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A B S T R A C T

The aim of this paper is to propose a novel methodology for the measurement of volume of masses of granular
material: this term encompasses a wide range of materials like grain, sand, coal and so on. The proposed
approach is based on the exploitation of grids of ultrasonic ranging sensor nodes, placed above the material
mass, exploiting LoRaWAN connectivity for data transmission and measuring the actual level of the material in
each single spot. A geometrical approach is applied to the measured data for the computation of the volume.
The proposed approach was tested by means of simulations and exploiting a reduced-scale experimental setup:
different grid layouts were implemented and tested, with the aim of increasing the measurement accuracy.
Since the presented experimental setup can be seen as a worst case scenario, the achieved results can be
assumed as an upper bound for the accuracy of the proposed layout.
. Introduction

The term ‘‘Granular Materials’’, or ‘‘Bulk Solids’’, is used to indicate
ll those materials which are composed of individual solid particles
hose size does not allow them to be subject to thermal motion

luctuations: this happens when the diameter of the single particles
omposing the solid is in the [0.1 μm, 10 mm] range [1]. Such definition
ncompasses a huge number of materials which are massively present
n nature and extensively treated in industrial processes [2]: the most
ommon example of a granular material is sand, but countless, hetero-
eneous examples can be cited, like grain, coal, rice, snow, pills and so
n.

The peculiar features of these materials pose them halfway between
olids and liquids: in particular, their distribution changes according
o movements of the single particles or swarm of particles, similarly
s liquids, but they do not fully assume the shape of the container in
hich they are placed, a typical feature of liquids. This means that a
ass of granular materials does not have a flat surface: the shape of

he surface is in general due to a large number of different phenomena.
s an example we may think of sand, whose superficial shape is due

o a large number of physical and meteorological phenomena (wind,
rosion, water, rain, etc.) or to grain in a granary: in this case, the shape
f the upper surface is mainly due to the way grain is inserted inside
he structure (from a central or a lateral opening).

∗ Corresponding author.
E-mail address: alessandro.pozzebon@unipd.it (A. Pozzebon).

Such features make the measurement of the volume of any kind of
granular material by far more challenging than in the case of solids
or liquids. Indeed, the volume of a solid is not subject to change:
however, in case of change, it can easily be estimated by acquiring the
weight of the solid itself once its density is known. A number of papers
focusing on solids can be found in literature, in general exploiting
imaging [3–7]. Regarding liquids, their volume can be estimated again
by measuring the weight if the density is known. When liquids are
stored in containers, an alternative way to measure their volume is
by measuring the empty volume of tanks and containers [8,9] or by
acquiring the level of the liquid itself inside the container [10–15].
This can be done exploiting a large number of sensors: these include
for example ultrasonic [16], capacitive [17] or fiber optic [18] sensors.

Conversely, the case of granular material is by far more complex
since the shape of the material as well as the way it is distributed
in each specific container have to be taken into account. Moreover,
its value is subject to continuous changes due to movements of the
particles: as a matter of fact, a local measurement of the material level
or the measurement of its weight is thus not sufficient to allow an
estimation of the overall volume. For this reason, other techniques
have to be evaluated, taking into account also the measurement system
requirements related to the deployment site. These may foresee the
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usage of complex sensors and devices like cameras [19] or Unmanned
Aerial Vehicles (UAVs) [20–22], or may require the integration of
a larger number of sensor nodes [23] like the solution presented in
this paper, possibly keeping low their overall cost in order to foster
its adoption in large numbers. In line with this approach, this paper
proposes a technological infrastructure based on low cost ultrasonic
sensors, arranged according to a grid-layout, able to remotely trans-
mit the collected data thanks to the Long Range (LoRa) transmission
technology together with the LoRa Wide Area Network (LoRaWAN)
protocol. Thanks to the low cost of the sensors, different layouts can
be envisaged, in order to increase the overall accuracy of the volume
estimation.

While this approach is novel and to our knowledge has never been
presented, a number of works dealing with granular materials can be
found in literature. Some of them are not directly targeted towards
the actual measurement of the volume but only of the surface level,
having in general silos as main targets. Indeed, these structures have
a diameter which is by far smaller than their height: this means that
through a single measurement of the level, the volume can be easily
assessed with an acceptable accuracy. An interesting overview of the
techniques that can be applied to the measurement of the level of bulk
solids stored in silos is provided in [24], while a detailed architecture
proposing the usage of three capacitive sensors is described in [25].

The idea of exploiting information about the level for the estimation
of the granular material volume with a higher accuracy is presented
in [26], where radar is employed to reconstruct the upper surface of
the grain stored in a silos, and then to calculate the volume according
to a geometrical approach presented in [27]. The approach presented
in [26] is further extended in [28], where machine learning techniques
are applied for the grain quantity estimation. A similar approach is
presented in [29], where UAVs are used to estimate the upper surface
of a load of sand stored in a sand carrier. Following the laser scanning
of the surface, the volume is obtained by resorting to the dimensions of
the carrier, which are a priori known. At a larger scale, satellite images,
photogrammetry and lidar have been extensively used to estimate the
material volume in large areas, for example in sand dunes [30,31]
or sand quarries [32]. However, while these approaches may be in
some way similar to the one presented in this paper, the required
instrumentation is by far more expensive. Moreover, the usage of the
AUV does not allow for a continuous real time monitoring: these
requirements are not mandatory for the specific application (the load
in the carrier is expected not to change with time) but may be crucial
in other application scenarios. Similarly, Turner et at. [33] propose the
estimation of bulk solids volume in silos exploiting low density point
clouds acquired by means of a laser distance meter: again, this solution
is based on expensive devices and complex computing techniques, and
does not foresee real time and continuous data acquisition.

A limited number of works focuses specifically on the volume esti-
mation of piles of bulk material. Their approaches are the most similar
to the experimental setup presented in this paper and different tech-
niques are employed for the estimation. The solution presented in [34]
exploits Microsoft Kinect to estimate the actual shape of heaps of a
number of different materials (e.g., lignite, wood chips, coke, etc...):
while this work does not focus directly on volume measurement, this
latter is obtained in the preliminary phase of the technique presented
in this paper, where the shape of the upper surface of the bulk material
is estimated by means of sensed data. Actual volume measurements
exploiting imaging are presented in [35] by means of range imaging
(RIM) camera and in [36] using laser telemeters on piles of coal, while
Yanling et al. [37] propose a technique based on reverse engineering,
exploiting point clouds to achieve a 3D polygonal model of the upper
surface of the material.

