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Abstract

This study addresses the prediction of geomagnetic disturbances by exploiting machine learning techniques.
Specifically, the Long Short-term Memory recurrent neural network, which is particularly suited for application
over long time series, is employed in the analysis of in situ measurements of solar wind plasma and magnetic field
acquired over more than one solar cycle, from 2005 to 2019, at the Lagrangian point L1. The problem is
approached as a binary classification aiming to predict 1 hr in advance a decrease in the SYM-H geomagnetic
activity index below the threshold of −50 nT, which is generally regarded as indicative of magnetospheric
perturbations. The strong class imbalance issue is tackled by using an appropriate loss function tailored to optimize
appropriate skill scores in the training phase of the neural network. Beside classical skill scores, value-weighted
skill scores are then employed to evaluate predictions, suitable in the study of problems, such as the one faced here,
characterized by strong temporal variability. For the first time, the content of magnetic helicity and energy carried
by solar transients, associated with their detection and likelihood of geoeffectiveness, were considered as input
features of the network architecture. Their predictive capabilities are demonstrated through a correlation-driven
feature selection method to rank the most relevant characteristics involved in the neural network prediction model.
The optimal performance of the adopted neural network in properly forecasting the onset of geomagnetic storms,
which is a crucial point for giving real warnings in an operational setting, is finally showed.

Unified Astronomy Thesaurus concepts: Space weather (2037); Solar wind (1534); Neural networks (1933);
Classification (1907)

1. Introduction

Space weather (SW) science studies how solar–terrestrial
interactions affect the geospace environment (Pulkkinen 2007);
specifically, it involves predicting major solar disturbances that
can pose significant risks to terrestrial facilities, with potential
economic and security implications. The SW domain thus
covers the various physical processes involved in the transfer of
energy from solar wind and events to the Earth system, such as
magnetic reconnection, the generation of ring currents in the
terrestrial magnetosphere, and the interaction of solar charged
particles with the Earth’s atmosphere (Chapman & Fer-
raro 1931; Dungey 1961; Fairfield & Cahill 1966). The most
energetic events on the solar surface are flares (Piana et al.
2022), intense electromagnetic emissions that can accelerate
particles to relativistic velocities. They are often followed by
massive eruptive events of chromospheric and coronal material,
known as coronal mass ejections (CMEs; Webb &
Howard 2012), during which the solar plasma and the magnetic
field are expelled into interplanetary space. Flares and CMEs,
along with high-speed streams (HSSs) of particles, and
corotating interaction regions and heliospheric current sheet
crossings, can initiate geomagnetic storms that, when particu-
larly intense, can have severe consequences for human

activities and ground- and space-based infrastructures, such
as telecommunications systems, satellite orbits, or power grids
and pipelines.
Geomagnetic disturbances are usually detected by measuring

perturbations in magnetospheric electric currents induced by solar
storms. Specifically, the Disturbance Storm Time (DST; ampl-
itude planetary, Ap) geomagnetic index, derived from a network
of ground-based magnetometer stations near the equator (at
subauroral latitudes), is an estimate of the variations in the
horizontal component of the ring currents circling the Earth in the
equatorial plane (of the electric currents aligned with the Earth’s
magnetic field in the auroral ionosphere). DST and Ap thus
provide an assessment of the severity of geomagnetic storms at
low and high latitudes, respectively. The DST index (acquired
hourly) or the equivalent SYM-H (acquired every minute) are
those most commonly deployed to reveal geomagnetic storms and
measure their degree of geoeffectiveness. These are classified as
moderate, intense, or extreme, depending on whether the DST
index falls below thresholds of−50,−100, and−250 nT (Cander
& Mihajlovic 1998).
Recently, machine learning and deep learning techniques are

increasingly being employed in SW applications (Camporeale
et al. 2018), especially in the prediction of solar flares (Bobra &
Couvidat 2015; Barnes et al. 2016; Campi et al. 2019;
Georgoulis et al. 2021, 2024; Guastavino et al. 2022a,
2023a), the onset of CMEs, and their arrival time on Earth
(Guastavino et al. 2023b; Singh et al. 2023). Such studies are
based on remote observations of the Sun and its atmosphere
and, more specifically, on the identification of CMEs and the
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extraction of their morphological/dynamic properties (such as
angular width, velocity, and acceleration) from time sequences
of coronagraphic white-light images, such as those from the
Large Angle Spectroscopic Coronagraph, as in Pricopi et al.
(2022) and Vourlidas et al. (2019).

