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Abstract: Increasing evidence shown that schizophrenia (SCZ) is associated with immunological aberrations. 
Particularly, microglia, the resident innate immune cells of the brain, have been implicated in SCZ 
pathogenesis. However, despite the abundance of empirical findings highlighting the role of microglia-
mediated neuroinflammation in the neuropathology development in a wide range of central nervous system 
(CNS) disorders, non-inflammatory abnormalities in this cellular compartment have been associated with 
neuropsychiatric manifestation of SCZ in some postmortem works and in SCZ animal models. We hypothesize 
that at least some of these non-inflammatory perturbations represent the core neurobiological features of a 
“disincorporated” state of microglia in SCZ and indicate a switch from homeostatic coupling/functional 
response to maladaptive reaction to environmental inputs. This work aims to summarize experimental evidence 
that support this possible novel conceptual paradigm. This hypothesis needs further confirmations. In 
summary, the possible role of microglia in the pathogenesis of SCZ is certainly complex with conflicting 
evidence. Therefore, new conceptual paradigms useful for capturing the fundamental alterations of microglia 
seem to be needed. Considering the need for experimental confirmation, the ecological idea of microglial 
disincorporation might be a first step in this direction, sufficiently supported by recent literature.

Keywords: microglia, schizophrenia, disincorporation, immunomodulation, neuroinflammation
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Introduction

The emerging microglia role in brain homeostasis and in major neuropsychiatric disorders

During the last decade, novel insights on the diverse function and phenotype of microglia have 
progressively emerged [1]. Besides their canonical role in immune surveillance, these cells are also 
indispensable for brain wiring, bidirectional communication with neural cells, and synaptic pruning [2-4]. This 
broad functional apparatus suggests an important involvement of microglia in brain development and 
homeostasis [1,4] as well as in several neuropathological conditions, including neuropsychiatric illnesses [5-
9]. While microglia-mediated neuroinflammation has been almost unanimously associated with central 
nervous system (CNS) disorders, emerging evidence, particularly in the pathological context of schizophrenia 
(SCZ), has pointed to a possible involvement of a unique non-inflammatory microglia phenotype in the 
development of the disorder [10]. Furthermore, results from some recent studies seem to dictate the necessity 
of separating the notion of microglia pathological phenotypic shift from the presence of neuroinflammation, 
since these elements are not necessarily covariant [11]. Finally, the conceptual association of 
neuroinflammation, microglia activation and psychiatric diagnostic categories cannot be easily established 
[12]. 

Schizophrenia: an overview on the complexity of neuroimmunological undepinnings 

Among etiological hypotheses, emerging experimental evidence pointed to a relevant role of 
inflammation as a causal immunity-related factor in the pathogenesis of SCZ [13]. In this regard, inflammatory 
changes have been observed in serum and cerebrospinal fluid (CSF) of SCZ patients [14-16]. In their 
systematic review, Rodrigues-Amorim et al.[17] showed that circulating levels of TNF-α, IFN-γ, IL-1β, IL-
1RA, IL-2, IL-6, IL-8, and IL-10 differed between SCZ patients and healthy controls in more than half of 99 
included studies with a total of 8234 participants. Furthermore, genetic polymorphisms for IL-1β (i.e., 
rs16944), IL-6 (i.e., rs1800795), and TNF-α (i.e., 1800629) as well as an elevated expression of IL-1β, IL-6, 
TNFR1, and TNFR2 mRNAs were observed in SCZ subjects. Moreover, the importance of TNF signaling 
pathway for SCZ development in humans & SCZ-like behaviors in mice has been recently highlighted by Yeo 
et al. [18]. Notably, the pro-inflammatory cytokine IL-6 was most frequently elevated in SCZ patients, while 
antipsychotic treatment in drug-naive patients after first-episode psychosis (FEP) led to significant reductions 
of IL-2 and IL-6 [19]. Elevated level of monocyte chemoattractant protein-1 (MCP-1) was also detected in 
FEP patients [20]. Furthermore, the importance of symptomatic state- and age-dependent alteration of the brain 
immune environment in SCZ has been by De Picker et al. in a recent work [21]. In a meta-analysis of 28 studies 
[17], CSF levels of IL-1β, IL-6, and IL-8 were significantly increased in SCZ patients as compared to healthy 
controls. Unexpectedly, despite these inflammatory alterations in SCZ, some of the most powerful anti-
inflammatory drugs (e.g., corticosteroids and neurosteroids) could not completely resolve the clinical 
manifestation of the disease [22], and in some cases, might trigger psychotic episodes [23]. This lackluster 
clinical efficacy of anti-inflammatory medications has called into question the primitive role of inflammation 
in SCZ pathogenesis. 