A solution based on ultrasonic ranging was only devised in one
contribution: in [38], an array of ultrasonic sensors was employed to
acquire the profiles of a mass of bulk material. However, the system was
2

only tested on an empty box of known volume, proposing a different
computation approach deriving from the deployment of the sensor
array on a conveyor belt. Accordingly, the solution proposed in this
work has never been presented in the literature for what concerns both
the measurement system architecture and the computation process.

The rest of the paper is structured as follows: Section 2 presents
the approach proposed in this paper and the architecture of the tech-
nological infrastructure, while the algorithm adopted for the calcu-
lation of the volume is described in Section 3. Section 4 describes
the different layouts of the distributed measurement system, while
simulations are presented in Section 5. The experimental setup and the
field tests are presented respectively in Sections 6 and 7. Test results are
then discussed in Section 8 while Section 9 presents some conclusive
remarks.

2. System architecture

The proposed system aims at measuring the volume of granular
materials by means of a sensor network: in such architecture, sensors
are positioned according to a specific space arrangement, being in
charge of measuring the level of the material in a set of specific
points. In the simplest case, one sensor is placed at each corner of a
square delimiting the measurement area. However, different layouts
can be envisaged: in particular, in Section 4 new configurations will be
proposed, suggesting the usage of more than one sensor for a sub-set of
the measurement spots, with the aim of increasing the overall accuracy
and reliability of the measurement system.

Regarding the measurement technique for the material level, as
explained in [39], such task can be accomplished exploiting three
sensing strategies. Indeed, sensors can be positioned on the floor of the
deployment site (i.e., below the granular material): in this case, weight
sensors (for example, piezoelectric sensors) can be used to estimate
the weight of the material in each specific point and thus extract the
actual material level. Another option foresees the positioning of poles
in charge of detecting the level of the material by measuring the height
of the buried section of the pole itself. Both these solutions are suitable
to be employed outdoor, where the granular material is not provided
with any type of coverage.

The last option, and the one adopted in this work, is designed for
those situations where the material is stored indoor or under any type
of coverage: in this case, sensors can be deployed above the surface of
the granular material, e.g. fixed to the coverage, and the level of the
material is then estimated by measuring the distance of the material
surface from the fixed sensor positions. Such a solution can be easily
employed in a number of application scenarios, for example in case of
warehouses, granaries or any other indoor storage site. In this case a
distance measurement is exploited, therefore a wide range of sensor
typologies can be used: one good option is represented by ultrasonic
ranging sensors, which have very low costs, limited power consump-
tion, and are able to work in a wide range of operating conditions with
obvious advantages with respect to other technologies (e.g. infrared
sensors). While these sensors are only able to measure the distance of
the material surface from the coverage on which they are fixed, the
actual material thickness can be indirectly measured by knowing the
exact positioning height of the sensors: by subtracting the measured
distance from this value, the thickness value is achieved.

The architecture presented and tested in this paper is shown in
Fig. 1 and is based on a set of sensor nodes integrating ultrasonic
sensors, provided with long range wireless connectivity, and battery-
powered, adopting however power reduction policies to improve the
lifetime of the devices. Regarding the connectivity, different choices
could be made, exploiting either local or wide area technologies. Local
area technologies are ideal when reduced power consumption is re-
quired and the area to be covered has a range below 100 m: in this
case, Bluetooth is probably the best option. In particular, Bluetooth
5 modules require a very limited amount of power to transmit (in
general in the order of 10 mW) and their cost is in the order of few of

euros: as an example, BM70/71 modules by Microchip have a declared
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Fig. 1. System Architecture.
current absorption in transmission of 3.3 mA at 3.0 V (and thus a
10 mW power consumption) [40]. While such features may suggest
to choose this option, local area technologies have the drawback of
requiring a local gateway: this means that a more complex network
infrastructure is required when large areas have to be covered. Long
range solutions allow to overcome this problem, however at a price of
higher power consumption. Nevertheless, a number of technologies has
emerged in the last 10 years, allowing the implementation of long range
communication, while keeping low the amount of required power.
Among these technologies, LoRa is probably the one that has seen the
largest development and adoption at a global level.

LoRa operates in the unlicensed Industrial, Scientific and Medi-
cal (ISM) bands of 433, 868 and 915 MHz and it is based on the
proprietary Chirp Spread Spectrum (CSS) modulation, patented by
Semtech [41]: this is a frequency modulation where symbols are en-
coded in chirps, i.e., sinusoidal signals whose frequency is modulated
with linear sweeps, increasing (up-chirp) or decreasing (down-chirp)
over time. Such modulation allows to achieve receiver sensitivity values
up to −146 dB, which entail transmission distances up to some tens of
kms outdoors in rural areas. These performances are scaled in indoor
environments: however, with a single gateway it is still possible to
cover large scale buildings, with a notable reduction in complexity with
respect to local area technologies which require the deployment of large
quantities of access points. LoRa performances in terms of transmission
ranges and power consumption can be partially customized by mod-
ifying a set of transmission parameters: these include the Spreading
Factor (SF), the Bandwidth (BW) and the Coding Rate (CR). The SF
ranges from 7 to 12 and affects the speed of the chirps: a higher
SF entails a higher power consumption but also a larger transmission
distance. The BW is basically the spectral width of the chirp: three
values are allowed (125 kHz, 250 kHz and 500 kHz) and a smaller
BW allows to reach larger transmission distances while a larger value
reduces the Time on Air (ToA) and thus the power consumption.
Finally, the CR indicates the number of redundant bits for Forward
Error Correction (FEC): 4 values are allowed (4/5, 4/6, 4/7 and 4/8)
and a lower value implies longer ToA but also a higher chance to
correctly demodulate the packets. All these values can be customized
according to each specific application requirement: for this reason, in
this work the adoption of LoRa was preferred with respect to local
area technologies like Bluetooth or WiFi. As already stated, even if
LoRa requires a larger amount of power with respect to Bluetooth,
such value is still acceptable for long term monitoring. Moreover, LoRa
demonstrated to be immune to interference and heavy multi-path for
higher SF values [42]. Similarly, LoRa modulation proven to be robust
also to possible interferences caused by competing technologies in the
same ISM bands, like SigFox, Z-Wave or IO Home Control [43]. Finally,
LoRa packet collisions proven to be critical only in case of the same
SF and of transmissions on the same channel, remembering that LoRa
transmissions can exploit 8 different channels [44].

