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A B S T R A C T

The prediction of ship motions and quiescent periods, is of paramount importance for the maritime industry.
The capability to predict these events sufficiently in advance has the potential to improve the safety and
efficiency of several marine operations, such as landing and take-off on aircraft carriers, transfer of cargo,
and mating operations between ships. Several models have been proposed in the literature for the prediction
of ship motions and quiescent period. This work will review them by first grouping them into three main
categories (i.e., physical, data-driven, and hybrid models) and then by detailing the most recent and relevant
ones describing the advantages and disadvantages of each approach. Review concludes with the open problems
and future perspectives of this important field of research.
1. Introduction

There are several ship operations critical in terms of safety and
efficiency which are affected by ship motion (SM): landing and take-
off on aircraft carriers, transfer of cargo and ‘‘mating’’ operations
between ships, docking manoeuvres, drilling for oil and gas operations,
embarkation and disembarkation of cruise passengers between the
terminal and the ship, and missile launch (Baitis, 1975; Cox and Long,
2004). In general, SMs are defined by six Degrees of Freedom (6DoF).
These 6DoF are divided into two categories taking into account three
translational degrees (surge, sway, and heave) and three rotational
degrees (roll, pitch, and yaw) along the longitudinal (surge and roll),
transversal (sway and pitch), and vertical (heave and yaw) axes, expe-
rienced by a ship in time. Based on the application, some motions are
more critical than others (e.g., in aircraft landing the vertical motion
is surely the most critical one, together with the vertical acceleration
respect to the landing position, both determined by a combination of
heave, roll, and pitch). The SMs, especially in high sea states and in
the presence of strong winds, limit the operational capability of the
ship (Zheleznyakova, 2020; Graham, 1990). In fact, SMs are influenced
by both endogenous and exogenous factors. Endogenous factors are hull
shape and ship weight distribution, action of the propulsion system
and stabilisers (in cruising condition) and actions of the dynamic
positioning system (at zero/low speed) (Kalikatzarakis et al., 2020;
Sørensen, 2011). Exogenous factors, instead, are wind, waves, and
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currents forces applied to body hull (Benetazzo et al., 2015; Rawson
and Tupper, 2001). Therefore, the more adverse the weather conditions
are, the more significant the induced SM is, and consequently the risk
of keeping the vessel in operations. For example, in high sea states,
the landing of an aircraft in carriers or of an helicopter in a destroyer
could be quite dangerous (Liu et al., 2017). This operation, in fact,
usually relies on the prior experience and the intuition of the pilots of
the aircraft to predict and compensate for the relative motion between
the ship and the aircraft. Therefore, in severe weather conditions, there
is a high risk for the operators to make mistakes and to unsuccessfully
conclude the operation: the mission could be cancelled and re-planned
to avoid possible accidents, and so injuries to people or damages to
equipment (Sherman, 2007; Coraddu et al., 2020). Side by side cargo
transfer is another example of marine application critically influenced
by the SM. For example, a crane may off-load some dangerous ammuni-
tion from a big ship to a small one and consequently the operation can
become dangerous in adverse sea states (Küchler et al., 2011; Henry
et al., 2001). Another interesting example is the mating operation
between a large transport ship and some small ships. The large ship is
floating far from shore and the small ships go back and forth between
the main ship and the shore. During adverse weather conditions, it
may be difficult for the small ships to enter in the large one (Zhao
et al., 2004). Also efficiency of ships’ docking manoeuvres is affected
by SMs: on the path towards the dock, the vessel operator must tackle
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challenges such as passing nearby vessels and compensating for forces
induced on the vessel by environmental disturbances. There is a risk
to collide with the dock or other vessels if the operation is not carried
out correctly, causing expensive damages (Skulstad et al., 2021; Perez,
2005).

In all the above-mentioned applications, the availability of SM
prediction systems able to efficiently and effectively predict in advance
the SMs while performing the operation would be of paramount impor-
tance. In fact, it would allow to empower or substitute the operators
intuition and experience with systems able to autonomously and safely
conduct these critical operations. For example, in the case of aircraft
landing, providing the operator with SM predictions can help him to
plan an optimal descent trajectory for safe landing (Yang et al., 2008;
Ferrier et al., 2009). In the case of cargo transfer, SM predictions may
allow operators to plan the transfer during the time intervals in which
SMs are sufficiently small to complete the activity safely and prevent
crash of cargo that may even explode in case of ammunition. It is also
useful to have predictions for heave compensation to keep the crane
motionless with regard to the seabed (Küchler et al., 2011; Ventikos
and Stavrou, 2013). Moreover, a smooth mating between ships can
benefit from predictions of SMs to correctly time the operation and
increase its efficiency. Furthermore, for dynamic positioning systems,
the availability of SM predictions may improve their effectiveness (Ka-
likatzarakis et al., 2020). In many of these examples, the quantity
of interest to predict is not the actual SMs, but the time interval
during which the SMs are below a certain threshold. That is called,
in sea-keeping terminology, Quiescent Period (QP) prediction (Giron-
Sierra and Esteban, 2010; Ferrier et al., 2013; Riola et al., 2011).
Efficiently and effectively predicting, enough in advance, the QP allows
to identify the best time windows in which maritime operations can be
safely executed and to set up the tactical planning of such operations.
Therefore, there has been a rapidly growing interest in the ability to
predict and exploit the QP (Anguita et al., 2002; Riola et al., 2011; Al-
Ani et al., 2019). In other cases, such as the stabilisation of the crane
on a cargo ship or docking manoeuvres of vessels, the quantity we are
interested in estimating is the SMs. Knowing in advance the QP is not
enough for this kind of operations, it is necessary to know the exact
value of the amplitude and phase of future SMs. In fact, to counteract
the vertical motion of the crane in cargo vessels, or in general of the
drilling machinery in oil and gas extracting operations, it is necessary to
know the exact value of heave to compensate (Chu et al., 2020; Cheng
et al., 2019). In the same way, for ships’ docking, the predictions of SMs
can be used as inputs for on-board systems to adjust speed, direction or
engine’s parameters according to the predicted value (Koskinen, 2013;
Shuai et al., 2019).

QP prediction problem is obviously simpler than SM prediction one.
QP prediction, in fact, can be easily retrieved from an accurate SM
prediction but not vice-versa. Nevertheless, in literature, the common
approach is to first predict the SMs and then identify the QPs since
the SM prediction can be used also for other purposes, besides the QPs
identification (Carico and Ferrier, 2006; Abujoub, 2019). For example,
SM prediction can be also used as input of the on board navigation
systems or dynamic positioning systems. However, the problem of
modelling the behaviour of a ship in the open sea is a very complex
task since, as stated above, endogenous and exogenous factors need to
be accounted and modelled. Despite its complexity, the task of reliably
modelling the interaction between waves and ship in real-time is of
undoubted scientific interest since, as already discussed, there are a lot
of applications which benefit from SM predictions. Consequently, many
models have been developed during years, such as (Skjetne et al., 2004;
Li et al., 2016; Perera and Soares, 2010; Xu et al., 2011; Yin et al., 2013;
Abramowski, 2005).

This article is meant to be a review of SM and QP prediction tech-
niques. Other reviews are available on this topic (e.g., Giron-Sierra and
Esteban, 2010; Riola et al., 2011) which include a large bibliography
2

of SM and QP prediction methods. Nevertheless, these reviews mostly z
focus on particular applications (e.g., helicopter landing/take-off oper-
ations) or on the effect of different type of input data on the prediction
capabilities (e.g., the availability of wave motion predictions). In par-
ticular, both Giron-Sierra and Esteban (2010) and Riola et al. (2011)
focus on helicopter landing/take-off operations and make a comparison
between looking backward methods (which use past motion data as
input) and looking forward methods (which use predictions of the
wave motion as input) and analyse how the different inputs affect the
reachable prediction horizon.

