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Safety engineering and artificial intelligence are two fields that still need
investigation on their reciprocal interactions. Safety should be guaranteed when
autonomous decision may lead to risk for the environment and the human. The
present work addresses how support vector data description (SVDD) can be
redesigned to detect safety regions in a cyber-physical system with zero statistical
error. Rule-based knowledge extraction is also presented, to let the SVDD be
understandable. Two applications are considered for performance evaluation:
domain name server tunneling detection and region of attraction estimation of
dynamic systems. Results demonstrate how the new SVDD and its intelligible
representation are both suitable in designing safety regions, still maximizing the
space of the working conditions.

The study proposed in this article follows the
recent trend dedicated to identifying and han-
dling assurance under uncertainties in artificial

intelligence (AI) systems.29 It falls in the category of
improving reliability of prediction confidence. The topic
remains a significant challenge in machine learning
(ML), as learning algorithms proliferate into difficult
real-world pattern recognition applications. The intrinsic
statistical error introduced by any ML algorithm may
lead to criticism by safety engineers. The topic has
received a great interest from industry,31 in particular in
the automotive33 and avionics8 sectors. In this per-
spective, the conformal predictions framework6 studies
methodologies to associate reliable measures of
confidence with pattern recognition settings including
classification, regression, and clustering. The proposed
approach follows this direction, by identifying methods
to circumvent data-driven safety envelopes with statis-
tical zero errors. We show how this assurance may limit
considerably the size of the safety envelope (e.g., provid-
ing collision avoidance by drastically reducing speed of
vehicles) and focus on how to find a good balance
between the assurance and the safety space.

We concentrated our work on a specific ML meth-
ods, the support vector data description (SVDD), which

by (its) definition is particularly suitable to define safety

envelops (see the “Support Vector Data Description”

section). To it we have added intelligible models for

knowledge extraction with rules: intelligibility means

that the model is easily understandable, e.g., when it is

expressed by Boolean rules. Decision trees (DTs) are typ-

ically used toward this aim. The comprehension of

neural network models (and of the largest part of

the other ML techniques) reveals to be a hard task

(see, e.g., Section 4 of Mongelli et al.’s work14).

Together with DT, we use logic learning machine

(LLM), which may show more versatility in rule gen-

eration and classification precision.
Our work takes a step forward in these areas due

to the following reasons.

› Safety regions are tuned on the basis of the
radius of the SVDD hypersphere.

› Simple rule extraction method from SVDD is
studied in comparison with LLM and DT.

The rest of this article is organized as follows.
First, a detailed introduction of SVDD and negative
SVDD is introduced, also focusing on how to
choose the best model parameters (see the “Auton-
omous Detection of SVDD Parameters With RBF
Kernel” section) and how to handle large datasets
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(see the “Fast Training SVDD” section). Then, the
“Rules Extraction” section is devoted to rule extraction:
LLM and DT are presented, together with rule extraction
from SVDD. An application example is proposed in the
“Applications” section. The “Remarks” sections presents
some remarks. The “Conclusion and Future Work” sec-
tion concludes this article.

SUPPORT VECTOR DATA
DESCRIPTION

Characterizing a dataset in a complete and exhaustive
way is an essential preliminary step for any action you
want to perform on it. Having a good description of a
dataset means being able to easily understand if a
new observation can contribute to the information
brought by the rest of the data or be totally irrelevant.
The task of the data domain description is precisely to
identify a region, a border, in which to enclose a cer-
tain type of information in the most precise possible
way, i.e., not adding misinformation or empty spaces.
This idea is realized mathematically by a circumfer-
ence (a sphere, a hypersphere depending on the size
of the data space) that encloses as many points with
as little area (volume) as possible. Indeed, SVDD can
be used also to perform a classification of a specific
class of target objects, i.e., it is possible to identify a
region (a closed boundary) in which objects that
should be rejected are not allowed.

This section is organized as follows: SVDD is intro-
duced as in Tax and Duin’s work,34 focusing first on
the normal description and then on the description
with negative examples.35 Then, we will focus on two
proposed algorithms for solving two problems involv-
ing SVDD: fast training of large datasets7 and autono-
mous detection of SVDD parameters.37 Finally, the
last section is devoted to two original methods for
finding zero false positive rate (FPR) regions with
SVDD.

Theory
Let fxig; i ¼ 1; . . . ; N with xi 2 Rd, d >¼ 1, be a train-
ing set for which we want to obtain a description. We
want to find a sphere (a hypersphere) of radius R and
center a with minimum volume, containing all (or most
of) the data objects.