LoRa is complemented by the LoRaWAN protocol, which imple-
ments policies devoted to power consumption reduction like Adaptive
3

Data Rate (ADR), an adaptive setting of the aforementioned LoRa radio
parameters according to the best ratio between low power consumption
and successful transmission. LoRaWAN foresees a star network topology
where end nodes transmit packets to one or more gateways which are
in charge of forwarding them to the server structure: this is composed
of a Network Server, in charge of managing all the incoming packets,
and an Application Server, which is in charge of processing the data.
The only limitation that has to be taken into account in any LoRaWAN
transmission is related to the duty-cycle: indeed, according to the local
regulations, in most countries this limit is set to 1% [45]. This means
that a significant time has to be waited between one transmission and
the following: however, this is not an issue for the proposed application
since granular material volume measurements are not expected to be
performed frequently. As a positive side effect, such regulation notably
reduces the chance of packet collisions.

The general architecture of each of the sensor nodes presented in
this paper integrates one or more ultrasonic ranging sensors according
to the specific network layout, a microcontroller for data acquisition
and processing, a LoRa module and the batteries. The ultrasonic sensor
is the HC-SR04, produced by a number of manufacturers and featuring
a detection range from 2 cm to 400 cm, with a declared accuracy of
0.3 cm. However, such value appears to be underestimated and for the
current application, due to the contribution of the front-end electronics
for the Time of Flight estimation, an accuracy of ±1 cm was assessed.
The HC-SR04 sensor operates at the frequency of 40 kHz, and has
separate emitter and receiver: this allows to obtain a relatively narrow
angle of 15◦. Such feature is crucial in punctual distance measurements
since larger angles do not provide a sufficient spatial resolution. To-
gether with these features, this sensor was also chosen for its low cost,
which is in the order of few euros. The microcontroller performing
data acquisition and processing is an ATtiny861A by Atmel/Microchip:
this device was chosen since the system has to perform a very limited
number of operations, but the power consumption is crucial. The
current absorption of the ATtiny861A is 200 μA for 1.8 V powering
voltage when operating at 1 MHz clock frequency: such value drops
down to 2 μA if the microcontroller is put in power-down mode [46].

Data transmission is performed by means of an RFM95 LoRa mod-
ule by HopeRF, connected to the microcontroller by means of Serial
Peripheral Interface (SPI) protocol. The network infrastructure is set
up exploiting an LG308 Dragino gateway in charge of forwarding the
received packets to the LoRaWAN Network and Application Servers by
means of WiFi connectivity.

Finally, the node is powered by means of two 3.7 V 18650 Li-Ion
batteries featuring large capacity (up to 6800 mAh), required since the
HC-SR04 sensor needs a supply voltage of 5 V.

3. Algorithm for volume estimation

In [39] we proposed a mathematical model for the calculation of
the volume of granular masses. In that case we considered a three-
dimensional shape 𝐹 ⊂ R3, given by a rectangular parallelepiped, with
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Fig. 2. Example of regular surface (a) and corresponding Base sensor layout (b).
square base of edge 𝑙, but upperly limited by a regular surface 𝑆 as in
Fig. 2(a). We can assume that the base of 𝐹 lies in the plane 𝑧 = 0 and
hence the vertex points of the base have coordinates (0, 0), (𝑙, 0), (0, 𝑙)
and (𝑙, 𝑙).

The approximation of the volume of 𝐹 was given by considering a
grid of (𝑛 + 1) × (𝑛 + 1) points in the base, with coordinates (𝑖 𝑙𝑛 , 𝑗

𝑙
𝑛 , 0)

for 0 ≤ 𝑖, 𝑗 ≤ 𝑛. Fig. 2(b) shows the case in which 𝑛 = 5. Let 𝑎𝑖𝑗 be the
height of 𝐹 in correspondence of the points of the grid (𝑖 𝑙𝑛 , 𝑗

𝑙
𝑛 , 0), that is

we know the points (𝑖 𝑙𝑛 , 𝑗
𝑙
𝑛 , 𝑎𝑖𝑗 ), where the 𝑎𝑖,𝑗 are the measurements of

the sensors. The approximated volume of 𝐹 will be given by the sum of
the average volumes of the triangular subdivisions of each block of the
grid. Notice that in this case the area of each triangular base is 𝐴 = 𝑙2

2𝑛2 .
Hence, the volume can be approximated by the following:

𝑉𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑙2

4𝑛2
⋅
𝑛−1
∑

𝑖,𝑗=0
(𝑎𝑖,𝑗 + 𝑎𝑖,𝑗+1 + 𝑎𝑖+1,𝑗 + 𝑎𝑖+1,𝑗+1), (1)

which can be rewritten as

𝑉𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑙2

4𝑛2
⋅
(

𝑎0,0 + 𝑎0,𝑛 + 𝑎𝑛,0 + 𝑎𝑛,𝑛
)

+

+ 𝑙2

2𝑛2
⋅
𝑛−1
∑

𝑖=1
(𝑎0,𝑖 + 𝑎𝑙,𝑖 + 𝑎𝑖,0 + 𝑎𝑖,𝑙)+

+ 𝑙2

𝑛2
⋅
𝑛−1
∑

𝑖,𝑗=1
𝑎𝑖,𝑗 .

(2)

From now, we refer to the model introduced in [39] as ‘‘Base
model’’.

4. Grid configurations

The model in Eq. (2) was described and characterized in a previous
work by the authors [39]. In that work, a set of simulations was used
to assess the model performance in terms of accuracy, but that setup
assumed the usage of LDR sensor arrays. The resolution of the LDR
sensors limits the method overall accuracy: indeed, those sensors have
typically a finite resolution of 5 cm.