This review, instead, collects SM and QP prediction methods inde-
pendently from the specific ship operation they have been proposed
for. In fact, in this work there are solutions studied, for example, to
assist navigation, ship’s docking, and helicopter landing. Moreover, this
work classifies the collected models in three categories, according to the
amount of a-priory knowledge of the problem they have and, for each
approach, describes advantages and disadvantages. The three different
categories of models are: physical (PM), data-driven (DDM), and hybrid
(HM) models. PM require a deep knowledge of the physical phenomena
since they use as predictor a physical model of the reality (Naaijen
et al., 2009; Graham, 1990). The higher is the detail in the modelling
the equations which describe the physical phenomena, the higher is the
expected accuracy of the results and the computational time required
for the simulation. The second approach, instead, infers the desired
model directly from historical data collected by on board machinery
and requires no need of any a-priory knowledge of the underlying
physical phenomena (Anguita et al., 2002; Deng et al., 2020). However,
since these models are not supported by any physical interpretation,
they need a significant amount of data to be built. The third approach
is a combination of the previous ones and it is based on the integration
of a PM and DDM into a single model. The DDM model compensate the
secondary effects not modelled by the PM and the PM helps the DDM
in reducing the amount of historical data required to train it (Skulstad
et al., 2021).

The remaining part of the document is organised as follows: Sec-
tion 2 contains an introduction to SMs and QPs, an overview of PMs,
DDMs, and HMs, and a definition of the metrics used in the analysed
articles; Section 3 contains a paragraph for each modelling approach,
describing pros and cons and analysing examples of the relevant model
taken from the literature; Section 4 summarises the open problems and
future perspectives of Artificial Intelligence (AI) in the context of SMs
and QPs; Section 5 resumes the results withdrawn from the analysis the
state-of-the-art models for SM and QP prediction.

2. Preliminaries

As represented in Fig. 1, a ship at sea is subjected to six types
of motions due to wave action: heave, sway, surge, roll, pitch, and
yaw. The first three are linear motions. Heaving is the linear motion
along the vertical 𝑧-axis, swaying is the motion along the transverse
-axis, and surging is the motion along the longitudinal 𝑥-axis. The last
hree, instead, are rotational motions. Rolling is a rotation around a
ongitudinal axis, pitching is a rotation around the transverse axis and
awing is a rotation around the vertical axis (Thu et al., 2015).

These SMs are caused by exogenous and endogenous factors. Exoge-
ous factors are wind, waves, and currents forces. Endogenous factors
re the hull shape and ship’s weight distribution (constant factor),
ctions of the propulsion system and stabilisers, and actions of the
ynamic positioning systems (time-variant) (Benetazzo et al., 2015;
awson and Tupper, 2001). The ship itself, oscillating, generates waves
ounteracting the wave forces, since energy will be radiated from the
hip (the ship acts as a low-pass filter) and this further influences
Ms (K. et al., 2008). According to the application and the ship’s
ttitude, SMs can be much influenced by a factor or another one.
or example, in cruising condition, the main endogenous factor acting
n SMs is the action of propulsion system and stabilisers, while at

ero/low speed is the action of the on board dynamic positioning
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Fig. 1. Ship six degrees of motion.
system to contribute to SM (Cheng et al., 2017; Kalikatzarakis et al.,
2020). For what concerns the exogenous factors, for operations at
open sea, such as mating operations and cargo transfer, the waves
are the most important exogenous factor influencing the SM and,
secondly, the wind. In fact, the ship’s response characterising these
operations is given by motions with zero mean and typical frequencies
of the waves (i.e., first order motions) such as in mating operations, or
motions with no-zero mean and slower oscillations (i.e., second order
motions) such ad cargo transfer and dynamical positioning. Both first
and second order motions are induced by waves (Vugts, 1971). For
docking operations (Skulstad et al., 2021) and in general operations
performed in restricted water, instead, the main exogenous factors are
wind, sea currents, and the interaction with other ships or the dock. The
waves contribution, instead, is negligible. According to the application,
not only the exogenous and endogenous factors influencing the SM
change, but also the predominant motions which characterise the ship’s
response. In fact, according to the application, some SMs are prevalent
and more critical and other motions can be neglected. For example, in
aircraft landing (Yang et al., 2008; Anguita et al., 2002), the vertical
motion and the vertical acceleration of the ship are critical quantities,
both determined by a combination of heave, roll and pitch.

The SM may limit the operational capability of the ship, such as
the aircraft landing or the cargo transfer which can be performed
just at intervals of time where SMs are within acceptable limits, to
safely perform the desired activity (i.e., during QP Giron-Sierra and
Esteban, 2010; Colwell, 2002), as represented in Fig. 2. Specifications
concerning the definition of these limits come from the experience of
the operators, or from the literature and the standards. For example, for
the problem of helicopter landing on ships, which is one of the most
sensitive ship operations, a large amount of literature and standards are
available. According to STANAG 4154 (Eriksen et al., 2000), the limits
of SMs for take-off and landing operations are a roll of 2.5◦, a pitch
of 1.5◦ and a vertical velocity (heave) of 1.0 m/s (all of them given
in terms of root mean square amplitude, the other SMs are ignored
since they not significantly influence this operation). Besides being
characterised by limited SMs, the time interval, to be defined as QP,
has to be long enough for operational purposes (i.e., to safely execute
and conclude the operation). Moreover, in order to be exploitable in
practice, the QP prediction shall be preformed sufficiently in advance
to allow the planning and preparation of the desired operation. As far
as the QP duration, for helicopter landing, authors of Colwell (2004)
state that a QP of 4 s is not enough and 6 s are necessary. Years before,
authors of Kolway and Coumatos (1975) stated that it is possible to
3

land with a QP from 6 to 10 s. For what concerns instead the prediction
horizon, authors of Baitis (1975, 1977), referring again to helicopter
landing and take-off operation, recommend to predict QPs from 8 to 10
s in advance for pitch, and 20 s in advance for roll. Authors of Riola
et al. (2011), instead, identifies the following three ranges of forecast
time requirements:

• Up to 30 s — fixed wing aircraft (landing on aircraft carrier),
helicopter (sling, Vertical replenishment (VERTREP) landing/take
off or pickup/delivery);

• Around 1 min — firing operation, general maintenance and re-
pairing activities, launch/recovery of small manned crafts,
launch/recovery of unmanned aerial vehicle (UAVs);

• Largely above 1 min — launch/recovery of towed sonar, embark-
ing/disembarking of amphibious vehicles.

Prediction of SM and QP is the subject of this review, which collects
predictive models of these quantities.

Modelling the relation between ship’s exogenous and endogenous
solicitations and the resulting SMs is a special case of inference. Infer-
ence is the process of deriving logical conclusions from premises known
or assumed to be true (MacKay, 2003). Two main inference methods are
exploited in SM and QP prediction: deduction and induction. Deduction
starts from a-priory knowledge of the system and deduce (e.g., with
approximations) the behaviour of a system in a particular condition.
Induction, instead, starts from the observation of the system to induce
(e.g., with statistics) a model of the system itself. Fig. 3 reports a
graphical representation of the deduction and the induction processes.

