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A B S T R A C T

In this paper, for the first time, a three-step approach for the optimal design of stiffened panels accounting
for the ultimate limit state due to welding residual stress is developed. First, authors rely on state-of-the-
art analytical approaches coupled with recently data-driven nonlinear finite element methods surrogates
characterized by functional which are computationally expensive to build but computationally inexpensive to
use. Then, surrogates are used within a design optimization loop to find new optimal designs since nonlinear
finite element methods are too computationally demanding for this purpose. Finally, the new designs are
reassessed with the original nonlinear finite element methods to verify that substituting them with their
surrogates in the optimization loop actually leads to better designs. Results obtained optimizing a series of
parameters of a commonly used stiffened panel geometry under different scenarios will support the authors’
novel approach.
. Introduction

The structural design of large-scale engineering infrastructures, such
s ships, offshore floaters, bridges, and aircraft, would typically ex-
erience a process of prototype, appraisal, and optimization [1]. The
rototype of engineering structures usually relies on several existing
esigns with similar operational profile [2]. The variations are made
aking into account of the changes in, e.g., operational demand, budget,
onstruction capability, and owner’s request. Finally, the appraisal of
prototype structural design is performed by limit state assessment,
hich is a proven design philosophy and has been widely adopted
cross different disciplines in recent years [3]. Four limit states are
elevant for structural design, namely Serviceability Limit State, Fatigue
imit State, Accidental Limit State, and Ultimate Limit State (ULS) [4–
]. Serviceability Limit State is determined by limiting values that are
riented toward the normally envisaged use of a structural system [8].
atigue Limit State refers to the failure due to cumulative damage
f repeated loading that leads to the initiation and propagation of
racks and eventually fractures [9]. Accidental Limit State examines
he damage tolerance of structural systems in an accidental event,
uch as collision, grounding, fire, and explosion [10]. ULS concerns
he maximum load-carrying capacity of the structures and is a typical
ssessment criterion in the initial design, i.e., prototyping [11–13]. A
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rigorous limit state-based appraisal would ensure the safety of struc-
tural design [12]. In the present paper, ULS will be considered since it
is the main criteria adopted in the initial design phase for determining
the principal scantlings of structures [14,15].

The prototype design is normally an adaptation of the existing
structure induced by engineering knowledge with limited support from
automatic tools. This usually results in structural scantling that will
not be optimized for the specific requirements [16], leading to overly
conservative structural designs [17]. Instead, an optimal structural de-
sign would have various economical, technological, and environmental
benefits [17]. For example, in the commercial sectors, an optimal
structural design implies a significant saving on the initial investment
and the life-cycle cost [18]. In the defense sector, the optimization of
structures could enhance the structural integrity and damage tolerance
while retaining a lightweight configuration, which is a crucial issue
for weight-sensitive structures [19,20]. In terms of the environmental
impact, optimizing the structural design may also improve the opera-
tional efficiency of an engineering system, which potentially reduces
its life-cycle carbon footprint [21]. Structural optimization is therefore
a fundamental issue to be addressed and there is a strong demand for
effective and efficient supporting tools [22]. In fact, current optimiza-
tion strategies mostly rely on engineering judgments and experience
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complemented with a series of trial-and-error procedures [23,24] which
may not lead to the best structural design [25].

Within the ULS-based design, the structural assessment can be
performed using analytical approaches, empirical formulations, and
numerical methods [26]. Analytical approaches [27] are usually devel-
oped based on the classical structural stability theory, with appropriate
consideration of the plasticity effect. The recommended approach in
Common Structural Rule (CSR) is one of the typical analytical ap-
proaches [28]. Empirical formulations [29] in structural engineering
are conventionally derived by simple curve fitting. Numerical meth-
ods [30] typically refer to finite element methods and, more often,
Nonlinear Finite Element Methods (NLFEMs). NLFEM is considered
to be the most accurate approach since it is able to consider all
interacting buckling failure modes and the material yielding [31].
Moreover, NLFEM enables the analysts to account for different bound-
ary conditions, imperfections and load combinations while analytical
and empirical methods can be limited to specific configurations that
may be difficult to extend [32]. For example, NLFEM allows incor-
porating the Welding-induced Residual Stress (WRS) in an ULS-based
structural assessment [33], while addressing this with CSR formulations
can be problematic [34]. Nevertheless, accounting for the WRS in the
NLFEMs comes with a price: a minimum of two NLFEM simulations
(i.e., with and without residual stress) are needed to quantify the
effect of residual stress [35] and each NLFEM simulation takes min-
utes/hours [36]. If the number of structural designs to be assessed
is small, this computational effort can be acceptable (i.e., when sup-
porting the human structural design handcrafting). When NLFEMs
are incorporated into an automatic optimization loop, the computa-
tional demand can be substantial, owing to the possibility of numerous
iterations being required. This significant computational burden is a
direct consequence of the iterative nature of optimization processes,
imposes a significant challenge to the practicality of employing NLFEMs
in these settings. Specifically, the computational burden may exceed
the available resources, thereby precluding the application of these
methods in real-world scenarios. The infeasibility of this application
underscores the inherent limitations of current computational resources
when dealing with complex, non-linear models [37]. This is the main
reason why currently the prototype design is usually an adaptation of
the existing structure induced by engineering knowledge.

In order to address this barrier, many simplified approaches have
been developed to predict the ULS of stiffened panels which allows
for an efficient assessment and integration with different structural
optimization schemes [38]. CSR approach is a typical example and
well recognized by both research community and industry. When the
residual welding stress is not taken into account, CSR is surely an
effective solution [28] that allows avoiding the computational burden
of NLFEMs [34,39–41] and maintaining enough accuracy to perform
preliminary design optimization [28]. Unfortunately, the same ap-
proach is not easily adaptable to take into account the effect of residual
stress [34] because of the complexity of the relation between the
strength reduction and structural configurations. For this purpose, in
this work, authors will rely on data-driven surrogate models of the
NLFEMs [42]. Data-driven methods (DDMs) [43,44], in fact, allow for
accurately approximating the NLFEMs without requiring the design
of grounded simplifications. DDMs are able to automatically learn a
functional representation of the NLFEM using a series of data generated
by running multiple times the NLFEM. The advantage of this approach
is that the learned functional is computationally inexpensive to apply,
addressing the limitations of the NLFEM. The disadvantage is that this
function is computationally expensive to build. In fact, building a model
using DDMs requires running NLFEMs code multiple times to generate
the data and then training the functional with a Machine Learning
(ML) algorithm. Nevertheless, once this procedure is completed, the
resulting learned functional can be reused inexpensively as many times
2

as necessary allowing its use in an optimization loop. As a consequence
it is possible to switch from a knowledge based adaptation of existing
structure to a fully automated optimization process.

