility analysis confirmed the technical adequacy of the
proposed technology, which that will be further complemented by a technoeconomic study of the
proposed solution.

Keywords: municipal plastic waste (MPW); pyrogasification; chemical recycling; green fuel

1. Introduction

Social and industrial advancement, together with the increase in population, are
key driving factors in the current challenges related to waste management. A total
of 29.7 million tons of municipal solid waste (MSW) was produced in Italy in 2021.
Landfills received about 22% of MSW, which contained 25% of food waste, 12.5% of
paper and cardboard, 8% of glass, and an approximate quantity of 1.7 million tons of
plastic waste [1]. Plastics have represented a widely spread commodity during the last
50 years due to their specific properties, such as their low conductivity, density, weight,
and cost, transparency, and high durability [2]. Thanks to these properties, they are
heavily used (pure or with additives as plasticizers and stabilizers) in various sectors,
such as household [3], industrial [4], agricultural [5], or medical, where the outbreak of
the coronavirus has led to a dramatic increase in single-use plastics such as protective
hospital suits, gloves, face masks, or product containers [6].

Plastic waste, very stable against degradation, has become a major environmental
problem threatening landfills and aquatic life and increasing air and marine pollution.
By 2050, it is estimated that plastic will be more abundant than fish in the oceans [7].
Moreover, it has been proven that microfragments of plastics (microplastics), blown into
the oceans and degraded because of sunlight or waves, are now capable of effecting our
nutrition intake through marine life as well as through the soil and crops [8,9]. Indeed,
roughly 51 trillion microplastics, mainly from synthetic textiles or packaging products,
are floating in the sea and can be consumed as sea food by marine animals [10]. A
sustainable plastic waste-management strategy should adopt as its primary option the
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application of the reduce, reuse, and recycle mindset, as per the European Waste Hier-
archy [11], followed by energy recovery strategies, and lastly, landfilling [12]. In 2021,
36% of the total plastic waste generated in Italy was recycled, 21% was addressed for
energy recovery, and 43% released to the environment or stored in landfills [1]. A lack of
a complete post-consumer infrastructure, incorrect dumping techniques, or inadequate
legislation are factors influencing the high values of unmanaged waste [13]. In this con-
text, the European Union (EU) has adopted the target of reducing the landfilling of waste
to 10% by 2035 [14]. The necessity of developing new and improved complementary
plastic waste-management strategies, introducing modern and advanced technologies,
arises as a crucial element in the accomplishment of this objective. Also, the growing use
of bioplastics (i.e., plastics which are either biomass-based, biodegradable, or feature
both properties as defined by the European Bioplastics Organization), despite their
management currently posing uncertainties that need to be further studied, could help
in minimizing fossil fuel plastic amounts.

Chemical recycling arises as an optimal option for this second material waste, as
highlighted in the newly developed waste-to-x (WtX) strategy [15]. Pyrolysis is attracting a
great deal of scientific attention as a process able to convert plastics into fuels or new value-
added products. One of the most recent and in-depth published works on the pyrolysis of
plastic waste has highlighted the lack of commercial-scale units and identified the main
challenges that this technology is facing [16]. First, plastic waste is an extremely complex
feedstock, with an inconsistent feed quality—highly dependent on the efficiency of the
separation steps from other solid wastes—and quantity, and a limited availability of quality
plastic [12]. Chemical properties are heterogeneous and lead to complex kinetics reactions,
making their up-scaling difficult. Also, their elemental composition (i.e., the presence
of oxygen, chlorine, nitrogen, etc.) can result in toxic pollutants if the reactions are not
well controlled [17]. In addition, a large amount of energy is required to achieve the full
conversion of plastics, which impacts the cost balance of the process. Catalysts can be used
to accelerate these mechanisms, although they can face difficulties due to the formation
of coke and the consequent catalyst deactivation [18]. Alongside technical challenges,
financial barriers, ambiguous legislation, and uncompetitive marketing strategies hinder
the full implementation of the pyrolysis of plastics [19].