Less attention has been devoted, however, to predicting the
degree of geoeffectiveness of solar events impinging on the
Earth. In Telloni et al. (2023), the problem was addressed using
interplanetary plasma and magnetic field measurements (and, in
particular, the intensity and the normal component of the
ecliptic plane of the magnetic field vector, and the bulk speed,
temperature, and density of the solar wind plasma) acquired
in situ at the L1 Lagrangian point, 1.5 million km from Earth in
the sunward direction, by resorting to the use of different types
of neural networks. The recurrent architectures were found to
be the best in predicting geomagnetic events associated with
SYM-H values below −50 nT, achieving 94% (70%) accuracy
when the prediction was made 1 (8) hr in advance.

Similarly to Telloni et al. (2023), this paper aims to forecast
the degree of severity of CME-induced geomagnetic storms but
explores and extends its predictive capabilities, using more
refined and potentially better approaches. More specifically, as
in the previous work, the problem was tackled as a binary
classification with the goal of forecasting 1 hr ahead a decrease
in the SYM-H geomagnetic index below −50 nT, using the
Long Short-term Memory (LSTM) recurrent network (which
was shown to have the best performance in Telloni et al. 2023)
applied to long time series of solar wind data. However, unlike
Telloni et al. (2023), in which the strong data imbalance (SYM-
H <−50 nT only 2% of the time) potentially affecting the
proper neural network training was addressed by exploiting
data augmentation, in the present study, this issue is faced by
using an appropriate loss function designed to automatically
optimize a suitable skill score for evaluating predictions in the
case of highly imbalanced data sets (Marchetti et al. 2022). The
advantage of this approach is to avoid data handling. The
prediction performances are also evaluated against value-
weighted skill scores (Guastavino et al. 2022b) that are more
suited for forecasting over time (Hu et al. 2022; Guastavino
et al. 2022c) and will be shown to better evaluate performance
in predicting the onset of geomagnetic storms. The method
provides scores comparable to those of a simple persistence
model. As an important difference, while the latter obviously
cannot predict the onset of geomagnetic storms but only the
events that occur during the recovery phase, the LSTM model
not only forecasts events within the recovery phase of the storm
but also its onset with about 98% of accuracy. In addition, we
have computed an estimate of the uncertainty of prediction by
performing several runs of the neural network with several
generations of training, validation, and test sets. More
importantly, in the present analysis, besides all interplanetary
parameters (hereafter features) directly acquired by the
instruments on board the spacecraft, i.e., plasma and magnetic
field measurements of the solar wind, some derived quantities,
such as magnetic helicity (which has been shown to be critical
for properly detecting CMEs at L1, e.g., Telloni et al. 2019),
and solar wind transported energy (which has been shown to
play a crucial role in the magnetospheric response to solar
drivers, Telloni et al. 2020a), were also considered as inputs
to the neural network. Finally, a correlation-driven feature
selection method is here used to rank the most relevant, i.e.,

predictive, features involved in the neural network prediction
model.
The layout of the paper is as follows: Section 2 presents the

solar wind data set used as input for the neural network model;
Section 3 describes the machine learning approach and
correlation-driven feature ranking method; and Section 4
shows the forecasting performances and the most predictive
features. Our conclusions are offered in Section 5.

