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Abstract

In this study, we propose a comprehensive mechanical model of ocular bulb vibrations and

discuss its implications for acoustic tonometry. The model describes the eye wall as a spher-

ical, pre-stressed elastic shell containing a viscoelastic material and accounts for the inter-

action between the elastic corneoscleral shell and the viscoelastic vitreous humor. We

investigate the natural frequencies of the system and the corresponding vibration modes,

expanding the solution in terms of scalar and vector spherical harmonics. From a quantita-

tive point of view, our findings reveal that the eyebulb vibration frequencies significantly

depend on IOP. This dependency has two origins: “geometric” stiffening, due to an increase

of the pre-stress, and “material” stiffening, due to the nonlinearity of the stress-strain curve

of the sclera. The model shows that the second effect is by far dominant. We also find that

the oscillation frequencies depend on ocular rigidity, but this dependency is important only

at relatively large values of IOP. Thus close to physiological conditions, IOP is the main

determinant of ocular vibration frequencies. The vitreous rheological properties are found to

mostly influence vibration damping. This study contributes to the understanding of the

mechanical behavior of the eye under dynamic conditions and thus has implications for non-

contact intraocular pressure measurement techniques, such as acoustic tonometry. The

model can also be relevant for other ocular pathological conditions, such as traumatic retinal

detachment, which are believed to be influenced by the dynamic behavior of the eye.

Introduction

The human eye is the organ that allows us to perceive visual information of the world around

us. The shell enclosing the ocular bulb consists of three layers with different functions. The

most external one is the fibrous corneo-scleral shell, which supports the mechanical loads act-

ing on the organ. The vascular middle layer is the uvea, which consists of the iris, the ciliary

body, and the choroid. Finally, the innermost layer is the retina, which is the nervous tunic,

where the photoreceptors are located. The interior of the eye consists of three chambers: the

anterior chamber, the posterior chamber and the vitreous chamber (Fig 1). The first is located

between the cornea and the iris, the second is between the iris and the lens, and the third is

delimited anteriorly by the lens and posteriorly by the retina. The anterior and posterior
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chambers are connected through the pupil and contain aqueous humor, a liquid with proper-

ties very similar to water. The vitreous chamber contains a gel, the vitreous humor, with visco-

elastic properties [1].

The eye is a pressurized organ and the intraocular pressure (IOP) is responsible for the

main mechanical loads acting on the corneo-scleral shell under physiological conditions. IOP

is regulated by a delicate balance between the rate of aqueous production by the ciliary body

[2] and resistance to its drainage at the junction between the cornea and the iris, mostly

through a spongy tissue named trabecular meshwork [3]. IOP has a significant impact on the

functioning of the eye and is involved in the onset and development of various pathological

conditions. Most notably, elevated IOP increases the risk of developing glaucoma, a collection

of eye conditions that can cause damage to the optic nerve and can result in vision loss [4].

Standard methods to measure IOP (contact tonometry methods) exploit the principle that

the force required to deform the cornea by applanation or indentation increases with increas-

ing IOP. The gold standard instrument in contact tonometry is the Goldmann applanation

tonometer, which uses a probe to flatten a portion of the cornea and infers the IOP from the

required force. Non-contact tonometers are also presently in use, which employ an air puff to

flatten the cornea [5, 6]. A detailed review of the techniques presently in use to measure IOP

and the underlying physical principles is reported in [7].

A significant limitation of standard tonometry methods is their inadequacy for self-admin-

istration. These traditional measurement techniques require professional operation and

Fig 1. Sketch of a cross-section of the human eye.

https://doi.org/10.1371/journal.pone.0294825.g001
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precise application, making them unsuitable for individuals to use independently. A promis-

ing, non-contact IOP measurement technique, which has been investigated since the late sev-

enties [8], and which could potentially be used to realize measuring devices that can be used

autonomously by the patient, is acoustic tonometry. The general idea is to excite vibrations of

the eye bulb with acoustic waves and measure its response, from which it is possible to infer

the natural vibration frequencies of the eye and their damping ratio. These, in turn, are

affected by IOP [8–13]. Although the preliminary results obtained adopting these techniques

suggest that they have great potential, none of such approaches has made its way to the clinical

practice yet.

The reliability of acoustic methods would certainly benefit from a better understanding of

the mechanical behavior of the eye under dynamic conditions. The natural frequencies of the

eye and their damping do not only depend on IOP but also on a number of other factors, such

as mechanical properties and thickness of the corneoscleral shell, elasticity and viscosity of the

vitreous body, size of the eye bulb, etc. Being able to quantify the role of each of these effects

on the vibration frequencies is of key importance to isolate the role of IOP, which is something

that a sound mathematical model can help do.

A better understanding of the dynamic response of the eye may also have an impact in

other areas related to pathological conditions of the eye. For instance, retinal detachment is

often a consequence of trauma or of vitreo-retinal tractions, which are both, to some extent,

influenced by the dynamic behavior of the eye bulb and of the vitreous body [14–17]. It has

been suggested that, due to its viscoelastic behavior, the vitreous body might serve as a

mechanical damper for the eye, thus absorbing impacts, and protecting the lens and retina

against mechanical injury [1]. Understanding the role of vitreous mechanical properties on

ocular bulb dynamics provides useful information on how vitreous aging and vitreous replace-

ment with tamponade substitutes would impact on tractions on the retina.

