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Abstract
Coupling with an external environment inevitably affects the dynamics of a quantum system.
Here, we consider how charging performances of a quantum battery, modelled as a two level
system, are influenced by the presence of an Ohmic thermal reservoir. The latter is coupled to both
longitudinal and transverse spin components of the quantum battery including decoherence and
pure dephasing mechanisms. Charging and discharging dynamics of the quantum battery,
subjected to a static driving, are obtained exploiting a proper mapping into the so-called
spin-boson model. Analytic expressions for the time evolution of the energy stored in the weak
coupling regime are presented relying on a systematic weak damping expansion. Here,
decoherence and pure dephasing dissipative coupling are discussed in details. We argue that the
former results in better charging performances, showing also interesting features reminiscent of
the Lamb shift level splitting renormalization induced by the presence of the reservoir. Charging
stability is also addressed, by monitoring the energy behaviour after the charging protocol has been
switched off. This study presents a general framework to investigate relaxation effects, able to
include also non Markovian effects, and it reveals the importance of controlling and, possibly,
engineering system-bath coupling in the realization of quantum batteries.

1. Introduction

Quantum properties can play a predominant role in determining the behaviour of micro- and
nano-devices. Recently, both theoretical and experimental works considered thermodynamic aspects of
small quantum systems, in the new research field called ‘quantum thermodynamics’ [1–8]. In this context
one of the major issues, also triggered by potential technological applications, is the possibility to efficiently
store energy in small systems, exploiting quantum features, and using it on-demand providing power
supply. This naturally leads to the idea of quantum batteries (QBs) [9], devices where the performances in
terms of energy transfer and charging power, namely the energy stored or released in a given time interval,
can be improved by exploiting quantum resources such as entanglement [10–13]. On the one hand the
attention focussed on the characterization of possible quantum advantage of single [12, 14–17] and
many-body QBs [18–20] over their classical counterparts [21]. On the other hand, theoretical frameworks
aiming at possible experimental implementations are under investigation. In particular, platforms
conventionally used for quantum computing [22], such as two-level systems (TLSs) [23, 24] physically
realized by means of superconducting qubits [25] or quantum dots [26] in semiconducting nanostructures,
are promising also for energy storage and can be considered as the elementary building blocks (cells) for
realizing QBs. In order to implement the charging of a TLS, namely the controlled transition between its
ground and its excited state, additional elements need to be taken into account. Protocols based on: the
action of external classical drives [15–17], the modulation of the exchange interaction between different
cells [9, 18, 19], the cell-cell coupling mediated by interaction with an external cavity radiation [27–30] or
the topological arrangement of the TLSs [31] have been presented.
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Most of the literature on QBs focussed on the dynamics of closed systems where the energy is coherently
transferred from a charger to the battery [9, 12, 13, 30], leaving only marginal discussions on possible
effects due to the presence of external environment. However, as it is well known, the unavoidable coupling
with an environment is responsible for dissipation, leading to relaxation and dephasing of each two-level
system [32, 33] and therefore should be properly addressed also in this context. First investigations on
‘open’ QBs have been based on the study of the time evolution of the reduced density matrix of the TLS
following a conventional Lindblad approach of Markovian master equations [34, 35]. Within this
framework, and under Markov approximation, general constraint on the possible stored energy and
averaged charging power associated to the QB have been recently introduced [36, 37]. Moreover, some
protocols, based on multiple projective or weak measurements, able to mitigate these detrimental
effects on the efficiency of the QB, have been proposed [38–41]. However, a microscopic description of the
physical processes involved in the energy dissipation and their impact on the performances of the QB is still
lacking.

The aim of this work is to investigate how environment-induced dissipation can affect charging (and
discharging) dynamics of a quantum battery. To avoid complications due to collective behaviours and
interactions between the single entities of a large quantum battery, that can lead to competing effects [9,
14], we will assume the cells to be independent quantities. We therefore inspect the dynamics of a single cell
quantum battery (hereafter indicated as QB) when a static external classical drive is acting as a charger and
in presence of a coupling to an external reservoir responsible for dissipation. We underline that several
system-reservoir couplings have been investigated and engineered, depending on the actual implementation
of the quantum device under study [25, 33, 42, 43]. Among all, we will concentrate on the case of linear
dissipative couplings described by an Ohmic spectrum, which well describes the low energy noise source of
many solid-state devices [33, 42].

Dissipative dynamics of open QB is systematically investigated by mapping the problem in the so-called
spin-boson (SB) model [33, 42, 44–46]. As one would expect, too strong dissipation inevitably lead to fast
incoherent relaxation dynamics, undermining the potential use of TLS as QBs. Moreover, at strong coupling
a clear distinction between system and bath, and the identification of the associated energy flows, is not
obvious [47] and should be considered with care [48–52]. Therefore, in the following, specific results will
be discussed in the case of weak dissipation strength (weak damping regime), where exact analytic results
can be derived. Focussing on the average energy variation, we investigate both charging and discharging
dynamics, underlining the different behaviour between decoherence and pure dephasing linear dissipative
couplings. By identifying the energy flows, both in the charging and discharging process, we will show that
the former possible coupling results in better QB performances at fixed dissipation strength.

The paper is organized as follows. In section 2 we present the model of a single cell QB coupled to a
reservoir (thermal bath). Different QB-bath couplings, leading to decoherence or pure dephasing
mechanisms, are taken into account, by means of proper mapping to the SB model. Section 3 focuses on the
dissipative dynamics, recalling generalized master equations governing the time evolution of the
TLS in the presence of Ohmic dissipation. Here, analytic closed expressions for the average energy
associated to the QB in the weak damping regime are presented. Finally, section 4 contains our main results
on charging performances in presence of dissipation and section 5 summarizes our main conclusions.
Technical details, together with a discussion of the effect due to stronger dissipation, are reported in three
appendices.

2. Open quantum battery

We consider a single cell QB described by the Hamiltonian (hereafter we set � = 1)

HQB =
Δ

2
σz , (1)

where Δ represents the level spacing between the ground and the excited state, which can be seen as the
empty and the full cell configuration respectively. At time t = 0+ a coupling with the σx component of the
QB with an external classical field A (the charger) is switched on [12, 13, 27]

HC =
A

2
σx . (2)

In the above equations σk (k = x, y, z) indicates the usual kth Pauli matrix. The QB is also coupled to a
reservoir (thermal bath), responsible for dissipation, modelled as an ensemble of harmonic oscillators of
frequency ωj [33, 45, 46, 53]. In terms of bosonic creation (annihilation) operators a†j (aj) it reads
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HR =
∑

j

ωja
†
j aj . (3)

We consider a linear coupling with the reservoir along both the longitudinal (z) and transverse (x)
directions

HI =
1

2

[
σx cos(θ/2) + σz sin(θ/2)

]∑
j

λj

(
a†j + aj

)
, (4)

capturing both decoherence (θ = 0) and pure dephasing (θ = π) processes [42, 54, 55]. Notice that
different couplings can correspond to different and independent noise sources, for instance they can be
linked to charge and flux noise in a superconducting Josephson realization of a TLS [42, 43, 56]. The
spectral properties of the reservoir are characterized by the density function [33]

J(ω) =
∑

j

λ2
j δ(ω − ωj), (5)

which in the continuum limit and in the relevant case of Ohmic dissipation we are interested in, has the
form [33, 46, 53]

J(ω) = 2αω e−ω/ωc . (6)

Here, α is a dimensionless parameter which quantifies dissipation strength and ωc the high frequency
cut-off of the bath [33, 57, 58]. The total Hamiltonian governing the dynamics at t � 0 is thus given by

H = HQB + HC + HRI , (7)

where we have defined the total contribution of the reservoir HRI = HR + HI. At time t = 0, we assume
factorized initial conditions, with a total density matrix given by ρtot(0) = ρ(0) × ρR(0). Here, the reservoir
is at thermal equilibrium with density ρR(0) = e−βHR/Tr[e−βHR ], where β = 1/(kBT) is the bath inverse
temperature. On the other hand, the QB is described by the reduced density matrix

ρ(0) =

(
pR a − ib

a + ib pL

)
, (8)

where we have included the possibility to have initial coherences (a and b). Normalization of ρ(0) imposes
pR + pL = 1. In addition, with a and b real coefficients, the condition Trρ2 � 1 leads to the constraint
a2 + b2 � pRpL. Time evolution of the spin components 〈σk(t)〉 (k = x, y, z) are written as averages over the
time dependent total density matrix, ρtot(t) driven by the total Hamiltonian H

〈σk(t)〉 = Tr[ρtot(t)σk] . (9)

These averages can be represented in terms of the time dependent reduced density matrix ρ(t) as