In fact, once addressed the computational barrier with the use
of surrogate models, authors will develop an optimization problem
and an optimization framework able to automatically find the opti-
mal structural design: a design able to simultaneously minimize the
weight and maximize the strength of the panels. In order to solve
the optimization problems, authors will employ different state-of-the-
art optimization algorithms, namely, the Interior-Point (IP) [45], the
Active-Set (AS) [46], the Genetic Algorithm (GA) [47], and the Particle
Swarm Optimization (PSO) [48].

Finally, the designs discovered during the optimization step are
reassessed with the original NLFEMs to verify that substituting the
NLFEMs with their surrogates in the optimization loop actually leads
to better designs.

Results obtained optimizing a series of parameters of a commonly
used stiffened panel geometry under different scenarios will support
authors’ proposal. Authors considered the stiffened panel since it is
one of the most common solutions for structural design [11,49–51].
Moreover, their manufacturing is usually completed through welding
and as a result, initial imperfections are induced in the structures
taking the form of geometric deflection and WRS [15]. As shown by
comprehensive studies such as [19,40,52–55], the ULS of stiffened
panels is strongly influenced by the initial imperfections induced by
the welding.

The remainder of this paper is structured as follows. Section 2 will
present the state-of-the-art literature on structural optimization and the
use of surrogate models for optimization. Section 3.1 will provide a
description of the specific problem that authors want to address in this
paper. Section 3.2 will present the formalization of the optimization
problem under consideration, how authors optimized it, and where
the surrogates are employed to reduce the computational burden.
Results obtained optimizing a series of parameters of a commonly
used stiffened panel geometry under different scenarios are reported
in Section 4. Section 5 concludes the paper.

2. Related works

Structural design optimization is the focus of many researchers
and practitioners that faced the problem with many different ap-
proaches [56,57].

Recently a quite complete review paper on structural size opti-
mization techniques has been published [58]. Nevertheless, it is worth
mentioning some other recent interesting works that inspired authors
research.

Authors of [59] propose to optimize the structural weight of truss
frames using PSO subject to constraints on the stress and displacement
of each bar element. Optimization of reinforced concrete structure
with shear walls was presented in [60], where the construction cost
was optimized and constrained by structural strength and displacement
achieving a cost reduction of 16%.

Authors of [61] developed a structural model for the support struc-
tures of wind turbines optimizing the weight of the support structure
and constraining the level of vibration, stress, deformations, buckling,
and fatigue. GAs were adopted leading to a mass reduction of 19.8%.

A reliability-based design optimization was conducted in [62] for
Folded Pendulum Tuned Mass Dampers installed in a tall building
subjected to turbulent wind excitation. Uncertainties in the system
parameters and the wind excitation were taken into account. A Kriging-
based Efficient Global Optimization (EGO) scheme was employed to
speed up the convergence of the global search for the minimum annual
probability of failure, in which a failure probability reduction of 83%
was reported.

The authors of [63] introduced a computationally efficient opti-

mal design approach for suspension bridges. An enhanced particle
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swarm optimization (EPSO) was employed using a particle categoriza-
tion mechanism to handle the constraints instead of the commonly
used penalty method to improve the computational efficiency of the
optimization procedure.

Genetic algorithm-based optimization was presented in [64] for a
floor system based on steel web core sandwich panels with
polyurethane (PUR) foam core taking into consideration structural,
thermal, and acoustic performance using design code formula. In
addition to structural mass, the study also addressed the optimization
cost and environmental impact.

The optimization of a 542 m three-span cable-stayed bridge was
considered in [65]. A sequential quadratic programming method was
adopted, and it was shown that a 40% reduction of the sum of con-
struction and repair costs could be achieved.

A multi-scale design methodology for the deterministic least-weight
optimization of thin-walled composite structures was discussed in [66],
integrating a global–local approach for the assessment of the buck-
ling strength and a dedicated strategy to recover blended stacking
sequences.

A multi-objective optimization for the B-pillar and rocker sub-
systems of battery electric vehicles was presented by the authors of [67]
optimizing the structural weight, construction cost, and the mean
crushing force of the B-pillar and rocker.

A fourth-order response surface model was developed to surro-
gate the direct finite element simulation. Optimization using a multi-
objective artificial tree algorithm was used to build the Pareto front.
Structural optimization was performed by authors of [68] for a 20MW
wind turbine blade: the structural weight has been optimized with a
set of realistic design constrained to ensure structural feasibility and
aero-elastic stability. A sequential gradient-based optimization method
was adopted, and a 2.66% reduction of structural weight was achieved.

Authors of [69] proposed a multi-objective optimization framework
for ship structures optimizing the weight and surface area for a high-
speed vehicle–passenger catamaran; simple allowable stress principle-
based calculation was performed for the structural strength evaluation
to constraint the design process. GAs were employed to build the
Pareto front. Similarly, structural weight optimization was performed
in [70] where strength constraint was evaluated using allowable stress
principle-based classification rules. Optimization on two trimarans us-
ing a multi-island GA gave a reduction of the structural weight of
32.85% and 8.95%, respectively. The previously mentioned works’
limitations are that limit state design was not employed for strength
and safety evaluation to constrain the design optimization process.
In this context, seminal works on ULS-based structural design opti-
mization appeared in the literature [16,71,72]. These studies present
multi-objective optimization problems for ship structural design tar-
geting both weight and safety. The ULS-based safety assessment was
performed using the semi-analytical computer code ALPS/ULSAP for
stiffened panels and ALPS/HULL for ship hull girders [73]. GA and
PSO algorithms were adopted, by which weight reductions of 1.4% and
2.3% were achieved on ship hull girder models respectively.

