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1 | INTRODUCTION

Data-driven modeling aims at finding relationships among given data sets, and can be formulated with parametric or
non-parametric machine learning algorithms. Parametric algorithms simplify the unknown function to be learned to a
known form and contain a set of parameters of fixed size, which does not vary in dependence of the training examples. In
particular, parametric algorithms do not require assumptions on the underlying probability distribution of the available
data and thus can be employed independently of the data distribution. Such algorithms usually consist of two steps:
selecting the form of the functional relationship, and learning the parameters from the training data. Examples are logistic
regression, linear discriminant analysis, and naive Bayes (see, e.g., Chap. 2 of the book of James et al.! and Chap. 18 of the
book of Russell and Norvig?). These methods are fast to learn from data as well as easy to understand and interpret. On the
other hand, choosing a priori a functional form may limit their capability to match the underlying mapping generating
the data, and therefore they are better suited for simple and low-dimensional problems. Instead, non-parametric machine
learning models do not demand strong assumptions on the mapping generating the data and perform better when one
has a lot of data and no prior knowledge, as they are able to fit a larger family of functional forms. However, they require
much more training efforts in general, and it is often difficult to explain and interpret the obtained results. Examples are
k-nearest neighbors regression, decision trees, deep Gaussian process, and complex neural networks, which are highly
nonlinear.!?
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In this context, learning highly nonlinear models is usually based on some stochastic optimization method. Thus,
the learned parameters are sensitive to their initial values, and can vary depending on different learning processes
even with the same optimization algorithm. In this paper, we evaluate such an uncertainty in the data-driven learn-
ing process by using a metric based on an empirical measure of the capability to avoid local minima as well as
Cramér-Rao bounds.? Thus, the goal of this manuscript is to develop a framework for data-driven analysis of effec-
tiveness and robustness to local minima trapping of learning methods. Without loss of generality, we focus on
one-hidden-layer feedforward neural networks, although our approach could be extended to other types of networks.
To the best of our knowledge of the literature, this is the first attempt in this research direction. In more detail, the
contribution of this paper is three-fold: (i) a novel, empirical criterion to evaluate robustness with respect to local
minima trapping is proposed as a performance metric in the learning process of feedforward neural networks. Such
an approach does not require assumptions on the underlying probability distribution function of the available data
set; (ii) a learning algorithm based on the extended Kalman filter (EKF) is presented that is well-suited to avoid-
ing local minima; (iii) the use of Cramér-Rao bounds is investigated to evaluate the convergence speed of neural
learning.

For the purpose of learning, the knowledge of the function that generates the data distribution is of course helpful.
However, a well-known limitation is that, if the chosen probability density function does not match the experimen-
tal dataset, bad predictive performances may occur. Instead, non-parametric approaches to density estimation with few
assumptions about the distribution may turn out to be more robust. For example, the histogram is the simplest method
for modelling probability distribution based on the observed data.*> Standard histograms simply partition observed val-
ues into distinct bins of fixed width and then count the number of observations falling in each bin. In the present work,
a novel criterion is proposed for the evaluation of the quality of neural training by computing the sample probability to
avoid local minima.

As previously pointed out, we focus on the learning process of feedforward neural networks as a case study. Such a
research direction is motivated by the slow convergence exhibited by classical backpropagation in high-dimensional set-
tings.® In this context, a number of algorithms have been proposed in the literature for the purpose of training this kind
of networks.” For example, the adaptive selection of the descent step® and the adoption of second-order derivatives meth-
ods were presented.” Among others, learning algorithms based on the EKF were also investigated.'” The main advantage
of EKF-based training is a higher convergence rate, which, however, is often obtained at the expense of a heavy com-
putational effort (due to matrix inversions involved in the computation of EKF gains) and memory requirements. Thus,
research efforts were devoted to face these drawbacks and improve flexibility of EKF-based learning in high-dimensional
problems. As to computational issues, efficient EKF-learning techniques were developed for one-dimensional prob-
lems.!! Multi-stream EKFs were addressed!’ to recursively train neural networks by using large amounts of data in
batch mode (i.e., processing one data block at a time). The use of EKF training for recurrent neural networks was inves-
tigated as well.!?> Moreover, a connection was established between EKF and least squares for the purpose of neural
training.!3> The solution to an optimal control formulation of online learning from supervised examples with regular-
ization of the updates was also investigated and compared with the Kalman-filter estimate of the parameter vector to
be learned.'*