There is extensive literature on the mathematical modeling of spherical shell vibrations,

which dates back to some classical works of the nineteenth century [18, 19]. The effect of a

fluid filling an elastic sphere on its vibration frequencies was first considered by [20], and vari-

ous further papers have been published since. A recent contribution that also summarizes pre-

vious results is [21]. The authors studied theoretically small oscillations of a pressurized,

elastic, spherical shell subject to internal and external fluid effects.

Some authors have also studied theoretically or numerically the vibrations of a fluid-filled

shell, specifically considering the problem of ocular bulb vibrations. In [22], the eye was mod-

eled as an elastic shell, representing corneo-scleral shell, described with a realistic geometry.

The shell was filled with an inviscid and incompressible fluid, representing the vitreous

humor. The resulting model was solved using the finite-element method to compute the vibra-

tion modes of the eye and the dependence of resonant frequencies on IOP.

Salimi et al. [23] computed the natural frequencies of the eye using the finite-element

method. They first described the eye as a spherical shell containing a fluid and then proposed

an anatomically more accurate model. They also validated their numerical predictions against

results from experimental tests.

Aloy at al. [24] proposed various models of the eye with increasing complexity and com-

puted the oscillation frequencies of the system, with the aim of estimating indirectly the

mechanical properties of ocular tissues. They first modeled the eye globe as a homogeneous

sphere, then they accounted for the presence of an outer stiffer layer (the corneo-scleral shell)

and, finally, modeled the cornea and sclera as distinguished tissues, with different mechanical

properties.

Shih and Guo [25] also studied the natural modes of oscillation of the ocular bulb, described

as a spherical elastic shell filled with an inviscid fluid. The theoretical model proposed in [25]
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is obtained by adapting the equations that govern the equilibrium of a pre-stretched plate to a

spherical geometry.

In this paper, we study coupled vibrations of the vitreous humor and corneo-scleral shell,

modeling the former as a linear, viscoelastic, incompressible material, and the latter as a thin

elastic spherical shell. In particular, the problem we want to solve is the following: given a set

of material parameters available from experimental data, determine the dependence on IOP of

the resonant frequencies of the least damped modes. In spite of the idealizations it is based on,

our approach improves over the previous works in various respects. We account for the effect

of pre-stress of the shell in a formally correct manner and this leads to governing equations for

the shell that are slightly different from those derived in previous works.

We also consider the viscoelasticity of the vitreous body, which was invariably neglected in

all previous contributions (in most cases the vitreous body was simply described as an inviscid

fluid). This is likely to have an important effect, particularly on the damping properties of the

system.

With these ingredients, we compute the resonant frequencies and the vibration modes of

the eyebulb, highlighting the role of IOP, stiffening of the sclera, and damping associated with

the viscoelastic behavior of the vitreous. This allows us to assess the importance of pressure

and stiffening on the resonant frequencies, as well as the effect of the rheological properties of

the enclosed fluid on the damping rate. The importance of these effects is discussed in the final

section of this paper, where we summarize our main findings.

Materials and methods

Formulation of the mathematical model

To compute the vibration properties of the eyebulb we have developed an analytical model,

where the eyebulb is described as an elastic pre-stressed, spherical shell (the corneo-scleral

shell) filled with an incompressible viscoelastic material (the vitreous humor).

The equations that govern the motion in the interior of the eyebulb are the standard ones

for linear viscoelasticity, (1). They have been used in [15] to characterize the vibrations of the

vitreous body, under the assumption that the cornea was rigid.

For the shell, we use the coordinate-free approach developed in [26] and we adopt the equa-

tions of motion for a pressurized spherical shell, (2), developed therein. We refer to [26] and to

the S1 File for additional information concerning the shell model.

The two models (vitreous and corneo-scleral shell) are coupled using the no-slip condition

and also assuming that the shell is loaded by the traction locally exerted by the inner viscoelas-

tic material. More in detail, we consider an equilibrium state where the eyebulb is at rest, with

an internal constant pressure p. The corneoscleral shell is thus in a stressed state, described by

membrane force-tensor N̊ ¼ pR
2
P, where P ¼ I � n� n, with I the identity tensor and n the

outward unit normal, is the projector on the tangent plane to the shell. Note that in this state

the bending moment vanishes.

Small-amplitude vibrations are described by a displacement field u(x, t), with x denoting

the position vector and t time. In the vitreous humor, the displacement obeys the motion equa-

tions

rv€u ¼ divS;

divu ¼ 0;
ð1Þ

where each superimposed dot represents partial differentiation with respect to time, ρv is the

density of the vitreous humor and S is the increment of the nominal (Piola) stress. On the
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corneoscleral shell, the normal and tangential components of the displacement, respectively, w
= n � u and v = Pu, obey the motion equations

rsh€w ¼ divsðP divs MÞ �
1

R
P � Nþ

p
2
RDsw �

p
2
divsv � n � Sn;

rsh€v ¼ P divs Nþ
1

R
Pðdivs MÞ � PSn;

ð2Þ

where N and M are the increments of the nominal membrane-force tensor and bending-
moment tensor. In the above equations, ρs denotes the shell density, h the shell wall thickness,

R the reference shell radius, p the internal reference pressure (IOP) and divs the divergence

operator on the surface of the shell.