Instead of focusing on ULS, other work focused on Accidental Limit
State. For example, authors of [74] proposed an Accidental Limit State
aware structural design optimization of the side shell structures of
ships. A case study on a chemical tanker was investigated focusing
on structural crashworthiness as an optimization objective without
optimizing the weight. PSO algorithm was employed leading to a 500%
increase in the energy absorption capability increasing the structural
weight by 18%. Nevertheless, these works also have practical limi-
tations, as they required a large number of high fidelity simulations
(e.g., with NLFEMs) and this prevents their use due to prohibitive
computational requirements. To address this problem, surrogate models
have been employed. For instance, authors of [75] investigated the
optimization of the shear wall layout of high-rise buildings, surrogating
the computationally expensive assessment of total mass, story drift, and
3

the period ratio of a candidate building, using Support Vector Machines d
and Tabu Search. The authors demonstrated the feasibility of their
approach with a series of case studies, with the reported results showing
that feasible designs with a weight reduction of approximately 24%
ould be generated regardless of the building layouts and the loading
cenarios considered. Authors of [76] employed surrogates to optimize
arbon-fiber-reinforced plastic and concrete-filled steel tube columns.
mploying a dataset of 200 experiments, they rely on XGBoost and
daboost to surrogate the computation of the ultimate torsion strength
nd insert it in a multi-objective optimization problem (solved with a
A) with the aim to simultaneously minimize the material construction
ost and maximize the torsional strength of a tube column. The reported
esults demonstrated that the framework was capable of identifying
ow-cost and high-strength geometries, with material savings of up
o 40%, and with the authors further underlying its computational
fficiency and suitability during the early design stage.

Authors of [77] presented a surrogate-based optimization frame-
ork for curvilinearly stiffened panels for the aerospace industry. As
EM-based optimization methods for aircraft panels with arbitrary
urvilinear stiffeners are computationally demanding they surrogate
he estimation of the buckling response of the panels utilizing Deep
eural Networks trained using data generated from 50,000 simula-

ions. Subsequently, they use this surrogate in the optimization pro-
ess (solved with PSO) minimizing the panel weight. The feasibility
f the proposed framework was demonstrated in two case studies
howing weight reductions up to 20%, with savings in computational
equirements. Another case study with curvilinear stiffened panels was
onducted by the authors of [78]. An image-based structural layout was
mployed to characterize the curvilinear stiffeners surrogating (with
onvolutional Neural Networks) the buckling load and weight of the
anels, utilizing a dataset of 250 FEM simulations. Subsequently, an
ptimization problem (solved with GA) was formulated with the aim to
inimize panel weight subject to buckling load requirements. Authors
ere able to achieve state-of-the-art results compared with respect to

raditional FEM-based optimization, with a weight reduction of 25%,
nd significantly lower computational time requirements.

Another interesting approach was proposed by the authors of [79]
ho employed Q-learning and GAs for ship structural optimization,

ocusing on a bulk carrier. A multi-objective optimization framework
as developed, aiming to minimize the weight of the midship section
f the case study vessel and the cumulative fatigue damage of the
oint part of the bottom longitudinal and transverse bulkhead, which is
ne of the key checking points of a contemporary bulk-carrier. Unlike
he previous studies presented thus far, a DDM was employed, not to
pproximate the output of a computationally expensive fatigue assess-
ent but to guide the GA towards the generation of suitable candidates
uring the optimization procedure. Promising results were reported,
ith the proposed approach being able to consistently provide designs
f reduced weight by up to 10% for the same fatigue damage.

A machine learning-based framework for optimal seismic design of
tructures was developed by authors of [80]. Multi-objective design op-
imization of a braced framework was investigated. The inter-story drift
atio parameter was predicted in a computationally efficient manner
hrough the use of different DDMs.

Design optimization was reported for a compressive yielding beam
n [81], where a multi-objective optimization was considered to maxi-
ize two competing performance indices, namely moment capacity and
uctility. An integrated model was proposed based on different DDMs
or the design performance evaluation. The GA-based optimization
howed that improved moment capacity (84% increment) or ductility
75% increment) could be achieved for the compression-yielding beam
ith a rectangular section compared with the initial reference design.

. Methodology

In this paper, for the first time, a three-step approach for the optimal

esign of stiffened panels accounting for the ultimate limit state due to
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Fig. 1. Graphical representation of the methodology proposed in this work.
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elding residual stress is developed. First, authors rely on state-of-the-
rt analytical approaches coupled with recently data-driven nonlinear
inite element methods surrogates characterized by functional which
re computationally expensive to build but computationally inexpen-
ive to use. Then, surrogates are used within a design optimization
oop to find new optimal designs since nonlinear finite element meth-
ds are too computationally demanding for this purpose. Finally, the
ew designs are reassessed with the original nonlinear finite element
ethods to verify that substituting them with their surrogates in the

ptimization loop actually leads to better designs. This methodology is
ummarized in Fig. 1 and fully described in this section.

.1. Problem description

Structural optimization of ship structures can be performed on
ifferent levels of structural system, namely ship hull girder, cross-
tiffened grillage, uni-axially stiffened panel, unstiffened plates, and
tiffeners [82]. In this work, authors will focus on structural optimiza-
ion for uni-axially stiffened panels which are part of a cross-stiffened
rillage with uniform longitudinal stiffeners and plating dimension,
s depicted in Fig. 2 and adapted from [5,71]. In particular, authors
onsidered a rectangular shaped steel panel reinforced by eight lon-
itudinal stiffeners and surrounded by two main transverse frames
nd two longitudinal girders (see Dashed red rectangle in Fig. 2).
he material yield stress is indicated with 𝜎𝑌 and Young’s modulus