The choice of the EKF as learning algorithm is motivated by recent results,'> where the EKF was used to select
the optimal parameters of neural approximators with reduced computational effort and an increased robustness with
respect to the trapping into local minima in an application involving the control of propagating interfaces modeled by
level set methods.'® Thus, this learning method is an interesting benchmark for the evaluation of the proposed met-
ric aimed at assessing the capability to avoid the trapping into local minima of learning methods. In more detail, we
regard neural network learning as a nonlinear state estimation problem, for which we investigate the performance of
EKF-based training for the optimization of the neural parameters. Our study is focused on the robustness with respect to
the local minima trapping and exploits the Cramér-Rao bound to investigate the effectiveness of the convergence speed
to global minima. The approach is validated numerically on a problem involving the prediction of the Mackey-Glass
series.!’

The paper is organized as follows. In Section 2, we review one-hidden-layer feedforward neural networks with their
related assumptions and approximation properties. Section 3 presents the considered EKF-based learning procedure
as a nonlinear state estimation problem. Section 4 describes the proposed approach based on the Cramér-Rao bound
to evaluate the performance of learning via the EKF, together with the definition of the sample probability metric to
measure the capability to avoid local minima. Numerical results are discussed in Section 5. Conclusions are drawn in
Section 6.

85UBD17 SUOLULLIOD BAIERID 3ol dde 8y} Aq peuob 88 s3jolfe YO BSN JO S8|NJ 10} ARIg1IT3UIUO AB]IM UO (SUONIPUOD-PUR-SLLLBIWI0D" A3 1M A1 1[BU 1 UO//SANU) SUORIPUOD PUe SWB L 8U3 89S *[202/0T/TZ] Uo ArelqiTauliuo A3|im erowes 1 1PNIS 1168 AisieAlun Aq TOLE'SIe/Z00T OT/I0p/W00" A3 ImAre.q 1 jeuuoj/Sdiy wouy pepeojumod ‘0 ‘STTTE60T



ALESSANDRI ET AL. 3
WILEY——2

2 | FEEDFORWARD NEURAL NETWORKS

We consider the learning process of one-hidden-layer feedforward neural networks. Typically, computational units in the
hidden layer of such networks are perceptrons, radial, and kernel units. One-hidden-layer networks are also know as
shallow networks, in contrast to deep ones, in which there are two or more hidden layers. Although shallow networks
present some limitations and deep ones are superior in certain tasks,'® the one-hidden-layer paradigm is still widely used
in applications.'®!%2! The approximation capabilities of such networks were studied in several theoretical works. It was
shown that, for many types of computational units, they are universal approximators, that is, they can approximate up
to any desired accuracy every continuous function and every function belonging to Lebesgue spaces on compact subsets
of RP, even for large p. For instance, this property holds for perceptrons with non-polynomial computational units,? as
well as radial and kernel units satisfying mild conditions.?* After the seminal paper of Barron,?* the complexity issue,
that is, the problem of estimating the number of computational units required to guarantee a desired accuracy in learning
multidimensional mappings, was investigated too.?
A feedforward neural network with a single linear output computes input-output functions belonging to the set

n
span G:= {Zwigi :w; €R, g € G},
i=1

where G, called dictionary, is a parameterized family of functions, and n € N is the number of units in the last hidden layer.
In networks with one hidden layer (called “shallow”), G is formed by functions that are computable by a given type of
computational units. In networks with several hidden layers (referred to as “deep”), instead, its elements are combinations
and compositions of functions representing units from lower layers. Dictionaries are parameterized families of functions
having the form

{pG-,w): U->R|we W},

where ¢ : U X W — Risafunction of two variables, i.e., an input vector u € U C RP and a parameter vectorw € W C Rk,
There are many possibilities to construct the parametrized functions ¢(-,w) of the dictionary. Here, we consider the
so-called ridge construction, in which the p-dimensional vector x is “shrunk” into a one-dimensional variable via the
inner product, as follows:

P, wy) 1= h(x"a; + B,

where w; := col (q;, f;) € RP*L. Thus, each ridge function results from the composition of a multivariable function hav-
ing a particularly simple form given by the inner product x"e;, with a function h depending on one variable. The
most widespread case is given by sigmoidal functions, that is, bounded measurable functions on the real line such that
lim;_, ;o h(t) = 1 and lim,_,_, h(t) = 0.