Despite the highlighted inflammatory changes, some inconsistencies have likewise emerged regarding 
the unambiguous involvement of microglia in such proinflammatory transitions [11,24]. Moreover, regardless 
of the necessary expression of proinflammatory phenotypes, microglia have also been proposed as the direct 
target of some psychiatric medications in SCZ [25-27], prompting the possible contribution of maladaptive 
microglia-related non-inflammatory response in SCZ development.

The hypothesis

The purpose of this article is not to deny the experimentally supported importance of 
neuroinflammation associated with proinflammatory microglial changes in SCZ. Rather, it is to properly 
contextualize both terms. It is perhaps erroneous to view these phenomena as necessarily related and primitive. 
Instead, the present theoretical work proposes to reconsider them as epiphenomena in the context of a more 
fundamental pathological development, not necessarily related to inflammation, affecting microglia from the 
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earliest stages of their ontogeny and leading to progressive disincorporation from the CNS. Therefore, this 
article aims to provide a synthesis of current findings on both the acquisition of the physiological identity of 
microglia in the CNS and possible fundamental characters of early microglia dysfunction in SCZ. At the same 
time, we propose a new concept of microglia disincorporation, especially related to the early noninflammatory 
changes in microglia, as a potential neurobiological substrate for the early psychopathology of SCZ and as a 
promising theoretical framework to better understand the further specific stages of the disease [21,28], the 
involvement of dysfunctional inflammation, and the aberrant pro-inflammatory phenotypes of microglia in the 
neuropsychiatric manifestations associated with SCZ.. 

Evaluation of the hypothesis

Microglia ontogenetic development and multilayered identity acquisition

Microglia as the central nervous system resident innate immune cells

Microglia, described as a distinct glial cell type in 1919 by Pío del Río Hortega, are the resident 
parenchymal myeloid cells of the central nervous system (CNS) [29]. Microglial elements constitute about 5-
12% of total cells in the healthy human CNS [2]. During development, primitive macrophages and C-
kit+/CD41+ erythromyeloid progenitor of the mesodermic yolk sack are the only embryonic source of human 
adult microglia, which maintain themselves via in situ proliferation in response to M-CSF and the CX3CR1 
ligand (i.e., IL-34) [30,31] without contribution of peripheral monocytes [32] throughout every life stage 
[33,34]. Of note, apart from the crucial importance of local self-renew [35], the long-lived nature of microglia 
[36] might exist only at the population level, while microglial subpopulations are dynamically regulated by a 
rapid turnover, fine-tuned by spatiotemporal inputs [37]. On one hand, these characteristics may explain the 
great heterogeneity of microglia global pool. On the other hand, it clearly emerges that the colonization of the 
CSN by the microglial progenitors quite sharply defines the fundamental characters of the microglial 
populations in each further phase of the individual life.