Fig. 3 is obtained using the same simple surface defined in Table 1
of [39], where the simulation aims to study the behavior of the Base
model when the level of the mass grows, uniformly, within the LDR
resolution. Each of these volumes has a base of 20 m × 20 m while the
upper surface is uneven and different for each of the volumes.

Obviously, due to the quantization, in Fig. 3 in many cases the
Base model returns the same value for the volume with different
‘‘true’’ heights. Nevertheless, when using a low accuracy sensor, the
uncertainty of the volume estimation under certain assumptions can be
improved using a greater number of sensors, which usually corresponds
to a better measurement but also to an increase in the costs of this type
of instrumentation that, while not being in general very high, must still
be taken into consideration.

In this context, considering the quantization error introduced by
the sensor a 0 mean random process, two variants of the Base model
4

described in [39] are presented, with the idea to enhance the volume
estimation accuracy. As we will see in the next sections, these mod-
els give a better estimation also using analog sensors which do not
introduce a quantization error.

The general idea on which the two new models are based is the same
for both: place more than one sensor for all or part of the measurement
spots. For example, two sensors may be placed symmetrically to the
side of the measurement spots, or four sensors may be arranged accord-
ing to a square layout, with the measurement spot placed exactly in the
middle: in this case, the value 𝑎𝑖,𝑗 which would have been measured
in the Base model is replaced with the arithmetic mean of the values
returned by the new sensors. The distance between the sensor spots
must be such as to have a sufficient probability of being characterized
by an independent error. In this perspective, the two proposed models
differ only in the choice of the number of sensors to be used on
each internal node (2 or 4). These solutions allow for reducing the
contribution of the quantization error of an amount which depends on
the surface with the upper limit of a factor equal to 1∕

√

𝑁 , where 𝑁
are the sensors used in each node. A limit to the value of 𝑁 is set by the
node cost, complexity and power consumption, as will be explained in
Section 6, therefore we decide to use a maximum of 4 sensors in each
node, with the two strategies depicted in Fig. 4.

In particular, the first model, called B2 (Fig. 4(a)), needs:

∙ a unique sensor at the four corners of the grid;
∙ two sensors for all remaining nodes.

For this model, the distance between two adjoining measurement
spots will be the same of the Base model.

The second model, called B4 (Fig. 4(b)), needs:

∙ a unique sensor at the four corners of the grid;
∙ two sensors for each node in the border of the grid;
∙ four sensors in the internal nodes.

Since this model requires a large number of sensors, to limit such
number the measurement spots are placed at a distance which is 1.25
times the one of the B2 model. In any case, it has to be underlined that,
despite increasing the number of employed sensors, each configuration
foresees the usage of the same number of nodes of the corresponding
Base model: indeed, the newly added sensors are simply connected to
the already existing nodes.

At this point we show in detail the two new models and later some
simulation results. We place ourselves in the same geometric conditions
(surface 𝑆 and square base 𝑙 × 𝑙).

For B2 model, we denote by:

∙ 𝑎0,0, 𝑎0,𝑛, 𝑎𝑛,0, 𝑎𝑛,𝑛 the reading values of the sensors placed in the
vertices of the base;

∙ 𝑏−𝑖,𝑗 , 𝑏+𝑖,𝑗 the reading values of the two sensors that replace the
sensor that returns the value 𝑎𝑖,𝑗 in the model in [39], for any
sensors but the ones in the corners of the grid.
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Fig. 3. Simulations using the Base model with surfaces (a), (b), (c) and (d) in [39]. The true volume is defined as 𝑉 = ∫ 𝑏
𝑎 ∫ 𝑑

𝑐 (ℎ𝑖(𝑢, 𝑣) + 𝛥ℎ)𝑑𝑢𝑑𝑣.
Fig. 4. Sensors disposition for (a) B2 and (b) B4.
This time, the approximate volume obtained is equal to

𝑉B2 = 𝑙2

4𝑛2
⋅ (𝑎0,0 + 𝑎0,𝑛 + 𝑎𝑛,0 + 𝑎𝑛,𝑛)+

+ 𝑙2

2𝑛2
⋅
𝑛−1
∑

𝑖=1
(
𝑏−0,𝑖 + 𝑏+0,𝑖

2
+

𝑏−𝑙,𝑖 + 𝑏+𝑙,𝑖
2

+
𝑏−𝑖,0 + 𝑏+𝑖,0

2
+

𝑏−𝑖,𝑙 + 𝑏+𝑖,𝑙
2

)+

+ 𝑙2
2
⋅
𝑛−1
∑

𝑏𝐸𝑖,𝑗 + 𝑏𝑊𝑖,𝑗
2

.

(3)
5

𝑛 𝑖,𝑗=1
For B4 model, we denote by:

∙ 𝑎0,0, 𝑎0,𝑛, 𝑎𝑛,0, 𝑎𝑛,𝑛 the reading values of the sensors placed in the
vertices of the base;

∙ 𝑏−0,𝑖, 𝑏+0,𝑖 the reading values of the two sensors that replace the
sensor that returns the value 𝑎0,𝑖 in the model in [39], with 𝑖 =
1,… , 𝑛−1. Similarly we consider values 𝑏−𝑛,𝑖, 𝑏

+
𝑛,𝑖, 𝑏

−
𝑖,0, 𝑏

+
𝑖,0, 𝑏

−
𝑖,𝑛, 𝑏

+
𝑖,𝑛

for the sensors in the other three sides of the base;
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p
t
v

m
2

∙ 𝑏𝑁𝐸
𝑖,𝑗 , 𝑏𝑆𝐸𝑖,𝑗 , 𝑏𝑆𝑊𝑖,𝑗 , 𝑏𝑁𝑊

𝑖,𝑗 the reading values of the four sensors which
replace the internal sensor which returns the value 𝑎𝑖,𝑗 in the
model in [39], with 𝑖, 𝑗 = 1,… , 𝑛 − 1 (where NE=North-East,
SE=South-East, NW=North-West, SW=South-West).

