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Abstract 
Threat assessment requires a nuanced understanding of potential risks and vulnerabilities across various scenarios. It is 
imperative to identify, analyse, and mitigate potential risks effectively due to the uncertainty that appears largely in the landscape 
of threats. This article explores the complex task of threat assessment, particularly in the military domain, where the 
consequences of threats could be catastrophic. Military threat assessment is traditionally based on expert judgment, historical 
data analysis, and simulation techniques. However, in data-scarce environments like the military, innovative approaches 
leveraging artificial intelligence, natural language processing, and anomaly detection have emerged as invaluable tools. This 
article explores the integration of segmentation, labelling, and contextual understanding on real and synthetic images in order 
to perform a thorough threat assessment, fruitful for decision-making process. It presents advanced techniques such as R-CNN, 
Mask R-CNN, HCP, CLIP, and Mask CLIP+. Through a comprehensive review and analysis, the article highlights the significance 
of these techniques in enhancing the accuracy, efficiency, and depth of threat analysis in military operations.  
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1. Introduction 

A threat is a source of potential harm that could happen 
due to vulnerabilities present in a scenario. One of the 
key elements affecting threats is that are affected by 
VUCA (Volatility, Uncertainty, Complexity and 
Ambiguity). In facts, usually, there is no certainty about 
what will happen, when it will happen, how bad the 
consequences will be, how long it will last and of the 
probability of it happening; indeed, usually threats are 
characterized by using the VUCA factors to increase 
their capability to overpass defences and succeed in 
addressing vulnerabilities. Therefore, for defense of a 
System one of the crucial aspect is to identify and 
classify all possible threats and to develop approaches 
to detect and assess them as soon as possible to 

increase probability to deflect or neutralize, as well as 
to mitigate consequences. In this process the crucial 
aspect is to detect also vulnerabilities and reduce them 
in order to increase resilience of the systems, that 
therefore relies on the capability to react dynamically 
to threats and self reorganize to face them. Within this 
context the threat assessment techniques are used, 
particularly in the military field where the occurrence 
of a threat has higher probability with potential  
catastrophic effects. From this point of view the 
adoption of Strategic Engineering approach combining 
AI, M&S and Data Analytics (Bruzzone, 2018); indieed 
this integration is a crucial aspect to fill up the gaps 
related to gaps such lack of data or inconsistencies. 
Indeed, from this point of view it turns crucial to be able 
to address the Threat Assessment that is the process of 
elaborating data and information to evaluate the 
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threats and use the related results in decision making 
for evaluating most appropriate priorities and 
reactions. Hence, threat assessment is defined as the 
practice of determining the credibility and severity of 
potential threats, as well as the likelihood that the 
threat will become a reality, by extracting information 
from available data, boundary conditions and all 
environmental parameters as well as analysing 
behaviours (Waltz & Llinas, 1990; Bruzzone et al., 
2014). 

Identifying potential threats is a complex task 
influenced by various factors. Institutions, particularly 
in the military field, play a significant role in shaping 
threat assessments by providing guidelines for 
organised human interaction across different domains 
like families, governments, businesses, and religions. 
Cognitive influence adds another layer of complexity, 
making prediction and assessment challenging. Risk, 
being dynamic and immeasurable, requires continuous 
evaluation. Choosing the alternative with the lowest 
expected risk is often rational when probabilities are 
comparable. However, challenges arise in assessing 
probabilities and comparing consequences, 
particularly in analyses focusing on conceptual and 
psychological outcomes.  

Conducting risk assessment in situations where there 
is a lack of data is challenging; indeed, in such cases, it 
is necessary to rely on alternative methods and 
strategies to gather relevant information and make 
informed assessments. Traditional methods such as 
relying on expert judgement, and analysing historical 
data form the basis of military threat assessment. 
Simulation and modelling techniques contribute by 
allowing the testing of different scenarios, providing a 
nuanced understanding of potential consequences and 
assessing the resilience of military systems (Amico, et 
al., 2000; Bruzzone & Massei 2017). In data-scarce 
situations, generative learning techniques such as 
artificial intelligence, natural language processing, and 
anomaly detection greatly improve military risk 
assessment. These techniques make it easier to create 
artificial data for training, detect irregular patterns 
that indicate potential threats, create a variety of threat 
scenarios for training and readiness, improve current 
data through variation, apply knowledge from related 
tasks to improve threat recognition, summarize 
complex information for effective threat 
communication, work with generative models and 
human analysts to create scenarios, update threat 
models continuously based on new data and 
information. 

