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Abstract
Patients with severe SARS-CoV-2 infection have an overwhelming inflammatory response characterized by remarkable organs 
monocyte infiltration. We performed an immunophenotypic analysis on circulating monocytes in 19 COVID-19 patients in 
comparison with 11 naïve HIV-1 patients and 10 healthy subjects. Reduced frequency of classical monocytes and increased 
frequency of intermediate monocytes characterized COVID-19 patients with respect to both HIV naïve patients and healthy 
subjects. Intensity of C–C motif chemokine receptor 2 (CCR2) monocyte expression highly correlated with parameters of 
kidney dysfunction. Our data indicate that highly activated monocytes of COVID-19 patients may be pathogenically associ-
ated with the development of renal disease.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection can lead to different clinical pictures 
(from asymptomatic/pauci-symptomatic infection to mod-
erate/severe forms of disease), suggesting that the clinical 
manifestations might strictly depend on the outcome of the 
SARS-CoV-2 immune system interaction in the patient. The 
factors that trigger severe illness in SARS-CoV-2 infected 

individuals are not completely understood. Immune sys-
tem dysregulation, leading to an excessive inflammatory 
response to SARS- CoV-2, is thought to be a major cause 
of disease severity and death in patients with Coronavirus 
Disease (COVID-19) [1]. This condition is associated with 
high levels of circulating cytokines as well as by substantial 
mononuclear cell infiltration in the lungs, heart [2], spleen, 
lymph nodes and kidney [3, 4]. Among mononuclear cells, 
a key pathogenic role for COVID-19 inflammation has 
been attributed to monocytes [5, 6]. In particular, expan-
sion of CD14 + CD16 +  + intermediate monocytes [7] has Chiara Dentone, Daniela Fenoglio and Alessia Parodi authors share 
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been observed in SARS-CoV-2 infected patients [8]. This 
particular subset of circulating monocytes has been previ-
ously found associated with inflammation and viral diseases 
as HIV infection [7, 9]. In order to better characterize the 
phenotype of monocytes in patients with SARS-CoV-2 
infection, we analyzed circulating monocytes of COVID-
19 patients in comparison with corresponding cells from 
healthy subjects and HIV-1 naïve patients. Moreover, we 
searched for associations between phenotypic monocyte 
abnormalities in COVID-19 patients and serum clinical 
markers of disease, finding a strict correlation between C–C 
motif chemokine receptor 2 (CCR2) expression and param-
eters of kidney functionality.

Materials and methods

Patients and healthy donors

This was a descriptive observational cross-sectional clini-
cal study. Peripheral blood was collected from 19 consecu-
tives patients from March 2020 affected by moderate/severe 
COVID-19 who were enrolled at the Division of Infectious 
Diseases and the Internal Medicine and Clinical Immunol-
ogy Unit of the Policlinic San Martino University Hospital 
in Genoa (Supplementary Table 1). Diagnosis of COVID-
19 was confirmed in all patients by real-time reverse-tran-
scriptase polymerase chain reaction (RT-PCR) positive from 
a nasal and/or throat swab. We collected also peripheral 
blood from 11 HIV-1 naïve patients, SARS-CoV-2 negative 
(Supplementary Table 2), as well as from 10 healthy donors 
(HD). The study was carried out in compliance with the 
Helsinki Declaration and approved by the Ethical Commit-
tee of the San Martino Hospital in Genoa (N. CER Liguria 
114/2020—ID 10,420 and P.R.251REG2014).

Monoclonal antibodies and immunofluorescence 
analyses

Cell expression of membrane antigens was tested by 
immunofluorescence analysis performed with 100 μl of 
peripheral blood. Samples were incubated with specific 
fluorochrome-conjugated monoclonal antibodies (mAbs) 
at room temperature for 20 min in the dark. The following 
panel was used: phycoerythrin (PE) conjugated anti-CD38, 
Peridinin Chlorophyll Protein Complex-Cyanin 5.5 PerCP-
Cy5.5conjugated anti-HLA-DR, allophycocyanin (APC) 
conjugated anti-CD11b, brilliant violet (BV) 421 conju-
gated anti-CCR2, BV605 conjugated anti-CD16, BV711 
conjugated anti-CD14, BV785 conjugated anti-CD3 (Becton 
Dickinson, (BD) Biosciences, San Josè CA). For lysing red 
blood cells and fixing leukocytes following direct immuno-
fluorescence staining of human peripheral blood, samples 