In this framework, the main aims of this work are to shed light on opportunities for
the valorization of plastic waste to produce fuels and, based on the current scientific limits,
to propose a strategy for a waste-to-fuel scenario, applied to the specific case of the Italian
regions of Genoa, Savona, and southern Piedmont, accounting for one million inhabitants.

2. Fundamentals on Pyrolysis

The pyrolysis of plastics is a complex chemical route that consists of breaking the
polymer carbon chain at high temperatures (400–900 ◦C) in the absence of oxygen, pre-
venting the formation of dioxins and reducing the formation of carbon monoxide (CO)
and carbon dioxide (CO2) [20]. The long polymeric chains break down into shorter hydro-
carbons of lower molecular weight to produce a gaseous stream, including condensable
and non-condensable gases and char, with a distribution of products dependent on the
applied conditions [21]. The transformation route is a multi-step reaction scheme, highly
dependent on the initial feedstock, starting with an initial random chain scission forming
unstable secondary compounds, followed by a propagation step to form smaller chains,
and ending with a termination step in which free radicals recombine or the hydrocarbon
chain breaks [22].

The gaseous product mainly contains H2, CO2, CO, and CH4, along with trace amounts
of other lighter hydrocarbons, including ethane (C2H6), ethylene (C2H4), propane (C3H8),
propene (C3H6), butane (C4H10), and butene (C4H8). The solid product, char, has various
applications as solid fuel in energy applications, soil amendment, catalyst support, or
absorbent of heavy metals or emergent contaminants in water treatment for cosmetic and
pharmaceutic industries [23]. Finally, condensable gases can condense and form a wax/oil,
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which generally contains hydrocarbons in the range of light and heavy crude oil, mid-
distillates, and naphtha. The light oil, with a boiling point of 250–350 ◦C, is made up of
olefins and paraffin. In contrast, heavy oil, containing olefins, paraffin, aromatics, and
high-molecular-weight components, has a boiling point of more than 350 ◦C [24]. This
fraction of oil can be used as a liquid fuel, as a precursor for jet fuels, or as a raw material
for chemicals [25].

As stated in the Introduction, the distribution of pyrolysis products is highly depen-
dent on the applied reaction conditions and can vary with the properties of raw material
(see Section 2.1), type of reactor (see Section 2.2), and applied operational conditions such as
temperature, residence time, heating rate, or the presence of catalysts (see Section 2.3). On
the other hand, if well-controlled, pyrolysis can be a flexible technology whose operating
conditions can be optimized to maximize the production of a targeted product.

2.1. Properties of Feedstock: HDPE, LDPE, PP, PS, PET, PVC

Plastic waste streams are mainly composed of high-density polyethylene (HDPE),
low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyethylene
terephthalate (PET), polyvinyl chloride (PVC), and combinations of other plastics [26]. It is
necessary to achieve a good degree of knowledge of their chemical, physical, and thermal
characteristics to design an efficient process. Properties such as the proximate analysis,
ultimate analysis, higher heating value (HHV), cracking temperature, and degradation
profiles will define the outputs of reaction. Table 1 contains a summary of averaged values
for the proximate and ultimate analysis and HHV for single plastic wastes, together with a
mixture of domestic plastic [27].

The proximate analysis defines the composition of plastic waste as its percentage of
moisture (M), volatile matter (VM), fixed carbon (FC), and ash (A). In general terms, this
waste presents high volatile and very low ash contents. This suggests a high suitability of
plastics for pyrolysis [28], with high liquid and gas yields, a low quantity of char (due to the
low fixed carbon content), and no need of drying before treatment (due to the low humidity
content). When the composition of single plastics is compared with real domestic waste,
it can be observed that the residual carbon and ashes of the latter increase with respect
to most of the single materials, which indicates that domestic waste is a more complex
feedstock which can contain additional compounds in its chemical structure.

Table 1. Composition of plastic and domestic waste.

Plastic Waste Proximate Analysis
(wt% 1)

Ultimate Analysis
(wt% 2)

HHV
(MJ/kg)

M VM FC A C H O 3 N S Cl Ref Ref.