In this paper the main focus is on visual data and the 
capability to develop solutions able to extract 
information and knowledge by the related channels 
such as EO/IR to understand features, behaviours and 
criticalities, identify symptoms and detect threats 
(Sizintsev, et al., 2019; Blasch et al., 2021; Vakil et al., 
2021). Indeed, the paper address the issue of how to 
visualise potential threat landscapes through 

immersive simulations. 

2. State of the art on Visual Threat Assessment 

Performing threat assessments relies on identifying 
potential threats, which is facilitated by segmentation 
and labelling. Segmentation involves breaking down 
the system into distinct parts, while labelling assigns 
names and classifications to each component. This 
structured approach aids both human analysts and 
machine learning algorithms in understanding and 
responding to security risks effectively. 

2.1. Segmentation  

Image segmentation involves dividing the image into 
distinct and semantically meaningful parts, such as 
objects, backgrounds or specific features. Several 
algorithms and techniques are used to perform 
segmentation. In conditions of data scarcity, 
segmentation could be utilized in synthetic scenes to 
identify various aspects of military environments, 
including terrain, infrastructure, and objects of 
interest, with fidelity. This segmentation process 
entails breaking down synthesized imagery into 
distinct and semantically meaningful parts, such as 
vehicles, buildings, vegetation, and terrain features. 

2.1.1. R-CNN 

Region-based Convolutional Neural Network (R-CNN) 
is a computer vision algorithm used for object 
detection. It works by first proposing regions in an 
image that might contain objects using selective search 
or similar methods. Then, it extracts features from 
each proposed region using a Convolutional Neural 
Network (CNN). These features are fed to a set of 
support vector machines to classify and refine the 
proposed regions. Finally, non-maximum suppression 
is applied to generate the final bounding boxes for 
detected objects. 

Mask R-CNN, signifying a conceptual extension of 
Faster R-CNN, enriches its capabilities by introducing 
a third branch dedicated to predicting segmentation 
masks for each candidate object. Essentially, Faster R-
CNN initially provides class labels and bounding-box 
offsets for each candidate object, and Mask R-CNN 
seamlessly incorporates an additional branch to 
furnish object masks. This intuitive extension 
facilitates a finer spatial layout extraction, a pivotal 
requirement for accurate segmentation. The 
foundational structure of Mask R-CNN derives from 
the two-stage framework of Faster R-CNN. The initial 
stage involves the Region Proposal Network (RPN), 
proposing bounding boxes for candidate objects. 
Subsequently, akin to Fast R-CNN, the second stage 
extracts features using Region of Interest (RoI) Pooling 
from each candidate box, facilitating classification and 
bounding-box regression. A distinctive feature of Mask 
R-CNN’s second stage is its concurrent output of 
binary masks for each RoI, deviating from recent 
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systems where classification depends solely on mask 
predictions. The use of ResNet as the backbone is a 
strategic move to address concerns related to network 
depth, calculation, and parameter quantity. 
Additionally, Group Normalization (GN) is introduced 
to enhance detection accuracy, and cascade training 
with Intersection over Union (IoU) thresholds is 
employed to further refine detector performance. This 
proposed algorithm strategically tackles the 
limitations of Mask R-CNN, ensuring accurate 
bounding box and mask information for subsequent 
classification and regression tasks. The combination of 
Mask R-CNN’s innate capabilities with these 
enhancements underscores the adaptability and 
effectiveness of this comprehensive approach.  