By replacing the averages of the sensors on the sides and in the
interior of this model in Equation (2), we obtain that the approximate
volume obtained is equal to

𝑉B4 = 𝑙2

4𝑛2
⋅ (𝑎0,0 + 𝑎0,𝑛 + 𝑎𝑛,0 + 𝑎𝑛,𝑛)+

+ 𝑙2

2𝑛2
⋅
𝑛−1
∑

𝑖=1
(
𝑏−0,𝑖 + 𝑏+0,𝑖

2
+

𝑏−𝑙,𝑖 + 𝑏+𝑙,𝑖
2

+
𝑏−𝑖,0 + 𝑏+𝑖,0

2
+

𝑏−𝑖,𝑙 + 𝑏+𝑖,𝑙
2

)+

+ 𝑙2

𝑛2
⋅
𝑛−1
∑

𝑖,𝑗=1

𝑏𝑁𝐸
𝑖,𝑗 + 𝑏𝑆𝐸𝑖,𝑗 + 𝑏𝑆𝑊𝑖,𝑗 + 𝑏𝑁𝑊

𝑖,𝑗

4
.

(4)

With the aim of proving the efficiency of the geometric methods
roposed for calculating the volume using sensors with finite resolu-
ion, the approximation formulas were tested on the same four different
olumes studied in [39] and shown in Fig. 3.

The preliminary simulations aim to study the behavior of the three
odels when the level of the mass grows, uniformly, from −2.5 cm to
.5 cm, assuming a quantization of 5 cm in the LDR sensors. In Fig. 5

the black circles represent the linear growth of the true volume. The
red squares represent, as before, the corresponding values of volumes
computed by the Base model. Finally, the green and blue diamonds
represent the corresponding values of volumes computed, respectively,
with the B2 model and the B4 model. We can notice that the Base model
is not able, in general, to perceive small variations of volume: indeed,
for all the four surfaces, looking at the trends it is possible to notice
the actual quantization of the volume, with quantization steps which
are notably larger than for the other two models. This is much more
evident in Figs. 5(c) and 5(d) where the Base model features a limited
number of quantization steps: however, here the B2 and B4 models
provide a better computation of the volumes due to the shape of the
surface which allows, in the simulated environment, for an effective
compensation of the quantization error. Indeed, in the case of a single
sensor, the error is due only to the quantization error of the sensor itself
(i.e., the maximum value is ±2.5 cm). Conversely, when more sensors
are positioned in the measurement spot, the actual level is computed
as the mean value of the sensors readings. In all the cases when the
surface is not flat, sensors positioned close to the same measurement
spot may read two different quantization levels. This leads to a mutual
compensation of the individual quantization errors.

5. Simulations

A second set of simulations was carried out assuming a configu-
ration close to the actual experimental setup and more in general to
real world applications, concerning granular materials forming piles. To
this aim, in these simulations a 1 cm sensor resolution was assumed:
this value is more in line with the actual accuracy of the ultrasonic
sensors used in the final experimental setup. Concerning the material
configurations, these were chosen to simulate as much as possible a
real scenario of a closed structure housing granular material such as a
granary or a warehouse: indeed, in this context the material is generally
introduced by means of a central opening or from spots placed close to
the outer walls. With such configurations, the material creates a central
pile in the first case or an accumulation in the corners or in the sides
in the second. Obviously, other configurations may have been chosen.
However, the aim of this contribution was to demonstrate the viability
of the solution in a general context: for this reason we chose to test the
performances on these shapes.

We simulated the granular material pile surface with a 2-D scaled
Gaussian with 𝜎𝑥 = 𝜎𝑦 and maximum ℎ−ℎ0 covering a square area with
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a side of 150 cm, on top of a parallelepiped with fixed area and base
height ℎ0. We consider also a high spatial frequency harmonic noise
to simulate local perturbations and white noise to simulate fine spatial
variability due to the granular nature of the material. In any case we
pose the physical constraint to the Gaussian slope to be lower than
45◦. Note that for the selected surface (A 2-D Gaussian with 𝜎𝑥 = 𝜎𝑦),
the sampling theorem is satisfied when the spatial sampling step is
smaller than 𝜋 ∗ 𝜎𝑥∕2. We therefore, assume a critical value for the
Gaussian standard deviation given by 𝑑𝑥∕𝜋 ∗ 2, being 𝑑𝑥 the spacing
of the sensing nodes, and we assess the algorithm performance for the
standard deviations and different noise levels. Very similar results were
found until the Gaussian standard deviation remains larger than the
critical value, condition which can be easily fulfilled in real cases even
with sparse sensors grids. The results presented hereafter are related
to a Gaussian with 𝜎 = 150 cm and considering a noise level given by
white noise with a standard deviation 0.2 ∗ (ℎ−ℎ0), and harmonic noise
with 0.2 ∗ (ℎ − ℎ0) amplitude.

From these results it can be seen that the estimation errors provided
by the proposed models are functions of the Gaussian height (ℎ − ℎ0)
relative to the base height (ℎ0). This is an obvious result, since this
parameter measures the non-flatness of the surface and its impact on
the volume, having the base a constant area. Moreover, it was found
that the worst situation, as far as the error is concerned, is found when
the Gaussian peak, the top of the pile, is placed in the center of the
square base, as can be seen from the following configurations (shown
in Figs. 6(a) to 9(a)):

• Configuration #1, with the vertex of the pile in central spot;
• Configuration #2, with the vertex of the pile the central spot of

one of the sides;
• Configuration #3, with the vertex of the pile in one of the corners;
• Configuration #4, with the vertex of the pile placed in a random

spot of the monitoring area.

For each configuration, the estimation of the volume was performed
on 30 different surfaces, obtained by progressively increasing the value
of the height of the pile vertex. The volumes were computed on the
same surfaces for each of grid layouts, in order to make the results
comparable. Four grid layouts were tested. The Base model was tested
assuming two different spatial samplings: a ‘‘sparse’’ configuration with
5 sensors per side (a sensor every 37.5 cm) and a ‘‘dense’’ configuration
with 6 sensors per side (a sensor every 30 cm). Then, the B2 model
was tested in the ‘‘dense’’ configuration while the B4 model was tested
in the ‘‘sparse’’ one, resuming the configurations of the experimental
setup. This choice was made to keep limited the overall number of
sensors: indeed, with this configuration the overall number of sensors
was respectively 25 and 36 for the Base models, 68 sensors for the B2
one and 64 sensors for the B4 one. The choice of these quantities of
nodes and sensors will be justified in Section 6.