In order to forecast SMs and QPs, the model can be inferred using
both the physical knowledge of the problem (Connell et al., 2015),
the measured time series of the endogenous and exogenous factors
influencing SMs and historical SMs data (Peña et al., 2011; Wang et al.,
2017). Time series of exogenous factors can be composed of both mea-
surements of current and past values of wind, wave, and sea currents,
and future values predicted by on-board systems. Time series of endoge-
nous factors are composed by current and past values of ship’s attitude
measured by on board sensors or are time-constant variables, such as
hull shape and ship’s weight distribution. Exogenous data and history
of SMs are measured by on board sensors, usually by X-band radar,
wind and weather sensors, and the inertial navigation system (Christ
and Wernli, 2013). Wave predictions, instead, can be retrieved by pro-
cessing the X-band radar images (Reichert et al., 2009). All these data
are not always available. Predictive methods which process the history
of SMs provide accurate predictions, but relevant prediction horizons
are very limited, within 10÷15 s (Zhao et al., 2004; Liu et al., 2019).
Instead, methods based on actual and predicted wave excitation data
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Fig. 2. SMs and QPs.
Fig. 3. Inference: deduction and induction.
reach prediction horizons of the order of the minute (Dannenberg et al.,
2009; Connell et al., 2015). According to what type of information
is used to formulate the model, physical knowledge of the problem
and/or measured time series of endogenous and exogenous factors, and
SMs data, the construction of the model changes. In particular, three
different types of modelling approaches can be identified: PM, DDM,
and HM. PMs are built based on a-priory, mechanistic knowledge of
the real system (i.e., the numerical description of body hull, propulsion
systems, wind and waves forces, and sea currents effects) (Sato et al.,
2007; Feng et al., 2013). DDMs, instead, are built based on historical
collections of observations (data) of inputs and outputs of the system
constituted by a ship floating on the sea surface (i.e., past and/or
future wind, waves, sea currents data, and past SMs are the inputs of
this system and future SMs are the outputs), exploiting state-of-the-art
Machine Learning (ML) techniques (Wang et al., 2017; Kawan et al.,
2017). In the case of HM, the PM and the DDM are combined to build
models which use both a-priory physical information of the underlying
phenomenon and the historical data (Del Águila Ferrandis et al., 2021).
Fig. 4 reports a graphical representation of SM and QP models and how
they are built.

Since PMs are based on the knowledge of the physical laws govern-
ing the phenomenon, they can be very reliable. In fact, by construction,
they only produce physically plausible predictions. The expected accu-
racy of the results grows with the increase of the detail in modelling the
physical phenomenon (Howison, 2005; Lewis, 1988). However, usually,
increasing the accuracy of PM results in a quite high request in terms
of computational requirements (Lavrov et al., 2017). This fact prevent
their use for real-time predictions, which is crucial for SM and QP
prediction.

DDMs, instead, does not require any a-priory knowledge of the phys-
ical system, but they are built on the historical collections of inputs and
outputs observations of the real system (data). DDMs usually require a
large amount of historical data and a large amount of computational
resources to be constructed (i.e., the learning phase) to reach satisfying
performances in terms of model accuracy (Kawan et al., 2017). Instead,
once the model is constructed, its use for making prediction (i.e., the
forward phase) is computationally inexpensive (Vapnik, 1998). How-
ever, since they rely only onto the historical observation, these models
work well in the statistical sense (i.e., on average), but they could pro-
duce implausible predictions (i.e., prediction not physically plausible)
in particular situations (Alber et al., 2019).
4

HMs have been developed to fill the gaps of PMs and DDMs and
develop models able to take the best of the two worlds (Del Águila
Ferrandis et al., 2021; Coraddu et al., 2017). HM, in fact can be able
to: exploit the mechanistic knowledge of the system and avoid implau-
sible predictions, reduce the computational requirements of the PM
exploiting the historical data, and reduce the need of large amount of
historical data of DDMs, starting from an already good approximation
of the phenomenon provided by the PMs (Al-Ani et al., 2019; Skulstad
et al., 2021).

Advantages and disadvantages of PMs, DDMs, and HMs for SM and
QP prediction will be discussed in detail in the following sections,
presenting and analysing examples of models proposed in the literature
belonging to each one of these categories. For each example, the
accuracy of the model obtained by the model on real-word data or on
synthetic data has been reported. The metrics, used in the cited exam-
ples, for model’s evaluation are (Coraddu et al., 2017; Zheleznyakova,
2020):

• RAOs (Response Amplitude Operator) comparison (i.e., a kind
of transfer function between the incident wave and the motion
responses);

• Correlation, R, between predicted and true SM;
• Mean Square Error (MSE);
• Root Mean Squared Error (RMSE);
• Relative Square Error(RSE);
• Mean Absolute Error(MAE).

3. Ship motion and quiescent period prediction

In this review, PMs, DDMs, and HMs proposed in literature for the
prediction of SM and QP have been analysed. In particular, among the
variety of methods proposed in the literature, the models presented in
this work have been chosen to represent all the different approaches to
the problem.

In the case of the PM, the most exploited and effective methods for
SM and QP predictions are the Linear Potential Flow Models (PL) (Naai-
jen et al., 2016a; Dannenberg et al., 2009; Connell et al., 2015; Feng
et al., 2013), which, even if they make strong assumptions (i.e., wave
motions can be decomposed into independent sinusoidal components
and the ship is a linear filter), well represent the ship’s response in the
majority of the cases and are able to give near real-time predictions.
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Fig. 4. Models for SM and QP prediction.
Other exploited models, much for predictions of sea-keeping perfor-
mances than for QP prediction, are Non-Linear Potential Flow models
(PNL) (Mortola et al., 2011) and computational fluid dynamics (CFD)
techniques (where software tools are used to perform the calculations
required to simulate the flow of the ocean surface) (Sato et al., 2007;
Lavrov et al., 2017).

In the case of the DDM, instead, the most exploited and effec-
tive methods are: Neural Network (NN) (Cheng et al., 2017; Wang
et al., 2017), which can be simple shallow networks, sometimes im-
proved with features selection techniques, or Long–Short Term Memory
(LSTM) (Deng et al., 2020) network, capable of learning local and big
trends in time-series, or Extreme Learning Machine (ELM) (Yu et al.,
2014), a shallow network which uses a Least-Square solution instead
of back-propagation algorithm for training; Support Vector Machine
(SVM) (Kawan et al., 2017; Anguita et al., 2002) with different kernel
types, and Minor Component Analysis (MCA) (Zhao et al., 2004).

We decided to select the methods to be presented for each category
according to these criteria: recently developed models (from 2010 to
2020) with more citations or models between 2000 and 2010 with at
least 15 citations.
5

For what concerns HMs, this approach has been less investigated
in literature and all methods proposed for SM and QP prediction have
been reported.

In the following sections, advantages and disadvantages of the PM,
DDM, and HM and relevant examples have been analysed in details, as
well as the open problems of SM and QP prediction which could lead
to future developments. Moreover, for each class of models, tables has
been reported summarising the following aspects:

• Input data: the models can process past SMs, propulsion’s data,
measurements of waves and/or wind data, future waves’ predic-
tions, or a combination of all these input data;

• Data origin: synthetic data or real-world data collected during
sea-trials by on-board sensors;

• Amount of data: the amount of data exploited to built and validate
the models;

• Prediction horizon: the models can produce long-term or short-
term predictions;

• Method: the technique used by the models to predict the output;
• Output: whether the models predict SMs or QPs;
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• Accuracy: the accuracy obtained by the models;
• Computational requirements: computational time required to

make predictions.
ote, finally, that tables cannot be always used as a direct comparison
ue to the different data and computer configurations used in the
ifferent works.

.1. Physical models

PMs (see Fig. 4(a)) aim at describing SMs and QPs by means of
representation of the physical response of the vessel to exogenous

e.g., propellers and rudders) and endogenous (e.g., wind, wave, and
urrents) actions (Bergdahl, 2009). Physics-based sea-keeping models
re focused on the response of the ship to the wave actions and,
pecifically, on the prediction of the SMs and the wave loads acting
n the ship structures. Though viscous effects certainly play a role in
he behaviour of a ship in waves, classical methods used for SM and
P prediction, based on potential flow theory, ignore these effects,
nd nevertheless provide in general accurate predictions of the SMs,
xcept for the roll motion, for which viscous effects play a dominant
ole (Connell et al., 2015; Naaijen et al., 2016a).

Comparing PMs with methods based on statistical inference (Deng
t al., 2020), PMs are more reliable and generally rather tolerant to
xtrapolation and, since the relationship between input and output
s known a-priory and do not have to be learnt, these models do
ot require an extensive number of operational measurements. This
s an interesting property because a big amount of data is not always
vailable and producing new measurements can be very expensive in
ome cases (Coraddu et al., 2015); in the case of SM and QP predictions,
ata have to be collected from on-board sensors during ship’s sea trials,
hich are expensive to organise. However, competence and experience

n the field of fluid-dynamics is required to build this kind of models,
hich is not mandatory in building DDMs, and it is not always easy

o get access to this kind of technical details and skills (Coraddu et al.,
017). Moreover, in general, PMs are more computationally expensive
han DDMs and sometimes they are not able to reach real-time perfor-
ances needed for SM and QP predictions, except for LP (Connell et al.,
015) models which are, as we will see, the most exploited ones.