Let us denote by

Ridge(h) :=span {h(x"a; + ), € R?, p; € R}

= {7/ tREXRP - Ry y(w,x) = Zci h(x"a; + ), a; €RP, ¢, f; € R} €))

i=1

the set of p-variable single-output ridge feedforward networks on R? with a computational unit h, where n € N is again
the number of units (also called “neurons”) in the hidden layer and w € R¥ collects all the parameters c;, a;, ;. The next
theorem is a slightly-simplified version of the results from Leshno et al.2®

Theorem 1. Let h : R — R be locally bounded and piecewise continuous and let n be a positive integer. Then,
for every continuous function on a compact set D C RP and every € > 0, there exists a network in Ridge(h), that
is, a ridge one-hidden-layer feedforward neural network (1) with a sufficiently large number n of computational
units, that approximates such a function with an error at most € in the supremum norm if and only if h is not an
algebraic polynomial. The same holds for every function belonging to the Lebesgue spaces L(D), s € [1, o).
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In the neural network parlance, the property stated in Theorem 1 is the so-called “universal approximation” property,
which is satisfied under mild hypothesis on the computational units of ridge networks. In particular, note that they do
not need to be continuous or smooth, but the only requirement is non-polynomiality.

3 | EKF-BASED LEARNING

In this section, we present a framework based on the use of EKF for neural network learning. Although EKF-based
learning has been successfully exploited in a variety of applications, its convergence properties are not fully known. In
more detail, the exponential boundedness of the error in estimating the optimal network parameters was investigated.?’
Results on the convergence of certain recursive nonlinear least-squares algorithms in a purely deterministic context
were reported, and the behavior of the EKF as a method for the identification of the optimal neural parameters was
studied.!?

Let us consider the problem of interpolating a data set given by M input-output pairs {(ux,yx), k=0,1, ... ,M — 1},
where uy € U C RP and yx € Y € R? for two compact sets U and Y. We assume that each input-output pair is ran-
domly generated via an unknown vector mapping f : U — Y such that y; = f(uy). Suitable smoothness hypotheses on
the input-output mapping f can be made according to the stochastic process generating the data.?® For every component
1, ... ,q of f, a family "+ of parametrized mappings dependent on N '(n) parameters, collected in the vector w, can be
used to interpolate the data pairs, by searching for a convenient choice of the parameters.

Assumption 1. The family of parametrized mappings is given by I' y+,) = Ridge(h), where h is a computa-
tional unit that satisfies the hypotheses of Theorem 1 and N'(n) = n(p + 2).

Algorithm 1. EKF-based learning

Inputs: initial covariance matrix Py;

neural network mapping y(:, -);

number of input/output pairs M;

input/output pairs (ug,yx), k=0,... .M — 1;

covariance matrix of the measurement noise Ry, k=0, ..., M — 1.
Output: best estimate Wy of w*.

1: Choose Wy randomly
2. fork=0toM —1do

dy(w,u)
: — =
3 Hk o

W=y, u=uy

& K« PeH] (HPHT +Ry) ™

5 Pyy1 < Py — K H Py

6: Wi < Wi + K (Y — 7 (W, Uk))
7: end for

8: return Wy,

Among the possible approaches to tune the parameter vector w, we focus on recursive least squares. Toward this end,
we formulate an approximation process based on the definition of a dynamical system characterized by the following
state and measurement equations:

Wil = Wy, (2)

Yk = y(Wi, u) + #ii., 3

where wy is the neural parameter vector at iteration kand k = 0,1, ... , M — 1. More specifically, the parameter values play
the role of a constant state, with dynamic equation given by (2), equal to the optimal parameter vector w* € RV ™, that
is, wo = wy = - - - = w*, while y, represents the output variable described by (3), where 7, € RY is regarded as a random
vector that models the difference between y; and y(w*, uy), with y being a neural mapping of the kind (1). Concerning
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the definition of the optimal parameters, one can choose any w* that is a minimizer of
M-1
RN® 5w Jw) 1= ) llye—r wou)ll* €R
k=0

over some compact subset of RV, where J(-) is a least-squares fitting cost.
Assumption 2. The mapping f generating the data pairs is locally bounded and piecewise continuous.

Note that Assumption 2 is quite reasonable: it is implied in the common situation in which one has no unbounded out-
put values in the input-output pairs and the physical process generating them is discontinuous at most in correspondence
of a finite number of input values.