HDPE 0.2 99.1 0 0.6 86.0 13.8 0.1 0 0.1 0 [29,30] 44.6 [29,31–33]
LDPE 0 99.5 0 0.5 86.1 13.9 0 0 0 0 [34,35] 45.5

PP 0.1 95.3 0.8 2.7 83.8 14.4 0.1 0.3 0.9 0.5 [29,36] 45.6
PS 0 99.7 0.3 0 91.1 8.2 0.4 0.1 0.2 0 [37,38] 41.5

PET 0 89.5 8.5 0 63.6 4.1 32.3 0 0 0 [29,39] 22.8
PVC 0 95.5 4.6 0 38.5 4.6 0 0.1 0.3 56.5 [40,41] 20.1

Domestic - 93.4 5.3 1.2 84.4 12.4 0.1 2.7 0.4 0 [27] 40.4 [27]
1 dry basis; 2 dry ash-free basis; 3 by difference.

The plastics’ elemental composition is described through the elemental analysis. They
are mainly composed of carbon and hydrogen, with low levels of oxygen, nitrogen, or
chlorine. The latter are undesired elements as they can generate NOx, SOx, or HCl [42];
thus, a specific solid pre-treatment and gas treatment section will be needed to ensure
safe and clean reactions. Although the high C and H content make plastics an excellent
candidate for pyrolysis, their relative ratio (H/C) impacts on the energy efficiency and,
consequently, on the exhaust emissions of CO and CO2 [43]. The elemental composition
also defines plastics’ HHV as low oxygen contents result in high heating values [44]. This
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would suggest that plastics with high HHV, like LDPE or HDPE, will produce oils with
higher HHVs. According to their elemental composition, the most suitable plastics for
pyrolysis can be identified as HDPE, LDPE, PS, and PP thanks to their high C and H content
and low N, S, and Cl. PET is less suitable due to its high O content and PVC is the least
suitable material as per its low C and H and high Cl contents.

It is also important to consider pyrolysis products, such as PET which can release ben-
zoic acid, or the condensed terephthalic acid that can result in pipe clogging and problems
of corrosion [45], and the already-cited undesired emissions due to the decomposition of
PVC in the form of chlorinated gas [42].

Finally, the thermal degradation of plastics depends on their chemical composition
and structure. Polymers with linear chains or with little or no crosslinking, like polyesters,
present higher cracking temperatures (Tc) compared to polymers that are more easily
degraded due to defects in their structure. That is the case for PVC (Tc from 250 ◦C) [46],
wherein its chlorine atoms create thermally liable defect molecules [47]. Cracking tem-
peratures range from 300 ◦C (PP [48]) to 380 ◦C (PET [39]), whose similar degradation
conditions benefit pyrolysis reactor design.

In summary, HDPE, LDPE, PS, and PP can be identified as the most suitable plastics
for pyrolysis due to their physicochemical, chemical, and thermal properties. For the
discussed case study (Section 3), the mixture of plastic waste will mainly contain these
plastics, together with low amounts of PVC and PET (6%wt), as they are present in the
municipal waste plastic recycled stream. Special attention will be given to the described
potential difficulties during the design of the whole system.

2.2. Reactors

An adequate selection of technology is key to achieving optimal oil yields. Significant
research has resulted in the development of different pyrolysis systems such as fixed
beds [49,50], moving beds [51], fluidized beds (such as bubbling [52], circulating [53,54],
and spouted reactors [55]), auger [56], and rotary kilns [57,58], which can be operated in
batch and semi-batch [59] or continuous mode [56]. Diverse scales can be found in the
literature, although the great majority of systems are still at lab scale and some at pilot
scale [16], with scarce applications at the industrial level [17,60].

As described in high detail in [61], the research on reactors for slow and fast pyrolysis
has been growing steadily over the last 30 years. The decision regarding the applied reactor
will lay mostly on economic trade-offs and the specific target products. Table 2 gathers
the distribution of products resulting from the pyrolysis of waste plastics using different
pyrolysis reactors.