There are several different sea-keeping models and criteria to clas-
ify them. The Sea-keeping Committee of the International Towing
ank Conference (ITTC) provides regular reviews of sea-keeping models
nd has also addressed the issue of classification (Kim et al., 2014,
017; Crossland et al., 2011). One rather common approach to clas-
ification is to consider PL models, PNL models and CFD models. PL
odels (Connell et al., 2015; Naaijen et al., 2016a; Dannenberg et al.,
009; Feng et al., 2013) are well established and widely used. The
ain simplification introduced by such models is to assume the hull
et surface to be defined by the ratio between the mean position of

he hull and the mean free surface, which allows the linearisation of
he boundary conditions of the potential flow problem. A linearity
ssumption is also made regarding the waves: they are modelled as the
uperposition of sinusoidal waves of different amplitudes and frequen-
ies. These assumptions allow to solve the sea-keeping problem in the
requency domain and compute the ship response as the superposition
f the responses to the sinusoidal components of the wave excitation,
hus reducing the complexity of the computations. The attractiveness
f PL models, in fact, is that they have relatively low computational
equirements and are able to produce near real-time predictions. This
s very important, because a full characterisation of the ship behaviour
n waves requires considering many different wave’s directions and
haracteristics and thus running many computations. As mentioned
bove, PL models are widely used. However, there are conditions for
hich the assumptions of such methods are no longer valid: in high

ea states, assuming the hull wet surface to be static is unrealistic and
on-linear effects associated to the change in the wet surface over time
ecome important.
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PNL methods (Mortola et al., 2011) address the different non-
linearities in the ship behaviour that become relevant in high sea
states. They are time-domain methods and are all more computationally
demanding than PL methods. They are often classified in ‘weakly
non-linear’ and ‘fully non-linear methods’. Weakly non-linear meth-
ods (Mortola et al., 2011) account for only part of the non-linearities
in the ship behaviour (because the radiated and diffracted forces are
computed according to the linear model), but they are able to cover
very relevant non-linearities and are thus able to provide accurate
predictions with a computational time that, though longer than in the
linear case, is still lower than the time required by fully non-linear
computations.

The most common potential-flow based methods are:
• methods based on the strip theory (ST) (Feng et al., 2013; Mortola

et al., 2011): they are 2D methods and can be linear and non
linear;

• Boundary Element Methods (BEMs) (Dannenberg et al., 2009):
they are 3D methods which require the modelling of the hull and,
in some cases, of the free surface, with panels. They can be linear
or non-linear. The most used BEM approaches are based on Green
functions (Sutulo et al., 2009) or Rankine models (Söding et al.,
2012).

In Mortola et al. (2011), for example, the authors propose a non
linear time-domain approach based on ST for prediction of SMs and
wave loads. The diffraction forces and hydrodynamic coefficients are
computed using strip theory for relevant combinations of section im-
mersions and heel angles and the RAOs of heave, pitch, and vertical
bending moments (VBM) are then obtained for a container-ship in head
waves, in the case of zero speed. However, even if non-linear models
are able to cover very relevant non-linearities characterising the ship’s
response and thus are able to provide accurate predictions, they are
computational expensive and often fail to reach on-line performances.
For near real time prediction of SMs and QPs, linear models are usually
used, as they allow very fast predictions that are not allowed by non-
linear models. This is confirmed by an analysis of papers concerning
real-time SM and QP predictions for applications on board the ship.
Authors of Dannenberg et al. (2009), for example, present a model
based on measuring the 3-D wave field one nautical mile from the
vessel by means of a X-band radar. These measurements are used as
input to a wave propagation model to compute the wave elevations at
the location of the vessel up to two minutes ahead. Meanwhile, through
a linear 3D model, RAO is computed for heave and pitch motions.
After the successful laboratory tests (Naaijen et al., 2009), the system
was installed on an 80 m offshore support vessel equipped with a
X-band radar and with a bow mounted down-looking radar with an
accurate motion sensor unit to provide the true targets (Dannenberg
et al., 2009). Despite significant deviations in the actual amplitudes
and phasing, the envelope of the motions was predicted correctly till
a time window of 120 s.

Authors of Connell et al. (2015), instead, propose a Reduced Order
Method (always belonging to PL models category) as predictor of the
ship’s response using as input the wave predictions obtained by a wave
propagation model applied on the resolved wave field provided by the
AWSR radar (radar measuring waves up to 5 km of the ship location,
allowing wave predictions up to 5 min). Parameters of the model, such
as inertia of the body and RAO coefficients, are determined using the
ship sea keeping simulation tool AEGIR, which allow several minutes
of motion forecast in about 1 s calculation. The system has been tested
aboard the R/V Melville vessel: the roll forecasting performance was
generally worse than heave and pitch, this because AEGIR is not able
to capture viscous effect which much influence roll motion and external
models need to be implemented to capture these other important
effects, based on empirical formulas.

Authors of Naaijen et al. (2016a) propose a combination of a wave
propagation model (based on inverting raw X-band navigation radar
data into estimations of the wave elevation) and a linear vessel response
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Table 1
Physical models.

Ref. Method Input Data origin Amount of
data

Prediction
horizon

Output Computational
requirements

Accuracy

Naaijen et al.
(2016a)

PL (BEM) Predicted wave
elevations

X-band radar
and motion
sensor units

Radar data
up to a
distance of
1250 m from
the radar
antenna

80 s SMs
prediction

Not provided R = 0.67 for roll
R = 0.8÷0.9 for
the remaining
5DOF

Dannenberg
et al. (2009)

PL (BEM) Predicted wave
elevations and
measured pitch
and heave
motions

X-band radar
and motion
sensor units

Several radar
images of
128 × 128
pixels

120 s QP
prediction

13 s on a
quad-core PC
CPU

Worst trial R >
0.5 Two other
trials R > 0.7

Connell et al.
(2015)

PL (ROM) Wave predictions
and past SMs
data

Advanced Wave
Sensing
Radar(AWSR)
and motion
sensors

Series of
20–30 min
experiments

30 s SMs
prediction

Few seconds for
prediction

𝑅 ≃ 0.7 for
heave 𝑅 ≃ 0.67
for pitch
𝑅 ≃ 0.45 for roll

Feng et al.
(2013)

PL (ST) Regular head
waves data

Synthetic data Not provided One-step
ahead

SMs
prediction

Not provided Maximum error
on pitch and
heave RAO: 0.2

Sato et al.
(2007)

CFD Incident wave
data: wave
length, direction,
and amplitude

Synthetic data 16 steps 15 steps-
ahead

SMs
prediction

1.5/3 millions of
grid points to
process

Maximum error
on pitch and
heave RAO: 0.15

Lavrov et al.
(2017)

CDF A set of roll
oscillations with
given amplitude
and frequency

Synthetic data Around 2
min

One-step
ahead

SMs
prediction

Between 10 and
100 h,
depending on
the mesh applied

Difference of
10–20% between
CFD and BEM
(Sutulo et al.,
2009)
hydrodynamic
coefficients

Mortola et al.
(2011)

PNL (ST) Waves (height
and amplitude)

Synthetic data 1 h and half One-step
ahead

SMs pre-
dictions

Not provided Maximum
discrepancy on
pitch and heave
RAO: 0.1
(respect to linear
frequency
methods)
model, to predict SM prediction some tens of seconds up to minutes into
the future, depending on radar range and sea state. The method has
been validated on data measured by on-board sensors during a field
campaign at zero ship’s velocity and show accurate results: except for
roll, correlations between 0.85÷0.9 were obtained for predicted SMs.