with 𝐸. In this work, the material is considered fixed, and uniform
since a different choice of material grade would significantly influ-
ence the overall cost, meaning that this is not the design variable to
be considered in the structural optimization of stiffened panels [83].
Considering this geometry, it is possible to define a number of basic
geometrical parameters: some of them will be kept fixed while some
will be actually optimized. The length between transverse frames 𝑎
nd the distance between longitudinal girders 𝐵 (i.e., the position
f the transverse frames and longitudinal girders) and the distance
etween the longitudinal stiffeners 𝑏 (i.e., the number of stiffeners)
ogether with their geometry are considered fixed. In fact, change in
he length or the width of stiffened panels may not be driven by the
eed for minimized weight and maximized strength, but a higher level
verarching consideration determined during the early concept design
hase (e.g., the general arrangement of ships, subdivision of compart-
ents, productibility, and structural design considerations) other than
LS etc [25]. With respect to the distance between adjacent stiffener
𝑏), there are two main reasons for which it is not considered as a
esign variable. Firstly, as the overall length of the panel is fixed,
4

here is probably not too much scope to alter the number of stiffeners a
Table 1
Ship-type stiffened panel associated parameters’ value.

Parameter Symbol Value Unit Optimized?

Material yield stress 𝜎𝑌 352.8 [MPa]
Material Young’s modulus 𝐸 205800 [MPa]
Plate length 𝑎 5120 [mm]
Panel width 𝐵 8190 [mm]
Plate width 𝑏 910 [mm]
Plate thickness 𝑡𝑝 20 [mm] ✓

Stiffener web height ℎ𝑤 598.5 [mm] ✓

Stiffener web thickness 𝑡𝑤 12 [mm] ✓

Stiffener flange width 𝑏𝑓 200 [mm] ✓

Stiffener flange thickness 𝑡𝑓 20 [mm] ✓

since the width of local plate should be designed to be compatible
with the panel length, i.e., ensuring the aspect ratio of the local plate
falls into a reasonable range. Secondly, one of the objectives used
in the present optimization is structural weight, as an indicator of
the capital expenditure (CAPEX) of engineering design by assuming
that cost associated with manufacturing is more or less unchanged
among different dimension configurations. However, the change in
stiffener number brings an uncertainty as to the manufacturing cost
since the required amount of welding is increased/decreased. Thus,
the design variables in this paper are confined to plate thickness 𝑡𝑝
ogether with stiffener web height ℎ𝑤, web thickness 𝑡𝑤, flange width
𝑓 , and flange thickness 𝑡𝑓 . Since the present paper is confined to
ni-axially stiffened panel optimization, the influence of longitudinal
irders and transverse frames (i.e., boundary fixity [84]) will be con-
idered as constant and be approximated as simple support in the FEM
erification. On the other hand, the interactive effect with adjacent uni-
xially stiffened panels will be considered in the FEM verification by
dopting a Two-Span/Two-Bay model in combination with symmetric
oundary conditions. This modeling technique is consistent with that
ecommended in [41] and elaborated in [5,6]. The values of all design
ariables are reported in Tables 1.

In terms of stiffened panel’s ULS-based optimization, two indices
re relevant: the structural weight 𝑊 and the ultimate compressive
trength 𝜎xu [71,72]. 𝑊 is simply calculated as the product of the
tructural volume and the material density. As the material density
ill be uniform across the entire structure, the structural weight may
e represented as the structural volume. 𝜎xu will be evaluated using
he CSR approach in [28], however, it should be noted that the CSR
ethod does not account for the detrimental influence of WRS. In

rder to account also for this phenomenon, the NLFEM needs to be em-
loyed [34]. Unfortunately, NLFEM is too computationally expensive

nd its surrogate need to be employed [42].
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Fig. 2. Ship-type stiffened plated structure representation and associated parameters. Dashed red rectangle indicates the part of the structure that authors will optimize.
Table 2
Design variables and lower/upper bounds.

Parameter Symbol Lower bound Upper bound Unit

Symbol Value Symbol Value

Plate thickness 𝑡𝑝 𝑡𝑙𝑝 8.5 𝑡𝑢𝑝 37 [mm]
Stiffener web height ℎ𝑤 ℎ𝑙

𝑤 138 ℎ𝑢
𝑤 580 [mm]

Stiffener web thickness 𝑡𝑤 𝑡𝑙𝑤 9 𝑡𝑢𝑤 15 [mm]
Stiffener flange width 𝑏𝑓 𝑏𝑙𝑓 90 𝑏𝑢𝑓 150 [mm]
Stiffener flange thickness 𝑡𝑓 𝑡𝑙𝑓 12 𝑡𝑢𝑓 20 [mm]

Obviously, the considered variables can be optimized in a feasible
et of values. These constraints, expressed in lower and upper bounds of
he design variables [41,50], are summarized in Table 2. In addition to
he constraints of Table 2, a manufacture-related constraint is specified,
n which the stiffened flange width is constrained to be smaller or
qual to the stiffened web height 𝑏𝑓 ≤ ℎ𝑤. This complies with the

conventional practice in the shipbuilding industry [85].

3.2. Problem formalization

According to the problem defined in Section 3.1, authors scope in
this paper is to simultaneously optimize the weight 𝑊 (minimizing it)
and the ultimate compressive strength 𝜎xu (maximizing it), considering
the WRS, of the structure defined in Fig. 2 optimizing the plate thick-
ness 𝑡𝑝 and stiffener web height ℎ𝑤, web thickness 𝑡𝑤, flange width 𝑏𝑓 ,
and flange thickness 𝑡𝑓 with the boundary constraints of Table 2 and
the fact that the flange width must be smaller or equal to the stiffened
web height 𝑏𝑓 ≤ ℎ𝑤.