2. Data Set

It is well known that a huge amount of data is required to
train, validate, and test neural networks. The data set used in
this paper consists of 7,888,319 one minute acquisitions related
to multispacecraft interplanetary parameters acquired at L1 and
geomagnetic activity indices measured on the ground. The time
period spans the years 2005–2019, thus encompassing the
entire solar cycle 24 and the descending (ascending) phase of
the previous (subsequent) solar cycle 23 (25). The Operating
Missions as a Node on the Internet (King & Papitashvili 2005)
database was used, which is intended specifically to study the
effects of the solar wind variations on the Earth’s magneto-
sphere. In fact, the interplanetary measurements are artificially
time shifted forward as if they had been acquired at the same
location as the magnetospheric indices (in other words, the
distance of 1.5 million km separating L1 from Earth has been
nullified by adding to the acquisition time of the heliospheric
quantities the time it takes the solar wind to reach Earth). This
allows the temporal correlations between solar and magneto-
spheric indices to be explored directly. Among all available
interplanetary measurements, the following parameters were
taken into account in the study: the magnitude and components
of the magnetic field vector B, the components of the flow
velocity vector V, along with the bulk speed U, density ρ, and
temperature T of the solar wind plasma. Some quantities
derived from spacecraft measurements were also considered.
These are the magnetic helicity Hm, the kinetic Ek and magnetic
energy Em, and the total energy E= Ek+ Em. For a
comprehensive discussion on how these quantities are
estimated in the solar wind, the reader is referred to Telloni
et al. (2019, 2020a). Here it is only noted that magnetic helicity
is a measure of the degree of twisting of the magnetic field lines
and is therefore a clear signature of the CME-embedded flux
rope (which is a helical structure and therefore can be seen as a
region of high magnetic helicity). It follows that Hm is
beneficial for a proper detection of CMEs. On the other hand, it
appears evident that the more energetic the CME is (either due
to its high velocity and/or the intensity of the associated
magnetic field), the more severe is the expected induced
geomagnetic event since more energy will be transferred to the
geospace. As a result, E is a key parameter for correct
prediction of geoeffectiveness of solar storms. As for the
assessment of geomagnetic activity, the SYM-H index was
instead employed.
As mentioned above, the goal of this study is to predict

whether, based on a history of features over the past 24 hr, in
the next hour the SYM-H geomagnetic index will drop below
the −50 nT threshold, customarily referred to for potential
severe magnetospheric disturbances. From a purely computa-
tional perspective (i.e., to save machine resources), the time
series are resampled at a 1 hr resolution. This means that the
total number of samples is thus reduced to just over 130,000.
Since the study is approached as a binary prediction problem,
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samples corresponding to time periods when SYM-H
£−50 nT are labeled with 1 or 0, respectively, and named 1-
or 0-labeled samples. As already noted in Telloni et al. (2023)
and reported above, the data set is highly imbalanced: only
2.53% of total samples are labeled with 1. Section 3 will
present a suitable approach associated with the employment of
an appropriate loss function to address this problem and enable
proper training and validation of the neural network based on
the use of suitable metrics for performance evaluation.

3. Prediction and Feature Ranking

3.1. Assessment of Results

In order to compare the performances of machine learning
methods for binary classification problems for the prediction of
geoffective events, the following points should be accounted
for. First, the classification results should be evaluated by
considering skill scores that are suitable for imbalanced data
classification. Indeed, the percentage of geoffective events is
really small, as already pointed out in Section 2. Therefore, a
chosen score needs to be capable of representing the
performance of the classifier concerning the small positive
class. The classical skill scores are computed on the entries of
the so-called confusion matrix (CM), which is defined as