In Feng et al. (2013), an approach based on the Method of Funda-
mental Solutions (MFS), integrated with frequency domain strip theory,
is proposed for predicting ship’s response in the frequency domain.
Although more sophisticated 3D and time-domain methods are avail-
able, MFS is a panel-free and integration-free approach and, as a result,
it is mathematically simple, robust and easy for programming and in
most cases sufficiently accurate. A comparison with a 3D panel method
is performed on experimental data: computed heave RAO agrees well
with experimental one, while performances of pitch RAO decrease,
increasing the wave length.

In literature, in some works, CFD techniques are sometimes used for
sea-keeping computations but they are very computationally expensive
with respect to potential flow models, therefore it is seldom used for the
computation of SMs in ship design practices. However, they are used for
the study of the roll motion (Lavrov et al., 2017) and the derivation of
simplified formulations and coefficients to be used in simplified models
that can be integrated in potential-flow based models (Wanderley et al.,
2007; Uzunoglu and Guedes Soares, 2015; Connell et al., 2015) for the
prediction of the sea-keeping performance.

For example, in Lavrov et al. (2017), authors propose the use of
CFD computations to identify hydrodynamic coefficients of roll motion
and capture their dependence on the ship’s topology. In particular,
OpenFOAM is used to solve the RANS equations and determine the
7

moment amplitude of forced roll motions of three typical mono-hull
2D sections.

In Sato et al. (2007), a new developed CFD simulation methods
(WISDAM-XI programme) is used for the prediction of motion perfor-
mance of a multi-hull vessel. The ship’s motion is given by the solution
of the motion equations with the external wave forces and moments
from the integration of the pressure and the frictional forces on the
hull surface. Only results on experimental data (towing tank tests)
are available: heave and pitch motions are predicted with reasonable
accuracy, while roll amplitude is under-predicted.

Table 1 summarises the reviewed works on PMs.
Finally, it is worth noting that several factors can influence the

prediction horizon of radar remote sensing for ship motion predic-
tion. These factors include the type of radar system, its range, and
resolution that can directly impact the prediction horizon (Skolnik,
2008, 1962). For instance, synthetic aperture radar systems generally
offer higher resolution and larger coverage areas than traditional radar
systems, which may result in longer prediction horizons (Curlander
and McDonough, 1991). Moreover, the availability of continuous and
up-to-date radar data is crucial for accurate and reliable ship motion
predictions. Gaps in data or insufficient coverage can limit the predic-
tion horizon (Headrick et al., 2008). Environmental factors, such as
weather conditions, sea state, and other electromagnetic sources, can
cause interference and noise in radar signals. High levels of interference
and noise can reduce the quality of radar data, which may impact
the prediction horizon (Thayaparan and Wernik, 2006). The prediction
horizon can also be influenced by the available computational resources
and the complexity of data processing techniques. Real-time processing
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of high-resolution radar data can be computationally intensive, and
limited computational resources may constrain the prediction hori-
zon (Long et al., 2019; Moreira, 1992). The integration of radar remote
sensing data with other data sources, such as meteorological data,
oceanographic data, or data from other remote sensing technologies,
can improve the overall accuracy and extend the prediction horizon.
However, the quality and timeliness of these additional data sources
can also impact the prediction horizon (Huang et al., 2017; Klemas,
2012).

Various wave prediction methods (Massel, 1996; Wijaya et al.,
2015), such as buoys, coherent radar, and non-coherent radar, offer
distinct advantages and limitations in their ability to accurately predict
and monitor ocean wave dynamics. In the following we provide a brief
overview and comparison of these three methods, focusing on their
respective strengths and weaknesses.

Buoys (Steele et al., 1992; O’Reilly et al., 1996) provide direct and
accurate measurements of wave height, period, and direction, making
them a reliable source of wave data and can transmit wave data in real-
time, enabling quick updates and timely predictions. Moreover, they
can be deployed for extended periods, facilitating long-term monitoring
of wave conditions in a specific location (Richardson et al., 1963).
Buoys are effective wave measurement devices, however, they do not
fully answer the purpose of measuring waves for motion prediction on
a vessel in operations. Vessels in operations may pass close to wave
buoys but most of the time travel outside the areas covered by fixed
buoy installations. Additionally, buoys are characterised by limited
spatial coverage, providing localised measurements, which may not
capture the broader spatial variability of wave conditions. They require
regular maintenance and can be subject to damage or loss due to harsh
weather or vandalism, resulting in additional costs. Finally, they are
susceptible to biofouling, potentially affecting their performance and
data accuracy (Krogstad et al., 1999).

Wave information for motion/QP prediction needs to be collected
using technologies that can be installed on board ships, so that infor-
mation is always available, wherever the ship happens to be, within,
of course, the limits of the chosen technology. The radar-based tech-
nologies are those that currently best answer the need to have an
almost constant availability of wave data on board an operating ship.
They feature limitations in reach (how far the waves can be de-
tected) and accuracy, which might be hopefully overcome through
improvements/developments in radar signal processing. Coherent radar
systems (Hasselmann et al., 2012; Quach et al., 2020), such as synthetic
aperture radar, can provide high-resolution data on ocean surface
features, enabling more accurate wave predictions. They can operate
effectively in various weather conditions, including rain, fog, and dark-
ness, ensuring continuous and reliable data acquisition, and can be used
for a wide range of applications, including wave prediction, ship motion
prediction, oil spill detection, and oceanographic studies. Coherent
radar can be more expensive to deploy and maintain than other wave
prediction methods, particularly for large-scale operations and often
requires sophisticated processing and analysis techniques, which can
be computationally intensive and require specialised expertise (Singh
et al., 2021).

Non-coherent radar (Rosenberg and Bocquet, 2017; Vicen-Bueno
et al., 2012) can monitor larger areas than buoys, providing a broader
understanding of wave conditions. They are generally less expensive
than coherent radar systems, making them more accessible for wave
prediction applications. Unfortunately, non-coherent radar systems typ-
ically have lower resolution and accuracy than coherent radar systems,
which can impact the quality of wave predictions. Finally, non-coherent
radar systems primarily measure surface features, making it difficult
to obtain information about subsurface wave dynamics (Cornejo-Bueno
et al., 2016; Naaijen et al., 2016b).
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3.2. Data-driven models

DDMs, differently from PMs, use the historical collection of inputs
and outputs (data) of the ship system to make SM and QP predic-
tions. In fact, these methods do not require any a-priory knowledge
of the underlying physical phenomenon, but they use data to learn
the relationship between input and output and induce the model, then
employ the learnt model to make predictions on new measured input
data (Hastie et al., 2009) (see Fig. 4(b)). This approach have several
advantages but also some disadvantages.

The first advantage is that DDMs, learning from data, can capture
important relationships for the calculation of the prediction that PMs
ignore or are not able to model, or can discover that expected sig-
nificant variables result not to be relevant for the performance of the
prediction. For example, author of Coraddu et al. (2017) found that, for
the prediction of the ship’s fuel consumption, wind speed and direction,
expected to contribute significantly to the overall performance of the
model, are not among the most relevant features which influence the
output. This could suggest that wind speed and direction are not appro-
priate predictors for modelling this type of effects, contrarily to what
often assumed in relevant literature. Another advantage of learning
from data is that DDMs, thanks to the continual acquisition of real-
world data, are able to change and correct their structure dynamically
in order to optimise the model’s prediction by exploiting the new
acquired data (on-line optimisation) (Yu et al., 2014). PM, instead, have
a fixed structure defined a-priory on the base of the physical knowledge
of the ship system and cannot take into account varying real-world
operating conditions.