More formally, authors can formulate the following optimization
problem

min
𝑡𝑝 ,ℎ𝑤 ,𝑡𝑤 ,𝑏𝑓 ,𝑡𝑓∈R

𝑊 (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ) (1)

max
𝑡𝑝 ,ℎ𝑤 ,𝑡𝑤 ,𝑏𝑓 ,𝑡𝑓∈R

𝜎xu(𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

subject to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑡𝑙𝑝 ≤ 𝑡𝑝 ≤ 𝑡𝑢𝑝
ℎ𝑙𝑤 ≤ ℎ𝑤 ≤ ℎ𝑢𝑤
𝑡𝑙𝑤 ≤ 𝑡𝑤 ≤ 𝑡𝑢𝑤
𝑏𝑙𝑓 ≤ 𝑏𝑓 ≤ 𝑏𝑢𝑓
𝑡𝑙𝑓 ≤ 𝑡𝑓 ≤ 𝑡𝑢𝑓
𝑏𝑓 ≤ ℎ𝑤.
5

The expression of 𝑊 (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ) comes out from simple ge-
ometrical consideration. In fact the material is homogeneous with
constant properties, therefore, the weight is just a function of the
volume 𝑉 and the material’s density 𝜌

𝑊 (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ) = 𝜌𝑉 (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

= 𝜌
[

𝑎𝐵𝑡𝑝 + 8𝑎(ℎ𝑤𝑡𝑤 + 𝑏𝑓 𝑡𝑓 )
]

. (2)

The expression of 𝜎xu(𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ) instead is more complex to
report and analyze. Without considering the WRS [41]

𝜎NO-WRS-NLFEM
xu (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

= 𝑓NLFEM(𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ), (3)

namely, authors can evaluate it using the NLFEM approach pro-
posed in [41]. In order to take into account the WRS authors have to
rely on the NLFEM proposed in [34]. Authors will take into account the
WRS in the formulation modeling it as a scaling factor of the 𝑓NLFEM [41]

𝜎WRS-NLFEM
xu (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

= 𝑓NLFEM [41](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

⋅ 𝑓NLFEM [34](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ), (4)

namely, the WRS reduces the ultimate compressive strength by a fac-
tor of 𝑓NLFEM [34] ∈ [0, 1]. 𝑓NLFEM [41] and 𝑓NLFEM [34] computational
burden are incompatible with any numerical approach to the solution
of the optimization problem of Eq. (1). For this reason authors can
approximate first 𝑓NLFEM [41] as follows

𝑓NLFEM [41](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

≈ 𝑓CSR [28](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ), (5)

namely, using the CSR approach proposed in [28]. As a consequence
authors can define

𝜎NO-WRS-CSR
xu (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

= 𝑓CSR [28](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ), (6)

which is the computationally inexpensive counterpart of 𝜎NO-WRS-NLFEM
xu .

Then, authors can approximate 𝑓NLFEM [34] with the surrogate proposed
in [42] obtaining

𝑓NLFEM [34](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

≈ 𝑓DDM [42](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ). (7)
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Fig. 3. Authors approach to the accurate yet computational inexpensive estimation of 𝜎xu to employ in the optimization problems of Eq. (1).
Fig. 4. Scatter plots of 𝑓CSR [28] (𝜎NO-WRS-CSR
xu ), 𝑓DDM [42], and 𝑓CSR [28] ⋅𝑓DDM [42] (𝜎WRS-CSR-DDM

xu ) against 𝑓NLFEM [41] (𝜎NO-WRS-NLFEM
xu ), 𝑓NLFEM [34], and 𝑓NLFEM [41] ⋅𝑓NLFEM [41] (𝜎WRS-NLFEM

xu )
respectively.
As a result, authors proposal is use in the optimization problem of
Eq. (1)

𝜎WRS-CSR-DDM
xu (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )
= 𝑓CSR [28](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 )

⋅ 𝑓DDM [42](𝜎𝑌 , 𝐸, 𝑎, 𝐵, 𝑏, 𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ), (8)

which is the computationally inexpensive counterpart of 𝜎WRS-NLFEM
xu .

To improve the readability of the paper Fig. 3 reports a graphical
representation of the approach that authors just described.

Note that this work is the first one proposing to optimize a structure
accounting for the WRS. And in this work authors will investigate
6

the changes in the solution of the optimization problems of Eq. (1)
replacing 𝜎xu with 𝜎NO-WRS-CSR

xu , 𝜎WRS-NLFEM
xu , and finally 𝜎WRS-DDM

xu .

3.3. Problem resolution

The first step toward the solution of Eq. (1) is to reformulate the
problem as a single objective one. For this purpose authors will rely on
a classical approach: replace the multiple objectives with a weighted
sum of the different objectives (changing the sign in front to the
objective so as to have all minimization or maximization) [86]

min 𝜆𝑉 (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ) − (1 − 𝜆)𝜎xu(𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , 𝑡𝑓 ) (9)

𝑡𝑝 ,ℎ𝑤 ,𝑡𝑤 ,𝑏𝑓 ,𝑡𝑓∈R
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Fig. 5. Optimal 𝑉 and the optimal 𝜎xu varying 𝜆 in Eq. (9) creating the Pareto fronts when replacing replace 𝜎xu with 𝜎NO-WRS-CSR
xu or 𝜎WRS-CSR-DDM

xu . For some 𝜆s (i.e., the ones that
brings a particular optimal volume 𝑉 ∈ [0.2114, 0.1322, 0.0602, 0.0515]) authors reported for verification purposes at the optimal point the 𝜎NO-WRS-NLFEM

xu when 𝜎xu = 𝜎NO-WRS-CSR
xu is

exploited in Eq. (9) and 𝜎WRS-NLFEM
xu when 𝜎xu = 𝜎WRS-CSR-DDM

xu is exploited in Eq. (9).
subject to

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑡𝑙𝑝 ≤ 𝑡𝑝 ≤ 𝑡𝑢𝑝
ℎ𝑙𝑤 ≤ ℎ𝑤 ≤ ℎ𝑢𝑤
𝑡𝑙𝑤 ≤ 𝑡𝑤 ≤ 𝑡𝑢𝑤
𝑏𝑙𝑓 ≤ 𝑏𝑓 ≤ 𝑏𝑢𝑓
𝑡𝑙𝑓 ≤ 𝑡𝑓 ≤ 𝑡𝑢𝑓
𝑏𝑓 ≤ ℎ𝑤,

where authors replaced 𝑊 with 𝑉 since there are proportional and
where 𝜆 ∈ [0, 1] defines the importance of the different objectives,
i.e., for 𝜆 → 1 authors care more about the weight than the ultimate
compressive strength and vice-versa for 𝜆 → 0. Solving Eq. (9) for
ifferent values of 𝜆 allows for the creation of the so-called Pareto
rontier in a computationally efficient way [86].