Normal Data Description
For finding the decision boundary that captures the
normal instances and at the same time keeps the
hypersphere’s volume at minimum, it is necessary to
solve the following optimization problem:35

min
R;a

F ðR; aÞ ¼ R2 s.t. jjxi � ajj2 � R2 8i: (1)

In order to allow the possibility of outliers in the train-
ing set, analogously to what happens for the soft-mar-
gin SVMs,1 slack variables �i � 0 are introduced and
the minimization problem changes into that described
in Tax and Duin’s work35

min
R;a;�i

F ðR; a; �iÞ ¼ R2 þ C
X
i

�i (2)

s.t.
jjxi � ajj2 � R2 þ �i;
�i � 0

�
i ¼ 1; . . . ; N (3)

where the parameter C controls the influence of the
slack variables and thereby the tradeoff between the
volume and the errors.

The optimization problem is solved by incorporat-
ing the constraints (3) into (2) using the method of
Lagrange for positive inequality constraints13

LðR; a;ai; gi; �iÞ ¼ R2 þ C
X
i

�i

�
X
i

ai

�
R2 þ �i �

�jjxijj2 � 2a � xi þ jjajj2���X
i

gi�i

(4)

with the Lagrange multipliers ai � 0 and gi � 0.
According to Tax and Duin’s work,34 L should be mini-
mized with respect to R; a; �i, and maximized with
respect to ai and gi.

Setting partial derivatives of R; a; and �i to zero
gives the constraints11

@L

@R
¼ 0 :

X
i

ai ¼ 1;
@L

@a
¼ 0 : a ¼

X
i

aixi (5)

@L

@�i
¼ 0 : C � ai � gi ¼ 0 ) 0 � ai � C (6)

and then, substituting (5) into (4) gives the dual prob-
lem of (2) and (3)

max
ai

L ¼
X
i

aiðxi � xiÞ �
X
i;j

aiajðxi � xjÞ (7)

s.t

P
i ai ¼ 1;

0 � ai � C; i ¼ 1; . . . ; N:

�
(8)

Maximizing (7) under (8) allows us to determine all
ai and then the parameters a and �i can be deduced.

A training object xi and its corresponding ai satisfy
one of the following conditions:34,35

jjxi � ajj2 < R2 ) ai ¼ 0 (9)
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jjxi � ajj2 ¼ R2 ) 0 < ai < C (10)

jjxi � ajj2 > R2 ) ai ¼ C: (11)

Since a is a linear combination of the objects with ai

as coefficients, only ai > 0 are needed in the descrip-
tion: this object will therefore be called the support
vectors of the description (SV). So by definition, R2 is
the distance from the center of the sphere to (any of
the SVs on) the boundary, i.e., objects with 0 < ai <

C. Therefore

R2 ¼ jjxk � ajj2

¼ ðxk � xkÞ � 2
X
i

aiðxk � xiÞ þ
X
i;j

aiajðxixjÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TaðxkÞ
(12)

for any xk 2 SV<C , the set of the SVs have ak < C.
To test a new object z, it is necessary to calculate

its distance TaðzÞ from the center of the sphere and
compare it with R2

sgnðR2 � TaðzÞÞ ¼ þ1 if z is inside the sphere
�1 if z is outside the sphere.

�

(13)

As it is common in ML theory,38 the method can be
made more flexible,34,35 by replacing all the inner prod-
ucts (xi � xj) with a kernel function Kðxi; xjÞ satisfying
Mercer’s theorem. The data are mapped into a higher
dimensional space via a feature map and there the
previous spherically classification is computed. The
polynomial kernel and the Gaussian kernel are dis-
cussed in Tax and Duin’s work.34,35

An example description by SVDD with different
kernel functions for a 2D Gaussian dataset is shown in

Figure 1. The 1000 data are generated by a Gaussian
distribution with mean [0,0] and variance 1. Figures are
handmade drawn using MATLAB and the description
bound is shown by a 2D contour plot.

Negative Examples Data Description
When two (or more) classes of data are available and it
is necessary to identify a specific one among the others,
SVDD can be trained to recognize objects that should
be included in the description from those that should
be rejected. This task of SVDD can be very useful in
real-world applications where, for example, a safety
region must be determined (see the “Applications”
section).

In the following, the target objects are enumerated
by indices i; j and the negative examples by l;m. We
assume that target objects are labeled yi ¼ 1 and out-
lier objects are labeled yl ¼ �1.