Microglia are the most morphologically dynamic cells of the vertebrate brain [38]. Ramified microglia 
were classically defined as “resting or quiescent” as opposed to the “active” amoeboid form. However, recent 
studies indicated that these cells were in a basal yet highly active state, designed to monitor the neurosynaptic 
microenvironment [39-41]. Phenotypically, microglial identity is characterized by the expression of several 
genes and molecular markers (e.g., P2Y12R, TMEM119, and Sall1, and others), with possible distinctions 
between sexes and among developmental phases and species [42,43]. The main functions of microglia include 
immune defense, regulation of inflammatory responses, and CNS homeostasis as these cells are capable of 
detecting the first signs of tissue damage and pathogenic invasion [44]. Data from the murine brain suggest 
that microglia acquire their functions in a stepwise manner through the activation of distinct transcriptional 
programs from the embryonic stage to adulthood [45]. In rodents, Dab2, Mcm5 and Lyz2 were expressed by 
early embryonic microglia while Crybb1, Csf1 and CXCR2 were expressed during synaptic pruning and 
neurodevelopmental phase. In adult microglia, MafB, CD14 and Mef2 were linked to prevalent immune-
homeostatic functions. In humans, besides important immune functions, microglia are involved in normal brain 
development, supporting the dynamics of (re)structuring of neural networks and maintaining the homeostasis 
of synapses [46,47]. The majority of these “basic” and interspecifically conserved functional features (e.g., 
phagocytic clearance and chemotactic response to injuries) are linked to classical immune activity and shared 
with other cells of myeloid lineage, while other higher order neuro-immune and homeostatic functions seem 
to emerge in parallel with the evolution of more complex brain structures [48]. In summary, microglial identity 
appears irreducible to a single dimension of analysis (i.e., morphological, molecular, functional etc.). Rather, 
this fundamental dynamic and fluid character appears to take the form of a multilayered and complex 
determination, progressively acquired and continuously reaffirmed during neuroenvironment development and 
individual ontogenesis [49].

Microglia incorporation – a novel possible conceptual framework 
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As said, given the complex and fluid notion of microglia identity, simple morphological analysis could 
lead to an underestimation of the phenotypic and functional continuum underlying microglia heterogeneity and 
complexity in physiological and pathological conditions [44]. The idea of microglia polarization has been 
proposed with M0, M1, M2a/b, and M3 phenotypes [50]; however, this “M” subdivision remains excessively 
discrete, lacking a contextual element of continuity that helps in the interpretation of each discrete form 
(Figure 1). In attempt to provide foundational insights for this novel conceptual paradigm to characterize 
microglial dynamics, the concept of “incorporation” or “dynamic coupling” is proposed.

-----------------------------------------------------Figure 1---------------------------------------------------------

The term “incorporation” reflects the set of all possible dynamic conditions of phenotypic, 
morphological, and functional (homeostatic) coupling between microglia and other neuro-glial elements (i.e., 
the CNS environment) [49], mediated by many structural and soluble factors and intracellular pathways [2]. 
In fact, multiple microglial subpopulations are detectable within various CNS areas with different phenotypic 
features (e.g., presence of CD86, CD45, and CX3CR1, and absence of HLA-DR in the subventricular zone 
and thalamus as compared to other brain regions) [51]. Additionally, the morphological transition of ramified 
to amoeboid microglia is known to reflect their response to neuropathological or infectious stimuli. Further, 
cerebellar and hippocampal microglia are associated with a more immune-vigilant state [52], lipid droplet-
accumulating microglia (LDAM) and grey matter associated microglia (GAM) are linked to high levels of free 
radicals release and pro-inflammatory cytokines production (due to their defective phagocytosis), and white 
matter associated microglia (WAM) are linked to the absence of immune reactivity [53]. Last but not least, 
heterogeneous microglial subpopulations are identifiable not only in different spatial contexts but also at 
different time points within the same region [54]. Collectively, these findings point to the importance of 
environmental cues in continuously and locally shaping multiple aspects of microglial identity.

Various types of functional microglial-neuro-glial coupling may exist under the influence of different 
environmental factors. In this regard, the subset symbiotic couplings refers to exchanges of molecules and 
interaction during homeostasis and development, while the further subset of possible productive and reactive 
coupling occurs during infection and tissue regeneration after injury (Figure 2). All types of homeostatic 
coupling are collectively resumed under the continuous concept of incorporation. The character of 
functionality here evoked refers to the obtained optimization of the dynamics expressed by the system in which 
microglia cells are included. A sort of meronomic relation subsists between each functional microglia forms 
and the ideal concept of incorporated microglia. In turn, each functional type of coupling is linked to specific 
expressions of microglial multilayered identity and continuously regulated by a number of factors from the 
CNS environment. For example, neuronal activity appears capable of either attracting or averting microglial 
contact by variations in noradrenergic tone [55], while CD200/CX3CL1 or CD47 could instruct microglia to 
remain in a surveillance or phagocytic state via microglial CD200R/CX3CR1 or CD172a signaling, 
respectively [56-58]. Apart from classical cell-cell structure interactions, several cytokines, chemokines, and 
metabolites could also modulate neuro-glial coupling dynamics [59-61]. For example, TGF-β  or glutamate 
(normally released during synaptic activity) could directly or indirectly evoke cell-type-specific and context-
dependent transcriptional programs in microglia [62,63]. Further, some microglia-intrinsic pathways (i.e., 
PU.1, IL-34, IRF8, and CSF-1) have been identified as the necessary elements for the initial expression of 
microglia incorporation [64].