Figs. 6(b) to 9(b) show the estimation error of the system in function
of the pile height and for the four material layout configurations. First
of all, it is evident that in all cases the error tends to stabilize around
a certain value from a certain height onward. For all the cases, the
stabilization value is lower than 7%, which is in general a satisfying
performance. Moreover, for 3 cases out of 4 the value drops below 4%,
which is in line with the first set simulations. It is also evident that, in
general (see Figs. 6(b) and 9(b)), a higher spatial resolution means
a lower error. While this aspect was predictable, it is interesting to
observe that this difference is not noticeable for configurations #2 and
#3 ( Figs. 7(b) and 8(b)): this is probably due to the fact that in these
cases the pile is configured as an almost linear slope, thus the accuracy
of the interpolation does not increase with a larger spatial sampling.

Conversely, the increase in the number of sensors for measurement
spot (models B2 and B4) does not seem to provide the positive effect
noticed with the preliminary simulations presented in Section 4. While
the presence of more sensors improves the accuracy for the layout based
on the sensors featuring the 5 cm resolution adopted in Section 4, this

does not happen for sensors with higher accuracy like the ones adopted
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Fig. 5. Simulations using the three models with surfaces (a), (b), (c) and (d) in [39]. The true volume is defined as 𝑉 = ∫ 𝑏
𝑎 ∫ 𝑑

𝑐 (ℎ𝑖(𝑢, 𝑣) + 𝛥ℎ)𝑑𝑢𝑑𝑣.
Fig. 6. Configuration #1 - Pile vertex in central position: (a) simulation volumes and (b) volume estimation error for the four topologies.
in this second set of simulations. This probably derives from the fact
that the average value obtained by more than one sensor per spot can
partially compensate large quantization errors (e.g., 2–2.5 cm errors):
conversely, with a larger accuracy, the compensation becomes almost
useless. However, two aspects may suggest the usage of layouts like
B2 or B4. First of all, the price of sensors with respect to the overall
cost of the nodes is almost negligible: this means that adding more
than one sensor may add redundancies to the system increasing its
7

reliability without increasing the system cost and complexity. Secondly,
the estimation error is more stable with respect to height variations in
case of multiple sensors with respect to the Base model. This is mainly
due to the fact that, being the noise simulating the spatial variability
𝛿-correlated, its global standard deviation decreases when increasing
the overall density of sensors. For these two reasons, system tests were
also performed for all the four material layout configurations.
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Fig. 7. Configuration #2 - Pile vertex in the middle of one side: (a) simulation volumes and (b) volume estimation error for the four topologies.
Fig. 8. Configuration #3 - Pile vertex in one corner: (a) simulation volumes and (b) volume estimation error for the four topologies.
Fig. 9. Configuration #4 - Pile vertex in random position: (a) simulation volumes and (b) volume estimation error for the four topologies.
6. Experimental setup

An ad-hoc experimental setup was implemented in laboratory to test
the operation of the system at a reduced scale and under controlled
conditions. Such structure foresaw the usage of a metallic grid of
90 cm × 120 cm, below which the sensor nodes were anchored: such
grid was then kept at a height of 35 cm by means of 4 wooden poles
placed at its vertices (See Fig. 10). The granular material was placed
in the volume below the grid: in particular, uniform sand was used for
the tests, allowing an accurate calculation of its volume thanks to the
almost constant value of its density. The tests were performed using
a total of 123.8 kg of sand, featuring a density that was calculated
8

measuring the weight of 1 dm3 of material by means of a container
of known capacity with a scale featuring an accuracy of ±5 g. The
calculated density was 1.95 g/cm3.

Tests were carried out assuming the granular material to be config-
ured as a pile, similarly as the simulations configuration, but setting
the level of the material in each point of the perimeter equal to 0.
This assumption allowed to enlarge the overall monitored area, while
setting up a more critical scenario. Indeed, while the sensors were
arranged along a 90 cm × 90 cm square, the overall monitoring area
was 150 cm × 150 cm as in the simulations. This configuration implies
a larger error since the value in all the points along the measurement
perimeter is assumed 0. Indeed, the estimation of the volume of the
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Fig. 10. Experimental setup in laboratory.
material enclosed between the outer nodes and the border (the area
between the inner 90 cm × 90 cm square defined by the sensors grid
and the overall 150 cm × 150 cm area) implies a larger error.

Together with this aspect, some other assumptions influencing the
interpretation of the acquired results have to be made:

• The downsizing of the system has a negative influence on the
relative accuracy of the calculated volume. Indeed, the accuracy
of the sensors is almost independent from distance, in the sensor
measurement range: this means that the relative uncertainty in-
creases when the measured distance is small. For the experimental
setup, the measured distance is always lower than 35 cm: since
the accuracy of the sensors is ±1 cm (See Section 2), the relative
uncertainty for this configuration is higher than 2.5%;

• As already said, if using relative error to assess the volume
estimation system performance, the used thin layer of sand brings
the system to a worst case working situation, characterized by
the limit error value (see the simulation results in the previous
section). This must be taken into account when comparing the
results with others reported in the literature. For example, the
1% accuracy estimated in [39] was obtained with a layout of
20 m × 20 m, with the sand layer having an average value of
at least 1 m.

7. System tests

In order to validate the system as well as the computation technique,
3 different surface shapes were created. As for the case of the simula-
tions, these shapes were chosen to simulate as much as possible real
scenarios of a closed structure housing granular material, assuming the
case of the central pile presented in Section 5 together with two other
significant cases that were easily implementable in the experimental
setup. Indeed, the cases with the vertex in the corner and in the middle
of one size were not implementable due to the absence of external walls
in the setup, as described in Section 6. The tested surface layouts were
then the following:

S1: the upper surface is higher in the center and lower in the corners,
with a difference of level of about 30 cm and a smooth profile.
This is the pile configuration with the central vertex adopted in
the simulations;
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S2: the upper surface is higher on the borders (Fig. 11(a)) and lower
in the center. Such configuration may resemble the case when
the material is removed from the center of the warehouse or
introduced from the sides;

S3: the upper surface is created randomly in order to resemble a
general case where the flatness of the surface is perturbed by
noise (Fig. 11(b)).