In the same way as before, we want to solve this
optimization problem

min
R;a;�i;�l

F ðR; a; �i; �lÞ ¼ R2 þ C1

X
i

�i þ C2

X
l

�l (14)

s.t
jjxi � ajj2 � R2 þ �i;
jjxl � ajj2 � R2 � �l;
�i � 0; �l � 0 8i; l:

8<
: (15)

The constraints are again incorporated in (14) and
the Lagrange multipliers ai;al; gi; gl are introduced35

LðR; a; �i; �l;ai; al; gi; g lÞ ¼ R2 þ C1

X
i

�i þ C2

X
l

�l

�
X
i

gi�i �
X
l

g l�l �
X
i

ai½R2 þ �i � ðxi � aÞ2�

�
X
l

al½ðxl � aÞ2 �R2 þ �l�

(16)

with ai � 0;al � 0; gi � 0; g l � 0.

FIGURE 1. SVDD with (a) linear kernel, (b) polynomial kernel, (c) Gaussian kernel, and the respective parameters. The SV (with

ai < C) of the description are plotted in red.
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Setting the partial derivatives of L with respect to
R; a; �i; and �l to zero gives new constraints35

X
i

ai �
X
l

al ¼ 1; a ¼
X
i

aixi �
X
l

alxl (17)

0 � ai � C1; 0 � al � C2 8i; l (18)

and substituting (17) in (16), we obtain, similarly to
before, the dual problem of (14) and (15):

max
ai ;al

L ¼
X
i

aiðxi � xiÞ �
X
l

alðxl � xlÞ �
X
i;j

aiajðxi � xjÞ

þ 2
X
l;j

alajðxl � xjÞ �
X
l;m

alamðxl � xmÞ (19)

s.t

P
i ai �

P
l al ¼ 1

0 � ai � C1 8i
0 � al � C2 8l:

8<
: (20)

Again, solving the previous optimization problem
allows us to determine ai and al and then we can clas-
sify all the dataset objects according to the respective
Lagrange coefficient

jjxi � ajj2 < R2 ) ai ¼ 0; jjxl � ajj2 < R2 ) al ¼ C2

(21)

jjxi � ajj2 ¼ R2 ) 0 < ai < C1 (22)

jjxl � ajj2 ¼ R2 ) 0 < al < C2 (23)

jjxi � ajj2 > R2 ) ai ¼ C1; jjxl � ajj2 > R2 ) al ¼ 0:

(24)

Similarly, we test a new point z based on its dis-
tance from the center

jjz� ajj2 ¼ ðz � zÞ � 2

�X
i

aiðz � xiÞ �
X
l

alðz � xlÞ
	

þ
X
i;j

aiajðxi � xjÞ � 2
X
l;j

alajðxl � xjÞ

þ
X
l;m

alamðxl � xmÞ :¼ TaðzÞ

(25)

and we evaluate it compared to the radius squared

sgnðR2 � TaðzÞÞ ¼ þ1 if z is inside the sphere
�1 if z is outside the sphere

�

(26)

where the radius is calculated as the distance of any
SV on the edge (0 < ai < C1; 0 < al < C2) from the
center a

R2 ¼ TaðxkÞ for any xk 2 SV<C1 ; <C2: (27)

Similarly to before, it is possible to replace all the
inner products ðxi � xjÞ with a kernel function
Kðxi; xjÞ34,35,38 to obtain a more flexible description.

An example of negative SVDD is performed in
Figure 2: Gaussian kernel with s ¼ 3 is used, and the
parameters C1 and C2 are both set to 0.25.

Autonomous Detection of SVDD
ParametersWith RBF Kernel
Like most ML models, SVDD is massively influenced by
the choice of model parameters. It is necessary to find
the best tradeoff between error and covering, by
choosing suitable C1 and C2, and the best kernel
parameter s that avoids overfitting or underfitting
issues.

FIGURE 2. Negative SVDD applied to a two-spiral shaped dataset.24 It is interesting to note that for changing the target objects,

it is only necessary to flip the labels. The asterisked points are the SV on the edge, depending on the respective class.
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For this work, we will focus on the RBF kernel since
it is well known that it is the kernel function that per-
forms well in application methods.34

The method used to find the best model parame-
ters is inspired by Theissler and Dear’s work,37 in
which an autonomous detection of the normal SVDD
parameters is proposed based only in the training
set, since in normal SVDD it is not possible to use
cross-validation because only true positives and false
negatives can occur during the training. In our work
instead, we joined some techniques used in Theissler
and Dear’s work37 with the cross-validation method
for finding the best C1, C2, and s parameters for neg-
ative SVDD.