=CM TN FP
FN TP

, 1( ) ( )

where the four entries are true positives (TPs), i.e., the number
of samples labeled with 1 and correctly predicted as positive;
true negatives (TNs), i.e., the number of samples labeled with 0
and correctly predicted as negative; false positives (FPs), i.e.,
the number of samples labeled with 0 incorrectly predicted as
positive; and false negatives (FNs), i.e., the number of samples
labeled with 1 and incorrectly predicted as negative. Among all
possible skill scores, the True Skill Statistic (TSS; Hanssen &
Kuipers 1965) is less sensitive to the class-imbalance ratio
(Bloomfield et al. 2012) than others, and therefore, it is
particularly suitable for evaluation of imbalanced classification
tasks. It is defined as the balance between the true positive and
true negative rates (named also sensitivity and specificity,
respectively), as follows:

=
+

+
+

- = + -

TSS CM
TP

TP FN

TN

FP TN
1 SENS CM SPEC CM 1 . 2

( )

( ) ( ) ( )

Its values range in the interval [−1, 1], and the performance is
optimal when TSS= 1, while TSS> 0 means that the rates of
positive and negative events are mixed up.

Second, the evaluation of binary predictions performed over
time should take into account the forecast value, measured in
terms of its usefulness to an operational setting to support the
user while making a decision, as the importance in predicting
the starting time of a geomagnetic storm. Value-weighted skill
scores introduced by Guastavino et al. (2022b) that better
account for the intrinsic dynamical nature of forecasting
problems are defined on a value-weighted CM that assigns
different weights to FPs (denoted as wFPs) and FNs (denoted
as wFNs) in such a way as to account for the distribution of
predictions along time with respect to the actual occurrences.

By denoting the value-weighted CM as

=wCM TN wFP
wFN TP

, 3( ) ( )

predictions are assessed by computing the value-weighted TSS
(wTSS) defined as follows:

=wTSS TSS wCM . 4( ) ( )

Finally, the splitting strategy between training, validation,
and test sets should take into account the rare-event nature of
the problem by maintaining uniformly the percentage of
1-labeled samples and the temporal distribution of events in
order to not mix temporally samples in training, validation, and
test sets. Furthermore, the splitting strategy should be repeated
several times in order to achieve some statistical significance.
Therefore, many classification tests should be carried out by
generating different triples of training, validation and test sets
by maintaining the positive percentage of samples and not
drawing samples completely randomly between training and
test with respect to time.

3.2. Recurrent Neural Network

As neural network, we adopted the LSTM network
(Hochreiter & Schmidhuber 1997), which is the most widely
adopted type of recurrent neural network, able to process
sequential data by solving the well-known short-term memory
problem of basic recurrent architectures. In the experiments, we
set the LSTM units equal to 72 followed by a dense layer of 64
neurons where the rectified linear unit activation function is
adopted and a final dense sigmoid unit drives the output of the
network to be in the interval [0, 1] in order to perform binary
prediction. The LSTM network is trained for 100 epochs by
taking a batch size of 256 samples; the Adam optimizer
(Kingma & Ba 2015) is adopted for the optimization process
with learning rate equal to 10−4.
In order to face the class-imbalance issue, we adopted a

suitable loss function that is designed to optimize an
appropriate score. This strategy is introduced in Marchetti
et al. (2022), and it is based on a probabilistic definition CM of
the classical CM, depending on a chosen cumulative density
function (cdf) on [0, 1] for the threshold parameter τ, which
separates 0 and 1. Let =x y,i i i

n
1( ) be input-label samples, where

yi ä {0, 1} is the actual label associated to the sample xi, and let
f (xi) ä (0, 1) be the probability outcome of the neural network f
on the sample xi. We defined the probabilistic confusion matrix
CM as

⎛
⎝

⎞
⎠

=CM TN FP
FN TP

, 5( )

characterized by the following entries:

= å = å - -

= å - = å -
= =

= =

y f x y f x

y f x y f x

TP , TN 1 1

FP 1 , FN 1 . 6
i
n

i i i
n

i i

i
n

i i i
n

i i

1 1

1 1

( ) ( )( ( ))
( ) ( ) ( ( )) ( )

We chose the score-oriented loss function based on the TSS,
which is defined as follows:

-ℓ TSS CM . 7TSS ≔ ( ) ( )

The main advantage consists of an automatic optimization of
the desired skill score during the training phase without the
need of a posteriori optimization of the threshold.