The optimization problem of Eq. (9) has a non-linear and non-
onvex objective (no matter if authors replace 𝜎xu with 𝜎NO-WRS-CSR

xu
or 𝜎WRS-CSR-DDM

xu ) and a series of linear constraints (namely the do-
main is linear and convex). In order to solve this problem different
approaches can be exploited [87]. In this paper, authors will rely on
a series of state-of-the-art optimization algorithms to search for the
best one for authors specific problem. In fact, a series of no-free-lunch
7

theorems [88] ensure that there is no way to choose a-priori the best
optimization algorithms for a particular problem and the only options is
to empirically test multiple approaches verifying which is actually the
best one. In this case, authors decided to test the following algorithms:
the Interior-Point (IP) [45], the Active-Set (AS) [46], the Genetic Algo-
rithm (GA) [47], and the Particle Swarm Optimization (PSO) [48]. The
different algorithms are characterized by a different search strategy,
a different way of handling constraints or are inspired by a different
philosophy. To the best knowledge of the authors, and based on the
recent literature [87], these optimization algorithms reasonably cover
the most important approaches to the solution of the optimization
problem of Eq. (9). Since the convergence of all these algorithms is
influenced by the starting point, a multi-start strategy [89] for all meth-
ods has been employed. In particular, as starting point, authors used:
(i) the initial geometry described in Table 1 and (ii) 100 random points
uniformly distributed in the domain induced by the linear constraints
of the optimization problem of Eq. (9). The optimization methods
have been implemented using the Matlab 2022a1 environment. Table 3
summarizes the parameter setting of the different algorithms.

1 https://www.mathworks.com/

https://www.mathworks.com/
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t

Fig. 6. Optimal 𝑉 and the optimal 𝜎xu varying 𝜆 in Eq. (9) when authors replace 𝜎xu with 𝜎NO-WRS-CSR
xu or 𝜎WRS-CSR-DDM

xu in a different manner with respect to Fig. 5 so to better
understand how 𝑉 and 𝜎xu varies with 𝜆.
Table 3
Parameters setting for the different optimization algorithms.

Algorithm Matlab Parameter Value(s)
function

IP fmincon
Algorithm interior-point
Maximum number of function evaluations allowed 106

Maximum number of iterations allowed 105

AS fmincon

Algorithm active-set
Maximum number of function evaluations allowed 106

Maximum number of iterations allowed 105

Maximum number of SQP iterations allowed 600

GA ga Population size 5000
Elite count 250

PSO particleswarm Swarm size 5000
Maximum number of iterations 1000
Finally, authors would like to discuss how to handle the optimiza-
ion problem of Eq. (9) when authors replace 𝜎xu with 𝜎NO-WRS-CSR

xu
or 𝜎WRS-CSR-DDM

xu . When authors want to optimize the weight and the
ultimate compressive strength not taking into account the WRS authors
have to replace 𝜎xu with 𝜎NO-WRS-CSR

xu in Eq. (9) and the resulting
optimization problem can be directly handled with the optimizers
described in the previous paragraph since estimating 𝜎NO-WRS-CSR

xu is
computationally inexpensive. Then, once the optimization problem of
Eq. (9) with 𝜎xu = 𝜎NO-WRS-CSR

xu is solved authors need to estimate,
in the optimal point, the actual value of 𝜎NO-WRS-NLFEM (i.e., just one
8

xu
estimation) to verify that the surrogate is actually a good hint for the
optimizer and bring the solution to point when the original function is
actually optimized and does not introduces artifacts or false minima.

Instead, in the case, authors want to optimize the weight and the ul-
timate compressive strength taking into account the WRS authors have
to replace 𝜎xu with 𝜎WRS-CSR-DDM

xu in Eq. (9). Then, once the optimization
problem of Eq. (9) with 𝜎xu = 𝜎WRS-CSR-DDM

xu is solved it is necessary to
estimate, in the optimal point, the actual value of 𝜎WRS-NLFEM

xu (i.e., just
one estimation) to verify that the surrogate is actually a good hint for
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Fig. 7. Optimized variables (𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , and 𝑡𝑓 ) behavior when varying 𝜆 in Eq. (9) replacing 𝜎xu with 𝜎NO-WRS-CSR
xu or 𝜎WRS-CSR-DDM
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he optimizer and bring the solution to point when the original function
s actually optimized and does not introduces artifacts or false minima.

The verification are, in fact, fundamental. Firstly, this approach
nables an indirect examination of the efficacy of the surrogate mod-
ls 𝜎NO-WRS-CSRxu and 𝜎WRS-CSR-DDMxu in approximating the actual
NO-WRS-NLFEMxu and 𝜎WRS-NLFEMxu, respectively. The strength of sur-
ogate models lies in their potential to be employed in contexts that
xtend beyond the design conditions initially set for the surrogate itself.
9

his ability to effectively extrapolate is an important characteristic of i
robust surrogate model. Consequently, assessing this extrapolation
ower provides insight into the surrogate’s adaptability and reliability
n diverse scenarios, thereby providing a measure of its overall extrap-
lating power [42]. Second, it allows us to directly verify that authors
roposal is actually grounded and effective.

. Experimental results

In this section, authors will show the results of applying the solution

n Section 3.2 to the problem described in Section 3.1.
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Table 4
Errors, measured with the MAE, MAPE, and PMCC, of 𝑓CSR [28] (𝜎NO-WRS-CSR

xu ),
𝑓DDM [42], and 𝑓CSR [28] ⋅𝑓DDM [42] (𝜎WRS-CSR-DDM

xu ) in estimating 𝑓NLFEM [41] (𝜎NO-WRS-NLFEM
xu ),

𝑓NLFEM [34], and 𝑓NLFEM [41] ⋅ 𝑓NLFEM [34] (𝜎WRS-NLFEM
xu ) respectively.