Let us now discuss also the disadvantages. Since the models are not
supported by any physical interpretation, a significant amount of data
are required to build a reliable model and a lot of measurements of
the real phenomenon are not always available or expensive to obtain.
For example, authors of Kawan et al. (2017) exploited 3 years of row
data coming from on-board sensors to build a reliable model. Moreover,
as already stated, being built only on historical observations, the DDM
is less reliable respect to PMs, in fact it works well on average, but it
could produce not physically plausible predictions in some cases (Alber
et al., 2019). From a computational point of view, these models have
an expensive training phase(i.e, the phase of the construction of the
model), but this phase is performed only one time and once the model
is trained, the prediction is produced in few seconds (Liu et al., 2017).
From a cognitive point of view, instead, DDMs are, in general, less
interpretable than PMs and HMs. In fact, NNs (Deng et al., 2020)
and SVMs (Anguita et al., 2002), which are the most exploited ML
techniques for SM and QP prediction, are both black-box approaches
(i.e., it is not possible to understand how the inputs affect the output
and why the model produced that particular result).

As previously stated, currently, in the field of SM and QP prediction,
the most exploited and effective methods proposed in the literature
are NNs and SVMs. From 1980 to 2000, models using Kalman filter-
ing techniques (Triantafyllou et al., 1983), and Auto-Regressive (AR)
models (Yumori, 1981), which forecast the variable of interest using a
linear combination of past values of the output, have been the methods
mostly exploited to describe SMs. However, Kalman filtering works
only for Gaussian noise processes and AR models, being based on
a linear combination of past values of SMs, allowing to reach short
prediction horizons (at maximum 10 s) and are not suitable for high
dimensional non-linear phenomena. Therefore, NNs (Peña et al., 2011;
Yu et al., 2014) and SVMs (Liu et al., 2019) has gained attention in
the field of SM and QP prediction. These methods, in fact, are able to
learn complex nonlinear relationships between input and output param-
eters, such as the one which characterises endogenous and exogenous
stresses and ship’s response. Moreover, with a sufficient amount of
data, they both have good generalisation capability and produce very
accurate predictions, and they could reach relatively long prediction

horizon (De Masi et al., 2011). SVM, in particular, is a good candidate
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for hardware realisation (Anguita et al., 2000) and embedded systems
reaching real-time performances even during the learning phase. Build-
ing a NN, instead, is computationally expensive and the cost grows
increasing the number of hidden neurons and the dimensionality of
the input data (i.e., features). Therefore, models which combine NNs
with techniques of features’ selection (Cheng et al., 2017) and ELM
network (Yu et al., 2014), which avoid the expensive gradient-descent
based learning phase of NN (input weights are randomly selected and
output weights are analytically calculated), have been proposed in the
literature in order to reduce the computational effort of the NN learning
phase. Moreover, since the problem of SM and QP prediction deals with
time-series data, also Recurrent NN have been proposed in the literature
to approach the problem, which learn data long-term dependencies by
remembering past information while training; in particular LSTM (Deng
et al., 2020) and IDNN (Wang et al., 2017).

Several examples of DDMs, based on the above mentioned ap-
proaches, have been analysed.

For example, authors of De Masi et al. (2011) propose a NN with a
Gaussian function as activation function of the hidden layer. No wave
information is used in the present work, but the Hilbert transform has
been applied to heave motions to identify the envelope (low frequency
components) of these vessel motions, which, being strictly related to
wave envelope, may be considered an indication of wave groups. The
algorithm has been tested on data collected during several sea trails
and, over a prediction time window of 122 s, accurate predictions
(RMSE below 0.6) have been obtained till 40 s, in particular RMSE
below 0.2 within the first 20 s.

Also authors of Peña et al. (2011) propose an ANN, but with two
hidden layers and sigmoid functions as activation functions. They ob-
tain an RMSE of 0.2 at 40 s on regular waves conditions. However, ANN
requires a time-consuming training to obtain an accurate prediction
and computational effort increase with the increasing of the network’s
dimensions.

Therefore, authors of Cheng et al. (2017) propose a NN, with 16
hidden nodes and hyperbolic tangent as activation function, combined
with sensitivity analysis (SA) techniques in order to reduce the features
to be processed by the network. The authors compare the solution with
a full NN: prediction error reduces of 95% and the computation time
of 98% respect to full NN. The authors, in particular, compare two SA
algorithms, Garson and EFAST; the first explores the response of the
model’s output to a small change of one parameter from its nominal
value, while the other features remain constant; the second estimates
the effect of input parameters across the whole input parameter space.
Authors found that EFAST method gives better results respect to Garson
in predictions of both linear and non-linear system. Therefore, EFAST
has been chosen for heading prediction: surge velocity and ship’s
position are found as the features that much influence the heading.

Authors of Deng et al. (2020), instead, propose a network composed
by one LSTM layer (128 hidden nodes) and two layers of dense NN(128-
1) applied on the output of the recurrent network. Mean Squared Error
(MSE) is selected as the loss function for model selection (optimisation
of hyper-parameters). The model has been tested against numerical and
experimental RAO-based methods on synthetic data and it outperforms
both.

In Anguita et al. (2002), instead, the SVM algorithm is used as time
series predictor. The purpose of the SVM is to learn the signal dynamic
by observing historical examples and then generate a prediction of
the near-future dynamics. The critical element which much affects
the accuracy of the prediction is the model selection phase: the error
function used in this work for the model selection resembles the e-
insensitive loss function of the SVM, a tube inside which the prediction
is considered correct and outside the error is accounted according to
the error committed on the phases of the first two harmonics of the
signals. This because, in the considered application of landing period
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designator systems, the shape of the prediction is more interesting than
the actual value and a simple MSE criterion do not take into account
the difference in shape between the true and predicted signals.

Motivated by nonlinear learning ability of Support Vector Regres-
sion (SVR) model and the ability of processing non-stationary data
of empirical mode decomposition (EMD), authors of Nie et al. (2020)
propose a model based on the integration of these techniques for short-
term prediction of SMs. In particular, the model uses mirror symmetry
and SVR algorithm to eliminate EMD boundary effect which usually
decreases the prediction accuracy.

In Kawan et al. (2017), the measured row data of motions are
cleaned using noise reduction, re-sampling and data continuity tech-
niques, then the important features are selected and give as inputs to a
SVM, which has to learn the relationship between pitch and the other
SMs. The important features are chosen according to the correlation
values between the feature and the output. For the considered case
study, they found that surge, sway, yaw, and roll velocity, 𝑥 and 𝑦
position, heading, and roll angle have a significant relation for the
prediction of the pitch.

In Yu et al. (2014), an improved online sequential extreme learning
machine (OS-ELM) is applied on roll motions prediction. Instead of
the time-consuming iterative learning process typical of NN, ELM uses
least squares method to acquire network weights in only one step and
without iterative turning, which make it much faster than traditional
back-propagation (BP) NNs. Moreover, in this work, the OS-ELM is
improved by temporal difference (TD) reinforcement learning method:
when the new observation is available on the sequence, the prediction
is adjusted to a more accurate answer based on past errors which
are considered as rewards for the algorithm. Under this mechanism,
the system has a capacity for self-driven learning. This increased the
accuracy of the prediction: the authors found that, on data collected
during sea trails, respect to classical OS-ELM, the RMSE reduces of 4%,
at the cost of an increase of 65% of the computational time, but time
computing is still very low (0.00129 s).

Authors of Zhao et al. (2004), instead, propose a high-performance
SMs prediction model using Minor Component Analysis (MCA) algo-
rithm. MCA is, besides a prediction model, a feature selection tech-
nique: the minor components, i.e., the directions of very small variation
(smallest variance) and so less sensible to noise, are selected. The
authors compare the model with auto-regressive (AR) model, NN and
Wiener filter and the model outperforms all of them: the RMSE at 20
s-ahead prediction decreases of 72% respect to the best one among
the three. As an additional advantage, training and prediction time of
MCA are short(0.09 s for prediction and 40 s for training) and constant
respect to the prediction window’s length.

Authors of Wang et al. (2017) propose an input-delay neural net-
work (IDNN) using as input past motions data and gyroscopes mea-
surements which, they found, can significantly decrease the prediction
error (RMSE of roll of 0.51 deg without gyroscopes data, 0.28 deg
with these measurements). However, the prediction horizon is small,
but it is possible to increase it increasing the number of hidden layer
and the past values considered, obviously at the cost of increasing the
computational time.