〈σk(t)〉 = Tr[ρ(t)σk] , (10)

where ρ(t) = TrR[ρtot(t)] with TrR the trace over the bath degrees of freedom.
Energy exchanges between the different subparts, and thus charging dynamics, at time t can be then

determined by studying the energy variations

〈Es(t)〉 = 〈Hs(t)〉 − 〈Hs(0)〉 , (11)

where s = QB, C, RI. Recall that for t > 0, because of the static driving, we have Ḣ = 0, with an energy
balance of the form

〈EQB(t)〉+ 〈EC(t)〉+ 〈ERI(t)〉 = 0 (12)

that must hold for any driving amplitude and dissipation.
Before discussing the dissipative dynamics, it is instructive to recall that in absence of dissipation

(α = 0), all energy supplied by HC is transferred to the QB, whose maximum energy that can be stored is
given by the energy level spacing Δ. A static driving protocol then charges the QB according to [12, 17]

〈EQB(t)〉 = Δ

2

A2

Ω2 [1 − cos(Ωt)] , (13)

where Ω is the Rabi frequency

Ω =
√
Δ2 + A2 . (14)

3
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Here, the unitary evolution of the closed system implies a periodic behaviour, as evident from
equation (13), with the QB completely discharged (again empty and in the |g〉 state) for even multiplies of
Ωt = 2πn (n > 0 integer). Notice that the maximum amount of the energy stored, is reached for very large
amplitude A � Δ.

2.1. Mapping to the spin boson model
In order to study the time evolution of the different subparts we start by considering a unitary rotation in
the spin space

R = e−iφσy (15)

with the angle φ chosen in such a way to project the interaction part HI only along the z axis. It is easy to
show (see appendix A for details) that with φ = (θ + π)/4 one has

H̃I ≡ RHIR−1 = −1

2
σz

∑
j

λj

(
a†j + aj

)
, (16)

H̃QB ≡ RHQBR−1 = −Δ

2

[
σz sin(θ/2) − σx cos(θ/2)

]
(17)

H̃C ≡ RHCR−1 = −A

2

[
σz cos(θ/2) + σx sin(θ/2)

]
. (18)

In this way, the total Hamiltonian
H̃ = H̃QB + H̃C + HR + H̃I (19)

can be then recast in the standard form of an SB model [33, 59], which represents a prototypical quantum
dissipative two state system that has been studied with several numerical [60–65] and analytical approaches
both in the weak and strong coupling regimes [33, 51, 57, 58, 66–68]. We have indeed

H̃ ≡ H(SB) = H(SB)
0 + HR + H(SB)

I (20)

where

H(SB)
0 = −Δ0

2
σx −

ε0

2
σz , (21)

is the bare TLS Hamiltonian, with Δ0 the tunnelling amplitude and ε0 a constant bias, and H(SB)
I = H̃I

given in equation (16). By comparing the above H(SB) with H̃ in equation (19) we obtain the following
identifications

Δ0 =
[
A sin(θ/2) −Δ cos(θ/2)

]
, (22)

ε0 =
[
A cos(θ/2) +Δ sin(θ/2)

]
. (23)

To complete the mapping we still need to identify the reduced SB initial density matrix, as

ρSB(0) =

(
p̄R ā − ib̄

ā + ib̄ p̄L

)
, (24)

with the rotated reduced initial matrix ρ̃(0) ≡ Rρ(0)R−1 of the QB. We therefore get (see appendix A)

p̄R = −pR sin(θ/2) +
1 + sin(θ/2)

2
− a cos(θ/2), (25)

p̄L = −pL sin(θ/2) +
1 + sin(θ/2)

2
+ a cos(θ/2), (26)

ā = −a sin(θ/2) +
pR − pL

2
cos(θ/2), (27)

b̄ = b. (28)

From now on, the average energy of the QB, 〈HQB(t)〉 and that of the charger 〈HC(t)〉 will be directly
obtained using the expressions (17) and (18) as

〈HQB(t)〉 = −Δ

2

[
〈σz(t)〉 sin(θ/2) − 〈σx(t)〉 cos(θ/2)

]
(29)

〈HC(t)〉 = −A

2

[
〈σz(t)〉 cos(θ/2) + 〈σx(t)〉 sin(θ/2)

]
(30)

where the time evolution of the spin components will be considered in the SB model as
〈σk(t)〉 = Tr[ρSB(t)σk] with the proper identifications just discussed.

4
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3. Dissipative dynamics

3.1. Generalized master equations
As mentioned above, it is convenient to solve the dynamics of the QB by using the mapping to the SB model
given in equation (20) with initial density matrix in equation (24). Indeed, for this model, the time
dependent evolution of the spin components σz(t) and σx(t), were studied with several numerical and
analytical methods [33, 51, 61, 64, 68, 69]. In particular, in the framework of the path integral approach
[33, 44, 53, 66, 68] it was possible to represent 〈σz(t)〉 in the form of an exact generalized master equations,
and to connect 〈σx(t)〉 with 〈σz(t)〉 by an exact integral relation [33, 58, 67]. Usually in this approach the
reduced initial density matrix is chosen to be diagonal, with ā = b̄ = 0. Here, following the procedure
outlined in [66], we will relax this assumption by considering also the presence of non-diagonal terms,
which are necessary for the mapping to the QB. Below we will briefly present the main steps, while the
details are reported in appendix B.

Let us start with the z spin component which fulfills an exact integro-differential equation

d〈σz(t)〉
dt

=

∫ t

0
dt′[K(−)

1,z (t − t′) − K(+)
1,z (t − t′)〈σz(t′)〉] + 2āK(−)

2,z (t) − 2b̄K(+)
2,z (t), (31)

with initial condition 〈σz(0)〉 = p̄R − p̄L. The kernels K(±)
1,z (t − t′) determine the spin evolution in the

presence of an initial diagonal density matrix (ā = b̄ = 0), on the other hand, K(±)
2,z (t − t′) are responsible

for the additional contributions due to the initial coherence terms (ā �= 0, b̄ �= 0). The upper label (+) and
(−) indicate whether the kernel is an even or odd function of the bias ε0. All these kernels encorporate
dissipative effects and they only depend on the time difference since the SB Hamiltonian is time
independent.

As shown in appendix B they are expressed in terms of an infinite series over all possible tunnelling
processes, governed by Δ0. Notice that, due to the linearity of equation (31), 〈σz(t)〉 can be always
decomposed as

〈σz(t)〉 = 〈σz,0(t)〉+ 〈σz,̄a(t)〉+ 〈σz,̄b(t)〉, (32)

where 〈σz,0(t)〉 is the contribution without the initial coherence terms (ā= b̄=0), while 〈σz,̄a(t)〉 and
〈σz,̄b(t)〉 are the terms due to the presence of the coefficients ā and b̄ respectively. As demonstrated in
appendix B (see equation (B.24)) in the so called scaling limit, i.e. large cut-off frequency ωc, these two
parts can be directly linked to 〈σz,0(t)〉 in the following way

〈σz,̄a(t)〉 = 2ā

Δ0 sin(πα)

d

dt
〈σ(−)

z,0 (t)〉

〈σz,̄b(t)〉 = 2b̄

Δ0 cos(πα)(p̄R − p̄L)

d

dt
〈σ(+)

z,0 (t)〉,
(33)

where again ± indicates symmetric/antisymmetric term with respect to ε0. It is important to underline that
this result is valid at any order in the dissipation coupling strength α and in the tunnelling amplitude Δ0.
These relations are particularly helpful since they allow to evaluate the full dynamics of 〈σz(t)〉 starting from
initial diagonal conditions (ā = b̄ = 0), and deriving the full expressions also in the presence of coherent
(off-diagonal) components of the initial density matrix.