were resuspended in 4 ml of FacsLysing buffer (containing 
formaldehyde, BD) and then centrifuged and resuspended 
in 300 µl of FacsLysing. Following the staining and lysing 
procedures, the cells were analyzed by a BD LRSFortessa 
X-20 flow cytometer (BD Biosciences) using FACS DIVA 
software 8.0 (BD Biosciences). Levels of expression of 
HLA-DR, CD38, CCR2 markers were shown as mean fluo-
rescence intensity (MFI) on the monocyte subsets. Since 
HLA-DR, CD38 and CCR2 molecules resulted absent on 
neutrophils, we used the MFI of HLA-DR, CD38 and CCR2 
molecules on this population as an internal negative control. 
Cytometer performances were checked weekly with CS&T 
beads (BD Biosciences) to determine cytometer settings and 
performance measurements for reproducible application.

Gating strategy for monocyte identification

The gating strategy to identify monocytes, as described 
in Supplementary Fig. 1, was the following: a) debris and 
dead cell exclusion in forward-scatter (FSC-Height) vs side-
scatter channel (SSC-Height) plot (Panel A); b) doublet 
exclusion in FSC-Area vs FSC-Height plot (Panel B); c) 
gating for monocytes in HLA-DR vs SSC plot to select them 
as HLA-DR + cells with higher SSC than HLA-DR + and 
HLA-DR- lymphocytes; in this plot monocytes were dis-
tinguished from neutrophils based on the higher SSC and 
HLA-DR negativity of these latter cells (Panel C); d) con-
firmation of monocyte population as CD3-CD11b + in CD3 
vs CD11b plot (Panel D). The differentiation between mono-
cytes and neutrophils was corroborated by the analyses of 
HLA-DR (that are molecules not present on the surface of 
neutrophils), CD16 (brighter expression on neutrophils) and 
CD11b (brighter expression on monocytes).

We used HLA-DR instead of CD14 as identifier marker 
for monocytes in order to not underestimate the subpopu-
lation of nonclassical monocytes (that exhibit CD14 low/
neg expression). Then, the HLA-DR + CD3-CD11b + mono-
cyte population was analyzed by CD14 and CD16 mark-
ers to identify the three subpopulations of monocytes, 
as follows: classical (CD14 +  + CD16-), intermediate 
(CD14 +  + CD16 +) and nonclassical (CD14 ± CD16 + +) 
(Supplementary Fig. 1, Panel E). The levels of CD16 posi-
tivity within the monocyte population were discriminated 
through comparison with those of CD3 + T and putative 
B lymphocytes, NK CD16 + cells and neutrophils; each of 
them references for negative, intermediate and bright expres-
sions, respectively (Supplementary Fig. 2).

The percentage of monocytes, evaluated as HLA-
DR + CD11b + CD3- (Supplementary Fig. 1, Panel D), 
was referred to the total leukocytes (lymphocytes-mono-
cytes-neutrophils) identified based on their FSC-H and 
SSC-H features in Panel A. The frequencies of different 
monocyte subsets (Supplementary Fig. 1, Panel E) were 
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determined as percentages of the total monocyte popula-
tion defined in Supplementary Fig. 1, Panel D.

Multidimensional data reduction analysis

To visualize the different clustering of monocyte subpop-
ulations in the three groups of subjects (healthy donors, 
Covid-19 and HIV + naïve patients), flow cytometric data 
derived from a representative subject for each group were 
exported with compensated parameters to FCS express 
software v6.03.0011 (DeNovo software) in order to per-
form a multidimensional data reduction analysis. Mono-
cytes were defined based on their FSC vs SSC physical 
parameters and HLA-DR + CD11b + expression (as shown 
in Supplementary Fig. 1, Panel D): 144,000 monocytes 
per subject were merged into a new FCS file. A t-depend-
ent Stochastic Neighbor Embedding (t-SNE) map was 
generated, using FCS express software 119 v6.03.0011 
(DeNovo Software), in the merged file among 1000 itera-
tions with Barnes-Hut 287 approximation and 40 perplex-
ity value for following markers: FSC-A, SSC-A, CCR2, 
HLA- DR, CD38. This generated 2-D plots that clustered 
the cells on the basis of marker expression profiles.

Statistical analyses

The existence of statistically significant differences between 
means of data was analyzed by Mann–Whitney t test for non-
parametric values. The existence of statistically significant 

correlations between variable parameters was analyzed by 
Spearman test for nonparametric values. Calculation was 
performed by GraphPad Prism v.5 software (GraphPad Soft-
ware, San Diego, California, USA).