-----------------------------------------------------Figure 2---------------------------------------------------------

Microglia disincorporation as a contributor to neuropathological development

When abnormalities in fundamental neuro-glial interactions occur, microglia progressively enter a 
state of disincorporation. Each of the mentioned mediators of functional coupling between microglia and CNS 
could potentially be negatively implicated in the fundamental phenomenon of disincorporation. It is possible, 
however, that many more mediators will be identified in the near future. Moreover, disincorporation is 
simultaneously defined both as an event and as a process. For example, during neuropathological development, 
the release of various neurotransmitters [65,66] or other mediators as, for example, extracellular vesicles 
[67,68], could lead to microglial disincorporation. In this first meaning the term disincorporation generically 
refers to a breaking event, concerning a previous form of functional coupling between microglia and neuro-
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glial environment. The equilibrium point of the coupling in the presence of perturbations is always dynamically 
moved within a certain oscillation range. A primitively defined homeostatic reserve (i.e., see further sections 
about genetics and priming) is associated with a specific threshold of tolerance to coupling perturbations. When 
the threshold is exceeded due to a perturbation of sufficient entity (disincorporation-event) the oscillation 
window of the aforementioned equilibrium point is permanently redefined in a maladaptive sense (i.e., with a 
progressive reduction of the homeostatic reserve of the renewed coupling). It’s important to emphasize the 
distinction between this concept and the generic inflammatory/activated state of microglia because a 
productive inflammatory phenotype might exist in the absence of disincorporation (e.g., functional response 
to brain trauma/injuries). However, an inflammatory phenotype could also be acquired by disincorporated 
microglia. The main difference between the two inflammatory types (productive vs. disincorporated) of 
microglia is the inability/defective ability to return the homeostatic state in the latter.

Disincorporation as a process entails several possible forms of further maladaptive interaction, 
including the initial destabilization event independent from the presence of inflammation, the progressive 
stepwise weakening of a functional coupling, and eventually, a disincorporated state with the coexistence of 
inflammation. We propose that the earlier forms of disincorporation might represent a specific neurobiological 
substrate for at least a subgroup of early manifestations of SCZ.

Disincorporated microglia as a bridging neurobiological phenomenon for early development of SCZ 
psychopathology

Possible experimentally validated markers of microglia disincorporation in SCZ

Given the role of microglia in coordinating online neuronal function/activity [69,70] and synaptic 
functional plasticity [71-73], microglia disincorporation may represent a fundamental neurobiological 
condition reflective of elementary Basic Symptoms (BSs) [74] from the Basic Symptoms paradigm [75-78] in 
SCZ, representing, at the same time, a disturbance in basic neural information processing. Indeed, the BSs 
model proposes some transphenomenal elements (i.e., bridging the neurobiological and experiential 
dimensions) that can be further exploited to build a connection between the proposed subtle noninflammatory 
microglial changes and the psycho-behavioral manifestations of SCZ. Some metanalytical works on 
postmortem studies that investigated the extent of microglial morphological and densitometrical alterations in 
SCZ subjects showed conflicting results [79,80]. Of note, many studies considered in such metanalytical works 
may have been contaminated by important confounding factors as, for example, the causes of death, co-
morbidities, medication, lack of knowledge of disease stage, and/or symptoms predominance [28]. 
Interestingly, a general decrease in expression of numerous microglia-specific genes (e.g., CX3CR1, CSF1R, 
TMEM119, TREM2, ITGAM, ITGAX, CD86, IRF8, P2Y12R and OLR1) emerged in SCZ patients as 
compared to controls in some other experimental [81,82] and metanalytical works [10] (Table 1), suggesting 
a compromise of neuron-microglia communication [28]. However, despite the presence of the abovementioned 
confounding factors in postmortem studies, a complex alteration of the microglial transcriptome appears 
consistently detectable [24,83] also in many developmental phases of SCZ animal models [28]. These more 
subtle alterations, along with other possible finer modification of microglia morphology and dynamics, could 
indicate the presence of a non-inflammatory basic state of disincorporation of microglia in SCZ. This 
neurobiological condition can be the first building block for the construction of a connecting line between 
organic and phenomenological dimensions, passing through the transphenomenal level, offered within the BSs 
paradigm. Notably, since TMEM119 is a marker of mature and homeostatic/PU.1 expressing microglia 
[64,84,85], these alterations might involve molecular elements particularly associated with this microglial 
subset, which has been documented to be partially decreased in multiple conditions of neurodegeneration and 
brain aging [86].