Let us comment now on the general structures of 〈σx(t)〉. As shown in [66, 67] this quantity is directly
connected to 〈σz(t)〉 via an exact integral relation

〈σx(t)〉 =
∫ t

0
dt′[K(+)

1,x (t − t′) + K(−)
1,x (t − t′)〈σz(t′)〉] + 2āK(+)

2,x (t) + 2b̄K(−)
2,x (t). (34)

The Kernels K(±)
1/2,x are again given in the form of a series and they are quoted in appendix B (see

equation (B.36)). Also this quantity can be decomposed as a sum of a term without ā and b̄, called 〈σx,0(t)〉
and the remaining parts 〈σx,̄a(t)〉 and 〈σx,̄b(t)〉 as

〈σx(t)〉 = 〈σx,0(t)〉+ 〈σx,̄a(t)〉+ 〈σx,̄b(t)〉. (35)

Similarly to the z-component, for sufficiently large cut-off frequency, the two last terms are linked to
〈σx,0(t)〉 as

5
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〈σx,̄a(t)〉 = 2ā

Δ0 sin(πα)

d

dt
〈σ(+)

x,0 (t)〉

〈σx,̄b(t)〉 = 2b̄

Δ0 cos(πα)(p̄R − p̄L)

d

dt
〈σ(−)

x,0 (t)〉.
(36)

Few remarks on the possible approaches to solve the above exact expressions are now in order. In general
the complete resummation of the series expansions which determine the kernels K(±)

1/2,z and K(±)
1/2,x cannot be

done in closed form. Therefore one needs to resort to suitable analytical approximations or numerical
computations. A well-known example is the so-called non-interacting blip approximation (NIBA) [33, 44,
69, 70]. As shown in the final part of appendix B this scheme approximates the kernels K(±)

1/2,z/x at their
lowest order in Δ0 truncating then their series expansions. On the other hands, it retains the dissipation
strength α at any order. It has been shown that NIBA is a good approximation for sufficiently high

temperatures β
√
Δ2

0 + ε2
0 < 1, while strong deviations occur at low temperatures especially in the long time

regime and in the presence of a finite bias [33]. Another, complementary, approximation is the so called
systematic weak damping expansion, valid for α � 1. This method evaluates the kernels at lowest order in
α with an exact resummation of the series in Δ0. This is a very powerful method to treat dissipative

dynamics in the weak coupling regime at low temperature β
√
Δ2

0 + ε2
0 > 1, where quantum coherence and

non markovianity effects may play an important role.

3.2. Weak damping dynamics
Here we specify the spin dynamics in the weak damping regime in the SB model. In the limit α � 1 and

low temperature regime β
√
Δ2

0 + ε2
0 > 1 it is possible to obtain closed analytical expressions for the time

evolution of spin operators relying on a systematic weak damping expansion, valid at any order in the
tunnelling amplitude Δ0. Resummation of the infinite series expressions in the systematic weak damping
expansion have been usually considered starting from diagonal initial conditions, neglecting coherence
terms [33]. However, by exploiting the general links derived in appendix B, from the knowledge of 〈σz,0(t)〉
and 〈σx,0(t)〉 it is easy to derive also the expressions related to finite off diagonal contributions ā and b̄. We
briefly remind the main steps behind this systematic expansion, for the 〈σz,0(t)〉 contribution. The starting
point is the formal series expression (reported in appendix B) of the kernels entering the generalized master
equation (31) K(±)

1,z (t − t′). The sum in equation (B.27) can be resummed at all order in Δ0, considering the
lowest order expansion in α of the exponential factors present in (B.19) which enters in equation (B.17).
Notice that in this approach, the kernels K(±)

1,z can be viewed as self-energy correction for the operator
〈σz,0(t)〉. Upon the expansion at lowest order in α the series expression for the kernels can be summed and
the resulting expression can be plugged into the generalized master equation which now admits a simple
closed solution. Following a similar procedure it is possible to obtain a systematic weak damping expression
also for the x-component [33, 67].

The averaged spin component 〈σk,0(t)〉 with k = z, x can be written in analytic form as

〈σk,0(t)〉 = N(1)
k,0 e−Γ(r)t +

[
N(2)

k,0 cos(ΩSBt) + N(3)
k,0 sin(ΩSBt)

]
e−Γt + 〈σk(∞)〉. (37)

Both quantities possess an oscillatory behaviour, with characteristic frequency

ΩSB =
√
Δ2

0,eff + ε2
0, (38)

with

Δ0,eff = Δ0

[
Δ0

ωc

]α/(1−α)

· [Γ(1 − 2α) cos(πα)]1/[2(1−α)] . (39)

The level splitting gets renormalized with respect to the bare case ((Δ2
0 + ε2

0)1/2), with always

ΩSB <
√

Δ2
0 + ε2

0. The oscillatory behaviour present in equation (37) is modulated by exponential decay

dictated by the incoherent relaxation Γ(r) and dephasing Γ rates, given by

Γ(r) =
παΔ2

0,eff

ΩSB
coth[βΩSB/2]

Γ =
Γ(r)

2
+ 2πα

ε2
0

βΩ2
SB

.

(40)

6
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The amplitudes entering the above expressions are evaluated up to linear order in α, (apart the
renormalized frequency Δ0,eff ) and read

N(1)
z,0 =

(p̄R − p̄L)ε2
0

Ω2
SB

− 〈σz(∞)〉

N(2)
z,0 =

(p̄R − p̄L)Δ2
0,eff

Ω2
SB

N(3)
z,0 =

Γ(r)N(1)
z,0 + ΓN(2)

z,0

ΩSB

N(1)
x,0 =

ε0Δ0,eff

Ω2
SB

(p̄R − p̄L) − 〈σx(∞)〉

N(2)
x,0 = − ε0Δ0,eff

Ω2
SB

(p̄R − p̄L)

N(3)
x,0 =

1

ΩSB

[
Γ(r)N(1)

x,0 + ΓN(2)
x,0 + παΔ0,eff

]
.

(41)

In the above equations we have introduced the steady (t →∞) values

〈σz(∞)〉 = ε0

ΩSB
tanh[βΩSB/2]

〈σx(∞)〉 = Δ0,eff

ΩSB
tanh[βΩSB/2].

(42)

Exploiting equations (B.24)–(B.32), with the substitution Δ0 →Δeff to take consistently into account the
dissipation induced renormalization, we obtain

〈σz,̄a(t)〉 = 2āΔ0,effε0

Ω2
SB

[
e−Γ(r)t − e−Γt cos(ΩSBt) +

Γ

ΩSB
e−Γt sin(ΩSBt)

]
(43)

〈σz,̄b(t)〉 = −2b̄

Δ0,effΩ
2
SB

{
ε2

0Γ
(r)[e−Γ(r)t − e−Γt cos(ΩSBt)] +Δ2

0,effΩSBe−Γt sin(ΩSBt)
}

(44)

〈σx,̄a(t)〉 = 2ā

Ω2
SB

[
Δ2

0,eff e−Γ(r)t + ε2
0e−Γt cos(ΩSBt) − ε2

0Γ

ΩSB
e−Γt sin(ΩSBt)

]
(45)

〈σx,̄b(t)〉 = − 2b̄

Ω2
SB

{
ε0Γ

(r)[e−Γ(r)t − e−Γt cos(ΩSBt)] − ε0ΩSB sin(ΩSBt)e−Γt
}
. (46)

Finally the full time-evolution of 〈σz(t)〉 and 〈σx(t)〉 in the weak damping regime is obtained by plugging
the above expressions (equations (37), (43)–(46)) into equations (32) and (35).

4. Results and discussions

4.1. Charging dynamics in the weak damping regime
We now use the previous results in order to describe the dynamics of the QB. We focus on the weak
damping limit in the low temperature regime, which seems to be the most promising regime in order to still
achieve good performance of the QB, even in presence of a thermal bath. Moreover, we note that, in this
regime, possible effects related to quantum coherences and non-Markovian contributions can play relevant
role in determining the QB dynamics. We will determine the energy variation associated to the charging
process considering the QB initially prepared in the ground state |g〉, i.e. pL = 1 and pR = a = b = 0.
Similar expressions can be obtained considering other initial conditions as well. Unless otherwise stated, we
will discuss the two limiting case of decoherence coupling (θ = 0 in equation (4)) and of pure dephasing
coupling (θ = π in equation (4)). To distinguish between the two we introduce an index θ with θ = 0 or
θ = π whenever necessary. Using the expressions (29) and (30) with the mapping in (22), (23) the average
energies associated to the QB and to the charger C are directly expressed in terms of the time evolution of
the spin components 〈σz(t)〉 and 〈σx(t)〉 of the SB model. As explained above their evolution can be exactly
solved for weak damping (see section 3.2). Hereafter, for sake of clarity, we directly quote the closed
expressions for the time evolution in terms of QB variables.
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We start considering the case of pure decoherence with θ = 0 in equation (4), where the thermal bath is
coupled only to σx operator. We have

〈EQB(t)〉 = Δ

2

{
1 − Δeff

Ω0
tanh(

βΩ0

2
) +

Δeff

Ω0

(
tanh(

βΩ0

2
) − Δeff

Ω0

)
e−Γ(r)

0 t

+
e−Γ0t

Ω2
0

[
−A2 cos(Ω0t) +

(
ΔeffΓ

(r)
0 tanh(

βΩ0

2
) +

A2Γ0

Ω0

)
sin(Ω0t)

]}
, (47)

while the energy variation of the charger 〈EC(t)〉 is

〈EC(t)〉 = A2

2Ω0

{
− tanh(

βΩ0

2
) +

[
tanh(

βΩ0

2
) − Δeff

Ω0

]
e−Γ(r)

0 t

+
e−Γ0t

Ω0

[
Δeff cos(Ω0t) +

(
Γ(r)

0 tanh(
βΩ0

2
) − ΔeffΓ0

Ω0

)
sin(Ω0t)

]}
. (48)

In the above equations we have introduced the renormalized characteristic energy

Ω0 =

√
Δ2

eff + A2 , (49)

where

Δeff = Δ

(
Δ

ωc

)α/(1−α)

[Γ(1 − 2α) cos(πα)]1/[2(1−α)], (50)

is the QB level splitting renormalized by dissipation with respect to the bare one Δ. This renormalization of
the level splitting it is the analogue of the Lamb shift [33, 54, 55], and it is due to the presence of weak
dissipation. Notice that the renormalized energy is always Ω0 � Ω, with Ω the bare characteristic energy of
the QB in equation (14). Dissipation effects are reflected in the incoherent relaxation rate Γ(r)

0 and
dephasing rate Γ0, which are given by

Γ(r)
0 =

παΔ2
eff

Ω0
coth[βΩ0/2]

Γ0 =
Γ(r)

0

2
+ 2πα

A2

βΩ2
0

.