3

The Astrophysical Journal, 971:94 (7pp), 2024 August 10 Guastavino et al.



3.3. Correlation-driven Feature Ranking

Feature ranking methods are commonly employed to identify
a reduced subset of highly predictive features and to assess the
relevance of physical attributes. One common technique
consists in evaluating how each feature impacts the predictions
according to some permutation importance score. Once a
model is fitted via a training set, the permutation importance
algorithm is implemented to evaluate how the accuracy of the
prediction changes when a single feature is randomly shuffled
in the validation data set (Breiman 2001). Indeed, when a
feature is shuffled, its relevance increases as the accuracy score
on the prediction decreases. Nevertheless, the permutation
feature importance algorithm does not take into account the
correlation between features. Therefore, we consider a correla-
tion-driven feature importance method inspired by Kaneko
(2022), which includes the absolute correlation coefficients
between features in the permutation process. Hence, in
presence of strongly correlated features, such a method leads
to more stable and reliable feature ranking schemes. In the
following, we summarize the steps of the correlation-driven
feature importance algorithm:

1. Train a neural network f̂ .
2. Compute the prediction of the trained neural network f̂

on the validation data, denoted as Zval= {(Xval, yval)} and
compute the reference score sval, i.e., the score computed
between the prediction Xf val

ˆ ( ) and yval.
3. Calculate the correlation coefficients between all the

features by following the procedure in Kaneko (2022); in
particular, the correlation coefficient between two
features is set to 0 if there is the possibility of a chance
correlation.

4. For each feature j, i.e., the jth column of validation data
Xval, and for each repetition k ä {1,K,K}, randomly
shuffle the jth feature of the validation data set Xval, and
for each feature l≠ j for which the correlation value cj,l is
higher than 0, randomly sample the column l of Xval

(without duplication with a probability of cj,l) to generate
a corrupted version of the validation data set, denoted
as X j k

val
, .

5. Compute the score sj,k between the prediction on the
corrupted data X j k

val
, , i.e., Xf j k

val
,ˆ ( ) and yval.

6. Evaluate the importance j of the jth feature by
computing the difference between the reference score
and the mean score obtained on the corrupted validation
data sets, i.e.,

 å= -
=

s
K

s
1

. 8j
k

K

j kval
1

, ( )

Such a procedure allows obtaining a feature ranking: the higher
j is, the higher the contribution of the feature in the prediction.

4. Results

The LSTM network described in Section 3.2 has been
applied to time series of features described in Section 2. First, a
splitting strategy based on stratified k-fold splitting allows the
generation of training, validation, and test set that shares the
same rate of about 2.5% of 1-labeled samples, leading to
training and validation sets whose sum represents about 75% of
the total number of the sample and a test set representing the

remaining 25% of samples. We investigated how the prediction
performances change if the SYM-H of the past 24 hr with
cadence 1 hr is added as an additional feature to the considered
solar wind features, i.e., B, Bx, By, and Bz (which represent the
absolute value of the magnetic field vector B and the three
components of B); V, Vx, Vy, and Vz (which represent the
absolute value of the velocity vector V and the three
components of V); ρ (density); T (temperature); Ek (kinetic
energy); Em (magnetic energy); E (total energy); and Hm