2.2. Labelling 

The labelling phase occurs after the segmentation 
process, focusing on the segmented images and various 
objects within them. This sequential approach allows 
for a more targeted and refined analysis of individual 
objects. Thus, labelling images offers a comprehensive 
understanding of their content, a crucial factor for 
accurate threat assessment. It enhances the 
interpretation of image content by associating 
meaningful categories, aids in precise identification 
and classification of individual objects, adds context to 
segmented elements for better scenario analysis, 
serves as valuable training data for machine learning 
models, generates easily understandable results for 
collaboration with experts, supports informed 
decision-making across various domains, extracts 
actionable information tailored to specific use cases, 
and contributes to visually informative representations 
for improved analysis. In the context of the military 
field characterized by scarcity of data, labelling within 
synthetic data plays a critical role in identifying and 
categorizing potential threats, enabling 
comprehensive threat assessment and readiness 
training. By accurately labelling objects within 
synthetic imagery, analysts could effectively evaluate 
the nature and severity of simulated threats, enhancing 
preparedness and response capabilities in military 
operations. 

In the realm of labelling within computer vision, 
Convolutional Neural Networks play a fundamental 
role in extracting relevant features and making 
predictions based on visual data. A CNN is a specialized 
type of neural network designed to process grid-like 
data, such as images. Its architecture includes 
convolutional layers that apply filters to input data, 
enabling the network to automatically learn 
hierarchical representations of features. 

2.2.1. HCP 

An innovative solution for multi-label classification is 
the Hypotheses-CNN-Pooling (HCP) structure, a 
flexible deep CNN architecture. HCP efficiently 
processes an arbitrary number of object segment 

hypotheses, potentially generated by advanced 
objectiveness detection techniques. Each hypothesis is 
seamlessly connected to a shared CNN, and a novel 
pooling layer is introduced for aggregating single-label 
CNN predictions into multi-label results. HCP does not 
demand ground-truth bounding box information 
during training on multi-label image datasets. 
Additionally, to address potentially noisy hypotheses, 
HCP employs a cross-hypothesis max-pooling 
operation, effectively suppressing noise and discarding 
redundant hypotheses. Moreover, the shared CNN 
within HCP is flexible, allowing pre-training with 
large-scale single-label image datasets like ImageNet. 
Fine-tuning on the target multi-label dataset is 
facilitated. Lastly, HCP’s outputs, processed through 
the softmax layer, result in normalized probability 
distributions over labels. The Hypotheses-CNN-
Pooling deep network is designed to handle multi-label 
image classification, addressing challenges such as the 
absence of ground-truth bounding box information 
and the need for robustness to noisy or redundant 
hypotheses. 

2.2.2. CLIP 

Large-scale visual-language pre-training models, 
exemplified by CLIP, excel at capturing rich and 
expressive features in both visual and language 
domains. The utilization of raw CLIP features for zero-
shot image classification proves to be a robust and 
competitive strategy, demonstrating performance 
comparable to fully-supervised counterparts. CLIP 
learns from images of complex scenes and their 
accompanying natural language descriptions. This 
unique learning paradigm encourages the embedding 
of local image semantics in its features. Moreover, it 
empowers CLIP to learn concepts in an open 
vocabulary, accommodating a wide range of objects 
and capturing rich contextual information. Notably, 
CLIP’s ability to grasp the co-occurrence and relations 
of certain objects, along with spatial priors, contributes 
to its versatility in diverse tasks. Its architecture 
consists of an image encoder and a text encoder, both 
jointly trained to map input images and text into a 
unified representation space. The training objective 
employs contrastive learning, treating ground-truth 
image-text pairs as positives and creating negatives 
from mismatched image-text combinations. CLIP 
offers two alternative implementations: a Transformer 
and a ResNet with a global attention pooling layer.  

MaskCLIP simplifies dense patch-level feature 
extraction from CLIP’s image encoder while preserving 
visual-language associations. It leverages 
classification weights directly from CLIP’s text encoder 
embeddings, utilizing 1×1 convolutions without explicit 
mapping. Compatibility extends to all CLIP variants, 
including ResNets and ViTs. Key smoothing and 
prompt denoising refine MaskCLIP’s performance 
without training. MaskCLIP+ integrates into training 
processes, providing high-quality pseudo labels for 
advanced segmentation models like PSPNet and 
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DeepLab. It adapts to various semantic segmentation 
scenarios, including open-vocabulary and fine-
grained class segmentation, retaining CLIP’s 
robustness against distribution shifts and corruptions. 
MaskCLIP+ extends to transductive zero-shot 
segmentation, generating pseudo labels for unseen 
classes. Unlike object detection approaches, 
MaskCLIP+ relies on pseudo labels, ensuring 
consistent performance across seen classes. 