(51)

The case of pure dephasing is described by setting θ = π in equation (4), with the reservoir coupled to
σz, which induces a different dissipative dynamics. Indeed, in this case the average energy associated to the
QB can be written as

〈EQB(t)〉 = Δ

2

{
1 − Δ

Ωπ
tanh(

βΩπ

2
) +

Δ

Ωπ

(
tanh(

βΩπ

2
) − Δ

Ωπ

)
e−Γ(r)

π t

+
e−Γπ t

Ω2
π

[
−A2

eff cos(Ωπt) +

(
ΔΓ(r)

π tanh(
βΩπ

2
) − Δ2Γ(r)

π + A2
eff Γπ

Ωπ

)
sin(Ωπt)

]}
(52)

and the charger contribution is given by

〈EC(t)〉 = AAeff

2Ωπ

{
− tanh(

βΩπ

2
) +

[
tanh(

βΩπ

2
) − Δ

Ωπ

]
e−Γ(r)

π t

+
e−Γπ t

Ωπ

[
Δ cos(Ωπt) +

(
Γ(r)
π tanh(

βΩπ

2
) − Δ(Γ(r)

π − Γπ)

Ωπ

)
sin(Ωπt)

]}
. (53)

Notice the presence of a different characteristic energy

Ωπ =
√
Δ2 + A2

eff , (54)

where the bare amplitude A, felt by the QB, gets renormalized by the presence of dissipation as

Aeff = A

(
A

ωc

)α/(1−α)

[Γ(1 − 2α) cos(πα)]1/[2(1−α)] . (55)
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Also here, one has Ωπ � Ω. The relaxation and dephasing rates responsible for the damped oscillations are
given by

Γ(r)
π =

παA2
eff

Ωπ
coth[βΩπ/2]

Γπ =
Γ(r)
π

2
+ 2πα

Δ2

βΩ2
π

.

(56)

In passing, we comment on another particular value of the angle θ. Indeed, looking at the mapping with the
SB model, it is possible to fix a particular angle such that the tunnelling amplitude Δ0 in equation (22)
vanishes

Δ0 = 0 → θ̄ = 2 arctan

(
Δ

A

)
. (57)

Here, the competition between the two linear dissipative couplings σx and σz lead to a very peculiar
behaviour. Interference between longitudinal and transverse noise have been discussed in related context of
quantum dissipative systems [42, 62, 63], and are reflected in the following expressions for the incoherent
relaxation and dephasing rates

Γ(r)
θ̄

= 0

Γθ̄ =
2πα

β
.

(58)

Putting these values in the weak damping expressions of the SB (see section 3.2) we finally get

〈EQB(t)〉 = Δ

2

[
1 − Δ2

Ω2 − A2

Ω2 e−Γθ̄ t[cos(Ωt) − Γθ̄

Ω
sin(Ωt)]

]
(59)

〈EC(t)〉 = −A2Δ

2Ω2

[
1 − e−Γθ̄t[cos(Ωt) − Γθ̄

Ω
sin(Ωt)]

]
. (60)

Interestingly, at zero temperature also Γθ̄ = 0 and the above expressions reduce to the same expression
obtained for a closed QB under static driving (see equation (13)). This peculiar choice of θ̄ thus lead to a
very strong suppression of the effect caused by dissipation. However, to achieve this optimal point a precise
control on the various parameters is required and other sources of dissipation (such as due to non linear
couplings or 1/f noise) can become relevant [42, 43, 56, 62, 71, 72].

4.2. Effect of dissipation on average energy
We now discuss the results obtained in the previous section, showing how the effects of dissipation can
modify the charging dynamics of a QB, in the weak damping regime at low temperature (setting βΔ = 10
in all the plots). In figure 1 we show the time evolution of the average energy stored 〈EQB(t)〉 considering
the decoherence coupling in equation (47) (see panels (a) and (b)) and pure dephasing one in equation (52)
(see panels (c) and (d)). Representative examples of driving amplitude A = 0.5Δ (figures 1(a) and (c)) and
A = 3Δ (figures 1(b) and (d)) have been chosen. The closed QB system driven by a static bias (see
equation (13)) is also reported as a reference limit (see black dashed curves). It is evident that, also in
presence of dissipation, larger driving amplitude A results in better charging of the QB (compare panels (b)
and (d) versus panels (a) and (c)). Overall, all curves present a damped oscillatory behaviour, whose
amplitude is modulated by the exponential decay dictated by the incoherent relaxation and dephasing rates
given in equations (51)–(56). We recall that the rate expressions are different for the two dissipative
couplings considered, and this gives rise to completely different relaxation dynamics as shown in the
figure.

The positions of maxima and minima are slightly shifted to higher values of Ωt with respect to the
undamped case, effect particularly visible in panels (a) and panel (d). This can be understood by recalling
that the characteristic energy gets renormalized with respect to the bare case Ω by the presence of
dissipation as reported in equations (49)–(54) (and is related to the Lamb shift). Remarkably, looking at the
first maximum (around Ωt ∼ π), an opposite behaviour between decoherence coupling θ = 0 and pure
dephasing θ = π is observed while increasing the coupling strength α. Indeed, in the former case we
observe an increase of the value of the maximum with respect to the closed system reference (black dashed
curve).

Again, this is a consequence of the renormalization of Δ in equation (50). In the dephasing case,
instead, the driving amplitude gets renormalized to Aeff < A, resulting in an even lower value of the energy
stored in the QB. Notice that this is true also for A = 3Δ, shown in panel (b), although it is less visible due
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Figure 1. Time evolution of the average energy stored in the QB 〈EQB〉 (in units of Δ). Both decoherence coupling with θ = 0
(upper panels) and pure dephasing coupling with θ = π (lower panels) are shown as a function of Ωt. Panels (a) and (c) refer to
charging amplitude A = 0.5Δ, while panels (b) and (d) correspond to A = 3Δ. Different curves represent different dissipation
strength α. Other parameters are βΔ = 10, ωc = 500Δ.

Figure 2. Time evolution of the average energy variation (in units of Δ) (a) and the corresponding power (in units of Δ) (b)
associated to the QB (blue curves) and to the charger (red curves). Solid and dashed lines correspond to the case of decoherence
(θ = 0) and pure dephasing (θ = π) interaction with the reservoir, respectively. Dissipation strength has been fixed to α = 0.03
and driving amplitude to A = 3Δ. Other parameters as in figure 1. In panel (c) pictorial representation of the energy flow during
charging (red arrows) and discharging (blue arrows) process for the two couplings with the reservoir.

to the larger value of the driving amplitude which partially mask the effect due to the renormalization of
Δeff . The opposite behaviour shown in panel (c) and (d) of figure 1 can be explained by recalling the
different mapping of the QB parameters in the pure dephasing case, where now the driving amplitude is
renormalized to Aeff , see equation (55).

Direct comparison between the two dissipative coupling schemes is presented in figures 2(a) and (b) for
a fixed driving amplitude A = 3Δ and dissipation strength α = 0.03. The plot reports (see blue lines) the
average energy stored in the QB as a function of time, showing that in the case θ = 0 it is possible to achieve
better charging of the QB (higher values of the maxima). Due to the different form of the rates in
equations (51)–(56) decoherence coupling is less affected by dissipation. Indeed, for the chosen parameters
of figures 2(a) and (b) the corresponding rates are Γ(r)

0 = 0.021Δ, Γ0 = 0.028Δ and Γ(r)
π = 0.23Δ,

Γπ = 0.12Δ, respectively. This is a general trend, namely pure dephasing coupling is less efficient for
charging process. Indeed, as discussed in related context of quantum dissipative systems [42, 62, 63, 72],
pure dephasing coupling induced dynamics can be explained effectively with a larger value of the dissipative
coupling strength α.