Aiming to lengthen prediction time and improve prediction accu-
racy of classical approach, such as ARMA and radial basis functions
(RBF) NN, authors of Liu et al. (2019) propose an online prediction
method based on Least Square Support Vector Machine (LSSVM). In
LSSVM, the 𝜀-insensitive loss function does not grow linearly, but
quadratically outside the 𝜀-tube, so the topic to solve a quadratic
programming problem is changed into solving a set of linear equations
and the learning difficulty in SVM is reduced. In order to acquire
optimal parameters for LSSVM the genetic algorithm (GA) is adopted.
The model has been tested on real data collected during a sea trial, but
using the parameters optimised by the GA algorithm on simulated data:
it provides a percentage error of 23% in good sea conditions and 25%
in adverse ones.
Table 2 summarises the reviewed works on DDMs.
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Table 2
Data-driven models.

Ref. Method Input Data origin Amount of
data

Prediction
horizon

Output Computa-
tional
requirements

Accuracy

De Masi
et al. (2011)

NN Time series (122
s) of heave
motions

On-board
sensors

1 day 40 s SMs
prediction

Immediate RMSE: 0.6 m at
40 s 0.1 m at 20
s

Deng et al.
(2020)

NN Time series (80
s) of 135◦

incident waves

Synthetic
data

3-h One-step
ahead (1 s)

SMs
prediction

Immediate MSE: 0.47 for
heave 0.85 for
roll 0.77 for
pitch (losses are
non-dimensional
as the dataset
has been scaled
prior to the
training process)

Anguita et al.
(2002)

SVM SMs past values On-board
sensors

1-h Roll: 10 s
Pitch: 4-5 s

SMs
prediction

Immediate Maximum error
below 0.1◦ till
10 s for pitch
and 5 s for roll

Kawan et al.
(2017)

SVM Current values of
SMs and relevant
velocities

On-board
sensors

Three years One-step
ahead

SMs
prediction

Immediate RMSE: around
0.1◦

Yu et al.
(2014)

NN Past (7 s) roll
motions

On-board
sensors

17 min One-step
ahead (1 s)

SMs
prediction

Immediate RMSE: 0.3621◦

Zhao et al.
(2004)

MCA Past (400 s)
heave motions

Synthetic
data

50 min 20 s SMs
prediction

Immediate RMSE at 5 s:
0.0538 m RMSE
at 20 s: 0.0540
m

Peña et al.
(2011)

NN Wave amplitude
data and
relevant roll
motions

Synthetic
data

1 h and 45
min (for tank
test)

10 s SMs
prediction

Immediate MSE at 10 s:
12.04⋅10−4 rad2

(with roll
resonance)
3.76⋅10−4 rad2

(no roll
resonance)

Cheng et al.
(2017)

NN Current values
of SMs, ship’s
position, and
thruster status

On-board
sensors

Not provided One-step
ahead

SMs
prediction

Immediate RMSE: 1.71◦

Wang et al.
(2017)

NN Past SMs (roll,
pitch, and yaw)
and relevant
velocities

Synthetic
data

23 min 4 s SMs
prediction

Immediate RMSE at 4 s (10
hidden neurons
and 10
steps-back input
data): roll:
1.170◦ pitch:
0.390◦ yaw:
0.750◦

Liu et al.
(2019)

SVM Pitch and heave
past motions
values (21 steps
back)

Synthetic
data

10 min 12 s SMs
prediction

Immediate Percentage error
at 12 s for
model 3 (with
random noise in
the input): pitch
83.64% heave
83.92%

Nie et al.
(2020)

SVM Past SMs (250 s) On-board
sensors

17 min 50 s SMs
prediction

Immediate RMSE pitch:
0.28◦ RMSE roll:
0.07◦
3.3. Hybrid models

HMs are a combination of PMs and DDMs (see Fig. 4(c)). This im-
plies modifying a DDM in a way to include the mechanistic knowledge
of the system.

There are three main ways to do that:
• The DDM is used to estimate the parameters of the physical model

which is then used for prediction or, in alternative, to produce
prediction after having training the model on expensive CFD
simulations, in order to learn physical effects which the PM is
not able to model because it would result in too complex models
10
with consequent computational and numerical issues (Del Águila
Ferrandis et al., 2021; Ra and Whang, 2006);

• The mechanistic knowledge of the real system can be encapsu-
lated in the input variables of DDM (adding, as input feature, the
output of the PM) in order to correct predictions made by the
deterministic model (Skulstad et al., 2021; Leifsson et al., 2008;
Nie et al., 2020);

• Apply the physical knowledge of the relationships between input
and output as constraint for the DDM, in order to produce a DDM
more similar to the true system (Coraddu et al., 2017).

Since HMs are, by construction, a combination of PMs and DDMs, they

allow exploiting both the mechanistic knowledge and the available
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measurements of the underlying physical phenomenon; therefore, they
are able to take the best from both the worlds. In fact, on the one hand,
they require a smaller amount of historical data to obtain a model as ac-
curate as pure DDMs, since the hint on the underlying physical system
reduce the number of samples needed for training (Del Águila Ferrandis
et al., 2021). Moreover, HMs, starting from an already good approxi-
mation of the phenomenon provided by the PM, are much less prone to
produce not physically plausible predictions respect to DDMs (Skulstad
et al., 2021). On the other hand, HMs are more accurate than PMs
with similar computational time and power requirements since they are
able to learn from historical observations of the real system improving
the model’s accuracy without increasing the complexity of the physical
model. In particular, according to how the HM is constructed, the phase
of making predictions could be immediate, as per DDMs (Del Águila
Ferrandis et al., 2021; Nie et al., 2020).

Nevertheless, note that the use of HMs poses some challenges.
The first one is that the PMs, leveraged by the DDMs in the HMs,
need to meet two contradicting goals: on the one hand, it should
be computationally efficient enough not to make the final HMs too
expensive, and on the other, it should be accurate enough to provide
valuable insights into the HMs. In fact, fast PMs are usually not accurate
and accurate PMs are usually computationally demanding, preventing
real-time predictions. The second challenge is that the DDMs, leveraged
in the HMs, must be able to simultaneously fully exploit the information
in the data and the PMs over-performing them. The third one is more
fundamental: sometimes DDMs and PMs are not ready to be joined
in HMs, resulting in a need for deep knowledge of both approaches
requiring a multidisciplinary approach which is often hard to find.

For these reasons, the modelling approach of HM has been less
investigated in the literature, and only recently it gained attention
for the good properties discussed above (Del Águila Ferrandis et al.,
2021; Skulstad et al., 2021; Nie et al., 2020). The most exploited ML
algorithm used to produce the HM is the LSTM network. For example,
authors of Del Águila Ferrandis et al. (2021) propose an hybrid method
based on a viscous model (Unsteady Reynolds Averaged Navier–Stokes
(URANS) solver) and a LSTM network in order to learn nonlinear
viscous damping effects which mostly affect roll motions. In fact,
commonly used PMs based on potential flow theory do not take into
account these effects and this reduces the accuracy on the prediction,
especially for roll motions. In this work, the NN is trained offline with
expensive CFD simulations produced by the URANS solver so that the
network can learn also viscous and non-linear effects. Training is of
course time consuming, but online predictions can be obtained at a
fraction of seconds and yields truly real-time accurate predictions.

LSTM algorithm has been exploited also by authors of Skulstad
et al. (2021). The authors propose a tool for on-board support that
produces position predictions based on the integration of a supervised
ML model (LSTM) into the ship dynamic model (manoeuvring model
of Fossen, 2011). The final prediction of the HM is the sum of the
position prediction made by the PM and the error compensation for
the unmodelled effects of the PM made by the ML model, for example
shallow water effects, wave and sea currents contributions which the
constructed PM ignore. Although the black-box nature of the LSTM
does not allow for direct insight into what causes the vessel model
predictions to deviate, it compensates for the PM deviations, producing
more accurate predictions: on data collected during a sea-trial, the MAE
in the position’s predictions was reduced by about 4 m respect to the
result produced by the PM alone.