-----------------------------------------------------Table 1---------------------------------------------------------

Regulators of microglial disincorporation in SCZ
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Similar to other cell types, microglia could express a certain degree of genetic and epigenetic 
vulnerability. The concept of microglial “priming” may be generically referred to any informative event (acting 
on a genetic substrate), capable of permanently conditioning further microglia characteristics and activity. The 
phenomenon of priming is fundamental for understanding microglial disincorporation. Microglia priming has 
been typically understood as a form of trained immunity [98], mainly referring to the ability of innate immune 
cells to develop and display memory for inflammatory and infectious stimuli. However, priming might entail 
microglia propensity to undergo changes other than those of inflammatory nature. In the following sections, 
we highlight genetic and environmental factors that are potentially linked to the priming of microglia toward 
a disincorporation state in SCZ. The model here proposed entails a fundamental genetic substrate, an early 
priming effect (during the first phase of microglia ontogenetic development) and the subsequent event-process 
of disincorporation (in presence of further concomitant triggers).

Genetic substrate for dysfunctional priming of microglial disincorporation in SCZ

Genetics seems to significantly contribute to SCZ pathogenesis, considering the estimated 1% of 
schizophrenia risk in the general population as compared to the 50% risk in individuals with an SCZ twin [99]. 
The estimated single nucleotide polymorphism (SNP)-based heritability for SCZ is approximately 0.45 [100]. 
Notably, both pre-genome-wide association studies (GWAS) and GWAS consistently pointed to the presence 
of SCZ susceptibility loci in the Major Histocompatibility Complex (MHC) region [101,102], one of the most 
polymorphic and gene dense areas of the human genome [103]. In fact, recent analyses of post-mortem gene 
expression also verified a correlation between copy number variation (CNV) and mRNA and protein 
expression of some MHC-linked candidate risk factors [104,105]. HLA molecules are not only fundamental 
in refining immunity but also involved in neuronal signaling, neuronal/synaptic plasticity, learning memory, 
behavioral aspects, and CNS anatomical integrity [106-108]. Importantly, MHC loci on chromosome 6 encode 
information about innate immunity [103], prompting the possibility that MHC-linked genetic variations might 
contribute to microglial dysfunctional early priming and further disincorporation in SCZ.

A significant part of the association between SCZ and the MHC region concerns some alleles of the 
complement component 4 (C4). This molecule seems to have the strongest association with SCZ among all 
loci across the genome [99,102] with documented presence of C4A CNV in SCZ patients [105]. Since C4 
activates C3, a complement product required for microglia-mediated synaptic pruning, specific genetic 
variations regarding C4 gene might trigger a specific disincorporated phenotype of early primed microglia 
with abnormal features in synaptic elimination in SCZ (e.g., loss of cortical gray matter [109], phagocytosis 
of stressed neurons, and impairment in neurotrophic factor release [110]. In fact, both higher C4A level [105] 
and reduced synaptic density [111,112] in the brains of SCZ patients have been observed.