Table 2. Distribution of products from the pyrolysis of plastic waste (G = gas; L = liquid; W = wax)
using different reactors [62,63].

Feedstock Fixed Bed—Batch Fluidized Bed Spouted Bed Moving Bed

Plastics from MSW
G 25, L 34, W 6 G 28.5, L 36.5 G 19.6, L 37.6, W 7.8 G 26.6, L 35.6, W 2.8

Inerts 28, Char 5, Ash 2

Plasmix
G 32, L 43, W 12 G 36, L 46, W 5 G 30, L 49, W 8 G 34, L 45, W 8

Inerts 6; Char 5; Ash 2

Since the considered feedstock has a high content of inerts (approximately 30%wt), it
is necessary to individualize the best reactor, which will avoid mixing or the creation of
suspended particulates. Batch pyrolysis is discarded due to its low productivity. A moving
bed reactor is chosen with the aim of easily sprinkling the material with substances that
counteract the negative effects linked to the presence of chlorinated plastics during the
deposition phase [64].

In addition, pyrolysis is an energy-intensive process and efficient heating methods
are needed to achieve high mass and heat transfer phenomena within the reactor. Electric
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heating is the most-used heating method supplied to a furnace, burner, or heater around the
reactor, but its high operating costs mean that it is not suitable for large scale applications.
Recycling high-temperature gases promotes a self-sustained system and can keep the costs
within a reasonable range. Several technologies have been developed based on a pyrolysis–
gasification chemical scheme [65,66], where pyrolysis is the main chemical reaction defining
the target products and the gasification of pyrolysis gases provides the energy to the system
necessary to achieve a self-sustained reaction.

2.3. Operational Conditions

Beyond the type of reactor, process conditions like temperature, heating rate, resi-
dence time, presence of catalyst, and feedstock (single/mixed plastics or addition of other
components as biomass) have a significant role in the final oil yields.

Temperature is without a doubt the most influential parameter as it governs the ther-
mal degradation of plastic waste. As previously mentioned, the action of heat decomposes
the long polymer chains into shorter ones with the release of free radicals. These facilitate
plastics degradation through mechanisms such as depolymerization, chain scission, and
side-group elimination [67]. The applied temperature will define the degradation of plastics
and, consequently, the distribution of products (i.e., gas, liquid, solid). In general, higher
temperatures will lead to high oil yields below the cracking temperature, while gas will
be produced preferentially over this temperature. The optimal pyrolysis temperature will
differ from one system to another as it is highly dependent on the quality and composition
of the feedstock, as discussed in Section 2.1.

Heating rate, defined as the rate in which temperature increases inside the reactor, and
residence time, defined as the time in which feedstock is inside the reactor until the target
temperature is reached, impact on the mass and heat transfer phenomena within the reactor
and, consequently, on the distribution of products [68]. Low-to-moderate heating rates
(5–100 ◦C/min) or moderate residence times (15–200 min) promote the production of oil
with relatively low yields of char and gas, while higher heating rates or shorter residence
times result in increased char yields.

Catalysts can play a vital role in pyrolytic reactions as they can lower the activa-
tion energy, which results in lower pyrolysis temperatures and energy requirements and
can also influence the distribution of products by favoring the selectivity towards target
products [69]. The use of numerous catalysts can be found in the literature as zeolites
and zeolites-based compounds (i.e., ZSM-5, H-ZSM-5, spent fluid catalytic cracking cata-
lyst [70,71], Zn-ZSM-5 [72], and natural zeolites [73]), metals (i.e., magnesium oxide [74],
copper carbonate [75], nickel-based [76], zinc [77], and sulphated zirconia [78]), or minerals
(i.e., kaolin [79], iron-pillared clay [80], and dolomite [81]).