(magnetic helicity). When the network is trained, we applied
the correlation-driven feature importance method described in
Section 3.3 in order to rank features according to their
predictive capabilities, and we selected the first 10 features
that are associated with a meaningful importance value at least
higher than 0.1. In Table 1, we report the ranking of features
with the associated importance value both in the cases where
the SYM-H between features is included and where it is not. In
detail, we compute the CM and some common skill scores such
as the Heidke skill score (Heidke 1926); the sensitivity (SENS);
the specificity (SPEC) defined in Equation (2); the F1 score
(F1), which is the harmonic mean of precision and sensitivity;
and balanced accuracy (BA), which is the arithmetic mean
between sensitivity and specificity. We noticed that the most
predictive solar wind features are almost the same, both when
SYM-H is included and not between features at least of
permutation. In particular, the energies, such as the total energy
is the third in both rankings: this is coherent with the analysis
conducted between the DST and energy in Telloni et al.
(2020b). Further, as we expected, features that are not
correlated with the occurrence of geomagnetic storms have a
negligible importance value less then 0.1. In Table 2, we report
the prediction performances on the test set when all the features
were used and if the SYM-H is included in the list of features
compared with the performance when only the subset of
predictive features is considered. We noticed that the

Table 1
Feature Rankings with Respect to the Correlation-driven Feature Importance
Method Shown in Section 3.3 in the Cases SYM-H Is Included between

Features and Not

SYM-H Included SYM-H Not Included

Feature
Importance

Value Feature
Importance

Value

(1) SYM-H 0.5577 (1) B 0.2936
(2) B 0.3392 (2) Bz 0.2605
(3) Total Energy 0.3334 (3) Total Energy 0.2175
(4) Vx 0.3256 (4) Magnetic

Helicity
0.2042

(5) V 0.3162 (5) Vx 0.1902
(6) Temperature 0.287 (6) Magnetic

Energy
0.1901

(7) Magnetic
Energy

0.2793 (7) Temperature 0.18

(8) Magnetic
Helicity

0.2628 (8) V 0.1783

(9) Kinetic Energy 0.2427 (9) Kinetic Energy 0.1604
(10) Bz 0.2303 (10) Density 0.1451
(11) Density 0.2044 (11) Vy <0.1
(12) Vy <0.1 (12) By <0.1
(13) By <0.1 (13) Bx <0.1
(14) Vz <0.1 (14) Vz <0.1
(15) Bx <0.1 L L
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performances are higher when the subset of the most predictive
features is adopted: this confirms the importance of a feature
selection procedure also in the prediction phase. Finally, in
order to assess statistical robustness, we reported results when
five different splittings of training, validation, and test sets are
considered. In Table 3, we reported the TSS and value-
weighted TSS (wTSS) among the five generated test sets. We
pointed out that when SYM-H is not used as a feature, the
performances are low: this is due to the fact that when a
geomagnetic storm is in place, then the SYM-H is below
−50 nT, and such information helps the network to learn that if

in the previous hour the SYM-H is below −50 nT, the
probability that it is below this threshold in the next hour is
high. Further, we made the comparison with a simple
persistence model (as in Hu et al. 2023), and the performance
in terms of TSS are comparable with the ones obtained by the
LSTM model when the SYM-H is included as an additional
feature (the persistence model provides a mean TSS on the
same test sets about 0.8361± 0.028). However, it should be
noted that the persistence model can basically predict whether
in the next hour the Earth’s magnetosphere will still be
perturbed (SYM-H < −50 nT), that is, it is able to ascertain the

Figure 1. Predictions over time on a temporal window of the test set of splitting 1 (from 2005 July 24 to 2005 August 2): the top panel represents the prediction when
SYM-H is not included in the subset of features, whereas the bottom panel represents the one when SYM-H is included between features.

Table 2
Comparison of the Performances on the Test Set between Using All Features or the Selected Features with the Correlation-driven Feature Importance Method

SYM-H Included SYM-H not Included

All Features Selected Features All Features Selected Features

CM TP = 629 FN = 204 TP = 707 FN = 124 TP = 495 FN = 336 TP = 550 FN = 281
FP = 74 TN = 31599 FP = 430 TN = 615 FP = 36 TN = 668 FP = 430 TN = 31599