On the right-hand sides of Eq (2), the last terms represent the force per unit reference area

exerted by the vitreous humor on the corneoscleral shell. Moreover, the first terms on the

right-hand sides of the same equation set represent the extra contribution due to the shell pre-

tension due to the IOP.

Within the vitreous, we adopt the following constitutive equation for the incremental nomi-

nal stress:

S ¼ pru> þ Σ; ð3Þ

where

Σ ¼ � qI þ 2

Z t

� 1

Gðt � sÞDðsÞds; ð4Þ

with q the pressure increment, D ¼ devðsymr _uÞ the strain rate and G(t) the stress relaxation

function. The first term on the right-hand side of (3) accounts for the pre-compression associ-

ated with the IOP. An explanation of the nature of this term in connection with the definition

of nominal stress may be found in [27].

The stress relaxation function G(t) embodies the information of the material that fills the

cavity, in response to a stress relaxation test. For an elastic material, G(t) is proportional to the

Heaviside function; for a viscous fluid, G(t) is proportional to the Dirac function, centered at

the origin [28]. In the case of harmonic motion, the properties of the stress relaxation function

are encoded in the complex modulus

GðzÞ ¼ z

Z 1

0

e� ztGðtÞdt: ð5Þ

We assume that the stress-response function of the vitreous can be described with the Kel-

vin-Voigt model (a linear spring and a dashpot arranged in parallel), so that

GðzÞ ¼ gþ zZ; ð6Þ

where γ is the shear modulus and η is the viscosity.

For the corneoscleral shell we adopt the constitutive equations

N ¼
pR
2
ruþ hð2mεþ ~lðtr εÞPÞ þ

1

R
M;

M ¼
h3

12
ð2mκ þ ~lðtr κÞPÞ;

ð7Þ

where μ and ~l are material moduli, which are linked to the Lamé constants and to Young’s
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modulus and Poisson’s ratio through eqautions (9). The constant ~l is a correction to one of

the Lamé parameters that accounts for the fact that a thin shell is in a plane stress state. More-

over,

ε ¼
1

2
Prsv þrsv

>Pð Þ þ
w
R
P;

κ ¼ � Prsrswþ
1

R
Prsv þ

1

R
rsv

>Pþ
w
R2

P;

ð8Þ

are, respectively, the in-plane stretch and bending tensors andrs is the surface gradient opera-

tor. Eqs (2), (7) and (8) follow from a systematic linearization of the equations that govern the

dynamics of non-linear elastic shells [26]. The first term on the right-hand side of (7)1, as well

as the two pressure-dependent terms on the right-hand side of (2), yield an extra restoring

term in the equations of motion, which results in the change of the effective stiffness. We shall

demonstrate that such a change is partially responsible for the shift of resonant frequency that

accompanies the increase of intraocular pressure.

The equations that govern the dynamics of an empty or a fluid-filled spherical shell have

been derived and studied by several authors. Lamb [19] studied the small-amplitude vibrations

of a thin spherical shell by fully solving the dynamical equations of elasticity in a domain

bounded between two concentric spherical surfaces. The vibrations of an elastic spherical shell

containing a fluid have been studied first by Love [29], then by Rand and DiMaggio [20] by

Engin and Liu [30], and by Bai and Wu [31]. The effect of viscosity of the enclosed fluid has

been investigated by Su [32].

The explicit contribution of an initial pressure to the motion of the shell has been consid-

ered by Kuo et al. [21] and by Shih and Guo [33]. In both cases, the initial pressure results in

an extra term that adds up to the restoring elastic forces. Kuo et al. [21] take as starting point

the equations that govern the axisymmetric motions of a spherical shell and introduce the

restoring force due to the pre-stress by an insightful ad-hoc argument. Shih and Guo [33],

instead, take as starting point the equations of a pre-stressed membrane taken from [34], and

take into account the effect of curvature replacing the Laplacian operator of the membrane

with the Laplace-Beltrami operator. Compared with these two references, our approach to the

calculation of the extra restoring force due to the IOP is based on a systematic linearization of

the nonlinear equation of motions derived in [26], and yields slightly different equations. In

particular, in our case the initial pre-stress affects also the tangential motion of the shell. How-

ever, the extra contribution of the normal component of the displacement that appears in our

motion equations (see the S1 File), proportional to the surface Laplacian Δs of the normal dis-

placement, coincides with that of Kuo et al. [21] and that of Shih and Guo [33].

Parameter values

All parameter values that have been used in the model are reported in Table 1.

Jesus et al. [35] measured the scleral radius through an approximation of the topographical

scleral data to a sphere and found the value of 11.2±0.3 mm, which is what we use in the

model.

The thickness of the sclera is highly variable from point to point, ranging from 0.50 mm at

the limbus to 0.95 mm at the posterior pole (see Table 1). The thickness of the central cornea is

approximately 0.56 mm. In our model, the corneo-scleral shell is modeled as a constant thick-

ness structure, and we have adopted the value 0.5 mm, which is in line with the value chosen

in related studies [25].
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Densities of the sclera and cornea have been taken equal to 1077 and 1058 kg/m3, respec-

tively [38].