Under Assumptions 1 and 2, Theorem 1 guarantees the existence of a ridge network and a parameter vector such
that, for every u € U and every 5 > 0, the (unknown) mapping generating the data can be approximated with an error at
most # in the supremum norm. The representation (2), (3) allows regarding supervised learning of neural networks on
the basis of a set of data as the problem of estimating the state of a nonlinear system. The measurement equation defines
the nonlinear relationship among inputs, outputs, and parameters.

Assumption 3. The computational unit & of the neural mapping Ridge(h) is continuously differentiable.

Algorithm 2. Computation of the mean Cramér-Rao Bound (MCRB)

Inputs: initial covariance matrix Py;
neural network mapping y(-, -);
number of input/output pairs M;
input/output pairs (ug,yx), k =0,... .M — 1;
covariance matrix of the measurement noise Ry, k =0, ... , M —1;
number of simulation runs N.
Output: mean Cramér-Rao Bound MCRB;, k=0,...,M — 1.

1: fork=0toM —1do
2: 7w < 0

3: end for

4: fori=1to N do

5 choose Wy randomly
6: perform neural network training with initial weights Wy to get the final estimate w*
7 Iy « Py
8: 7wy « o + tr (I1p)
9 fork=0toM —1do
* 9y (w,u)
10: H « == -
1: Mt < Ty — TG (HTLH T + Ry) ™ HTI,
12: Tg1 < Tpr1 + 1 (Tetn)
13: end for
14: end for

15: fork=0toM — 1 do

16: MCRBk « ﬂk/N

17: end for

18: return MCRBy, k=0,... M -1

Under Assumption 3, we introduce the EKF learning, as it is usually considered in the literature.?’ It consists in
recursively computing estimates Wy € RN ® of the optimal network parameters w* fork = 0,1, ... ,M — 1, as follows:

W1 = Wi + K — v Wi, ug)), 4
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H, = ZWw , 5)
ow W=y, Uu=uy
-1
Ki = PeH] (HcPcH + Ry) ™, (6)
Pr1 = Py — KiHy Py, (7)

with symmetric positive definite matrices P, € RVN®WN ™ and R, € R%4. The initialization is performed with a given
initial parameter vector Wy and an initial covariance matrix Py. The best estimate of w* is obtained at the last iteration,
that is, it is given by Wy,. The estimation procedure is sketched in Algorithm 1, which represents an implementation of
Equations (4)-(7).

4 | PERFORMANCE EVALUATION

The performance of the EKF learning procedure described in Section 3 or of any training algorithm can be evaluated in
terms of convergence speed and capability to avoid local minima trapping. In the following, we will address both issues.

As pretty well-known in the area of stochastic filtering, there exists a lower limit on the error covariance for unbiased
estimators, called Cramér-Rao Bound (CRB). In our case, the covariance is given by

E{(Wy —w") (e —w)'} > 1Ty,

for k=0,1, ... ,M —1, where E{-} is the expectation operator and the positive definite matrix IT, € RNWN® jg
computed as follows:°

M = O — IGH T (O TLH, T + Ry) T H T, ®)
with
HY = ()ygw, u)
(R —,
fork=0,1, ... ,M — 1andIly = Py. The previous recursive equation coincides with Kalman formula, where the matrices

H; are computed in the optimal parameter vector w*, and for this reason they are marked with a star.
The performance of EKF training (4)—(7) can then be evaluated by performing N simulations and computing the mean
square error (MSE) at each iteration k = 0,1, ... ,M — 1, that is,

N
MSEL(N) := - 30D = w" (D) () = w (D),
i=1

where, for the i-th simulation run, w*(i) and W(i) are the optimal parameters and the estimated ones at iteration k,
respectively. The expected square error is the trace of I, and therefore the following inequality holds for k = 0,1,
. M —1:

lim MSEg(N) > tr(Ily).
N-+4o0

The CRBs are lower bounds that are usually computed pathwise, but in our case the optimal parameters to which the
EKF estimates asymptotically tend are unknown a priori. We can overcome such a difficulty by determining the CRB a
posteriori, that is, in the i-th simulation run after finding w*(i) from some initial value. Moreover, we need to estimate the
matrix Ry, as the variance of 7 is unknown (using for instance equation (36), p. 962, of the work of Tiguni et al.3!). Since
the CRB depends on Ry and also on the initial covariance matrix Py, we focus on the mean CRB (denoted as MCRB in the
following), that is, an average value obtained over many Monte Carlo simulation runs corresponding to different choices
of the initial parameter vector. The pseudo-code of the procedure used for the computation of the MCRB is reported in
Algorithm 2.
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FIGURE 1 Sketch of a one-dimensional fitting cost function J(w) with multiple local and global minima, denoted by w*®, w*®, w*®),
and w*@. The value of € that corresponds to the horizontal dashed line includes the minimum points w*® and w*®. The application of a
descent method from the second and third initial points leads to w*® and w*®, respectively, and therefore such initial estimates have to be
counted to compute the sample probability for the value of € considered in the plot, while this is not the case of first and fourth ones.