Besides C4, other genetic factors might also be involved in microglial disincorporation in SCZ. For 
example, the altered microglia-mediated synaptic maturation hypothesis for SCZ seems to involve mutations 
in CX3CR1/CX3CL1 and CR3/C3 genes [3] or abnormal levels of C1q [113]. Additionally, recent studies of 
human endogenous retroviruses (HERV) showed some associations between SCZ and the HERV-W type, of 
which HERV-W envelope protein is predominantly produced by microglia and has been linked to the 
neurotoxic subtype of these cells [114,115]. Interestingly, the HERV-K type was also associated with the 
aforementioned alterations of C4A gene [105]. Last but not least, microglial SCZ polygenic score (PGS) [116] 
was predictive of cognitive functioning to a comparable extent to that of neuronal SCZ-PGS [117], suggesting 
that dysfunctional priming of disincorporated microglia, promoted by these genetic factors, might have some 
etiological relevance for the impairment in cognitive function of SCZ patients.

Environmental priming of microglia in SCZ

A growing number of environmental factors could potentially have an epigenetic priming effects on 
early life microglia and microglial progenitors. In this regard, certain genetic alterations in SCZ, particularly 
on microglial genes, seem to overlap with a transcriptional signature produced by toxic exposure to traffic-
related air pollution (TRAP) [118,119] and other pollutants. Additionally, greater psychosis risk occurred with 
birth in urban area, which is intrinsically linked to higher exposure to pollution. Despite the difficulties in 
defining causal links, more recent evidence suggests a possible role of air pollution in altering microglia 
function and development [120,121]. For example, air pollution has been shown to trigger the production of 
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immunomodulatory molecules, such as IL-1ß, IL-6, TNF-α in humans and mouse models [122,123]. Genetic 
associations of various genes encoding these inflammatory cytokines have also been observed in SCZ [17]. 
Furthermore, pollutants could induce immune and brain development alterations in children and mice, 
evidenced by activation of microglia TLR4 [124] and increased phagocytic capacity (elevated levels of C5, 
C5a, and CD68 proteins) [120]. Obviously, urbanicity is not exclusively related to pollution, so the causal link 
is rather weak. Moreover, the proposed evidence is mainly concerned with inflammatory changes in microglia. 
However, in line with our hypothesis, these inflammatory alterations could be the result of a more primitive 
disincorporation condition, possibly fostered (i.e., primed) by the same environmental factors during the early 
stages of development.

Another possible environmental trigger of microglia disincorporation is the complex alteration in the 
gut-brain axis and its influence on the immune system [125,126]. More specifically, early alteration of the gut 
microbiome could lead to increased risk of SCZ, through the mediating role of primitive microglia priming 
and subsequent disincorporation. In rodents, microbiome-dependent developmental priming of microglia has 
been documented in a sex-specific manner [127,128], which might provide a potential explanation for slight 
sex differences in SCZ prevalence. 

Furthermore, microbial infection during pregnancy with consequential immune activation and 
subsequent induction of disincorporated microglia seems to increase the risk of neuropsychiatric disorders, 
including SCZ [129,130].

Considering the abundance of steroid receptors expressed by microglial cells [131], early-life stress 
has also been linked to microglia disincorporation [132]. Prenatal stress is associated with an increased risk of 
developmental problems in rodents and in nonhumans primates as well as of SCZ in humans [133,134]. 
Notably, prenatal stress-associated alterations in placental expression of several immune genes was potentially 
reversible by administration of anti-inflammatory drugs [135]. In rodents, maternal stress could lead to altered 
microglial morphology and density in the embryonic cortical plate and adult neocortex, which might be related 
to increased maternal levels of IL-6 [136] as these changes were apparently reversible by IL-6 blockage [137].

Collectively, various environmental factors (pollution, microbiome, and early-life stress) might 
provide the epigenetic trigger for a subsequent more likely microglial transition toward a disincorporated state. 
Notably, unlike genetic factors outlined in the section above, this environmentally triggered disincorporated 
phenotype might be accompanied with maladaptive inflammation as pollutants, microbes, and stress are known 
to trigger the production of inflammatory mediators in microglia.

