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 B S T R A C T

odern mobile applications harvest many user-generated events during execution using proper libraries called analytic libraries. The collection
f such events allows the app developers to acquire helpful information to further improve the app. The same collected events are likewise an
ssential source of information for analytic library providers (e.g., Google and Meta) to understand users’ preferences. However, the user is not
nvolved in this process. To counteract this problem, some proposals arose from legal (e.g., General Data Protection Regulation (GDPR)) and
esearch perspectives. Concerning the latter point, some research efforts led to the definition of solutions for the Android ecosystem that allow one
o limit the gathering of such data before the analytic libraries collect it or give the user control of the process. To this aim, HideDroid was the first
roposal to allow the user to define different privacy levels for each app installed on the device by leveraging k-anonymity and differential privacy
echniques. Subsequently, VirtualHideDroid extended HideDroid by taking advantage of the same approach to virtualized Android environments,
n which an application (plugin) can run within another application (container). In this scenario, VirtualHideDroid anonymizes user event data
unning as the container app. However, according to standard threat models regarding virtualized Android environments, assuming that the
ontainer app is fully trusted is too optimistic in real deployments.

For this reason, in this paper, we extend the work of the original VirtualHideDroid work by assuming that the same tool may be untrusted,
.e., controlled by an external attacker that has access to the container app, thereby having full access to the user data. To solve this problem,
e define a new approach, named MarvelHideDroid, which gives reliable anonymization of event data in the Plugin app, even in the event
f a malicious/compromised container. Moreover, and differently from VirtualHideDroid, MarvelHideDroid relies on LLM to automatically build
p the generalizations required by k-anonymity, resulting in an anonymization strategy that is more reliable against modification in the data
tructure of the events captured by the analytic libraries. We empirically demonstrate the viability and reliability of the proposal by testing an
mplementation of MarvelHideDroid on a set of real Android apps in a virtualized environment.

. Introduction and context

The exponential growth in mobile device adoption during the last decade led to flourishing research on several aspects of mobile
ecurity. The focus primarily concerned defining methodologies and tools to find and exploit application vulnerabilities, harden the
ndroid OS, and detect proliferating mobile malware. However, in recent years, novel concerns about managing and exploiting user
ata in mobile apps have raised privacy-related issues. In particular, such concerns were exacerbated as the amount of personal data
roduced on mobile phones increased significantly, primarily due to the spread of social apps, as shown in [1].

To this end, while executing and interacting with the user, mobile applications generate a lot of personal data that is helpful
o developers and firms such as Facebook and Google, providing a proper means for developers to monitor user interaction with
heir applications. Such means include analytic libraries that give a set of functionalities that developers can embed into the app
hey develop, distribute, and configure to recognize and gather specific events generated by the user in the app. This way, analytic
ibraries allow the developer to collect much data from each app instance installed on users’ devices worldwide. This way, the
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developer can monitor the app’s execution to detect usage patterns and obtain valuable insights to improve future app versions. The
most popular analytics library is Google Analytics [2], which is currently embedded in 58% of the Android apps analyzed in [3].

From a regulatory point of view, in 2018, the EU released the General Data Protection Regulation (GDPR) [4] to limit the
uncontrolled gathering of personal data by placing obligations on all organizations that collect data related to user data in the
European Union. In particular, GDPR establishes that a company must evaluate the risks of data breaches to avoid the need to
add privacy-preserving solutions to existing information systems a posteriori. Moreover, GDPR requires companies to expose clear
privacy policies to users, who must accept them before using their services. Furthermore, the GDPR limits data transfer operations
and data storage within the EU.

From a research point of view, some works investigated privacy concerns related to analytics libraries. For example, Chen
t al. [5] demonstrated that an external adversary could extract sensitive information about the user and the app by exploiting
oogle Mobile App Analytics and Flurry. Zhang et al. [6] highlighted some privacy problems related to a misconfiguration of analytic

services. Furthermore, several works, such as [6], reported how analytical libraries share the same privileges and resources as the
hosting application, allowing them to access and collect sensitive information about users and their behavior without proper privacy
rotection mechanisms. Meng et al. [7] analyze 158 third-party Android SDKs using taint analysis and Large Language Model (LLM)

techniques. Their goal is to identify which sensitive user data these SDKs exfiltrate from users’ smartphones. Although they employ
aint analysis and LLMs to detect data exfiltration, they do not leverage the collected information to propose an anonymization

methodology for these types of data. Lu et al. [8] analyze the most popular social-media SDKs and propose a novel methodology to
odify the code of social-media SDKs within Android apps to secure the data exfiltration process using dedicated threads. Although

his methodology is promising, it does not anonymize the extracted data but only ensures its secure exfiltration. However, the
xfiltrated data are still sent in clear to the social-media providers.

Moreover, these libraries must comply with the GDPR for use in European countries. In June 2022, for instance, the Italian
rivacy Guarantor [9], an administrative authority that ensures the enforcement of the GDPR in Italy, definitively banned Google

Analytics services. Although considerable privacy changes have been made, version 4 of Google Analytics (released in 2020) is
incompatible with GDPR [10].

Although the GDPR limits some unethical personal data collection procedures, it does not require the user to be actively involved
in selecting the data she aims to share. Although this limitation is also relevant in several scenarios such as IoT [11], it is of the
utmost importance in the mobile ecosystem, where the previously described protocol, based on analytic libraries, requires the active
participation of the user in deciding which data to share to the app developers and the companies providing the analytic libraries.