Results

Monocyte phenotypic characterization

COVID-19 patients showed monocyte circulating fre-
quencies comparable to those of healthy subjects and 
HIV + naive patients (Fig.  1A). However, the rela-
tive distributions of the three different monocyte sub-
sets, namely classical (CD14 +  + CD16-), intermediate 
(CD14 +  + CD16 +) and nonclassical (CD14 ± CD16 + +) 
types [10], were peculiar of COVID-19 patients. In fact, 
the frequency of classical monocytes was decreased 
and that of intermediate monocytes was increased in 
COVID-19 patients with respect to both healthy donors 
and HIV + naïve patients (Figs. 1B and 1C). It should be 
noted that the frequency of intermediate monocytes was 
higher in COVID-19 patients than in HIV + naive patients 
(Fig. 1C). No differences were observed concerning non-
classical monocytes (Fig. 1D). Interestingly, when mono-
cyte morpho-cytometric features were comparatively ana-
lyzed in the three subgroups of subjects, again a peculiarly 
altered morphology, characterized by an increase in side 
scatter (SSC) dimension (index of cytoplasmic complex-
ity), hallmarked the monocyte population of COVID-19 

Fig. 1   Frequency of circulating 
monocytes. The frequency of 
total monocytes out of circulat-
ing leucocytes A and those of 
classical B, intermediate C 
and nonclassical D monocyte 
subsets were comparatively 
analyzed in COVID-19 patients, 
in HIV + naïve patients and in 
healthy donors
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patients compared to HD and HIV patients (Fig. 2). The 
differences among the three subgroups further emerged 
when data, relative to monocyte expression of CD38 and 
HLA-DR activation markers and CCR2 homing receptor 
of a representative subject for each group, were merged 
and evaluated applying t-dependent Stochastic Neighbor 
Embedding (t-SNE) analysis. The t-SNE maps showed 

that monocytes derived from COVID-19 patient #8, 
HIV + naïve patient #1 and healthy donor #2 clusterized 
differently, accordingly with their morphologic features 
and expression profiles of CD38, HLA-DR and CCR2 
molecules (Supplementary Fig.  3, Panels A-C). This 
analysis showed a different clustering of monocyte sub-
sets among different subjects, confirming the enrichment 

Fig. 2   Cytometric features of circulating monocytes. The figure 
shows the morpho-cytometric characteristics (upper and middle rows) 
and the relative distribution among the three monocytes subsets (clas-
sical, intermediate and nonclassical monocytes) (lower panels) of cir-

culating monocytes on representative samples derived from COVID-
19 patient # 8 (middle column), healthy donor #2 (HD, left column) 
and HIV + naïve patient #1 (right column)
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of intermediate monocytes in the sample derived from the 
COVID-19 patient with respect to the other groups (Sup-
plementary Fig. 3, Panel B). Moreover, the t-SNE maps 
of mean fluorescence intensity of CD38 and HLA-DR 
activation markers showed their increased expression on 
monocytes subsets derived from both patients with respect 
to the healthy donor. Higher CCR2 monocyte expression 
was only observed in the clusters of the COVID-19 patient 
with respect to those of the other groups (Supplementary 
Fig. 3, Panel C). These differences in CD38, HLA-DR 
and CCR2 MFI between COVID-19 patients and both 
HIV + naïve patients and HD, suggested by the multidi-
mensional analyses performed on cells from representative 
subjects of each group, were confirmed by conventional 
cytometry analyses (Supplementary Fig. 4 and Fig. 3).

Correlations among monocyte and clinical 
parameters

In order to verify whether monocyte expression profiles of 
CD38, HLA-DR and CCR2 on different monocyte subsets 
may have a clinical impact in COVID-19 patients, we corre-
lated MFI of CD38, HLA-DR and CCR2 molecules with the 
serum levels of the following clinical indexes: creatinine, glo-
merular filtration rate (GFR), azotemia, troponin I, D-dimer, 
ferritin, fibrinogen, pro-calcitonin, C-reactive protein, lactate 
dehydrogenase, creatinine phosphokinase (Supplementary 
Table 3). We found that CCR2 expression on classic, interme-
diate and nonclassic monocyte subsets highly correlated with 
kidney function parameters (Fig. 4, Box A, B and C, respec-
tively). In fact, we observed a direct correlation between CCR2 
MFI on classical, intermediate and nonclassic monocytes 
with azotemia (Fig. 4 upper panels) and creatinemia (Fig. 4, 
middle panels), and an inverse correlation with GFR (Fig. 4, 
lower panels). Moreover, CD38 expression on intermediate 
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Fig. 3   Comparison of HLA-DR, CD38 and CCR2 MFI on mono-
cyte subsets derived from healthy donors (HD), COVID-19 and 
HIV + naïve patients. Box A, Box B and Box C show the comparison 
of HLA-DR, CD38 and CCR2 MFI (upper row, middle row, lower 

row, respectively) on classical monocytes (Box A), intermediate 
monocytes (Box B) and nonclassical monocyte (Box C) derived from 
healthy donors (HD), COVID-19 patients and HIV + naïve patients, 
respectively
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monocyte subset revealed a direct correlation with ferritin and 
fibrinogen serum concentrations (Supplementary Fig. 5).