3. Case Scenario
3.1. Input Data

The presented case study considered the Italian provinces of Genoa, Savona, and
southern Piedmont (accounting for a population of one million people), where 500,000 tons
of waste were produced in 2019 (https://www.isprambiente.gov.it/en, accessed on
10 January 2024). Among them, 220,000 tons of waste were not efficiently managed,
representing a significant and valuable source for waste-to-fuel strategies. A quantitative
study was conducted to evaluate the feasibility of the use of 1000 kg of this waste in a
technology based on an auto-thermal pyrogasifier. The designed system is proposed as
a suitable technology able to surpass all the current technological challenges, broadly
described in Section 2. The presented analysis aims to demonstrate the benefits of a
well-designed plastic waste-management strategy in producing gas and liquid fuels with
high calorific values, obtained using a thermally auto-sustained system.

Table 3 gathers the initial feedstock composition. PET and PVC, even though not
highly performant due to their properties (Section 2), were included in the study to
approximate the considered input to the real treated stream. A pre-treatment section is

https://www.isprambiente.gov.it/en
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first considered to submit plastics to an initial conditioning to obtain adequate solids
dimensions (20–40 mm). A treatment with adsorbents such as Na2CO3 or CaCO3 is
needed to capture HCl and remove chlorinated compounds before any action [82], and
slagging phenomena due to the softening of plastics at high temperature are expected to
be avoided. Also, the presence of waste recycled paper (containing kaolin) is expected to
act as a catalyst for the pyrolysis reaction, (see Section 2.3). The obtained briquettes then
pass through an alignment section, are introduced into a loading chamber, subjected to a
weak vacuum, and rendered inert with nitrogen.

Table 3. Composition of input plastic waste stream [63].

Component Weight (kg) HHV (MJ/kg) Energy (MJ)

Mixed plastic waste:

- LDPE and HDPE = 35 wt%
- PP = 40 wt%
- PS = 19 wt%
- PET = 5 wt%
- PVC = 1 wt%

600 42 25.200

Plastic associated with paper 167 35 5.845
Glass and inerts 180 - -
Metals (Al, . . .) 53 - -
Total 1000 31.045 31.045

3.2. Description of the Technology

The proposed technology, currently in an advanced design stage, requires tempera-
tures in the pyrolizer between 430 ◦C and 480 ◦C in the absence of air and in a controlled
atmosphere. The thermal input for these pyrolytic reactions is provided by the partial
recovery of the thermal energy contained in the mixture of gases and vapors exiting from
the subsequent gasification section.

The system (represented in Figure 1) can be modulated into sections, all identical,
equipped with a pyrolizer with a loading and unloading system; a gasifier; gas cleaning
and reduction of temperature (with heat recovery) sections; and a gas separator from
condensates. The possibility of operating in a modular configuration allows us to equip
the system for flexible waste flow rates and it also permits us to continue working in the
plant in the event of faults or ordinary and extraordinary maintenance works and to do so
without influencing the production rate. The process is controlled via an in-line analysis to
detect the produced gases and vapors to allow us to constantly control of the gasification
agent (air, oxygen, or water vapor), to quantify the possible presence of dust, tar, and acid
compounds, and, if needed, to adapt the successive gas cleaning section.

Plastic waste (1) is introduced into a hopper and sent for pyrolysis. The pyrolizer is
placed horizontally and has a moving belt where solids are transported at a controlled
speed which defines the residence time. The reactor can be easily adjusted depending on
the plastic components and decomposition profiles by modifying the speed of the moving
belt. It is also expected that the production of dust is minimized using this type of reactor.
The indirect heating of the pyrolizer can be easily achieved via radiation through a series of
tubes, located on the external perimeter of the reactor, through which high-temperature
gases can flow (Figure 2).