The viscoelastic properties of the vitreous have been measured by several authors; see

Table 1 in [1]. Most authors have characterized vitreous properties through the complex mod-

ulus G, defined by Eq (5). In this work we interpret the rheological tests using the Kelvin-

Voigt model (6) and adopt the values of γ = 10 Pa and η = 0.39 Pa � s, that are derived from

measurements by [39] (see Table 1 in [15]).

We finally need to specify the values of the parameters μ and ~l. In conventional engineering

theories, these parameters are the shear modulus and the effective first Lamé constant. They

are given by

m ¼
E

2ð1þ nÞ
and ~l ¼

2En
1þ n

; ð9Þ

where E and ν are, respectively, the Young’s modulus and the Poisson’s ratio and ~l represents

a correction to the Lamé parameter l ¼ En
ð1þnÞð1� 2nÞ

. If the material is incompressible, then ν =

0.5 and (9) become m ¼ 1

3
E and ~l ¼ 2

3
E, so that

~l ¼ 2m: ð10Þ

It would be tempting to employ (9) or (10) to fit our parameters, employing the available

measurements of the Young’s modulus and Poisson’s ratio of the cornea. However, the avail-

able data are scattered and the outer shell of the eye is highly anisotropic and non-homoge-

neous. In addition, one should consider that the mechanical and geometrical properties of the

cornea are significantly different from those of the sclera [43, 44].

For the aforementioned reasons, we have opted for fitting the parameters μ and ~l using

measurements from inflation tests that provide a global estimate of the bulb mechanical prop-

erties, somehow averaging over the spatial variability of tissue properties. Friedenwald [40]

Table 1. Experimental values of the parameters.

Parameter Value Reference

Radius of curvature of the sclera 11.2 ± 0.3 [33]

Thickness of the sclera 0.50 ± 0.11 mm limbus [36]

0.43 ± 0.14 mm ora serrata

0.42 ± 0.15 mm equator

0.65 ± 0.15 mm posterior region

0.95 ± 0.18 mm posterior pole

0.86 ± 0.21 mm optic nerve region

Thickness of the cornea 0.561 ±0.026 mm [37]

Density of the sclera 1077 ± 5 kg/m3 [38]

Density of the cornea 1058 ± 7 kg/m3 [38]

Shear modulus of the vitreous 10 Pa [15, 39]

Viscosity of the vitreous η 0.39 Pa � s [15, 39]

Ocular rigidity 0.021 μl−1 [40, 41]

Physiological IOP 15 mmHg [42]

https://doi.org/10.1371/journal.pone.0294825.t001
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proposed the following empirical law to link the ocular volume V to IOP p

log
p
p0

� �

¼ KðV � V0Þ; ð11Þ

where p0 and V0 are the corresponding reference values, and K is a constant called ocular rigid-
ity. Friedenwald [40] estimated the ocular rigidity to be 0.021 μl−1.

It follows from (11) that
dp
dV ¼ Kp, and hence

dp
dR
¼ 4pR2Kp: ð12Þ

For a sphere of radius R, a uniform increment dR of the radius corresponds to a normal dis-

placement w = dR and to a tangential displacement v = 0. Thus, by (8), the stretching and

bending strains are, respectively,

ε ¼
dR
R

P; κ ¼
dR
R2

P: ð13Þ

Neglecting bending moments, the increment of the nominal membrane force tensor is,

according to the constitutive Eq (7),

N ¼
pR
2
þ 2hðmþ ~lÞ

� �
dR
R

P: ð14Þ

The corresponding increment of nominal traction (force per reference unit area) is

b ¼ dpþ p dR
R

� �
n, thus, the equilibrium equation in the normal direction (see (2)) yields

� pþ 4
h
R
ðmþ ~lÞ

� �
dR
R
þ dpþ p

dR
R
¼ 0; ð15Þ

whence

dp
dR
¼ 4

h
R2
ðmþ ~lÞ; ð16Þ

which corresponds to

dV
dp
¼

pR4

hðmþ ~lÞ
¼ C; ð17Þ

where C is ocular compliance. Comparison of (12) and (16) yields

mþ ~l ¼ p
R4

h
Kp; C ¼

1

Kp
: ð18Þ

Since the sclera is an almost incompressible material, we assume that the Poisson coeffi-

cients be equal to 0.5. Then, (10) and (18) yield

m ¼
p

3
R3Kp: ð19Þ

As a consequence, the value of the Young’s modulus that results from (9) and (19) is given

by

E ¼ p
R4

h
Kp; ð20Þ
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in agreement with [45]. In particular, taking R = 11.2 mm, h = 0.5 mm, K = 0.021 μl−1 and

p = 15 mmHg, we obtain E = 4.15 MPa. This is in line with experimentally determined values,

see Table 1 in [43].

We note that the above expressions imply that the Young’s modulus E increases (and the

ocular compliance C decreases) as IOP grows. Thus, by assuming a constant value of ocular

rigidity K, we effectively account for corneo-scleral tissue stiffening in response to tissue strain.

Solution procedure

The manipulations needed to find a solution of the mathematical model described in the previ-

ous section are quite elaborated, and a detailed description is reported in the S1 File. Here we

just outline the main steps in the following.