Original Model Surrogate MAE MAPE PPMCC

𝑓NLFEM [41] 𝑓CSR [28] 15.71 8.25 0.91
𝑓NLFEM [34] 𝑓DDM [42] 0.003 0.34 0.99
𝑓NLFEM [41] ⋅ 𝑓NLFEM [34] 𝑓CSR [28] ⋅ 𝑓DDM [42] 14.40 8.24 0.88

Table 5
Average time necessary to make a prediction
for the different models: 𝜎NO-WRS-NLFEM

xu , 𝜎WRS-NLFEM
xu ,

𝜎NO-WRS-CSR
xu , and 𝜎WRS-CSR-DDM

xu .

Model Average time [s]

𝜎NO-WRS-NLFEM
xu 1.8 ⋅ 103

𝜎WRS-NLFEM
xu 3.6 ⋅ 103

𝜎NO-WRS-CSR
xu 9

𝜎WRS-CSR-DDM
xu 9

Table 6
Average number of calls and the average time that each optimization algorithm (IP,
AS, GA, or PSO) take in finding the solution when replacing 𝜎xu with 𝜎NO-WRS-CSR

xu or
WRS-CSR-DDM
xu in the optimization problem of Eq. (9).

Algorithm Average calls [𝑛𝑜] Average time [s]

𝜎NO-WRS-CSR
xu

AS 197 0.035
IP 571 0.152
PSO 1305 0.98
GA 8600 89.5

𝜎WRS-CSR-DDM
xu

AS 187 0.067
IP 559 0.267
PSO 1194 0.93
GA 7239 96.5

As a first step, Table 4 reports the accuracy of the Analytical Ap-
roach and the Data Driven based surrogate models (see Fig. 3). In par-
icular, authors report the errors of 𝑓CSR [28] (𝜎NO-WRS-CSR

xu ) in estimating
NLFEM [41] (𝜎NO-WRS-NLFEM

xu ), then the one of 𝑓DDM [42] in estimating
NLFEM [34], and finally the one of 𝑓CSR [28] ⋅ 𝑓DDM [42] (𝜎WRS-CSR-DDM

xu )
n estimating 𝑓NLFEM [41] ⋅ 𝑓NLFEM [34] (𝜎WRS-NLFEM

xu ). In order to give a
uantitative idea of the quality of the results, authors used three met-
ics [90]: the Mean Average Error (MAE), the Mean Average Percentage
rror (MAPE), and the Pearson Product Moment Correlation Coefficient
PPMCC). Note that authors measure these errors as the one described
n [42]. For completeness, authors also report the scatter plots (An-
lytical Approaches and the Data Driven based surrogate models) in
ig. 4 to provide a visual and qualitative idea [91] of the effectiveness
f the different estimations. Finally, Table 5 reports the average time
ecessary to make a prediction for the different considered models
𝜎NO-WRS-NLFEM

xu , 𝜎WRS-NLFEM
xu , 𝜎NO-WRS-CSR

xu , and 𝜎WRS-CSR-DDM
xu ).

From Table 4 and Fig. 4 it is possible to observe a good agreement
etween the Analytical Approach and the Data Driven based surrogate
odels and the original models. In particular, the Data Driven based

urrogate models are very effective with MAPE error below 1% as
xpected from [42], while the Analytical Approach (i.e., CSR) shows
MAPE error below 10% most of the time with an overestimation

s expected from [41,92]. The overestimation should be attributed to
he use of the Frankland formula [93] in CSR as performance measure
o evaluate the effectiveness of a buckled plate based on an effective
idth concept. However, the Frankland formula was developed based
n collapse test data of fully restrained plates and hence tends to
verestimate the capacity due to the consideration of pull-in effect
n comparison, e.g., with Faulkner formula [82]. In actual stiffened
anel structures, the boundary conditions (i.e., edge fixity) are neither
ully restrained nor free from constraint, but in between zero and
nfinite edge fixity, and are the complex resultant of the interaction
ith adjacent structures. The present NLFEM is able to accommo-
ate this interacting phenomenon since a Two-Span/Two-Bay model is
10
dopted [42]. Nevertheless, the restrained edge assumption and, thus,
he overestimation is built into the CSR [28]. From Table 5, instead, it
s possible to observe how the CSR and the Data Driven based surrogate
odels are orders of magnitude faster than the NLFEM models. In

his case, the CSR brings the computational effort from minutes to
econds while the DDM adds to the CSR a negligible contribution
milliseconds). This is an encouraging feature since it demonstrates that
he computational efficiency of CSR is retained, which is one of the core
enefits of Analytical Approach. Thus, this approach remains suitable
or the ordinary structural design of stiffened plated structures.

As a second step, authors consider the optimization problem of
q. (9) when authors replace 𝜎xu with 𝜎NO-WRS-CSR

xu or 𝜎WRS-CSR-DDM
xu .

In particular, in Fig. 5 authors report the optimal 𝑉 and the op-
timal 𝜎xu varying 𝜆 in Eq. (9) creating the Pareto fronts when re-
placing replace 𝜎xu with 𝜎NO-WRS-CSR

xu or 𝜎WRS-CSR-DDM
xu . Moreover, for

some 𝜆s (i.e., the ones that brings a particular optimal volume 𝑉 ∈
[0.2114, 0.1322, 0.0602, 0.0515]) authors reported for verification pur-
poses at the optimal point, also the 𝜎NO-WRS-NLFEM

xu when 𝜎xu = 𝜎NO-WRS-CSR
xu

is exploited in Eq. (9) and 𝜎WRS-NLFEM
xu when 𝜎xu = 𝜎WRS-CSR-DDM

xu
is exploited in Eq. (9). Fig. 5 clearly shows that the Pareto front
reasonably correlates with the NLFEM predictions. Additionally, it is
possible to observe that the structural strength of the stiffened panel
considered in this paper is insensitive to the change in structural
geometry/weight when it is already designed to be stocky. This is
probably due to the structural behavior in these cases are dominated
by material plasticity rather than structural instability (i.e., buckling).
In contrast, the structural strength of the stiffened panel considered is
highly sensitive to the change in structural geometry/weight when it
is designed to be slender. This can be attributed to the fact that the
dominating buckling mode in these cases is changed from elastoplastic
local plate buckling to elastic stiffener tripping and/or overall single-
frame buckling. The above observations suggest that it is important
for structural designers to identify the turning points in a Pareto front
since changing the geometry of a stocky stiffened panel can be a
benefit (decreasing structural weight without a significant sacrifice of
structural performance), whereas the structural performance can be
considerably degraded even with a change in geometry for slender
panels. Fig. 6 reports the optimal 𝑉 and the optimal 𝜎xu varying 𝜆
in Eq. (9) when authors replace 𝜎xu with 𝜎NO-WRS-CSR