Authors of Al-Ani et al. (2019), Al-Ani and Belmont (2021), instead,
present a probabilistic model that describes the probability distribution
of the QP for a selected wave height, based on the sea power spec-
tral density and a-priory defined probability density functions (PDFs)
known in literature (physical knowledge hint to the model): Naess
(1985), Rice (1940) and Cavanie et al. (1976). The quantities predicted
are the QP of the waves’ motions, not of the SMs which are slightly
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different because the ship’s response is influenced also by other factors,
but in some cases is a good approximation and the authors find a good
results on real-world data. Both the articles are based on the Kimura’s
approach: the probability P of having r successive waves of height < h
(definition of QP) is defined as 𝑝𝐿(ℎ)𝑝𝑟−1𝐿𝐿(ℎ), where 𝑝𝐿(ℎ) is the probability
of a wave being below the threshold h and 𝑝𝐿𝐿(ℎ) is the conditional
probability of successive low waves. But (Al-Ani and Belmont, 2021)
extends and completes the work presented in Al-Ani et al. (2019),
providing the probability of QP of a specified time duration instead to
merely the number of successive quiescent waves, as in Al-Ani et al.
(2019). Moreover, the results presented in Al-Ani et al. (2019) are
limited to a very small class of oceanographic spectral forms, while Al-
Ani and Belmont (2021) employs numerical techniques to obtain results
for any arbitrary spectra, including measured data from sea-trials.

Table 3 summarises the reviewed works on HMs.

4. Open problems and future perspectives

This section summarises the open problems and future perspectives
in the context of SM and QP prediction.

The main open problem raised in most of the referenced works is
how to increase the prediction horizon. In fact, most of the current
works, especially among the DDMs (Peña et al., 2011), are able to
achieve a satisfying accuracy one for limited horizons (in general below
10 s). As discussed in Section 2, the capability to provide accurate
and reliable predictions for a sufficiently large time horizon (e.g., 30
s for helicopter landing) is one of the more important desiderata in SM
and QP prediction, since it would allow to effectively plan the marine
operations. Most of the current models with short prediction horizon
used just past motions data as inputs, without information on waves
motion (past values and forecasts) (Wang et al., 2017). Therefore,
using also this information would possibility increase the accuracy in
larger prediction horizon. Moreover, many of the developed models
have been designed to forecast one step (1 s) ahead (Kawan et al.,
2017; Yu et al., 2014) and then improperly applied inductively on
the predictions to make longer forecasts. Designing native multi-step
models would increase the accuracy for larger prediction horizons.
However, the best results in terms of the length of the prediction
horizon have been obtained by exploiting HMs (Del Águila Ferrandis
et al., 2021). Therefore, future research should be performed on this
kind of models since, until now, they have been less investigated and
applied. It is worth noting that, for HMs, not all PMs can be exploited.
The ones exhibiting state-of-the-art accuracy are too computationally
expensive, nonetheless, less accurate and complex PMs can be quite
computationally aware, being ideal candidates for the HMs.

For what concerns the future perspectives of AI (Nilsson, 2014;
Haslum et al., 2019; Barr and Feigenbaum, 2014) for SM and QP
prediction, we think that there is still a large space for improvements.
The schema of Fig. 5 represents how AI can support the decision and
not simply estimate future events. In fact the final goal of AI is to
partially or even fully automatise the decision processes. In our case
then, we would like to automatically plan the marine operation based
on the SM/QP predictions. For this purpose different steps needs to
be automatised. The first step is the development of SM/QP predictive
models as described in this review. However, these models are not able
to fully describe the constraint and the preferences of the maritime
operations but they are just able to make prediction on narrow phe-
nomena for a limited time horizon. To model the maritime operation
and to optimise the decision processes we need to rely on Model Based
Reasoning (e.g., Planning Domain Definition Language Haslum et al.,
2019 or Answer Set Programming Brewka et al., 2011), in order to
combine the predictions with the domain knowledge of the maritime
procedures. Thanks to the combination of Model Based Reasoning and
Predictive Models we can generate Casual Models that can be used to
generate scenarios and select the plans which deliver best performance
for the decision makers to take actions. In fact, different valid opera-

tion strategies exist to obtain the desired outcome, but, depending on
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Fig. 5. AI for supporting and/or fully automating the decision processes.
Table 3
Hybrid models.

Ref. Method Input Data origin Amount of
data

Prediction
horizon

Output Computa-
tional
requirements

Accuracy

Al-Ani et al.
(2019)

Probabilis-
tic
model

Time series
of sea wave
elevation
(Sea State
1÷2)

Synthetic
data

4 days for
each sea
condition

Depends on the
prediction
horizon of wave
spectrum data

QP
identification

Only the
computation
cost for wave
prediction

Match between
the collected
statistics and the
probability
model decreases
increasing the
target QP
duration

Al-Ani and
Belmont
(2021)

Probabilis-
tic
model

Time series
of sea wave
elevation
with different
sea states

Measured
wave data
from two
buoys

4 days for
each sea
condition

Depends on the
prediction
horizon of wave
spectrum data

QP
identification

Only the
computation
cost for wave
prediction

Match between
the collected
statistics and the
probability
model decreases
increasing the
target QP
duration

Del Águila
Ferrandis
et al. (2021)

PM + LSTM Time series
of wave
elevations
and corre-
sponding
motion data

CFD
simulations

120 h of
simulations

About 80 s SMs
prediction

Immediate Overall RSE:
0.165 (for 4
layers and 90
hidden neurons)

Skulstad
et al. (2021)

PM + LSTM Relative wind
direction and
speed, SMs
and thruster
status(1000
s)

On-board
sensors

1 year 30 s SMs
prediction

Immediate MAE at 30 s:
8.85 m
operators preferences and safety/cost/time criteria some strategies can
be preferable.

For example, deciding when to plan an aircraft, requires first to
forecast a WP of at least 30 s (Riola et al., 2011). Then, different
landing strategies can be actuated base on the criteria to optimise.
Supporting the operator, who is in charge to take the final decision,
with different optimal scenarios equipped with reliable quantitative
estimations of time/risk whorl both facilitate his work and reduce, on
average, mistakes. Therefore, even not fully automating the processes
(like in this example) but simply supporting the operators with different
optimal strategies computed by a machine can be of great help.

5. Conclusions

The scope of this work was to review the methods proposed in
literature for SM and QP prediction. For this reason we first grouped
the approaches in three families: PMs, DDMs, and HMs. PMs are based
12
fully on the physical knowledge of the phenomena, DDMs fully rely on
historical data to learn the desired predictor, while HMs are able to
exploit both information. Then, for each family, we listed the pros and
cons and we review the models developed in the last 10 years with
more citations and models between 2000 and 2010 with at least 15
citations.

As take-home message it is possible to state that DDMs have the ad-
vantage to provide near real-time prediction but, in general, for limited
prediction horizon (Anguita et al., 2002); this is mainly due to the fact
that the DDMs proposed in literature are usually fed with past SMs data
with no information on past or future waves’ data, which could increase
the prediction horizon. PMs, instead, reached interesting results in
terms of prediction horizon (120 s in Dannenberg et al. (2009)) since
they exploit waves’ motion data and waves’ prediction, but they are, in
general, computationally expensive and less accurate, especially on roll
motions prediction, than DDMs. HMs offer a compromise between these
two approaches obtaining good results in terms of accuracy, prediction
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horizon, and computational requirements (Del Águila Ferrandis et al.,
2021), even if they are far less studied.

This variety of applications and works developed for SM and QP
prediction clearly shows the relevance of the topic in maritime opera-
tions. In fact, being able to predict sufficiently in advance SMs and QPs
is of paramount importance, since it would allow to improve safety and
efficiency of, e.g., landing and take-off on aircraft carriers, transfer of
cargo, and mating operations between ships. Accurate and reliable SMs
and QPs prediction would allow to increase operability allowing to per-
form these sea-sensitive operations also in adverse weather conditions
reducing the need for postponing or cancelling. Therefore we can say
that this topic is crucial both for research and industry.
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