The regularization parameters C1 and C2 are lower
bounded by 1=N1 and 1=N2 respectively, where N1 is
the number of target objects and N2 the number of
negative examples (N1 þN2 ¼ N).34,35,37 When in one
class of training objects set no errors are expected,
we can set Ci ¼ 1 (i ¼ 1; 2), indicating that all objects
of the target class of training set should be accepted
(C1 ¼ 1) and all outliers should be rejected (C2 ¼ 1). So
the value ranges for C1 and C2 are

1

N1
� C1 � 1;

1

N2
� C2 � 1: (28)

The second parameter to be optimized is the ker-
nel width s. For high values of s, the shape of SVDD
becomes spherical with the risk of underfitting, while
for small values of s too much objects become SVs
and the model is prone to overfitting.

The search for the best parameters is performed
by constructing a grid with C1; C2, and s, on which
holdout cross-validation is performed. The optimiza-
tion criterion is chosen according to Theissler and

Dear’s work,37 selecting the parameters such that
the respective misclassification error e and radius R

minimize

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ j1�Rj2

q
(29)

for each triple C1; C2, and s in the grid. The idea behind
(29) is that minimizing the misclassification error
means reducing the number of SVs34,35 (and so reduc-
ing overfitting) while constraining the radius to be
close to 1 means choosing small s37 (and so reducing
underfitting). Then, the balance between these two
terms seems the best criterion for finding the best
parameters (see Figure 3).

Fast Training SVDD
The curse of dimensionality is a problem that affects
many optimization and ML problems, including the
SVDD. To overcome this problem, a method based on
iterative training of only SV is proposed by Chaudhuri
et al.7

The method iteratively samples from the training
dataset with the objective of updating a set of sup-
port vectors called the master set of support vectors
(SV�). During each iteration, the method updates
SV� and the corresponding threshold R2 value and
center a. As the threshold value R2 increases, the
volume enclosed by the SV� increases. The method
stops iterating and provides a solution when the
threshold value R2 and the center a converge. At
convergence, the members of the master set of sup-
port vectors SV� characterize the description of the
training dataset.

Zero FPR RegionsWith SVDD
Safety regions research is a well-known task forML14–16

and the main focus is to avoid false positives, i.e.,
including in the safe region unsafe points. In this sec-
tion, two methods for the research of zero FPR regions
are proposed: the first one is simply based on the
reduction of the SVDD radius until only safe points are
enclosed in the SVDD shape; the second one instead
performs successive iterations of the SVDD on the safe
region until there are nomore negative points.

Radius Reduction
Since, also in the transformed space via feature map-
ping, the shape of SVDD is a sphere, it is reasonable to
think that reducing the volume of the sphere the num-
ber of negative points misclassified should reduce. We
implemented this simple procedure in MATLAB and
we tested it on several datasets (see Figure 4).

FIGURE 3. For too small or too high values of s the optimiza-

tion criterion � (our metric for the “best error”) is high. Also

keep in mind the behavior of the SV, which is very similar to

the one described in Tax and Duin’s work.34,35
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Algorithm 1. RadiusReduction Dataset X � Y is
divided in training set X tr � Ytr and test set
X ts � Yts. A threshold " is set.

1. SVDD-cross-validation on X tr � Ytr

2. ½a; R2�=SVDD(X tr;Ytr; C1; C2, param)
3. maxiter=1000;

4. i=1;
5. while(i< maxiter)
5.1. R2 ¼ R2�10e-5*R2;

5.2. Test SVDD on X ts � Yts

5.3. if(FPR< ")
5.3.1. return ½a; R2�;
5.4 end
6. i ¼ iþ 1;
7. end

Algorithm 2. ZeroFPRSVDD Dataset X � Y is divided
in training set X tr � Ytr and test set X ts � Yts. A
threshold " is set.

1. SVDD-cross-validation on X tr � Ytr

2. [a; R2]=SVDD(X tr;Ytr; C�1; Cþ1, param)

3. Test SVDD on X ts � Yts

4. maxiter=1000;
5. i=1;
6. while(i<maxiter)

6.1. X tri ¼ XðX tsÞ;
6.2. SVDD-cross-validation on X tri � Ytri

6.3. [ai; R
2
i ]=SVDD(X tri ;Ytri ; C�1; Cþ1, param)

6.4. Test SVDD on X ts � Yts

6.5. if(FPR< ")
6.5.1 return ½a�; R�2� ¼ ½ai; R2

i �;
6.6. end
7. i ¼ iþ 1;

end

SVDD Zero FPR Iterative Procedure
Here, we present another algorithm for finding zero FPR
regionswith SVDD. The idea is simply to perform succes-
sive SVDDs on the safe regions found with a preliminary
SVDD to avoid the presence of unsafe points. Again, we

achieve convergence when we reach a fixed number of
iterations or when the condition on FPR is satisfied.