These shapes were created using two different quantities of sand
and thus for two different heights: first, a ‘‘Low Level’’ configuration
was tested, using only 62 kg of sand, for a total volume of ∼ 31794 cm3

of sand. Then a ‘‘High Level’’ configuration was tested, employing all
the 123.8 kg, for a total volume of ∼ 63487 cm3 of sand.

For each of these shapes, 150 measurements for each sensor were
acquired, for each of the grid configurations described in Section 6. As
described in Section 6, a square surface featuring the external edges
of length l = 150 cm was adopted. Tests were carried out for the
four sensor layouts presented in Section 5. For Base (6 nodes) and
B2 model, level measurements were acquired at spots separated by
a distance of 30 cm, with a total of 6 ⋅ 6 = 36 measurement points
(and thus a total number of 𝑛 ⋅ 𝑛 = 5 ⋅ 5 = 25, 30 cm × 30 cm
sub-squares). For Base (5 nodes) and B4 model, level measurements
were acquired at spots separated by a distance of 37.5 cm, with a
total of 5 ⋅ 5 = 25 measurement points (and thus a total number of
𝑛 ⋅ 𝑛 = 4 ⋅ 4 = 16, 37.5 cm × 37.5 cm sub-squares). In both cases, the
values of the external spots were set by default to 0 as explained in
Section 6. Despite a different number of measurement spots, for all the
models the measurement area was 150 cm × 150 cm = 22 500 cm2: the
measurement capability was thus the same for all the solutions.

As anticipated, the Base model foresaw the presence of only one
sensor for each measurement spot: the total number of sensors was thus
equal to 9 for the 5 nodes layout (with 16 external points set to 0) and
16 for the 6 nodes layout (with 20 external points set to 0). For model
B2 we had 4 single sensors in the corners and 12 couples of sensors in
all the other spots, for a total number of 28 sensors with 20 additional
points set to 0. For model B4 we had 4 single sensors in the corners, 4
couples of sensors in the intermediate spots on the edges (1 per edge)
and 1 group of 4 sensors for the inner spot, again for a total number of
16 sensors plus 16 external points set at 0. The four layouts are shown
in Figs. 12 and 13.

Together with these acquisitions, a baseline one was also performed,
removing all the sand from the area below the grid. This acquisition
was required to remove the biases introduced by the different levels
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Fig. 11. Two different shapes of the upper surface.
of the grid: indeed, due to its weight, the central part of the grid was
slightly curved down with respect to the points where the grid was
held by the poles. The acquired values, which represented the actual
distance of the sensors from the floor were then exploited to calculate
the actual thickness of the sand in each specific spot, by subtracting
the values which had been acquired during the other measurements to
these baseline ones.

In order to acquire all the measurements, five sensor nodes where
set up. Four sensor nodes followed exactly the architectural layout
described in Section 2 except for the fact that each node was connected
to 4 ultrasonic sensors. A last node was set up, to simplify the system,
using an Arduino Mega board, which allowed the simultaneous connec-
tion of 12 sensors: this node was used only for the tests performed with
B2 model.

Since tests were performed in a laboratory, thus without the need
for long transmission ranges, LoRaWAN settings were chosen to reduce
the timing: for this reason, the chosen settings were SF 7, CR 4/5 and
BW 125 kHz. With these parameters, the airtime for a 50 byte packet is
118 ms, which means, taking into account the 1% duty-cycle regulation,
a total time of around 30 minutes to transmit 150 packets. However,
we would like to point out that the 150 measurements are expected to
be pre-processed on node in a real implementation of the system: in
this case, only one packet carrying the actual measured value will be
transmitted.

Transmitted packets were received by an LG308 LoRaWAN gateway
produced by Dragino, embedding two SX1257 LoRa transceivers and
one SX1301 LoRa modem, both produced by Semtech. The gateway
forwarded the packets to a custom made LoRaWAN server in charge
of storing the data inside a MySQL database. Eventually, in the final
implementation of the system the volume may be computed directly
on the gateway, and then only its value forwarded to the server.

8. Results and discussion

The actual uncertainty for the volume measurement can be com-
puted according to the propagation of uncertainties by resorting to
Equations (3) and (4): the values are ±1123 cm3 for Base (6 nodes) and
B2 models, and ±1075 cm3 for Base (5 nodes) and B4 models, with a
lower value for Base (5 nodes) and B4 models deriving from the lower
number of sensors. However, these values do not take into account
the uncertainty deriving from the model error, i.e., the approximation
of the integral provided by the sums in Equations (2) to (4). This
uncertainty contribution is combined with the model error studied in
the previous sections through simulations, which tends to limit values
larger than this contribution.

In order to improve the accuracy of the estimated value, data were
pre-processed before computing the volume itself. First, we removed
outlying values deriving from unpredictable errors (in few cases sensors
provided values which were by far larger than their distance to the
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Table 1
Results of the experiments for the Base (6 nodes) model.

Level Shape mean (sd) Bias(%) CV(%)

Low level TV =
31794 cm3

S1 36442 (366) cm3 14.62% 1.00%
S2 27169 (828) cm3 14.55% 3.05%
S3 32679 (557) cm3 2.78% 1.69%

High level TV =
63487 cm3

S1 67849 (293) cm3 6.87% 0.43%
S2 68711 (340) cm3 8.23% 0.49%
S3 58054 (474) cm3 8.56% 0.82%

Table 2
Results of the experiments for the B2 model.

Level Shape mean (sd) Bias(%) CV(%)

Low level TV =
31794 cm3

S1 33969 (254) cm3 6.84% 0.75%
S2 29495 (427) cm3 7.23% 1.45%
S3 31826 (298) cm3 0.10% 0.94%

High level TV =
63487 cm3

S1 69388 (379) cm3 9.29% 0.55%
S2 66057 (269) cm3 4.05% 0.41%
S3 61103 (396) cm3 3.76% 0.65%

Table 3
Results of the experiments for the Base (5 nodes) model.

Level Shape mean (sd) Bias(%) CV(%)

Low level TV =
31794 cm3

S1 36382 (773) cm3 14.43% 2.12%
S2 26562 (305) cm3 16.46% 1.15%
S3 28539 (512) cm3 10.24% 1.79%

High level TV =
63487 cm3

S1 87386 (486) cm3 37.64% 0.56%
S2 52528 (433) cm3 17.26% 0.82%
S3 55365 (279) cm3 12.79% 0.50%

Table 4
Results of the experiments for the B4 model.