This relaxation process leads to a damping of the oscillations (see in figure 2(a)) resulting in a lower
amount of energy that can be stored in the QB (quantified as the difference between a given maximum of
〈EQB(t)〉 and its preceding minimum). This is a general trend since dissipation induces relaxation dynamics
towards a steady thermal state, whose values in the two discussed cases read

10
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Figure 3. Average energy flows in the first charging (panel (a) and (c)) and in the first discharging (panel (b) and (d)) windows
(in units of Δ). Upper panels refer to decoherence coupling (θ = 0) and lower panels refer to pure dephasing (θ = π). Different
curves indicate the average energy variation in the various channels during the charging/discharging process. Dissipation
strength is α = 0.03 and driving amplitude A = 3Δ. Other parameters as in figure 1.

〈EQB,θ=0(t →∞)〉 = Δ

2

[
1 − Δeff

Ω0
tanh(

βΩ0

2
)

]
〈EQB,θ=π(t →∞)〉 = Δ

2

[
1 − Δ

Ωπ
tanh(

βΩπ

2
)

]
.

(61)

Being a thermal one, this steady state is equivalent to a passive state for the QB from which it is not possible
to extract energy [12, 13]. In figure 2(a) it is also reported (see red curves) the variation of energy associated
to the charger 〈EC(t)〉 (see equations (48)–(53)). Notice that curves associated to the QB and to the charger
are not specular (with respect to the x axis), reflecting the fact that a given amount of energy is also
dissipated into the reservoir. This can be better visualized looking at the corresponding powers
〈Ps(t)〉 = 〈Ės(t)〉, shown in figure 2(b). There, 〈Ps〉 > 0 indicates energy absorbed in the sth channel
(s = QB, C, RI), while 〈Ps〉 < 0 corresponds to energy released to the other subparts.

The marked differences between the solid blue (θ = 0) and dashed red (θ = π) curves underlines the
different charging (and discharging) process in the two cases, with a much better performance for the
decoherence coupling case.

Indeed for θ = 0, the amplitude of first positive maximum 〈PQB〉 > 0 corresponds almost to the first
negative minimum 〈PC〉 < 0 (energy released from the charger to the QB). Conversely, for θ = π (dashed
lines) one has lower values for 〈PQB〉 and its value is also different from the corresponding −〈PC〉,
indicating that part of the energy is already transferred to the bath. Physically, this is due to the different
energy flows (during charging and discharging dynamics) associated to the two different dissipative
couplings. These can be visualized as sketched in figure 2(c), where red arrows indicate charging process,
while blue arrows refer to the reverse (discharging) process. Notice that the difference between the two
pictures in figure 2(c) reflects the different spin operator whose reservoir is directly coupled to (see
equation (4)). Indeed, in one case (θ = 0) the bath is coupled to the charger which effectively mediates the
environmental effects on the QB (since σz and σx does not commute), while in the other (θ = π) the bath
degrees of freedom are directly coupled to the σz operator of the QB.

To better understand the arrows directions in the different coupling mechanisms, we consider the first
charging and the first discharging process and how energy is transferred between the various channels (QB,
C, or RI) during these time windows. Being t1 and t2 the values of the first maxima and the first minima,
respectively, we can define the energy variation in the first charging process as

Es(t, 0) ≡ 〈Es(t)〉 − 〈Es(0)〉 0 � t � t1 , (62)

and in the first discharging process as

Es(t, t1) ≡ 〈Es(t)〉 − 〈Es(t1)〉 t1 � t � t2 , (63)

with s = QB, C, RI. These quantities are reported in figure 3 for a representative coupling strength α = 0.03
and driving amplitude A = 3Δ, where upper panels show the case θ = 0 and lower panels the case θ = π.

Figures 3(a)–(c) consider the energy variations associated to the QB, the charger and the reservoir
contributions in the first charging interval 0 � t � t1. As one can see looking at figure 3(a) the QB absorbs
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Figure 4. Time evolution of the average energy stored in the QB (in units of Δ). The plot shows comparison between
decoherence coupling, pure dephasing and the optimal choice θ̄ for which linear coupling dissipation is strongly suppressed.
Dissipative coupling strength is fixed to α = 0.03, A = 3Δ and other parameters are the same as in figure 1.

energy (positive energy variation) while both the charger and the reservoir release energy (negative energy
variation) in this time interval. In figure 3(c), instead, the charger supplies energy (negative energy
variation) both to the QB and the reservoir (positive energy variation), i.e. a certain amount of energy is
already dissipated into the thermal bath, thus reducing the amount of energy stored in the QB. These two
situations are represented by the red arrows in the sketch of figure 2(c). Figures 3(b) and (d) report the first
discharging process associated to decoherence (b) and pure dephasing (d) couplings, consistent with the
blue arrows of figure 2(c). Here, in both cases energy is transferred from the QB (negative energy variation)
to both the charger and the reservoir (positive energy variation). However, the precise amount of energy
transferred to different channels is different in the two cases, as one can see looking at the red and black
curves in figure 3(b) and (d). This stress once more that not only the value of dissipation coupling strength
α affects the charging dynamics, but also how the reservoir is coupled to the quantum system is crucial to
determine both charging and discharging process of a QB. All the results confirm that the decoherence
coupling has a more efficient charging dynamics with respect to the pure dephasing case. Analogous
conclusions between the two linear dissipative couplings can be obtained for slightly higher values of
dissipation strength. Indeed, higher values of dissipation strengths have been also considered in the NIBA
framework and reported in appendix C.

Stronger dissipation strength would undermine charging performance of a QB, however the
decoherence coupling channel remains the one that less influence QB dynamics. In passing, we note also
that a rigorous definition of energy transfer at strong coupling is a delicate issue [47–52] and in the extreme
strong coupling regime a clear distinction between system (QB) and bath could be even not possible. Notice
also that high temperature regime βΔ < 1 would lead to faster relaxations, and weaker charging
performances, due to larger values of the associated rates (see equations (51)–(56) and figure C1(b) in
appendix C).

Before concluding this section, in figure 4 we show a comparison with the case of the optimal choice
which lead to a strong suppression of linear dissipation (see equation (59)).

As discussed in the previous section, by properly tuning the external parameters in presence of both
longitudinal and transverse noise (with both decoherence and pure dephasing mechanisms) linear
dissipation can be strongly suppressed. This results in a very slow relaxation, especially at long times,
leading to very stable values of the maximum amount of average energy stored even after many cycles ωt.
However, it is worth to notice that considering the short time dynamics (confining to the first maxima
shown in the figure 4), again decoherence coupling mechanism lead to better charging, due to the
renormalization effect induced by weak dissipation, reminiscent of the Lamb shift phenomena
[42, 54, 55]. Moreover, the choice of the optimal regime requires a very accurate fine tuning of the external
parameters.

4.3. Charging stability
Another important question regards how long a QB can retain a given amount of energy that has been
stored during a charging process, in presence of dissipation. To answer this question, the following protocol
is inspected. At t � 0 the QB is charged by interacting with the external charger with amplitude A until a
time tc > 0. Then, the charger is switched off, A = 0, for t > tc. It is worth noticing that, in general, there is
an energy cost δEsw = −〈HC〉 > 0 (evaluated at the time tc) associated to this switching operation. In a fully
quantum case, as the one described in references [30, 73], one need to determine if the system that supplies
energy to the QB has enough energy in order to pay this additional cost. However, in our model, being the
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Figure 5. Stability of average energy (in units of Δ) in presence of dissipation. Different curves represent different dissipation
strengths and reservoir coupling (solid versus dashed curves). Note that the pure dephasing coupling (θ = π) corresponds to the
QB effectively decoupled from the bath when the driving field is switched off. Other parameters are A = 3Δ, β = 10Δ and
ωc = 500Δ.

TLS attached to a classical source which is not affected by its quantum dynamics, we can safely assume that
the energy of the source is big enough to provide the energy required to implement the switch without
affecting the performance of the QB. If one considers a closed system, the amount of energy stored in the
QB until the time tc will remain constant at later times. However, in a more realistic situation the QB will
dissipate part of its energy into the thermal bath. It is therefore important to quantify the amount of energy
retained in the QB, after the charging field has been switched off. To model this protocol, the QB is initially
prepared at t = 0 in a given state described by equation (8), e.g. starting from the ground state as
considered before. The system then evolves under the action of the charger with amplitude A until the time
tc. At t = tc the reduced density matrix of the QB is

ρ(tc) =
1

2

(
1 + 〈σz(tc)〉 〈σx(tc)〉 − i〈σy(tc)〉

〈σx(tc)〉+ i〈σy(tc)〉 1 − 〈σz(tc)〉

)
. (64)

At times t � tc the amplitude A is switched off and therefore it produces a different dynamics. In the weak
damping regime, this can be described in terms of an effective initial reduced density matrix ρ(tc).