xu or 𝜎WRS-CSR-DDM
xu

differently with respect to Fig. 5 so to better understand how 𝑉 and
𝜎xu varies with 𝜆. Fig. 7, instead, reports how the optimized variables
(𝑡𝑝, ℎ𝑤, 𝑡𝑤, 𝑏𝑓 , and 𝑡𝑓 ) behavior when varying 𝜆 in Eq. (9) replacing 𝜎xu
with 𝜎NO-WRS-CSR

xu or 𝜎WRS-CSR-DDM
xu . Figs. 8 and 9 reports, for some 𝜆s (the

same of Fig. 5, namely the ones that brings a particular optimal volume
𝑉 ∈ [0.2114, 0.1322, 0.0602, 0.0515]) a visualization of the geometry
found with the optimization problem of Eq. (9) when authors replace
𝜎xu with 𝜎NO-WRS-CSR

xu or 𝜎WRS-CSR-DDM
xu respectively against the original

geometry of Table 1. It is noted from Fig. 6 that when 𝜆 > 0.5, structural
strength and structural weight substantially reduce. This is primarily
driven by the greater importance of structural weight minimization
which outweighs the structural strength maximization. Furthermore,
with reference to Fig. 7, the plate thickness (𝑡𝑝) and the stiffener height
(ℎ𝑤) appears to be the two most influencing parameters as shown
by their variation relations against 𝜆 which show a close match with
the change of structural weight and strength against varying 𝜆. This
aligns with many parametric analyses of the strength of stiffened plated
structures [40,41]. The change in the plate thickness causes the largest
difference in the structural performance since the local plate is the
major part (in terms of material volume) of a stiffened plated structure
and thereby plays a prime role in providing the load-carrying capacity.
On the other hand, the role of the stiffener is to provide boundary
support to the local plating to prevent the stiffened panel from overall
buckling failure. In particular, the stiffener height would dictate the
fixity of the boundary constraint and whether any stiffener tripping
would occur, in which case a significant loss in boundary constraint
would result.
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Fig. 8. For some 𝜆s (the same of Fig. 5, namely the ones that brings a particular optimal volume 𝑉 ∈ [0.2114, 0.1322, 0.0602, 0.0515]) authors report a visualization of the geometry
found with the optimization problem of Eq. (9) when authors replace 𝜎xu with 𝜎NO-WRS-CSR

xu against the original geometry of Table 1.
Note that in all the results presented before, authors did not specify
the optimization algorithm exploited (IP, AS, GA, or PSO) since they all
find the same optimal solution. Since the solution’s optimality cannot
be a criterion for selecting the best optimization algorithm, authors will
use their computational requirements as a metric to compare them. For
this reason, Table 6 reports the average number of calls and the average
time that each optimization algorithm takes to find the solution when
replacing 𝜎xu with 𝜎NO-WRS-CSR

xu or 𝜎WRS-CSR-DDM
xu in the optimization

problem of Eq. (9).
From Table 6, it is clear that AS is the best suited candidate for

the problem at hand since IP, PSO, and GA are an order of magnitude
11

slower than AS.
5. Conclusions

Modern structures are usually designed as a network of plates and
stiffeners joined by welding, which induces a residual stress field,
and their design is a long process of adaptation of existing structures
not optimized for the specific requirements, resulting in being overly
conservative. A design able to simultaneously minimize the weight and
maximize the strength of the panels would result in technical, eco-
nomic, and environmental benefits. Given the geometry, computing the
weight of the panel is trivial, while estimating its strength is not trivial
at all, both from methodological and technical sides. In fact, ultimate
limit state assessment examines the maximum load-carrying capacity of
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Fig. 9. For some 𝜆s (the same of Fig. 5, namely the ones that brings a particular optimal volume 𝑉 ∈ [0.2114, 0.1322, 0.0602, 0.0515]) authors report a visualization of the geometry
found with the optimization problem of Eq. (9) when authors replace 𝜎xu with 𝜎WRS-CSR-DDM

xu against the original geometry of Table 1.
structures considering inelastic buckling failure and, to provide reliable
assessments, needs to take into account also the stress induced by the
welding, namely the welding residual stress. Effectively predicting the
ultimate limit state reduction of stiffened panels accounting also for
the welding residual stress requires the use of nonlinear finite element
methods, which are too computationally demanding to be used in
a design optimization loop. For this reason, in this paper, a three-
step approach for the optimal design of stiffened panels accounting
for ultimate limit state due to welding residual stress is developed.
First, authors rely on state-of-the-art Analytical Approaches coupled
with recently data-driven nonlinear finite element methods surrogates
characterized by functional, which are computationally expensive to
build but computationally inexpensive to use. Then, the surrogates are
used within a design optimization loop to find new optimal designs.
Finally, the new designs are reassessed with the original nonlinear
12
finite element methods to verify that substituting the nonlinear finite
element methods with their surrogates in the optimization loop leads
to better designs. Results obtained optimizing a series of parameters of
a commonly used stiffened panel geometry under different scenarios
supported authors proposal. A number of research areas may be open
for future study. To ensure a more reliable design optimization, con-
tinuing efforts on the improvement of prediction methods for ultimate
strength of stiffened plated structures including analytical and surro-
gate models are required. Additionally, probabilistic analysis can be
performed to deal with the uncertainty related to strength prediction.
Combining the probabilistic analysis with the proposed optimization
framework, a reliability-based structural optimization may be investi-
gated. Further, additional design variables may be introduced and the
objective functional can be modified to consider a techno-economic
optimization.
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