The first step of the solution process consists in passing from the time domain to the fre-

quency domain, by writing

uðx; tÞ ¼ Reðeztuðx; zÞÞ; qðx; tÞ ¼ Reðeztqðx; zÞÞ; ð21Þ

where z 2 C f0g is a complex frequency. The imaginary part of z is the angular frequency of

oscillation of the solution, while the opposite of the real part yields the rate of decay of the

solution.

We expand pressure increment and displacement using scalar and vector spherical har-

monics, respectively (for the detailed definitions we refer to the S1 File and [46, 47]). Specifi-

cally, we write

qðrÞ ¼
P

‘�0

X

� ‘�m�‘

Q‘mðr; zÞY‘mðr̂Þ; ð22Þ

and

uðr; zÞ ¼
P

‘�0

X

� ‘�m�‘

u‘mðr; zÞ; ð23Þ

where

u‘mðr; zÞ ¼ P‘mðr; zÞp‘mðr̂Þ þ B‘mðr; zÞb‘mðr̂Þ þ C‘mðr; zÞc‘mðr̂Þ: ð24Þ

Here r represents the position with respect to the center of the sphere; r = |r| is the distance

from the center, and r̂ is the unit vector pointing in the direction of r. The functions Yℓm are

the spherical harmonics, while pℓm, bℓm and cℓm are the vector spherical harmonics, defined on

the unit sphere. We recall that pℓm are radial vectors and bℓm and cℓm are vectors tangential to

the sphere surface and orthogonal to each other.

As shown in the S1 File, the substitution of (21)-(24) into the motion Eqs (1), (3) and (4)

yields a system of ordinary differential equations for the coefficients Qℓm, Pℓm, Bℓm and Cℓm.

For ℓ = 0, this system admits only the trivial solution. For ℓ� 1, bounded solutions have the
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general form:

Q‘mðr; Þ ¼ � C
ð1Þ

‘m
rvRz

2

‘

r
R

� �‘
;

P‘mðr; Þ ¼ Cð1Þ‘m
r
R

� �‘� 1

þ Cð2Þ‘m
r
R

� �� 1

j‘ aðzÞ
r
R

� �
;

B‘mðr; Þ ¼ Cð1Þ‘m
s‘
‘

r
R

� �‘� 1

þ
Cð2Þ‘m
s‘

aðzÞ j‘� 1 aðzÞ
r
R

� �
� ‘

r
R

� �� 1

j‘ aðzÞ
r
R

� �� �

;

C‘mðr; Þ ¼ Cð3Þ‘m j‘ aðzÞ
r
R

� �
;

ð25Þ

where Cð1Þ‘m , Cð2Þ‘m and Cð3Þ‘m are three arbitraty constants, aðzÞ ¼ iRz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rv=GðzÞ

p
, and jℓ is the ℓ-th

spherical Bessel function, defined by j‘ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2xÞ

p
J‘þ1=2ðxÞ.

Upon substitution of the solution (25) into the motion equations (2) that govern the

dynamics of the corneo-scleral shell we obtain two characteristic equations, namely,

m11ð‘; zÞ m12ð‘; zÞ

m21ð‘; zÞ m22ð‘; zÞ

 !
Cð1Þ‘m

Cð2Þ‘m

0

@

1

A ¼ 0; ð26Þ

and

m33ð‘; zÞC
ð3Þ

‘m ¼ 0; ð27Þ

where mij(ℓ, z) are complex coefficients, the expressions of which are reported in the S1 File.

Vibration frequencies are determined by imposing either that the determinant of the matrix in

(26) vanishes, that is,

m11ð‘; zÞm22ð‘; zÞ � m21ð‘; zÞm12ð‘; zÞ ¼ 0; ð28Þ

or

m33ð‘; zÞ ¼ 0: ð29Þ

The characteristic equations (28) and (29) are nonlinear in the eigenvalues z and are solved

numerically using the MATLAB (MathWorks1) function fsolve. This function uses

Powell’s dog leg algorithm [48]. Solutions of these equations define two families of vibration

modes. Modes in the first family are a linear combination of the harmonics pℓm and bℓm,

through the functions Pℓm and Bℓm, which depends on the coefficients Cð1Þ‘m and Cð2Þ‘m . These

coefficients are obtained by solving (26). For this class of modes, the displacement field on the

shell has both normal and tangential components.

The second family involves only the vector spherical harmonics cℓm, and the corresponding

velocity field is tangential to the shell surface.

For ℓ = 1, modes in the first family are singular at the origin [15, 47], and hence must be dis-

carded. Still for ℓ = 1, vibration modes in the second family have the special property that

every concentric sphere within the ball undergoes a rigid oscillatory rotation. Such modes

have been already studied in [15], and do not entail any deformation of the shell. As such, they

are not detectable by any method based on measuring the deformation of the corneoscleral

shell, and hence they are not of interest in the context of the present investigation.

We remark that the index m does not appear in the characteristic equations. This is because

harmonics having the same ℓ, but different m, can be transformed into each other through a
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rotation, which makes them physically equivalent [15]. For this reason, we focus our attention

on the case m = 0.

In Fig 2 we represent the velocity of the two lowest-frequency modes (ℓ = 2) in the first fam-

ily. The first mode involves mainly bending of the shell, whereas the second involves stretching

since the velocity field is almost tangential. In the figures we show only a meridian section of

the sphere as the motion is axisymmetric.