The pyrolizer is heated by the syngas and vapors coming from the gasifier, after
passing through a cyclone for an initial dedusting. The solid post-pyrolysis residue, char, is
discharged into a special tank, while the pyrolysis gases are introduced into the gasifier for
the subsequent thermal treatment. The syngas coming out of the cyclone is partly used to
heat the pyrolizer and partly sent directly to the cooling section, composed of a gas–water
exchanger from 600 ◦C to the temperature of condensation of oils, keeping the waxes liquid,
with an energy recovery step. The cleaning section is composed of a scrubber, whose
wastewater is collected in a filtering tank and reintroduced into the scrubber, and bag
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filters, and the gas finally is stored in a ballon to be introduced into the methane pipeline.
The liquids are collected in a settling tank, cleaned by filtration, and possibly subjected to
separation via centrifugation depending on the final use. The ash from the gasifier and the
dust collected by the cyclone are periodically removed and kept for other applications as
sintered granules. The process flow diagram is shown in Figure 3.
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The thermal energy required for the pyrolysis, 1.316 MJ for 1 kg of plastic waste [83],
is supplied by the gas obtained in the gasification of pyrolysis products in an entrained
flow gasifier. The produced gases flow through 13 tubes, 7 m in length, located at the
external wall of the pyrolizer, to heat the system at the reaction temperature. Pyrolysis
reactions occur at a fixed temperature, in the range 450–480 ◦C, in the absence of air and in
a controlled atmosphere. This temperature is set to maximize oil/was yields, according to
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the current literature [63]. The gasifier is pre-heated by part of the condensed, filtered, and
clean pyrolysis oils, at a maximum temperature of 900 ◦C. The system is completed with
a gas treatment section (scrubber and filters), storage tanks for pyrolysis products (solids
and oils), and a gas holder. The modular characteristic of the system permits us to adapt
the system to the available quantity of plastic waste and/or to periodic or extraordinary
maintenance. The process design incorporates flow indicators to measure the gas flows
and temperature control indicators to regulate the heating rate and to ensure that the
determined cracking temperature is reached.
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3.3. Definition and Quantification of Products

Initial design calculations, based on mass and energy balances, together with the
available literature data [62,63] and the results from experimental activities using pro-
cessing waste on the pilot plant ERPICE (assuming that they are transferable, to a
great extent, to heterogeneous waste or single-use plastics that are easy to clean) (https:
//www.sintesimastermind.it/portfolio-items/progetto-erpice/?portfolioCats=45, ac-
cessed on 10 January 2024), were used initially to quantify the potential products of the
described plastic waste using the designed pyrogasifier. Table 4 shows the calculated
composition of the gas produced in the final gasification stage from an input feedstock
of 1000 kg.

Table 4. Composition of the produced gasification gas from an input of 1000 kg.

Component Volume (Nm3) % vol Weight (kg) HHV (MJ/kg) Total Energy (MJ)

H2 152 19 13.6 120 1.632
CO 138 18 172 10.05 1.729
CO2 44 6 86.4 0 0
CH4 19 2 13.6 50 680

C2–C6 99 13 188.5 50 9.425
C5–C9 41.5 5 160 47.8 7.648

C10–C13 5.5 1 39.4 49 1.931
N2 287 37 359 0 0

Total 786 100 1032.25 23.045

https://www.sintesimastermind.it/portfolio-items/progetto-erpice/?portfolioCats=45
https://www.sintesimastermind.it/portfolio-items/progetto-erpice/?portfolioCats=45
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This gaseous fraction is then cooled to obtain a condensed product (fractions C5–C9
and C10–C13) together with the non-condensable gas fraction (Table 5). The energy efficiency,
calculated as the input energy contained in the waste plastic stream related to the output
energy obtained from condensable and non-condensable products, is equal to 74%.

Table 5. Quantification of non-condensable and condensable products of the pyrogasifier.

Weight (kg) Energy (MJ)

Non-condensable gas 832.85 13.466
Condensed product 199.4 9.579

Energy balances were applied to calculate the energy requirements of the pyrolysis
reaction and the sources of energy present in the system to satisfy them. The thermal
energy needed to pyrolyze 1000 kg of plastics, that is, 1.316 MJ [83], together with
the energy required by the system utilities (compressors, blowers, etc.) is supplied
by the energy provided by the gasification of two sources: a fraction of the produced
pyrolysis oil (HHV = 48 MJ/kg) and the pyrolysis gases (Cp = 2.56 KJ/kg·K, based on
product gas distribution).