TSS 0.742 0.8412 0.5766 0.633
HSS 0.655 0.7593 0.4963 0.4622
SENS 0.755 0.8508 0.5957 0.6619
SPEC 0.987 0.9904 0.9809 0.9715
F1 0.665 0.766 0.511 0.48
BA 0.871 0.9206 0.7883 0.8267
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presence of the recovery phase once the geomagnetic storm has
already started. On the other hand, the LSTM model is also
able to predict its onset. Specifically, we defined the onset of a
geomagnetic disturbance as the first time when SYM-H
<−50 nT after a quiet condition (namely, at least for the last
3 hr the SYM-H was above −50 nT). Then, we computed,
during the test window of the first splitting, how many times
the onset was correctly predicted: it results that 91 over 93
onset events were properly forecasted, i.e., with a 98%
accuracy. Therefore, in Figures 1 and 2, we report the
distribution of predictions along time in correspondence with
two different temporal windows that include some geomagnetic

storms. The period in Figure 1 is between 2005 July 24 and
2005 August 22, and the one in Figure 2 covers from 2006 May
30 to 2006 June 12. Specifically, the red bar plots represent
the predicted alarms, and the green crosses represent the
actual labels (those placed at 0 nT represent label 0, and those
placed at –50 nT represent label 1). In the top panels of
Figures 1 and 2, we show the predictions obtained by the
LSTM model when SYM-H is not used as an additional
feature, whereas in the bottom panels, we show the ones when
SYM-H is used as an additional feature. When SYM-H is not
used as an additional feature, we noticed that more false
positives are present. However, from all panels, it is clear that

Figure 2. Predictions over time on a temporal window of the test set of splitting 1 (from 2006 May 30 to 2006 June 12): the top panel represents the prediction when
SYM-H is not included in the subset of features, whereas the bottom panel represents the one when SYM-H is included between features.

Table 3
Performances on 5 Test Sets in Case the SYM-H is Included or Not in the Subset of Features

Splitting TSS wTSS

SYM-H Included SYM-H not Included SYM-H Included SYM-H not Included

1 0.9073 0.82029 0.8964 0.7597
2 0.8654 0.7146 0.8503 0.6166
3 0.9082 0.7791 0.8973 0.6743
4 0.8442 0.6296 0.7838 0.4844
5 0.846 0.6334 0.8164 0.4757

Mean ± std 0.8742 ± 0.028 0.7154 ± 0.076 0.8164 ± 0.044 0.6022 ± 0.109
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the starting time of the geomagnetic storm is well predicted
even when SYM-H is not used as a feature: this confirms the
importance of solar wind features that give information about
the possible occurrence of a geomagnetic storm, whether
caused by a CME or other events such as HSSs.

5. Conclusions

In this work, the performance of the LSTM recurrent neural
architecture in providing 1 hr advance alerts of critical SYM-H
values less than −50 nT and thus indicative of geomagnetic
disturbances was estimated. It turns out that its predictive
capability reaches a mean TSS over multiple test sets of 0.87
and 0.72 in the case of considering and not considering SYM-H
itself, respectively, as an input feature of the neural network. It
appears evident that in the former case, the neural network is
able to predict the activity status of the Earth’s magnetosphere
even after the onset of the geomagnetic storm, that is, the
decreasing of SYM-h lower than −50 nT during its recovery
phase toward a quiet condition. This results in higher
performance, as it is easier to also forecast such a decreasing
during the recovery phase of a solar storm rather than just its
onset, which is precisely what LSTM does when not having the
value of SYM-H as input. From an operational point of view, it
is also worth mentioning that the solar wind data used in the
analysis were artificially time shifted as if they had been
acquired at the same location as the geomagnetic indices.
However, if the tool worked in real time in forecasting the
value of SYM-H in the hour following the acquisition of solar
measurements at L1, the time required for the solar plasma to
reach Earth, i.e., 30 minutes (60 minutes) for a bulk speed of
800 (400) km s−1, would also have to be accounted for. This
means that the prediction of geomagnetic disturbances could be
provided from 1.5 up to 2 hr before the onset of the
geomagnetic storm (depending on solar wind velocity) when
the SYM-H is not used as an additional feature in the model.
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