Fig 3 shows is a three-dimensional representation of the vibration mode for ℓ = 2 of the sec-

ond family. This mode of oscillation is purely tangential and involves a twist deformation of

the shell.

Validation of the model

In [23], Salimi et al. studied free vibrations of the eyeball using a FEM model. To calibrate

their model, they performed experiments on the vibrations of a water-filled elastic ball. In this

section, we validate our analytical model against these experimental measurements.

The ball was filled with water through an injector and the internal pressure was measured

with a pressure gauge. The ball was suspended to an elastic cord so that it could freely vibrate.

A little hammer was used to generate ball vibrations, which were measured using an acceler-

ometer. The authors determined the vibration spectrum in response to the excitation input,

from which they inferred the main natural oscillation frequencies of the sphere. They per-

formed experiments for three different values of the internal water pressure.

A comparison between their experimental findings and the results predicted by our model

is shown in Table 2, where we report the vibration frequencies of the lowest mode, with ℓ = 2.

In our computations, we used to the following parameters [23]: sphere radius 25 mm; thick-

ness of the wall 4 mm; Young’s modulus 4.8 MPa, Poisson coefficient 0.45; shell density 1200

kg/m3; water density 1000 kg/m3; water viscosity 10−3 Pa � s.

The error of the model is always lower than 10%. Both experiments and model predict an

approximately linear dependency of the frequency from the pressure. Given some possible

Fig 2. Velocity fields on the boundary corresponding to the two eigenvalues from (28) for ℓ = 2 and m = 0.

https://doi.org/10.1371/journal.pone.0294825.g002
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Fig 3. Three-dimensional rendering of the velocity field on the boundary corresponding to the eigenvalue from (29) for ℓ = 2 and

m = 0.

https://doi.org/10.1371/journal.pone.0294825.g003

Table 2. Comparison between the model predictions and Salimi et al.’s [47] experiments on water-filled elastic

ball.

Pressure 13.7 kPa 34.5 kPa 62.0 kPa

Experimental frequencies 187 Hz 195 Hz 206 Hz

Computed frequencies 176 Hz 180 Hz 187 Hz

Error % 5.88% 8.33% 9.22%

https://doi.org/10.1371/journal.pone.0294825.t002
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experimental uncertainty regarding material properties of the sphere we regard this agreement

acceptable. The increasing error with rising pressure can be attributed to the nonlinear behav-

ior of rubber, leading to an increasing Young’s modulus, compared to the reference value of

4.8 MPa used in the calculations, as the internal pressure grows.

Results

We begin by showing the lowest frequency eigenvalues of the system, obtained by solving the

characteristic equations (28) and (29), with m = 0 and ℓ = 2. As discussed above, these eigenval-

ues are our main interest in this work. Results are reported in Fig 4 for various cases, relative

to different materials filling the eyebulb. The vertical and horizontal axes represent the imagi-

nary and the real part of the eigenvalue z, respectively; these correspond, in the order, to the

oscillation frequency and to the damping ratio. Empty circles represent the vibration frequen-

cies of the empty shell; in this case, damping vanishes as the shell is assumed to have a purely

elastic behavior and does not dissipate energy by itself. Mathematically, this implies that the

corresponding eigenvalues are purely imaginary. The eigenvalue with the lowest frequency

corresponds to the bending mode, shown in Fig 2a, obtained as one of the solutions of (28).

The second eigenvalue (frequency of�1000 Hz) corresponds to the purely tangential mode,

shown in Fig 3 and obtained by solving equation (29). The highest frequency eigenvalue corre-

sponds to the third solution of (28), whose associated mode is shown in Fig 2b.

The presence of a fluid inside the shell increases the total mass of the system and, as can be

seen in the figure, lowers considerably the vibration frequencies. Moreover, the system

becomes dissipative when it contains a viscous material. This implies that all corresponding

eigenvalues are now complex, with the real part being negative, which corresponds to dissipa-

tion. In all cases, the lowest frequency is associated with the mode corresponding to the first

root of the characteristic equation of (28) (Fig 2a), which is thus the mode we will mostly focus

our attention on in the following. This is because this mode is the one which will survive the

longest time, after excitation of the eye bulb vibration.

The various points with different colors in Fig 4 correspond to cases of clinical interest, in

which the eyeball is filled with healthy vitreous (blue), water (red) and silicone oil (yellow).

The case of water is representative of a completely liquefied vitreous, and silicone oils are often

Fig 4. Comparison between the complex frequencies for different materials filling the vitreous cavity. Water: density of 1000 kg/m3 and

viscosity of 10−3 Pa � s; vitreous body: values from Table 1 and density of 1000 kg/m3; silicone oil: density of 970 kg/m3 and viscosity of 0.5 Pa

� s.

https://doi.org/10.1371/journal.pone.0294825.g004
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used as vitreous replacement fluids after vitrectomy. The mechanical properties adopted for

each case are reported in the caption of Fig 4. The figure shows that the frequencies of oscilla-

tion are weakly affected by the material filling eyebulb. On the contrary, the damping rate

strongly depends on the viscosity of the filling material, being much higher for silicone oil and

the real vitreous than for water.