Due to the different coupling with the thermal bath for t > tc the dynamics of the QB will be still
dissipative for a decoherence coupling, while the case of pure dephasing results in total decoupling between
the QB and the reservoir, once the driving field A is switched off. The charging storage will be then affected
in a different way. Figure 5 shows the time evolution of the average energy stored in the QB under this
protocol (switching-off A = 0 at time tc = t1). Different curves refer to different coupling strengths α. As
one can see looking at the solid curves (corresponding to θ = 0), after the first maximum (at tc = t1) the
average energy stored in the QB start to decrease. As mentioned above, the flat behaviour of the pure
dephasing case is due to the effective decoupling of the QB from the bath (resembling the dynamics of a
closed system). Interestingly, the decoherence coupling, for sufficiently weak dissipation strength,
retains larger values of energy stored in the QB with respect to the other case in a wide time window. This
confirm once more that decoherence coupling represents a good choice for the reservoir-quantum
system engineering, resulting in both high values of average energy stored and both in terms of charging
stability.

5. Conclusions

In this work we have analyzed the dynamics of a single cell quantum battery, modelled as a quantum two
level system, charged by a classical drive and coupled with an external thermal bath. We have focussed on
the impact of dissipation on the charging performance of a QB, considering generic linear dissipative
couplings with the environment, including both decoherence and pure dephasing mechanisms. Exploiting a
mapping to the SB model and relying on a systematic perturbative expansion, we have found analytical
expressions for the charging dynamics in the weak damping regime. Here, charging and discharging
dynamics at short times have been studied in details, showing that decoherence coupling between reservoir
and QB results in better charging performance with respect to pure dephasing one. Indeed, in the former
case, the QB achieves higher values of average energy stored, and its value is quite stable also after
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switching-off the charging protocol for sufficiently weak coupling. These findings, although based on a
simple QB model, represent important hints for a realistic implementation of a QB in a solid state device,
where the unavoidable presence of an external environment has to be properly considered and possibly
engineered.
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Appendix A. Details on the unitary rotation

To obtain equation (19) we perform a unitary rotation R on the Hamiltonian (7) with

R = e−iφσy = (cos(φ))1 − i(sin(φ))σy =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
. (A.1)

Here, φ is a phase factor whose value has to be chosen in order to project the interaction part HI only along
the z axis. We thus consider the rotated interaction Hamiltonian

H̃I = RHIR−1 =
1

2

[
sin

(
θ

2
− 2φ

)
σz + cos

(
2φ− θ

2

)
σx

]∑
j

λj

(
a†j + aj

)
. (A.2)

In order to eliminate the contribution proportional to σx, we fix the value φ = (θ + π)/4, obtaining

H̃I = −1

2
σz

∑
j

λj

(
a†j + aj

)
. (A.3)

Performing the same unitary rotation on the QB Hamiltonian one has

H̃QB = RHQBR−1 =
Δ

2
[σz cos(2φ) + σx sin(2φ)] , (A.4)

which reduces to

H̃QB = −Δ

2

[
σz sin(θ/2) − σx cos(θ/2)

]
, (A.5)

when φ = (θ + π)/4. Finally, the term HC related to the charger is transformed into

H̃C = RHCR−1 =
A

2
[−σz sin(2φ) + σx cos(2φ)] , (A.6)

and fixing φ it becomes

H̃C = −A

2

[
σz cos(θ/2) + σx sin(θ/2)

]
. (A.7)

Of course, the term HR is invariant under the rotation R. We have therefore obtained equation (19). By
applying the same rotation R on the density matrix of equation (8) it is possible to obtain equation (24).
Taking advantage of the property pR + pL = 1 we obtain

ρSB(0) ≡ ρ̃(0) = Rρ(0)R−1

=

⎛⎜⎝pR cos(2φ) +
1 − cos(2φ)

2
− a sin(2φ)

pR − pL

2
sin(2φ) + a cos(2φ) − ib

pR − pL

2
sin(2φ) + a cos(2φ) + ib pL cos(2φ) +

1 − cos(2φ)

2
+ a sin(2φ)

⎞⎟⎠ (A.8)

where we have identified the reduced density matrix of the SB in equation (24) with

p̄R = −pR sin
θ

2
+

1 + sin θ
2

2
− a cos

θ

2

p̄L = −pL sin
θ

2
+

1 + sin θ
2

2
+ a cos

θ

2

ā = −a sin
θ

2
+

pR − pL

2
cos

θ

2

b̄ = b,

(A.9)

which coincide with equations (25)–(28) of the main text.
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Appendix B. Dissipative Kernels

This Appendix details the results introduced in section 3.1. We will derive the general expressions for
〈σz/x(t)〉 in the SB model, discussing the dissipative kernels K(±)

1/2,z(τ) and K(±)
1/2,x(τ), which are the main

building blocks to construct the generalized master equation. The useful links introduced in equations (33)
and (36) will be demonstrated.

The dynamics of 〈σk(t)〉 (k = x, y, z) can be studied evaluating the time evolution of the reduced density
matrix, starting from the initial condition at t = 0. We have indeed

〈σz(t)〉 = ρ1,1(t) − ρ−1,−1(t),

〈σx(t)〉 = ρ1,−1(t) + ρ−1,1(t),

〈σy(t)〉 = i[ρ1,−1(t) − ρ−1,1(t)]

(B.1)

where ρ1,1(t) and ρ−1,−1(t) are the populations, while ρ1,−1(t) and ρ−1,1(t) are the so-called coherence terms.
As shown in details in references [33, 57, 58, 66] the reduced density matrix can be expressed in terms of a
real-time double path integral

ρσ,σ′(t) =
∑

σ0,σ′0=±1

∫
Dσ

∫
Dσ′A[σ]A∗[σ′]F[σ,σ′]ρσ0,σ′0

(t = 0). (B.2)

Here, the symbol
∫
Dσ
∫
Dσ′ means the summation over all spin paths which for a two-state system are

σ(t′) = ±1 and σ′(t′) = ±1 with 0 � t′ � t. The boundary conditions are σ(t) = σ, σ′(t) = σ′ at final time
t and σ(0) = σ0, σ′(0) = σ′

0 at inital time. The elements of the initial reduced density matrix are ρσ0,σ′0
(0)

and correspond to the matrix in equation (24)

ρ(0) =

(
p̄R ā − ib̄

ā + ib̄ p̄L

)
. (B.3)

The quantity A[σ] is the probability amplitude for the free (undamped) two-level system to follow the path
σ(t′). It consists of a contribution due to the tunnelling processes which is iΔ0/2 for each jump with spin
changes σ = ±1 →∓1. In addition it receives a contribution from the static bias given by

exp
{

iε0

∫ t
0 dt′σ(t′)

}
. The effects of the bath are included in the Feynman-Vernon influence function

F[σ,σ′] which is obtained after tracing out the thermal reservoir [74]

F[σ,σ′] = exp

{
−1

4

∫ t

0
dt′
∫ t′

0
dt′′[σ(t′) − σ′(t′)][L(t′ − t′′)σ(t′′) − L(t′′ − t′)σ′(t′′)]

}
. (B.4)

Here, the Kernel L(t) represents the autocorrelation function of the fluctuating force which the reservoir
exerts on the two-level system and it has the following spectral representation [33]

L(t) =

∫ ∞

0
dω J(ω)

[
cos(ωt) coth(βω/2) − i sin(ωt)

]
, (B.5)

with J(ω) the spectral density of the bath given in equation (6). Notice that the presence of the bath induces
interactions among the paths at different times, with a non-markovian time memory. Since the spin paths
are piecewise constant with sudden jumps in between it is convenient to perform integration by parts in the
influence functional (B.4) introducing the function Q̈(t) = L(t). Below we quote the result avoiding to
explicitly writing the terms containing the boundaries of σ(t′) and σ′(t′) in t′ = t, 0

F[σ,σ′] = exp

{
1

4

∫ t

0
dt′
∫ t′

0
dt′′[σ̇(t′) − σ̇′(t′)]Q′(t′ − t′′)[σ̇(t′′) − σ̇′(t′′)]

+ i[σ̇(t′) − σ̇′(t′)]Q′′(t′ − t′′)[σ̇(t′′) + σ̇′(t′′)]

}
, (B.6)

where

Q(t) = Q′(t) + iQ′′(t) =

∫ ∞

0
dω

J(ω)