We performed this algorithm in MATLAB and
tested using data from KEEL.22 In Figure 5, an example
with a 2D Gaussian dataset is reported. It seems clear
that the “zeroFPR” algorithm performs better safety
regions than “RadiusReduction” since a new SVDD is
computed at each iteration and its shape fits the data
better. We will confirm this in the “Applications” sec-
tion, dedicated to applications.

RULES EXTRACTION
We now consider how to make the SVDD explainable
in order to explicit the inherent logic and use the
extracted rules for further safety envelope tuning as in
Mongelli et al.’s work.15

Let us suppose to have an information vector I and
to have to solve a classification problem depending on
two classes v ¼ 0 or 1. Let @ ¼ fðIk;vkÞ; k ¼ 1; . . . ;ûg
be a dataset corresponding to the collection of events
representing a dynamical system evolution (v) under
different system settings (Ið�Þ).

The classification problem consists of finding the
best boundary function fðIð�Þ; �Þ separating the Ik points
in @ according to the two classes v ¼ 0 or v ¼ 1. For the
case of SVDD, the best boundary f is simply the shape of
the hypersphere. Although the shape of the hypersphere
may be considered intelligible to some extent (center
and radius constitute a good synthesis of it), a rule-based
description has amore significant cognitive impact.

Logic Learning Machine
The derivation of fðIð�Þ; �Þ) in a rule-based shape is
made by DT and LLM [the analysis was performed

FIGURE 4. Application of Algorithm 1 on a dataset of 400

points sampled from a Gaussian with mean [1,1] and variance

1, 200 target objects and 200 negative examples. The algorithm

converged in 12 iterations. (a) FPR = 0.517. (b) FPR = 0.095.
FIGURE 5. Application of Algorithm 2 on a dataset of 2000

target objects sampled from a Gaussian with mean [1,1] and

variance 4 and 100 negative examples sampled from a Gauss-

ian with mean [1,1] and variance 5. (a) First iteration of the

algorithm. (b) Convergence at the 97th iteration.
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through the Rulex software suite, developed and dis-
tributed by Rulex Inc. (http://www.rulex.ai/)]. They are
both based on a set of intelligible rules of the type if
(premise) then(consequence), where (premise) is a log-
ical product (AND, ^) of conditions and (consequence)
provides a class assignment for the output. In the
present study, the two classes correspond to the pres-
ence or the absence of anomalous patterns. LLM rules
are obtained through a three-step process. In the first
phase (discretisation and latticisation), each variable
is transformed into a string of binary data in a proper
Boolean lattice, using the inverse only-one code binar-
ization. All strings are eventually concatenated in one
unique large string per each sample. In the second
phase (shadow clustering), a set of binary values,
called implicants, are generated, which allow the iden-
tification of groups of points associated with a specific
class. (An implicant is defined as a binary string in a
Boolean lattice that uniquely determines a group of
points associated with a given class. It is straightfor-
ward to derive from an implicant an intelligible rule
having in its premise a logical product of threshold
conditions based on cut-offs obtained during the dis-
cretization step. The optimal placement of these cut-
offs is, therefore, an important phase to extract the
highest information gain before clustering.)4 During
the third phase (rule generation), all implicants are
transformed into a collection of simple conditions and
eventually combined in a set of intelligible rules. The
interested reader on shadow clustering and algo-
rithms for efficient rule generation is referred to
Muselli and Ferrari’s work18 and references therein.

Rules Extraction From SVDD
The derivation of intelligible rules is made as follows.
After that an SVDD has been optimized, a new dataset
of observations sampled around the edge of the SVDD
is provided and the classification via SVDD is regis-
tered. The new dataset is then elaborated via LLM. Dif-
ferently fromCarlevaro andMongelli’s work,5 we need a
more refined sampling of SVDD classification to derive
the new dataset. The sampling is performed by setting
a threshold ", such that the extracted observations are
sufficiently close to the boundary of the trained and
tested SVDD. The threshold is set a priori and depends
on the dataset: given a set X ¼ fxigi of synthetic data
sampled uniformly from the test set, to extract points
close to the radius we evaluate the quantity t :¼
j jjxi � ajj2 �R2jj j; therefore, " 2 ðminðtÞ; maxðtÞÞ. Val-
ues too close tominðtÞ do not allow enough samples to
be extracted while on the other hand values too close
to maxðtÞ extract too many points away from the edge

of the SVDD. A good balance for the choice of " can
then be the average ðminðtÞ þmaxðtÞÞ=2 or values in a
neighborhood of it.

Algorithm 3. ExplainableSVDD Get a�; R� from ZeroFPR
algorithms. Fix ".