In Fig 5 we investigate the dependency of the vibration frequency of the less damped mode

on IOP, for different values of ocular rigidity K. The oscillation frequency increases markedly

as IOP is raised from very small values up to 80 mmHg (which is an exceedingly high value).

The dependency is particularly strong at low IOP. The results reported Fig 5 also show that

ocular stiffness has a significant impact on the vibration frequencies, especially at large values

of IOP. The intermediate curve, which corresponds to the value of ocular rigidity proposed by

Friedenwald, is in good agreement the curve from Fig 5 of Ref. [8].

In Fig 5(b) we report the same curves as on Fig 5(a) but in a log-log plot. This shows that,

on such a plane, the curves become straight lines, which means that the oscillation frequency

depends on IOP according to a power law. Moreover, the curves are almost parallel to each

other. In the case of the empty shell, an argument based on dimensional analysis shows that,

under the assumption that the ocular rigidity K is constant, i.e. Young’s modulus grows line-

arly with IOP according to (20), the oscillation frequency depends on the square root of IOP.

This is confirmed by our solution. Interestingly, the angular coefficient of the curves in Fig 5

(b) is very close to 1/2, which implies that the presence of vitreous within the sphere does not

modify significantly this dependency.

We point out that, according to equation (20), Friedenwald’s law (11) implies that the cor-

neo-scleral tissue stiffens with stretch. To understand the importance of such an effect, we

compare in Fig 6 the IOP-frequency curve for K = 0.021 μl−1 from Fig 5 with the curve

obtained by assuming a constant Young modulus (and thus also a constant ocular compliance

C), determined by equation (20) for p = 15 mmHg. The comparison between the two curves

shows that neglecting ocular stiffening results in a substantial underestimation of the change

Fig 5. Dependency of the frequency of oscillation of the slowest decaying mode as a function of IOP, for 3 different values of the ocular rigidity K.

(a) linear scales, (b) log-log scales.

https://doi.org/10.1371/journal.pone.0294825.g005
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of vibration frequency with IOP. This confirms the importance of tissue stiffening effects,

which have been already pointed out by Alarm et al. [9].

The effect of viscosity on the vibration damping rate is shown in Fig 7, for the case in which

the eyeball is filled with a viscous fluid. The viscosity in the plot is varied from 10−6 m2/s,

which is representative of water, to 10−3 m2/s, which a typical viscosity of silicone oils used as

tamponade fluids after vitrectomy.

Finally, in Fig 8 we plot contour lines of the frequency (a) and damping rate (b) of the slow-

est decaying mode as a function of IOP and ocular rigidity K. In the figure, IOP is varied over

a very wide range of values and K is modified by ±50% from the baseline value 0.021 μl−1. The

plots show that at low values of IOP, ocular rigidity has little effect on the eigenvalues of the

system as the contour lines are almost vertical. As IOP increases, ocular rigidity becomes pro-

gressively more relevant.

Discussion and conclusions

We have developed a mechanical model of the vibrations of the eyebulb, which describes the

cornea and the sclera as a thin elastic shell with pre-stress, and the vitreous humor as a visco-

elastic material. The model takes into account the effect of pre-stress through a consistent line-

arization, which leads to a more rigorous set of equations than used by previous authors. We

have solved the set of linear evolution equations resulting from the model using a series expan-

sion of pressure increment and displacement in terms of scalar and vector spherical harmon-

ics, respectively. For each term of the series, we have obtained an eigenvalue problem

Fig 6. Dependency of the frequency of oscillation of the slowest decaying mode as a function of IOP. Comparison

between the model with constant ocular compliance C (blue) and the model with constant ocular rigidity K (red).

https://doi.org/10.1371/journal.pone.0294825.g006
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Fig 7. Damping of the slowest decaying mode as a function of fluid viscosity.

https://doi.org/10.1371/journal.pone.0294825.g007

Fig 8. Frequency (a) and damping rate (b) of the slowest decaying mode as a function of IOP and ocular rigidity K.

https://doi.org/10.1371/journal.pone.0294825.g008
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consisting of three nonlinear algebraic equations, which we have solved numerically. We

focused on the bending modes with the lowest damping rate, which are the most relevant for

our application.

The study aims to improve our understanding of the mechanical behavior of the eye under

dynamic conditions. This is relevant in acoustic tonometry, which is a non-contact technique

to measure IOP. The technique is based on the principle that the natural frequencies of oscilla-

tion of the eyebulb depend on IOP and it is thus possible to correlate high values of IOP to

large oscillation frequencies. Clearly, for this method to be of practical use, one needs to under-

stand what parameters the oscillation frequencies depend on and, in particular, how they vary

with IOP. A more comprehensive understanding of the dynamic behavior of the eyebulb can

also be relevant for other ocular pathological conditions, such as traumatic retinal detachment.

We have evaluated the natural vibration frequencies and damping rates, using parameters

significant for the eye ball dynamics. A novelty with respect to previous works is that we have

used ocular stiffness to assess the mechanical properties of the corneo-scleral shell, which we

believe is a better approach than the use of a value of Young’s module taken from experiments

on scleral tissue. This is for two reasons. First, scleral properties are known to be spatially vari-

able, and second, they are significantly different from those of the cornea. The use of a value of

Young’s modulus based on inflation tests provides a meaningful “average” value. Secondly, the

use of Friedenwald’s law (11), somehow accounts for the nonlinearity of the corneoscleral

tissue.