ω2

[
(1 − cos(ωt)) coth(βω/2) + i sin(ωt)

]
. (B.7)
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This dissipative correlator can be evaluated for the Ohmic spectral density (6) and it reads (βωc � 1)

Q′(t) = 2α ln

[
β
√

1 + ω2
c t2

πt
sinh

(
πt

β

)]
(B.8)

Q′′(t) = 2α arctan(ωct). (B.9)

Considering the scaling limit of large cut-off ωc, Q(t) reduces to

Q′(t) = 2α ln

[
βωc

π
sinh

(
π|t|
β

)]
, Q′′(t) = πα sgn(t). (B.10)

In the following we will consider this regime. The time evolution of the density matrix will be now written
in terms of the summations over all possible paths which consists in an expansion in the number of
tunnelling transitions Δ0, weighted by the different factors discussed above. The details of this procedure
are discussed in several references, see e.g. [33, 58, 66]. For this reason, we decided to write and comment
the series expansion for 〈σz(t)〉, which will allow us to demonstrate the important relation introduced in
equation (33). We choose as initial density matrix the one given in equation (B.3). Inserting the different
spin paths and considering the diagonal elements of ρ(t) one obtains the following decomposition for
〈σz(t)〉

〈σz(t)〉 = 〈σz,0(t)〉+ 〈σz,̄a(t)〉+ 〈σz,̄b(t)〉, (B.11)

where [58]

〈σz,0(t)〉 = (p̄R − p̄L) +
∞∑

n=1

Δ2n
0

(
−1

2

)n∫ t

0
dt2n · · ·

∫ t2

0
dt1

∑
ξ1···ξn=±1

[
(p̄R − p̄L)F(+)

n,1 C(+)
n,1 − F(−)

n,1 C(−)
n,1

]
(B.12)

and [66]

〈σz,̄a(t)〉 = −2ā
∞∑

n=1

Δ2n−1
0

(
−1

2

)n∫ t

0
dt2n−1 · · ·

∫ t2

0
dt1

∑
ξ1···ξn=±1

ξ1Fn,2C(−)
n,2 (B.13)

〈σz,̄b(t)〉 = 2b̄
∞∑

n=1

Δ2n−1
0

(
−1

2

)n∫ t

0
dt2n−1 · · ·

∫ t2

0
dt1

∑
ξ1···ξn=±1

Fn,2C(+)
n,2 . (B.14)

Notice that the initial condition is 〈σz(t = 0)〉 = 〈σz,0(t = 0)〉 = p̄R − p̄L. The integrations are over the flips
times, related to the different transitions of a given spin path. These times are time-ordered with
0 � t1 � · · · � t2n � t. Notice that in 〈σz,̄a(t)〉 and 〈σz,̄b(t)〉 there is one integration left with t0 = 0. The
sum
∑

ξj=±1 is over the integer variables ξ1 · · · ξn which can assume, each, the values ±1. Let us now

discuss the different terms inside the integrals. The factors C(±)
n,1/2 are the even and odd phase associated to

the static bias term ε0

C(+)
n,1 = cos[ε0

n∑
j=1

ξj(t2j − t2j−1)] C(−)
n,1 = sin[ε0

n∑
j=1

ξj(t2j − t2j−1)], (B.15)

C(+)
n,2 = cos[ε0

n∑
j=1

ξj(t2j−1 − t2j−2)] C(−)
n,2 = sin[ε0

n∑
j=1

ξj(t2j−1 − t2j−2)]. (B.16)

The influence of the bath is included in the functions F(±)
n,1 and Fn,2, which correlate the spin’s transitions

at different times. In the scaling limit they are expressed in compact notations, using the expression (B.10)
for the interaction Q(t). We have

F(+)
n,1 (t2n, . . . , t1) = Gn,1 · [cos(πα)]n, F(−)

n,1 (t2n, . . . , t1) = ξ1 tan(πα)F(+)
n,1 (B.17)

Fn,2(t2n−1, . . . , t0) = Gn,2 · [cos(πα)]n−1, (B.18)

where

Gn,1(t2n, . . . , t1) = exp

⎛⎝− n∑
j=1

Q′
2j,2j−1 −

n∑
j=2

j−1∑
k=1

ξjξkΛ
(1)
j,k

⎞⎠ , (B.19)

Gn,2(t2n−1, . . . , t0) = exp

⎛⎝− n−1∑
j=0

Q′
2j+1,2j −

n∑
j=2

j−1∑
k=1

ξjξkΛ
(2)
j,k

⎞⎠ . (B.20)
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Here, we defined Q′
j,k = Q′(tj − tk) and

Λ(1)
j,k = Q′

2j,2k−1 + Q′
2j−1,2k − Q′

2j,2k − Q′
2j−1,2k−1

Λ(2)
j,k = Q′

2j−1,2k−2 + Q′
2j−2,2k−1 − Q′

2j−1,2k−1 − Q′
2j−2,2k−2.

(B.21)

We are now in the position to demonstrate the important links quoted in equations (33) between
〈σz,0(t)〉 and 〈σz,̄a/b̄(t)〉. For this, we write the even an odd part of 〈σz,0(t)〉 with respect to the bias ε0,

〈σz,0(t)〉 = 〈σ(+)
z,0 (t)〉+ 〈σ(−)

z,0 (t)〉, whose series is implicitly defined in equation (B.12)

〈σ(+)
z,0 (t)〉 = (p̄R − p̄L)

⎡⎣1 +

∞∑
n=1

Δ2n
0

(
−1

2

)n∫ t

0
dt2n · · ·

∫ t2

0
dt1

∑
ξ1···ξn=±1

F(+)
n,1 C(+)

n,1

⎤⎦ (B.22)

〈σ(−)
z,0 (t)〉 = −

∞∑
n=1

Δ2n
0

(
−1

2

)n∫ t

0
dt2n · · ·

∫ t2

0
dt1

∑
ξ1 ···ξn=±1

F(−)
n,1 C(−)

n,1 . (B.23)

The time derivative of these two parts is easily performed by fixing the last integration time t2n = t. By
comparing these expressions to the ones written in equations (B.13) and (B.14) for 〈σz,̄a/b̄(t)〉 we identify,
after a proper change of integration variables, the links quoted in the main text

〈σz,̄a(t)〉 = 2ā

Δ0 sin(πα)

d

dt
〈σ(−)

z,0 (t)〉

〈σz,̄b(t)〉 = 2b̄

Δ0 cos(πα)(p̄R − p̄L)

d

dt
〈σ(+)

z,0 (t)〉.
(B.24)

Notice that the first equation is well defined for α→ 0 since the quantity d
dt 〈σ

(−)
z,0 (t)〉 is proportional to

sin(πα).
We now comment on the possibility to write an exact master equation for 〈σz(t)〉 starting from its series

expression obtained above. Although the series cannot be in general solved exactly, it is always possible to
link the time derivative d〈σz(t)〉/dt with 〈σz(t)〉 itself. This is achieved via direct comparison, term by term,
of their series expansions. Notice that d〈σz(t)〉/dt has also a formal series expansions obtained directly by
the time derivation of 〈σz(t)〉. This procedure allows us to write, on a general ground, the following
generalized master equation [33, 58, 66]

d〈σz(t)〉
dt

=

∫ t

0
dt′[K(−)

1,z (t − t′) − K(+)
1,z (t − t′)〈σz(t′)〉] + 2āK(−)

2,z (t) − 2b̄K(+)
2,z (t). (B.25)

Here, the kernels K(±)
1/2,z(t − t′) are constructed by matching the iterative solution represented in

equation (B.25) with the exact formal series for 〈σz(t)〉 in equations (B.11)–(B.14). They are expressed as
series and they represent the irreducible components of the exact series for 〈σz(t)〉 [33]. Due to the links
demonstrated in equations (B.24) it directly follows that the kernels associated to the off diagonal terms of
the initial density matrix are related to the kernel K(±)

1,z (t) as

K(+)
2,z (t) =

1

Δ0 cos(πα)
K(+)

1,z (t)

K(−)
2,z (t) =

1

Δ0 sin(πα)
K(−)

1,z (t).