1. Sample uniformly a new dataset Xnew s.t.

xi 2 Xnew,
j jjxi � ajj2 �R2 j < "

2. Classify Xnew in Ynew through optimal ZeroFPRSVDD (w.

r.t. ½a�; R�2�)
3. Solve a classification problem via LLM w.r.t.

½Xnew;Ynew�
4. The LLM rule define an explained ZeroFPRSVDD regionR
5. returnR

As in Mongelli et al.’s work,15 we applied these
rules with the goal of maximizing the number of safe
points (that is, the number of points in the target
class), while keeping FPR at zero. This is possible by
performing rule tuning as in Mongelli et al.’s work,15

but SVDD allows for much more flexibility.
Figure 6 shows, as an example, a summary of the

rules extracted with LLM from SVDD, Algorithm 2, in
the case of domain name server (DNS) tunneling (see
“DNS Tunneling” section). Each circle represents a
rule and the larger this is, the more the respective rule
covers a larger number of points. The size of the cen-
tral hole represents the error of that rule: the larger
the hole, the greater the corresponding error. In this
example the classification is done in two classes,
green and red, and in the outer crown, the input fea-
tures are shown. The high number of circles (i.e., rules)
is an indication of the complexity of the system: with a
2D example, we could say that, in the feature space, a
large number of rectangles (i.e., rules) is needed to
best approximate the complicated shape of the SVDD.
We will discuss these concepts in the next section.

APPLICATIONS
Two applications are now considered. First, we focus
on a simple example concerning the stability certifica-
tion of dynamical systems through region of attraction
(ROA),17 where we want to focus on the performance
of rule extraction, and then we move on a much more
complex cybersecurity example: the detection of DNS
tunneling.25,26

ROA Inference
The concept of ROA is fundamental in the stability
analysis of dynamical systems23,40 and it is topical
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when safety of cyber-physical system should be pre-
served with zero (probabilistic) error.15,16

ROA is typically derived through the level sets of
Lyapunov functions but in this case, we want to esti-
mate ROA through negative SVDD: we define the tar-
get class as the set of stable points and the negative
class as the unstable ones.

We consider the Van der Pol oscillator in reverse
time

_x1 ¼ �x2
_x2 ¼ x1 þ ðx2

1 � 1Þx2

�
(30)

the stability region is depicted in blue in Figure 7. The
system has one equilibrium point at the origin and an
unstable limit cycle on the border of the true ROA.

The simulation of the dynamical system is devel-
oped in C21 and the dataset is composed by 300,000
points ðx1; x2Þ with the relative labels (+1 stable, �1
unstable). Due to the big size of the dataset, a fast
SVDD, as in the “Fast Training SVDD” section, is
required. We implemented the negative SVDD and
tested it over this dataset: we obtained good results
(in term of zero FNR) without using Algorithms 1 or 2
due to the good separation between the two classes.
In Figure 7, the SVDD shape is shown (in green), and
the performance indices are as follows:

ACC ¼ 0:9854 FPR ¼ 0 FNR ¼ 0:0542 (31)

where ACC ¼ TPþTN
TPþTNþFPþFN is the accuracy of the

model, FPR ¼ FP
FPþTN is the false positive rate, and

FNR ¼ FN
FPþTN is the false negative rate.

Then, a set of intelligible rules is extracted, as
described in the “Rules Extraction” section (LLM and

DT), and they are tested on several extraction of data-
sets with different sizes, (see Figure 8),21 with the aim
to profile the largest region in term of “safe points,”
that is related with the precision on the target class
TP

TPþFP .
Here, as example, the first three rules with the high-

est covering,a extracted through Algorithm 3 above

if ð�1:6 < x1 � 1:2Þ ^ ð�1:8 < x2 � 1:8Þ then safe

if x1 � �1:6 then unsafe

if ð�1:6 < x1 � 1:7Þ ^ ðx2 � �1:8Þ then unsafe:

We made 103 successive extractions from the dataset
(with different sizes, from 8% up to 50% of the total
points): for each of them, the FPR is almost zero and
the precision on the target class is high, i.e., there is a
good percentage of safe points. We can see that the
performance of the rules extracted with DT after
applying SVDD is quite inferior to the others (Figure 8).
This is due to the fact that DT generates fewer rules
than LLM and the constraint imposed by the shape of
SVDD does not allow to generate rules with large cov-
erage (i.e., large rectangles in the features space).