In general, nonlinear regression problems suffer from local minima. This is typically the case when regression is
performed by using neural networks. Thus, a learning algorithm may asymptotically provide different estimates of the
optimal parameters, depending on both the particular realization of the stochastic processes that generate the data
set and the choice of the initial parameter values. In this context, we propose a simple idea to evaluate the perfor-
mance in minimizing the fitting cost J (ideally equal to zero since inf,cgxw J(W) = 0). It consists in evaluating the
sample probability P, to find parameters for which the optimal cost is less than a given constant value e. Thus, the
sample probability P, provides a measure of the capability to avoid local minima. Figure 1 allows clarifying such an idea.
In more detail, the probability of being trapped in local minima depends on the value of ¢, which can be regarded as
a threshold.

Given N initial estimates Wy (i), i = 1, ... , N, let Wy (i) the corresponding final estimates obtained at iteration M. The
sample probability P, we are interested in is defined as follows:

N
RsgD et P, 1= lei;@(e — J(Wy (i) € [0,1],

where O(-) is the Heaviside function, that is, given z € R, ©(z) = 1 if z > 0, and ©(z) = 0 otherwise. Algorithm 3 reports
the pseudo-code for the computation of P,.

5 | NUMERICAL RESULTS

For the purpose of numerical evaluation of the results described in previous sections, we considered the problem
of prediction of the Mackey-Glass series,!” which is a simple training case study yet meaningful as a first step
toward the direction of data-driven performance criteria and metrics to evaluate both convergence speed and robust-
ness to local minima trapping. The discrete-time Mackey-Glass series is generated by the following delay-difference
equation

Xi—7

— % k=01,..., ©)
1+ (0e-o)"

Xk =1 =¢1) X1+ 2

where 7 > 1 is an integer constant, and ¢; € (0,1), c; > 0 are given real constants. As is well-known, (9) shows a chaotic
behavior, and its prediction is accepted as a standard benchmark problem. The prediction is performed by assuming that
the next value x;; depends on a vector of constant length given by the previous [ samples, that is, by interpolating the

25U90 17 SUOWILIOD BATERD) 3|0 [dde Uy AQ pousenob a2 a1 WO ‘8N J0 a1 10} AXei 1T BUIIUO AB]IA O (SUOHPUIOD-pUE-SWLS] WO A I ATe.ql1pUI|UO)/ST1) SUOIIPUOD) PUB SWiS | aU) 295 *[£20Z/0T/TZ] Uo Areiqi8uliuo A8]im ©AousD 1Q 1pnis 116Q A1SieAIuN Aq T02E'SIe/Z00T OT/10p/woo" A3 v Akeic]1puuo//Sdny oI papeojumod ‘0 ‘STTT660T



8 ALESSANDRI ET AL.
WILEY

Algorithm 3. Computation of P,

Inputs: threshold value ¢;
neural network mapping y(-, -);
number of input/output pairs M;
input/output pairs (ug,yx),k =0, ...,M —1;
number of simulation runs N.
Output: sample probability P, to find parameters for which the fitting cost J is less than e.

1: P, <0
2: fori=1to N do

3 choose W, randomly

4 perform neural training with initial weights Wy to get the final estimate Wy,
s T e Xl e — v (o uo)l)?

6: if J < ¢ then

7: P, « P, +1/N

8 end if

9: end for

10: return P,

input-output data pairs (uy, yx) € R! x R, where
Up = COl(Xk, X1, Xk—2, -+ »Xk—1-1) = Yk = Xkr1, k=0,1, ...

In this paper, training data were generated with = = 30, c; = 0.1, and ¢, = 0.2. The initial values x;,i = —-1,-2, ... , -7,
were randomly chosen according to a uniform distribution between 0 and 0.4. We considered data sets composed of up
to 5000 samples. The first 1000 pairs of each series were omitted. The succeeding data pairs were used half for train-
ing and half for testing. For the prediction we employed the previous five samples, that is, we chose [ = 5. We used
one-hidden-layer feedforwad neural networks with different numbers n of continuously differentiable sigmoidal com-
putational units. Such networks were initialized with random choices of the initial parameters according to a Gaussian
distribution with zero mean and covariance Py = 10721, where I is the identity matrix.