(B.26)

For this reason we quote below only the series expansions obtained for K(±)
1,z (t). We have (t > t′) [33, 58]

K(±)
1,z (t − t′) = K(±)

1,z (t − t′) −
∞∑

n=2

Δ2n
0

(
−1

2

)n∫ t

t′
dt2n−1 · · ·

∫ t3

t′
dt2

∑
ξ1 ···ξn=±1

F̃ (±)
n,1 . (B.27)

Here, the new functionals F̃ (±)
n,1 (t2n, t2n−1, · · · t2, t1), depend on 2n-times with the first and the last blocked at

t1 = t′t2n = t. They correspond to the irreducible influence functionals with 2n number of transitions,
obtained from F(±)

n,1 C(±)
n,1 by subtracting all possibilities of factorizing the influence functions into

independent clusters (reducible components). Their expression is discussed in [33], for a path with 2n
transitions they are
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F̃ (+)
n,1 = F(+)

n,1 C(+)
n,1 −

n∑
j=2

(−1)j
∑

m1,...,mj

F(+)
m1,1C(+)

m1,1 · F(+)
m2,1C(+)

m2,1 · · · F(+)
mj,1

C(+)
mj,1

· δm1+···+mj,n

F̃ (−)
n,1 = F(−)

n,1 C(−)
n,1 −

n∑
j=2

(−1)j
∑

m1,...,mj

F(+)
m1,1C(+)

m1,1 · F(+)
m2,1C(+)

m2,1 · · · F(−)
mj,1

C(−)
mj,1

· δm1+···+mj,n.

(B.28)

The inner sum is over positive integers mk, and in the subtracting part the bath correlations are only inside
each individual term F(+)

mk,1C(+)
mk,1 without correlations among them. Any terms has the time variables written

with time growing from right to left. The first term K(±)
1,z (t − t′) in (B.27) are the contributions at order Δ2

0

(the series starts with Δ4
0) and are without internal integrations. For these terms the irreducible functional

corresponds directly to the functional itself F̃ (±)
n=1,1 = F(±)

n=1,1C(±)
n=1,1. Their explicit expressions are

K(+)
1,z (t − t′) = Δ2

0 e−Q′(t−t′) cos(πα) cos[ε0(t − t′)] (B.29)

K(−)
1,z (t − t′) = Δ2

0 e−Q′(t−t′) sin(πα) sin[ε0(t − t′)]. (B.30)

We conclude by commenting on the properties of 〈σx(t)〉. The x-component has also a series expansion
in the tunnelling amplitude Δ0, obtained similarly to what already discussed for the z-component, for this
reason we will omit the details quoting directly the most important results. First, 〈σx(t)〉 can be
decomposed as

〈σx(t)〉 = 〈σx,0(t)〉+ 〈σx,̄a(t)〉+ 〈σx,̄b(t)〉, (B.31)

where 〈σx,0(t)〉 corresponds to an initial density matrix without ā and b̄ while the remaining parts are due
to the coefficients ā and b̄. Similarly to the z-component, for a large cut-off frequency, these two last terms
are linked to the even and odd part, with respect to the bias, of 〈σx,0(t)〉

〈σx,̄a(t)〉 = 2ā

Δ0 sin(πα)

d

dt
〈σ(+)

x,0 (t)〉

〈σx,̄b(t)〉 = 2b̄

Δ0 cos(πα)(p̄R − p̄L)

d

dt
〈σ(−)

x,0 (t)〉.
(B.32)

We then quote only the series expansion of the term 〈σx,0(t)〉. We have [33]

〈σx(t)〉 = 〈σ(+)
x,0 (t)〉+ 〈σ(−)

x,0 (t)〉 =
∞∑

n=1

Δ2n−1
0 (−1)n−12−n

∫ t

0
dt2n−1 · · ·

∫ t2

0
dt1·

×
∑
ξj=±1

ξn

[
F(−)

n,1 C(+)
n,1 + (p̄R − p̄L)F(+)

n,1 C(−)
n,1

]
. (B.33)

Comparing now term by term the two series expressions for 〈σx(t)〉 and 〈σz(t)〉 it is possible to connect
them via an exact integral relation

〈σx(t)〉 =
∫ t

0
dt′[K(+)

1,x (t − t′) + K(−)
1,x (t − t′)〈σz(t′)〉] + 2āK(+)

2,x (t) + 2b̄K(−)
2,x (t). (B.34)

Due to the relations (B.32), the kernels associated to the ā and b̄ are linked to K(±)
1,x (t) as

K(+)
2,x (t) =

1

Δ0 sin(πα)
K(+)

1,x (t)

K(−)
2,x (t) =

1

Δ0 cos(πα)
K(−)

1,x (t).

(B.35)

The kernels K(±)
1,x (t) are again obtained by matching the integral relation (B.34) with the series expansions,

the explicit forms are then in terms of irreducible functionals

K(±)
1,x (t − t′) = K(±)

1,x (t − t′) −
∞∑

n=2

Δ2n−1
0

(
−1

2

)n∫ t

t′
dt2n−1 · · ·

∫ t3

t′
dt2

∑
ξ1···ξn=±1

ξnL̃(±)
n,1 , (B.36)
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Figure C1. Time evolution of average energy stored (in units of Δ) evaluated in the NIBA framework for A = 3Δ and pure
decoherence (θ = 0) coupling with the reservoir. Panel (a) shows both energy variations associated to the QB and to the charger
for different dissipation strength α = 0.1 and α = 0.2. Panel (b) shows comparisons between weak damping expression and the
NIBA result at short times for α = 0.01, demonstrating the validity of NIBA in this short time window. Other parameters as in
figure 1.

with

L̃(+)
n,1 = F(−)

n,1 C(+)
n,1 −

n∑
j=2

(−1)j
∑

m1,...,mj

F(+)
m1,1C(+)

m1,1 · F(+)
m2,1C(+)

m2,1 · · · F(−)
mj,1

C(+)
mj,1

· δm1+···+mj,n

L̃(−)
n,1 = F(+)

n,1 C(−)
n,1 −

n∑
j=2

(−1)j
∑

m1,...,mj

F(+)
m1,1C(+)

m1,1 · F(+)
m2,1C(+)

m2,1 · · · F(+)
mj,1

C(−)
mj,1

· δm1+···+mj,n.

(B.37)

All the symbols were already explained discussing the z− component case. The first terms K(±)
1,x (t − t′), in

(B.36) are the contributions at order Δ0. They reads

K(+)
1,x (t − t′) = Δ0 e−Q′(t−t′) sin(πα) cos[ε0(t − t′)] (B.38)

K(−)
1,x (t − t′) = Δ0 e−Q′(t−t′) cos(πα) sin[ε0(t − t′)]. (B.39)

Before closing this part, we comment on the so-called NIBA [33, 51, 57]. As already mentioned in the
main text, this corresponds to the lowest order expansion of the kernels in the tunnelling amplitude Δ0.
Therefore the kernels are given by equations (B.29), (B.30) and (B.38), (B.39) for the z- and x components,
respectively. For sake of completeness, we report here the closed expressions at order Δ2

0 for K(±)
2,z/x that can

be derived by exploiting the general links explained above. We have

K(+)
2,z (t) = Δ0 e−Q′(t) cos(ε0t) (B.40)

K(−)
2,z (t) = Δ0 e−Q′(t) sin(ε0t) (B.41)

and

K(+)
2,x (t) = e−Q′(t) cos(ε0t) (B.42)

K(−)
2,x (t) = e−Q′(t) sin(ε0t) . (B.43)

The integro-differential equations posed by ()31-(34) can be thus solved numerically using the above NIBA
Kernels. We close by recalling that the NIBA approach is non perturbative in the dissipation strength α and
it is a reliable approximation scheme for sufficiently short times [33, 69]. At long times, it is strictly

consistent for temperature higher or of the order of the level splitting ΩSB =
√
Δ2

0 + ε2
0.

Appendix C. Charging dynamics in the NIBA framework

In this Appendix we present results for the charging dynamics considering higher values of the dissipation
strength α. These have been obtained within the NIBA framework, by solving the integro-differential
equations (31)–(34), using the closed expressions for the dissipative kernels at order Δ2

0 reported in
equations (B.29), (B.30), (B.38), (B.39) and (B.40)–(B.43). The time-evolution of the energy variation of
the QB (for both linear dissipative couplings) is then obtained by resorting to the mapping discussed in the
main text. In figure C1 we show results obtained in the NIBA framework for stronger dissipative coupling α

19



New J. Phys. 22 (2020) 083085 M Carrega et al

with respect to the ones discussed in the main text. As a representative example, we have fixed the driving
amplitude at A = 3Δ and we have reported the case of decoherence coupling with the bath in the low
temperature regime βΔ = 10. As expected, stronger dissipation strengths induce faster relaxation dynamics,
resulting in weaker charging performances (see panel (a)). As discussed in the main text, dissipation effects
are even stronger in the case of pure dephasing (not shown), whereas in the case shown in figure C1 at short
times still a sizeable amount of energy can be stored in the QB for α = 0.1. Figure C1(b) shows comparison
between the NIBA predictions and exact expressions evaluated in the weak damping regime for α = 0.01,
demonstrating that NIBA is still a very good approximation at very short times, even in the low temperature
regime considered.
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