DNS Tunneling
This dataset deals with covert channel detection in
cybersecurity;2 more specifically, the aim is detecting
the presence of DNS intruders by an aggregation-
based monitoring that avoids packet inspection, in the

FIGURE 6. Rule Viewer. FIGURE 7. ROA of the Van der Pol oscillator. The SVDD shape

obtained through fast-SVDD is shown in green, as in the “Fast

Training SVDD” section.

aThe covering of a rule is the percentage of points for which
that rule is true.
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presence of silent intruders and quick statistical finger-
prints generation. By modulating the quantity of anom-
alous packets in the server, we are able to modulate
the difficulty of the inherent supervised learning solu-
tion via canonical classification schemes (Bayes deci-
sion theory, neural networks). However, our goal is to
make a good classification even in the cases where the
anomalous packets are very muchmixed with the legit-
imate ones, determining the need for more precise and
flexible classificationmethods such as SVDD.

Let q and a be the packet sizes of a query and the
corresponding answer, respectively (what answer is
related to a specific query can be understood from
the packet identifier) and d the time-interval intercur-
ring between them.

The information vector is composed of the statis-
tics (mean, variance, skewness, and kurtosis) of q; a,
and d for a total number of 12 input features

I ¼ ½ma;mq;md; s
2
a; s

2
q ; s

2
d ; sa; sq; sd; ka; kq; kd�:

The corresponding vectors are m, ss, s, and k. High-
order statistics give a quantitative indication of the
asymmetry (skewness) and heaviness of tails (kurto-
sis) of a probability distribution; they help improve
detection inference.

The training and test sets are built as follows. Let
fðxk;vkÞ; k ¼ 1; . . . ;@g be the training set (@ is the train-
ing set size), where xk is a realization of a vector con-
taining a subset of the features m, ss, s, and k, and vk

belongs to f0; 1g (the two classes); if the information
contained in xk corresponds to a DNS data exchange
with tunneling: vk ¼ 1,vk ¼ 0, otherwise.

The classification of the dataset was done through
the SVDD algorithms (RadiusReduction and zeroFPRSVDD)
and the results were compared with the DT algorithm
and the LLM algorithm (see “Rules Extraction” sec-
tion), as in the previous section dedicated to the ROA
application. As before, our goal is to determine the
largest region of parameters with no false positive
(i.e., false positive means prediction of tunneling, but
not tunneling in reality). To do this, we applied the two
algorithms proposed in the “Zero FPR Regions With
SVDD” section to the 5000 size sample above (3000
for training and 2000 for test) using C1 ¼ 1=n1N1;

where N1 ¼ #fvk ¼ þ1g and n1 ¼ 0:01 (i.e., we allow
the acceptance of up to 1% of negative objects in the
target class), C2 ¼ 1=n2N2 where N2 ¼ #fvk ¼ �1g
and n2 ¼ 0:05 (i.e., we allow up to 5% negative objects
to be included in the classifier shape), and RBF kernel
with s determined with cross-validation. The results
are shown in Table 1, where FPR is the usual false posi-
tive rate, %safe is the percentage of safe points (com-
puted as the precision on the positive class TP

TPþFP),
#iter the number of algorithm iterations, #time (s) the
time in second for the convergence, R2 the squared
hypersphere’s radius, and #SV the number of deter-
mined SVs.

We can observe that the zeroFPRSVDD in this case
works well than RadiusReduction, achieving almost zero
FPR with an acceptable large safety region.

Then, we tested the performances of the algo-
rithms in different extractions of 103 subsets with dif-
ferent sizes from 8% to 50% of the total points
available for test; 11� 103 trials in total. We compared
them with LLM and DT as in Mongelli et al.’s work15

(see Figure 10) and so a rules extraction has been
requested (see the “Rules Extraction” section). As an
example, here are the first three rules for covering
extracted with DT

if mq � �0:5 then tunneling

if � 0:5 < mq � 1:5 ^ s2
q � 0:4 then tunneling

if mq > 1:5 ^ s2
q � 0:4 then no tunneling:

Native LLM and DT are tuned according to Section
4.4 of Mongelli et al.’s work.15 The procedure has three
basic steps. 1) Manual inspection of the most relevant
regions for safety. 2) LLM/DT is trained with zero error
when developing the rules. 3) Progressive extraction of
unsafe points from the original data set until only safe
points are obtained. The native adjective here means
that the algorithms are applied directly, without SVDD
interrogation. Due to its intrinsic restriction in model-
ing data through hyper-rectangles, see, e.g. Grover

FIGURE 8. Comparison of the percentage of safe points with

LLM/DT before and after SVDD, VdP example.
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et al.’s work,3 native XAI may not follow the potential
tricky nonlinearity that can be chased by SVDD.