In summary, Figure 4 contains the overall scheme of the process. A total of 199.4 kg
(48 MJ/kg) of liquid fuel and 832.85 kg (16 MJ/kg) of gas can be obtained from the
pyrogasification of 1000 kg of mixed plastic waste (and 32 kg/h of air for the gasification
stage). In energy terms, the system is auto-sustained thanks to the thermal energy supplied
by the gasifier, which covers the thermal energy required for pyrolysis reactions (366 kW),
with, consequently, no need for external heating sources. If these figures are applied to the
initial case scenario (220,000 tons of plastic waste for a population of 1 million people), the
following conclusions can be drawn:

- A total of 183.227 tons of green gas (calorific value of 16 MJ/kg (corresponding
to 0.0044 MWh/kg)), which can generate 0.81 million MWh, providing 44% of
the initial thermal energy contained in the feedstock. Methane’s heating value is
40 MJ/m3 [84], equivalent to 0.0111 MWh/m3, which correspond to 73 million m3

of methane. Considering that a family composed of 2.3 people (https://www.istat.
it/en, accessed on 10 January 2024) consumes 1400 m3 of methane in one year
(https://www.arera.it/en, accessed on 10 January 2024), the production of green
gas would satisfy the annual methane need of 120,000 inhabitants.

- Approximately 43.9 thousand tons of liquid green fuel are generated, which can
provide 0.57 million MWh, representing 30% of the initial thermal energy in the
feedstock. If the produced liquid has a density equal to that of diesel, 0.85 kg/L [85],
a total of 52.6 million liters can be produced, corresponding to the consumption of
over 47,000 cars (for approximately 70,000 inhabitants) traveling 20,000 km per year
at 18 km/L (estimated from https://www.quattroruote.it/magazine/, accessed on
10 January 2024)

The use of the proposed pyrogasifier could be also combined with bi-fuel endoscopic
engines that could allow for an overall electrical efficiency of 40% (https://www.man-
es.com/, accessed on 10 January 2024), higher than the current waste-to-energy plants
that produce steam, which have a maximum overall electrical efficiency of 27% [86]. In
addition, metallic products and char could be recovered from the waste stream to be used
in the production of advanced materials or as fillers for ceramic composite materials, or the
unsaturated hydrocarbons could be re-polymerized to produce new recycled plastics, thus
closing the loop in a true cyclical economy.

https://www.istat.it/en
https://www.istat.it/en
https://www.arera.it/en
https://www.quattroruote.it/magazine/
https://www.man-es.com/
https://www.man-es.com/
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4. Conclusions

Conventional mechanical recycling technologies cannot recycle all the types and
amounts of generated plastic waste. Pyrolysis can convert these municipal mixed plastic
streams into products with a significant calorific value, which are likely to be used as
energy sources. The quality of these fuels is greatly affected by the composition of the
feed, the reactor, and the applied operational conditions, and the correct design of the
thermo-chemical technology is crucial to achieving optimized yields.

The present work described a technology to expand the portfolio of technical ap-
proaches to drive plastics circularity, e.g., chemical recycling. The feasibility of a novel
municipal plastic waste pyrogasification system for the sustainable production of fuel oil
was verified. A base-case scenario considered a capacity of 1000 kg/h of municipal plastic
waste, consisting of a mixture of PP, PE, PS, and plastic associated to paper, which were
converted into non-condensable gases, oil, and char. A total of 199.4 kg (48 MJ/kg) of liquid
fuel and 832.85 kg (16 MJ/kg) of gas could be obtained in an auto-sustained system, which
did not need external heating sources as the thermal requirements (1.316 MJ for 1000 kg)
were supplied by the gasification of a fraction of the produced pyrolysis oil and gases.

As numerical perspectives applied to the initial case scenario (220,000 tons of plastic
waste for a population of 1 million people), the obtained green gas could satisfy the annual
methane needs of 120,000 inhabitants, and the produced liquid fuel could correspond to
that consumed by over 47,000 cars.

This initial feasibility analysis confirmed the technical adequacy of the proposed
technology, which will be complemented by a technoeconomic study of the solution.
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