Figure 2 reports the MCRBs obtained by the EKF learning over N = 1000 simulation runs and M = 2000 iterations,
together with the behavior of the MSEs, for neural networks with different numbers n of neurons in the hidden layer.
To enhance comparisons of results, we have reported normalized values, that is, MCRBs and MSEs are divided by the
number of parameters. As expected, the larger the number n of neurons, the better the performance in terms of MSE,
which exhibits a faster convergence rate as n increases.

We compared the results provided by the EKF learning with the standard gradient-based by-pattern adaptive training
algorithm (the last one is available in Matlab via the function traingda). We denote such learning methods by EKFL
(EKF learning) and GAL (gradient-based adaptive learning), respectively. We chose a number of iterations steps equal
to 2000 for both EKFL and GAL, and the same initial parameters Wy. The analysis of the behavior of EKFL and GAL by
using the sample probability P, of being trapped into local minima is made via the plots reported in Figures 3, 4, and 5.
In more detail, in Figure 3, we compared the P, profiles as functions of the threshold ¢ of EKFL and GAL obtained
by neural networks with different numbers of computational units and a data set of M = 1000 input-output data pairs
taken from the testing set. In Figure 4, we reported the sample probability P, provided by EKFL as a two-dimensional
function depending on both the threshold € and the number of neurons » for an easier comparison of the results. We
observe that the best results in terms of P, are obtained with a neural network made up of n = 10 neurons. This is due
to a compromise between approximation error and estimation error. A small value of n provides worse results, and this
occurs also with neural networks having a higher complexity, that is, a larger n. In the first case, this may be ascribed to
the poor approximation capability due to a reduced number of neurons.

In Figure 5, we evaluated the effect of the number M of data pairs on the sample probability P, from M = 200
to M = 2000. It turns out that the approximation errors decrease as M increases. However, the precision of the learn-
ing deteriorates if neural networks with a large number n of neurons are considered due to the effect of local minima.
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FIGURE 2

FIGURE 3
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Normalized MSEs and MCRBs (MSEs and MCRBs divided by the number of weights to enhance comparisons) over
N = 1000 simulation runs obtained by EKFL.
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Sample probability P, of being trapped into local minima over N = 1000 simulation runs obtained by EKFL and GAL.
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FIGURE 4 P, profiles as a two-dimensional function of the threshold £ and the number of neurons n obtained by EKFL over N = 1000

simulation runs.
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FIGURE 5 P, profiles as a function of the threshold £ over N = 1000 simulation runs obtained by EKFL with data sets of different sizes.

In fact, the corresponding values of P, are smaller as compared with those obtained with less complex neural networks.
In general, it turns out that EKFL outperforms GAL in terms of capability to avoid local minima. Finally, the larger the
number of samples, the better the results in terms of smaller local minima trapping probability. This is due to the positive
effect of having at disposal a larger set of information when increasing the number of samples.
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6 | CONCLUSIONS

Noises and uncertainties inevitably affect data-driven learning with possible deterioration of performance. In this paper,
we have developed a framework for performance evaluation of neural learning, by focusing on one-hidden-layer feedfor-
ward neural networks and learning via the EKF as a case study. By exploiting an estimation-based point of view, we have
adopted the Cramér-Rao bound, which provides the best convergence speed to be compared with. Another important
point is the robustness with respect to local minima trapping, which has been measured in terms of the empirical prob-
ability of being attracted far from the global optimum. In this respect, as compared with gradient-based training, EKF
learning performs quite well if a sufficiently large data set is available for training.

Summarizing, the main objective of this paper lies on the definition of data-driven procedures that can guide prac-
titioners in understanding which is the best training algorithm in the specific problem of interest. In this context,
future efforts will be devoted to the investigation of different training methods than the considered EKF learning and
gradient-based adaptive learning, such as, for instance ADAM?3? or any other stochastic gradient descent algorithm.
Another extension of the proposed approach will consist of investigating also local approximators based on kernel func-
tions3*** and deep neural networks, by which we intend to deal with complex optimal control problems such as those
addressed in previous works,'>1% where training based on EKF was successfully applied, while taking into account the
effect of accurate, smart sampling. Since EKF learning turns out to be well-suited to avoiding local minima, new training
strategies based on EKF will be studied as well to overcome such local minima issues.
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