Level Shape mean (sd) Bias(%) CV(%)

Low level TV =
31794 cm3

S1 39803 (481) cm3 25.19% 1.21%
S2 29008 (308) cm3 8.76% 1.06%
S3 35891 (388) cm3 12.88% 1.08%

High level TV =
63487 cm3

S1 74956 (2062) cm3 18.07% 2.75%
S2 65682 (416) cm3 3.46% 0.63%
S3 70430 (294) cm3 10.94% 0.42%

soil). Then, we considered a sliding window with length 20 observa-
tions and we computed the sliding means of the measurements for each
sensor, to be used in Equations (3) and (4). For each configuration and
for each model, the results are summarized in Tables 1 to 4, where the
mean 𝑉 and the standard deviation 𝜎(𝑉 ) of the estimates are reported.
To better visualize the behavior of the volume estimation methods, we
also reported the relative bias with respect to the true volume 𝑇𝑉 ,
defined as |𝑉 − 𝑇𝑉 |∕𝑇𝑉 , and the coefficient of variation 𝐶𝑉 = 𝜎(𝑉 )∕𝑉 .
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Fig. 12. Sensors deployment in the experimental layout for (a) Base - 6 points and (b)
B2. The red dots indicate the positions of the sensors, the blue dots indicates the spots
with value set to 0, 𝑙 is the overall surface edge length, 𝑑 is the distance among two
measurement spots and 𝑠 is the distance among two sensors in the spots with multiple
sensors.

From Tables 1 to 4 we see that:

• as expected, the best results are achieved for B2 model which, in
general, overcomes the other configurations both in terms of bias
and coefficient of variation;

• it is evident that adding more sensors for each measurement spots
increases the accuracy. B2 model outperforms the corresponding
Base model (6 nodes) in 5 cases out of 6 for bias and in 5 cases
out of 6 for variability while B4 model outperforms the 5 nodes
Base model in 4 cases out of 6 for bias and in 5 cases out of 6 for
variability;
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Fig. 13. Sensors deployment in the experimental layout for (a) Base - 5 points and (b)
B4 models. The red dots indicate the positions of the sensors, the blue dots indicates
the spots with value set to 0, 𝑙 is the overall surface edge length, 𝑑 is the distance
among two measurement spots and 𝑠 is the distance among two sensors in the spots
with multiple sensors.

• in general, performances are improved more by increasing the
spatial sampling grows rather than adding more sensors. Indeed,
it is evident that the lower spatial sampling (1 node each 37.5 cm)
is not sufficient to ensure a bias lower than 10%, and thus an
adequate accuracy.

Some results may appear as unexpected. In particular:

• for Base (6 nodes) model, High Level, we achieve the worst
performances for the flat random surface;

• for B4 model, we get the best results for S2 surface, while these
should be achieved always for the flat random surface.
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All these results may be due to the fact that all surfaces are manually
created (basically as it happens in a real use-case), thus a certain
degree of variation (and then a certain inaccuracy) has to be taken into
account. Such limited repeatability is however inherent in the real use
case. For this reason, these experimental results should be evaluated
together with the simulation results obtained in Sections 4 and 5. Since
all simulation results suggest that increasing the number of sensors
leads to a larger accuracy in the evaluation of the volume, and that
this result is found in most cases also in the experimental tests, we
can conclude that B2 and B4 configurations should always be preferred
in a real scenario. In all cases, it is evident that the most significant
parameter affecting the accuracy of the measurements is the overall
measurement spot spatial density, which should be as high as possible.

9. Conclusions

The aim of this paper was to demonstrate the usability of grids
of ultrasonic sensors for the estimation of the volume of granular
materials: together with the hardware infrastructure, also a mathemat-
ical model was developed to calculate the material volume from the
sensor readings. Such model has as the main target the reduction of
the computational complexity and, as a matter of fact, can be easily
implemented on a very simple microcontroller.

To test the proposed approach, a preliminary set of simulations was
carried out. Then, an experimental setup was implemented, simulating
a closed environment housing a pile of granular material: in this
reduced-size setup, the relative uncertainties are obviously larger that
in a real case, thus suggesting that the proposed results can be seen as
lower bound concerning the system performances.

In such experimental setup, different sensor layouts were tested,
suggesting that the sensor disposition highly affects the system perfor-
mances. The results suggest that a larger spatial sampling notably in-
creases the performances of the system. Similarly, a number of sensors
means a slightly larger accuracy: however, the achievable improvement
may not be such consistent to justify the extension of the technological
infrastructure.

To fully validate the proposed technique, a long term test, for
example in a warehouse, should be carried out. However, a number
of difficulties make this test extremely complex to be set up. First
of all, in a real scenario the actual measurement of the volume, to
be compared with the value acquired by the sensor network, is very
difficult to be performed due to the large quantity of required material.
Secondly, the installation of the sensors below the ceiling of a building
is not straightforward and may be justified only in case of a permanent
installation. While we hope that we will be able to perform this test
in the future, we believe that the proposed results can be however
assumed as effective since they are achieved in worst case scenario
conditions.

Together with the implementation of the proposed architecture in
a real environment, future work will also focus on different layouts
for the sensing technique: indeed, while ultrasonic sensor proven to
be an effective choice, the system is expected to be tested employing
also different sensing strategies like the ones discussed in Section 2.
Among the possible architectures, we are planning to focus in particular
on pressure sensors to be positioned below the granular material: this
choice will allow the use of the proposed solution also in the case
of granular material positioned outdoor (i.e., without any coverage).
Moreover, work is expected to be carried out to improve the accuracy of
the system: to this aim, the identification of hybrid architectures is seen
as a promising approach. In this context, the combination of different
sensing strategies (e.g., the combined use of ultrasonic sensors and pres-
sure sensors or the usage of level poles for the perimeter points) may
increase the accuracy of the level measurements in each spot, with a
higher precision in the overall volume estimation. Finally, the accuracy
of the volume estimation may also benefit from the implementation of
different sensor layouts: this aspect requires investigation by means of
12

simulations before moving to an actual implementation of the system.
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