Microglial disincorporation and psychopathological progression of SCZ

It is important to considering the level of pathogenetic implication of microglial disincorporation in 
relation to each specific SCZ progression phase (Figure 3). If an adequate incorporation is necessary also to 
fundamentally optimize primarily online and experience-driven neural computation and activity [69-71], the 
disincorporated condition should produce a fundamental deficit in basic neural information processing, 
progressively exposing the subject, on the experiential side, to a primitive state of basic irritation. This 
condition, borrowed from Basic Symptoms theoretical framework, represents a possible trans-phenomenal 
link, between neurobiology and the parallel events on the subjective side, where the conscious experience may 
become more and more complex and progressively enriched with affective tension, due to the discovered 
unsuitability of the previously acquired cognitive schemas. Thus, strangeness and otherness begin to 
contaminate the experiential field, starting from its augmented expression at the very cellular and 
neurobiological level (i.e., the starting event of the disincorporated condition). 

As already stated, disincorporation is not just an “event”, but an active “process”, of which the 
primitive effects can be reinforced by other secondary maladaptive events. All “secondary” neuropathological 
phenomena (e.g., neurotransmitters alterations, neuronal damage, aberrant synaptic pruning, dysfunctional 
neuroinflammation etc.) are probably driven by the same necessity to contain the negative drift along the 
maladaptive spiral. For example, florid psychosis may be seen as the price to pay to gain a temporary 
stabilization of the initial maladaptive process (via dopamine-dependent immunomodulation of microglial 
elements [138], and altered synaptic pruning could find its place as a further maladaptive phenomenon in a 
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more crystallized form of the disease. With disease progression, the consequential phases could be at least 
partially independent from the initial microglia involvement.

-----------------------------------------------------Figure 3---------------------------------------------------------

Limitations

The present work represents a theoretical proposal and, as such, lacks for now an adequate and specific 
empirical support, beyond what can be deduced through a reinterpretation of the current literature. Moreover, 
the experimental evidence currently available is often inconsistent and difficult to understand, due to multiple 
confounding factors, often not adequately managed in the context of the studies conducted.  The first limitation 
of this proposal therefore concerns the unstable foundation on which it was built. Such a limitation is especially 
referred to postmortem studies results here reported. Moreover, a possible experimental test would require the 
application of new and sophisticated techniques, perhaps not yet available, in order to capture the subtle 
alterations that could correspond to the generic condition of disincorporation. Furthermore, the definition of a 
three-phasic model, which takes into account the genetic starting point, the priming effects and the 
disincorporation event-process certainly represents a daring speculative attempt. Finally, the attempt to unite 
the neurobiological level with the phenomenal-experiential one through the trans-phenomenal double-faced 
element of basic irritation/microglia disincorporation is equally particularly insidious.

Conclusions

This review proposes the idea of disincorporation in susceptible microglial populations as a contributor 
to SCZ pathogenesis. Through functional coupling with CNS neuro-glial elements, microglia incorporation is 
maintained, and a homeostatic microglia identity is generically defined. In the anomalous context of SCZ, a 
primary disincorporated state of microglia was elicited by various genetic and environmental factors, with 
possible contribution to the development of psychopathology in this disease. Of note, microglial “pro-
inflammatory” shift might not necessarily occur with microglial disincorporation, depending on the nature of 
the triggering factor and/or disease stage. In the context of disincorporation, the pro-inflammatory shift 
expressed by microglia may be reinterpreted as an identity “regression” to more “immune” (and less 
incorporated) phenotypes, rather than a primitive change into novel microglial forms. As such, caution must 
be exerted during therapeutic considerations for SCZ as a disease with possible “neuroinflammatory” 
background. At the same time, there is a need for more physiologically relevant vitro/in vivo/ex vivo 
methodology to study microglia in detail, such as such three-dimensional cerebral organoids and chimeric 
animal models engrafted with human induced pluripotent stem cells (iPSC)-derived microglia [139,140], to 
reveal other potential contributors to the development of microglial disincorporation. A possible experimental 
approach to validate this hypothesis could make use of the new methodologies mentioned above. For example, 
iPSC-derived microglia obtained from schizophrenic patients could be implanted into mouse models to test 
for the appearance of any deficit in cognitive information processing, since iPSC-derived microglia appear to 
retain species-specific transcriptomic differences in the expression of genes at risk for neurological disease 
[140]. Despite ongoing debate concerning these topics, pharmacological targeting of the immune system 
produces a certain reduction in SCZ symptomatology [141,142], providing the promising preliminary evidence 
for further therapeutic investigation into the role of microglia and their aberrant disincorporated state in this 
neuropsychiatric illness. Further studies are needed. However, the hope is that the present theoretical proposal 
can provide an interpretative framework to better investigate not only the role of microglia in SCZ, but also 
the connection between neuroinflammatory states and other highly relevant psychopathological conditions 
[143,144].
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Table 1. Possible markers of disincorporated microglia in SCZ.