The existing experimental and numerical estimates of the vibrations of the eyeball provide

extremely sparse values (see Table 1 of [33]), ranging from 30 to 800 Hz. This extreme uncer-

tainty probably reflects lack of standardization of the measurement techniques, experimental

inaccuracies or difficulty in data interpretation, more than real variability from case to case.

Our model shows that the slowest decaying mode of oscillation that involves motion of the eye

bulb (and can thus be observed and measured) has frequencies ranging from� 80 to� 300

Hz, depending on the value of the IOP. These values are well within the range of measure-

ments. Moreover, the good agreement with the experimental results of Salimi et al. [23], per-

formed on a fluid-filled rubber ball in controlled conditions, is reassuring about the reliability

of our predictions.

The increase of the vibration frequencies with IOP is of particular interest in the present

context, as it is at the basis of acoustic tonometry. This dependency has two origins: “geomet-

ric” stiffening, due to an increase of the pre-stress, and “material” stiffening, due to the nonlin-

earity of the stress-strain curve of the sclera. Our results indicate that the latter effect is by far

dominant, as shown by Fig 6.

Our results also predict a significant dependency of bulb dynamics on the mechanical prop-

erties of the corneo-scleral shell and, in particular, on ocular rigidity K: the natural frequencies

of oscillation of the eye increase with K, i. e. with increasing stiffness of the ocular tissues. Fig 8

shows, however, that the dependency of oscillation frequencies on ocular rigidity is important

only at relatively large values of IOP and, close to physiological conditions (IOP of� 15

mmHg), IOP is by far the main determinant of ocular vibration frequencies. This is an impor-

tant finding, since it confirms that measuring the natural vibration frequencies of the eye is a

promising method to measure IOP. In particular, longitudinal measurements on a single sub-

ject have the potential to provide reliable estimates of IOP changes.

In this work, we have for the first time considered the effect of the vitreous gel on the

dynamics of the eye bulb. Results show that the material filling the eye ball affects significantly

the frequencies of oscillation, mostly owing to an added mass effect: an eye filled with gas,

which is much lighter than the vitreous, would have higher natural frequencies of oscillation.

The material property that matters for the inertia of the system is, obviously, density. On the
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other hand, our results show that the elastic and viscous properties of the material filling the

vitreous chamber have little effect on ocular vibration frequencies. However, viscosity plays a

major role in determining the damping rate of the system. This confirms the speculation that

the vitreous body might protect the internal ocular tissues, effectively acting as a damper. This

might be particularly relevant in the case of traumas.

The results of our theoretical model confirm that acoustic tonometry is based on sound

physical principles and that it is a technique to measure IOP worth being further explored.

Specifically, we find that the eyebulb vibration frequencies significantly increase with IOP.

Moreover, even if the vibration frequencies also depend on ocular rigidity (which can have an

inherent intersubject variability), its effect is significant only at large values of IOP and, for

pressures relatively close to physiological, IOP is by far the main determinant of the eyebulb

frequencies of oscillation.

Our results may be improved in several aspects. We may take into account the spatial vari-

ability of shell properties and the details of eye geometry, which is not exactly a sphere.

Accounting for these effects to model the dynamics of the ocular bulb would, however, rule

out the possibility of adopting analytical methods and would require a fully numerical

approach. As a result, this would make it difficult to capture the role of the key parameters. In

this respect, we think that idealized models, such as the one presented here, represent a very

valuable complementary approach. This is because analytical models easily elucidate relation-

ships between the quantities at play, allowing to capture the essential features of the problem.

Concerning the clinical relevance our results, we point out that air puff tonometers pres-

ently in use are ultimately based on the principle of inducing a deformation of the cornea,

through a jet of air and of correlating it to the air pressure. During a typical test the cornea

undergoes large deformations so that, at its maximum deflection, its curvature changes sign

(from convex to concave). From the mechanical point of view, this is a formidably complex

problem, involving nonlinear tissue deformation, fluid motion on the aqueous side, air

dynamics on the outer side, with the jet impinging a moving wall. Inertia, due both to the cor-

nea and to the aqueous humor, very likely plays a major role [49], which is not thoroughly

understood yet. The mechanics involved in acoustic tonometry is, comparably, much simpler

since it involves linear (small amplitude) oscillations of a sphere. In addition, acoustic tonome-

try is expected to be more suitable for self-administered measurements, offering an easier and

more accessible method for individuals to independently monitor their intraocular pressure.

We thus think that this technique has the potential to become a robust method to measure

IOP. The fact that the existing measurements of ocular natural vibration frequencies are so

sparse might seem to be somehow discouraging but, as mentioned earlier, is likely due to a

lack of standardization of the procedures.
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11. Osmers J,Patzkó Á, Hoppe O, Sorg M, Von Freyberg A, Fischer A. The influence of intraocular pressure

on the damping of a coupled speaker–air–eye system. Journal of Sensors and Sensor Systems. 2018;

7(1):123–130. https://doi.org/10.5194/jsss-7-123-2018

12. Osmers J, Hoppe O, Strzalkowska A, Strzalkowski P, Patzkó Á, Arnold S, et al. Results of First In Vivo
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