3. Comparative Analysis 

RCNN is primarily designed for object detection tasks. 
It operates by proposing regions of interest within an 
image and then classifying these regions into different 
object categories. While effective for detection, RCNN 
does not provide segmentation or labelling capabilities 
directly. Instead, mask RCNN extends RCNN by adding 
a segmentation component to it. Along with object 
detection, it is also possible to generate pixel-level 
segmentation masks for each detected object. This 
means it not only identifies objects but also precisely 
delineates their boundaries. 

HCP is specialized in human-centric labelling tasks. It 
is designed to recognize and label various parts of the 
human body in images. Unlike RCNN and Mask RCNN, 
which are more general-purpose, HCP is tailored 
specifically for human-related labelling tasks. 

CLIP is a model capable of understanding and labelling 
images based on natural language descriptions. It is 
able to associate textual descriptions with visual 
content, enabling it to perform tasks like image 
labelling. However, it does not provide segmentation 
capabilities like Mask RCNN. To perform segmentation 
it could be used also MaskCLIP, an extension of CLIP. It 
is able to label images and provide segmentation masks 
for objects within those images. This allows for more 
detailed understanding and analysis of visual content 
compared to CLIP alone. MaskCLIP+ is an improvement 
over MaskCLIP, focusing on producing higher quality 
segmentation masks. It enhances the segmentation 
accuracy and quality, providing more precise 
delineation of object boundaries compared to its 
predecessor. 

A benchmarking analysis is carried out to rate the above 
methods between 1 and 5, considering the following 
evaluation criteria: accuracy, model precision; 
robustness, stability across different conditions; ease 
of use is the measure about how easily it is possible to 
install, integrate and use the model in workflows; 
flexibility corresponds to the adaptability to different 
tasks, while the feasibility correspond to how much the 
model is practical to use in terms of computational 
resources.  

4. Results and Discussion 

Mask R-CNN provides a comprehensive solution for 
threat assessment tasks due to its ability to perform 
both object detection and pixel-level segmentation. 

This makes it well-suited for scenarios requiring 
detailed segmentation of threat objects, enabling 
precise delineation of object boundaries for analysing 
potential threats within images. 

Mask CLIP and its enhanced version, Mask CLIP+, offer 
a unique combination of labelling, segmentation, and 
contextual understanding based on natural language 
descriptions. These models provide a holistic approach 
to threat assessment by integrating segmentation 
capabilities with contextual understanding, potentially 
improving the accuracy and efficiency of threat 
identification. 

Considering the benchmarking analysis shown in Table 
1, which evaluates accuracy, robustness, ease of use, 
flexibility, and feasibility, along with the requirement 
for both segmentation and labelling in threat 
assessment tasks, the most promising method is Mask 
CLIP+. It combines state-of-the-art segmentation 
capabilities with contextual understanding, offering a 
comprehensive solution for threat assessment tasks. 

Figure 1. Benchmarking analysis 

 

 
5. Conclusions 

Effective threat assessment is critical in military 
operations, where accurate identification and analysis 
of potential risks are essential for mission success and 
personnel safety. Segmentation and labelling provide a 
structured approach to understanding complex 
scenarios and identifying threats accurately. However, 
data scarcity in military domains poses a challenge. 
Integrating labelling and segmentation with generative 
learning models addresses this challenge by allowing 
for the creation of synthetic data, enabling realistic 
simulations of various threats. This approach enhances 
training and preparation for diverse scenarios while 
continuously improving threat assessment 
capabilities. By leveraging advanced methods, military 
organizations are enabled to better identify and 
respond to evolving threats, ensuring operational 
readiness and personnel safety. 

Acknowledgements 

The authors received support from the FaRADAI 
project (ref. 101103386) funded by the European 
Commission under the European Defence Fund. 

 Accuracy Robustness Ease of use Flexibility Feasibility TOT 

RCNN 4 3 3 3 3 16 

Mask RCNN 5 4 4 4 4 21 

HCP 4 4 4 2 4 18 

CLIP 3 3 3 4 3 16 

Mask CLIP 4 4 4 5 4 21 

Mask CLIP+ 5 5 4 5 4 23 
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