HLA-DR MHC class II element constitutively expressed by microglia with regional heterogeneity [87]

CX3CR1 Regulation of microglia numbers/activation, synaptic pruning, and functional brain connectivity 
[57] 

CSF1R Regulation of microglia cell division, development, maturation, and survival. Classically 
considered an M3 microglia marker [31]

TMEM119 A stable and highly specific microglia marker, maintained even in the presence of CNS injury 
[84,85]

TREM2 Marker of myeloid cell recruitment during immune activation [88]

ITGAM Adhesion and uptake of complement-coated molecules [89]

ITGAX/ CD11c Marker of a homeostatic subset of microglia with a key role in myelinogenesis and IGF1 
production in the developing brain [90]. Particularly expressed also by DAM and Alzheimer-
associated microglia [91,92].

CD86/macrosialin Co-stimulatory receptor for immune cell proliferation. Classically considered an M1 microglia 
marker [93]

OLR1 An inflammatory and immune system response gene [94], whose variations have been proposed 
as risk factors for AD [95].

IRF8 A critical transcription factor for the development of mature microglia [64] and for transforming 
microglia into a “reactive” phenotype [96].

P2Y12R Regulation of microglial chemotaxis and neuro-glial junctions. A highly specific microglia 
marker [97].
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Figure 1 - Discrete forms of microglia molecular and functional polarization, according to M-polarization paradigm. IL. Although 
this framework represents an advancement in the attempt to capture the complexity of microglial morpho-physiology and pathology, 
it still presents overly discrete solutions that are disconnected from each other due to the lack of a concept that grounds continuity 

between different microglial entities. Interleukin; TNF-α:tumor necrosis factor-α; iNOS: inducible nitric oxide synthase; LPS: 
lipopolysaccharides; INF-γ: interferon-γ; IGF-1: insuline-like growth factor 1; TREM2: triggering receptor expressed on myeloid 

cells 2; CSF1R: colony-stimulating factor-1; HLA-DR: human leukocyte antigen DR; TGF-β: Transforming Growth Factor-β; 
SPHK1: Sphingosine Kinase 1; IBA1: ionized calcium binding adaptor molecule 1.
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Figure 2 - Different possible expressions of functional coupling between microglia and neuroglial environment with associated 
aspects of microglia activity. All types of homeostatic coupling are collectively resumed under the continuous concept of 

incorporation.
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Figure 3 - Concise diagram, echoing the present theoretical proposal on the possible role of disincorporated microglia in the 
pathogenesis of SCZ. From top left to bottom right: due to exclusive local self-renewal, colonization of the CSN by microglial 

progenitors quite sharply defines the basic characters of microglial subpopulations at each further individual life stage. Primitive 
genetic vulnerability and early priming effects affecting microglial progenitors or immature microglia may promote a subsequent 

event-process of disincorporation later in life, associated with further environmental perturbations (i.e., double/multiple-hit model). 
If adequate incorporation is also necessary to optimize online, experience-driven neurocomputation, the disincorporated condition 
should produce a fundamental deficit in basic information processing, progressively exposing the subject, on the experience side, to 

a primitive state of basic irritation. Basic irritation and neural processing deficits represent the two sides of the same 
transphenomenal fact, grounded neurobiologically on primitive noninflammatory alterations and on which further phenomenal 

experiences may arise, during the early stages of SCZ development.
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