Concerning the days before a negative swab (median 
days = 10), we found a direct correlation (r = 0.017) with % 
of classical monocytes and with the CCR2 MFI expression 
on nonclassical monocytes (r = 0.01). For duration of clinical 
manifestations of symptoms (median days = 22), we found a 
positive correlation (r = 0.023) with % of classical monocytes 
and with the CCR2 MFI expression on classical (r = 0.02) and 
on nonclassical monocytes (r = 0.04).

Discussion

Collectively, the results of our study show that monocytes 
of COVID-19 patients are highly activated and that their 
distribution among the three circulating subsets of mono-
cytes is quite peculiar, since it is different from that of 
both healthy donors and HIV + naive patients. This find-
ing, together with that related to the peculiar morpho-cyto-
metric parameters of intermediate monocytes in COVID-
19 patients, suggests that SARS-CoV-2 infection induces 
a robust stimulation of these cells. Such stimulation selec-
tively expands the intermediate monocytes that constitute 
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Fig. 4   Correlations between CCR2 MFI on circulating monocyte sub-
sets and parameters of renal function in COVID-19 patients. Box A, 
Box B and Box C show the correlations of serum azotemia (upper 

row), creatinine (middle row) and GFR (lower row) with CCR2 MFI 
on classical (Box A), intermediate (Box B) and nonclassical mono-
cytes (Box C), respectively, in COVID-19 patients



Clinical and Experimental Medicine	

1 3

a cell subset provided with pro-inflammatory features and 
that has been associated with infective and inflamma-
tory diseases [7]. Interestingly, these cells in COVID-19 
patients highly expressed CCR2, a chemokine receptor 
that likely drives them toward the tissue site of inflamma-
tion [11, 12]. Accordingly, elevated levels of CCL2, the 
chemokine specific for the CCR2, have been observed in 
the bronco-alveolar fluid of COVID-19 patients with pneu-
monia [13], thus likely explaining its rich monocyte con-
tent [14]. Hence, we searched for an association between 
CCR2 MFI and the serum levels of several clinical indexes 
in our series of COVID-19 patients. We found that CCR2 
MFI on intermediate monocytes correlated with all the 
clinical parameters of renal function (creatinine, GFR, 
azotemia). This unprecedented finding suggests that inter-
mediate monocytes may be also pathogenically related to 
renal alterations and acute kidney insufficiency, clinical 
manifestations of SARS-CoV-2 infection observed in 
about 14% and 5% of patients [15], respectively. This is 
not surprising since SARS-CoV-2 may target renal tissues 
due to the presence of the ACE2 receptor on the epithe-
lial cells of the proximal tubules [16]. Flow cytometry 
analyses of blood samples of COVID-19 demonstrate 
that monocyte percentage did not change, while a differ-
ent distribution of peripheral blood monocyte subsets is 
observed. These results add new information about the 
alteration in monocyte subset dynamic that could support 
the role of infected circulating monocytes to induce acute 
inflammatory responses and cause cytokine storm which 
enhances the pathogenicity of the virus and disease wors-
ening in patients. Moreover, the studies of CCR2 expres-
sion level on classic and intermediate monocytes only in 
COVID-19 patients showing an increase in this molecule 
confirm the role of CCR2 in viral replication and immune 
activation as inducer factor to the employment of inflam-
matory monocytes from the blood circulation to tissues.

Our data show that the intensity of CD38 expression by 
intermediate monocytes of COVID-19 patients correlated 
with biomarkers of inflammation, as ferritin and fibrino-
gen, whose production is dependent by IL6 [17, 18], a 
cytokine highly released by monocytes [19] and found at 
high concentration in COVID-19 patient serum [20].

Collectively, our data show that SARS-CoV-2 infec-
tion determines peculiar alterations of monocytes target-
ing morpho-phenotypic and maturation features and that 
elevated CCR2 MFI mainly on intermediate monocytes 
associates with parameters of renal function.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10238-​022-​00927-9.
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