The analyses show that the LLM rules extracted
from the SVDD model perform better classification
than the other methodologies: up to 95% points with
near-zero FPR versus only 85% for the classical LLM.
The other algorithms perform sufficiently well, more
than 50% of the points with near-zero FPR, but, as
could be assumed, zeroFPRSVDD achieves a better safe
region than RadiusReduction: this is probably due to the
fact that zeroFPRSVDD fits the shape of the points better
since the algorithm computes a new region at each
iteration (see Figure 9) while RadiusReduction just rigidly
reduces the volume of the SVDD hypersphere until
there are points of the other class.

Finally, we report in the following the plot (see
Figure 11) concerning the comparison between rule
extraction methods with and without the sampling of
the points around the edge of the SVDD region (the
old algorithm is the one of Carlevaro and Mongelli’s
work5). It is clear that the accuracy of the classifica-
tion has been improved with the new version of the
ExplainableSVDD algorithm, thus confirming the observa-
tions reported so far.

REMARKS
Zero Statistical Error
Zero statistical error, we have referred to so far, refers
to the discovery of the envelope, in the feature space,
characterizing the presence of the points of interest of
a single class only. We may refer to zero FN when the
envelope is a safety envelope as we think to it as the
conditions for safety (e.g., no collision in a smart mobil-
ity scenario);41 in that case, the term “positive” means
the point is outside of the safety envelope and some
risk or danger may be associated to it (a collision). On
the other hand, we may refer to zero FP, when we want
to discover the envelope, in the feature space, in which

TABLE 1. Algorithm statistics for the DNS dataset.

FPR %
safe

#
iter

# time
(s)

R2 #SV

Alg 1 0.0108 80.18 7 65.19 0.7985 61

Alg 2 0.0079 84.71 4 52.13 0.6958 31

FIGURE 9. 2D graph of the evolution of the “safety region” (the red points are the tunneling ones) with zeroFPRSVDD: for this example,

we usedmd (average interarrival time between query and answer packet over 1000 sample) andmq (average size of query packet)

as input features of the DNS tunneling dataset. The star points are the SVs of the description, colored referring their specific label.
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the risk conditions are certain, namely, all the points of
the envelope are anomalous or dangerous; this may be
typically associated to the discovery of cyberattacks.
For the sake of simplicity, we have followed the zero
FPR notation in both algorithm design and perfor-
mance evaluation. In the DNS tunneling problem, the
safety region surrounds the tunneling samples (the red
points in Figure 9); in this respect, zero FPR means
detected cases are cyberattacks for sure as no legitti-
mate samples lie in the (zero FPR) region.

The term “statistical” is associated to the fact that
the metric is still based on measurements performed
on the data available; it is not certain as in the formal
logic perspective, which is, in turn, a way to certify
safety. The two worlds (ML and formal logic), however,
may be put in contact; recent studies are dedicated to
the formal verification of neural networks42 and the
safety envelope, with zero statistical error property,
may be the driver for further formal logic validation.43

Data at Production Stage
Results shown in the figures correspond to a valida-
tion set, different from the training and test sets used
in the cross-validation of the algorithms. Such a vali-
dation set would correspond to the production set
(i.e., once the ML model is deployed at run time on the
“production line,” without further retraining), under
the assumption that the (unknown) probability distri-
bution generating the data is the same at training and
production stages.

The hypothesis may be reasonable or not, depend-
ing on the specific application scenario.

In the presented ROA case, the dynamical system
is fixed, not affected by noise and no differences are
to be considered between training and production
stages. Either any variation in the dynamic equations
or any environmental noise may be considered during
the training phase.

In the DNS case, raw data (fromwhich feature sam-
ples are built) derive from the monitoring of a DNS
server over a week period, in which traffic variations do
not imply significant variations of theMLmodels (train-
ing and test are divided in the proportion of 50%).45

CONCLUSION AND FUTUREWORK
This article investigates the use of the SVDD to find
envelopes around points of a given class, with zero
statistical classification error; the radius of the SVDD
is suitable to maintain the largest working conditions,
yet with the zero error property. A further interro-
gation of the SVDD offers support to the intelligibility
of the model.

The work on rule extraction is mainly focused on
the LLM and the DT algorithms, other approaches
may be of interest, such as BEEF3 and Guidotti et al.’s
work,44 which could be the basis for further investiga-
tions in intelligible rule extraction.

FIGURE 11. Accuracy classification of different extractions of

103 subsets of the DNS tunneling dataset. In the legend, the

asterisked algorithms at the top (�) refer to those reported in

this article, with the rule extraction near the SVDD edge,

while those asterisked at the bottom (�) refer to the previous

version.5 It is clear that the accuracy of the classification is

definitely improved by the new approach.

FIGURE 10. Comparison of the percentage of safe points with

LLM/DT before and after SVDD, DNS-tunneling example.
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