To this end, some research efforts aim to protect user privacy on the mobile platform. For instance, the authors in [12] proposed
an Android app called Lumen Privacy Monitor that allows the user to block requests containing personally identifiable information
(e.g., IMEI, MAC, Phone Number). The authors in [13] proposed a modified version of the Android OS called MockDroid, which
allows users to revoke access to specific resources at run-time. The most promising one is HideDroid [14,15], which exploits local
ifferential privacy techniques to anonymize user data extracted from analytics services, both allowing users to control the level of

privacy of the collected data at the granularity of a single app and the developers to obtain some (albeit reduced) valid data for
ssessment. The privacy concerns have also reached Google [16] and Apple [17], which, in their last release, introduced a sandbox
echanism to protect and anonymize the user’s data. Apple’s App Tracking Transparency framework allows users to deny the app

access to their data.
Nonetheless, state-of-the-art solutions have some limitations. First, they – except HideDroid – do not give the user, the data

owner, any control over the collected data and the anonymization process. Also, Google’s sandbox does not provide automatic
user-data anonymization mechanisms but leaves the task to every app developer, who can decide what information to anonymize.
Finally, they have some technical limitations: the work in [12] follows an ‘‘all or nothing approach’’, supporting only the option
to either fully accept or deny all the collection of personal data. At the same time, HideDroid [15] performs an app repackaging
step [18] to intercept and modify the network requests, which is problematic if the app uses encryption or custom data encoding.
or instance, HideDroid cannot anonymize Google Analytics requests encoded in protobuf, a private Google data packing format.

To overcome such limitations, the authors in [19] proposed an extension of HideDroid, called VirtualHideDroid, able to execute as
 plugin app in a virtualized Android environment. A virtual app comprises two nested applications: the container app and the plugin
pp. The container app executes the plugin app by filtering and intercepting all OS requests of the plugin app. VirtualHideDroid
xecutes as a container app, while the app whose data must be anonymized executes as a plugin app. In this way, each data sent

by the analytic libraries to their corresponding backends is intercepted by VirtualHideDroid, anonymized on the fly, and then sent
to the backends. This way, the app does not need to be modified and repackaged, and the protobuf issue is solved.

Novel Contribution. From a security point of view, the threat model of VirtualHideDroid shares the same limitations of all
irtual apps in Android: total trust in the container app. As this intercepts and can modify all traffic from/to the plugin app, it

is relatively common to assume that the same is fully trusted. However, since virtualized environments potentially support any
ontainer apps (i.e., not only those approved by Google), we argue that a reliable data anonymization solution for Android apps
hould be robust against untrusted anonymization container apps, as a potentially maliciously crafted and attacker-controlled version
f VirtualHideDroid. In this case, the malicious anonymization container app could steal user data from apps. In this paper, we extend
he threat model of VirtualHideDroid by assuming that the anonymization container app could be malicious. Then, we propose a
ovel solution called MarvelHideDroid that grants anonymity to plugin app data exported through analytic libraries in case of a
alicious anonymizer container app. Moreover, we improved the reliability and scalability of the anonymization techniques adopted

y VirtualHideDroid by leveraging LLMs to build up data generalizations automatically. This way, we make the anonymization
2 
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strategies robust against modification in the data scheme of analytic libraries. Finally, we empirically assess the reliability of
MarvelHideDroid through experiments on real apps. We have released MarvelHideDroid as open-source software available on GitHub.1

Paper Structure. The paper is organized as follows: Section 2 introduces some background knowledge on analytic libraries,
ata anonymization, and virtualization technologies. Then, Section 3 discusses the threat model of virtualized Android apps;

Section 4 describes the methodology based on MarvelHideDroid, while Section 5 provides more technical details on its prototype
implementation. Section 6 discusses the experimental setup and the experimental results. Finally, Section 8 concludes the article

ith a summary and a look at possible future work.

2. Background

This section introduces the concepts of mobile analytics libraries and Android Virtualization and gives an overview of the leading
Data Anonymization techniques.

2.1. Analytics libraries

The increasing demand for top-tier applications and features leads to fierce competition among mobile developers who strive to
nhance the quality of their products. The best way to find what people want and need to satisfy is to study and understand their
ehavior and approach to apps. Consequently, developers started integrating analytics libraries into their mobile apps to collect
nformation about the user, the app’s usage, and the device, gaining a deeper understanding of market demands. In particular,
nalytics libraries generally consist of two parts:

1. a back-end service that exposes a set of APIs to generate, collect, and manipulate information regarding the apps’ usage and
offers developers monitoring dashboards to configure and access the collected data;

2. a Software Development Kit (SDK) that includes tools and libraries that support the interaction with the background service
and the integration of the libraries inside the mobile app.

From a technical point of view, the data are collected as Events or User Properties. The Events allow developers to track users’
nteraction on an app. They are composed of a name that identifies them and some parameters that give more information about
he event. For instance, the add_to_cart event comprises parameters such as currency, value, and items. While analytic libraries
enerally provide a predefined set of standard events, they also support creating custom events. On the other hand, User Properties

are attributes that can delineate various segments within the user base. For example, developers can establish properties like
favorite_food to denote the user’s preferred cuisine or language to identify the user’s primary language.

2.1.1. Google analytics libraries
One of the most widely used analytic services is Google Analytics; it is leveraged by Firebase, an app development platform

backed by Google, for data collection in the mobile environment [20]. Based on statistical insights from appBrain [21], Firebase
analytics is the most widely used analytic service in the context of mobile apps. In particular, nearly 70% of the apps on the USA
lay Store use Google Firebase Analytics, and close to 95% of the top 500 apps leverage analytics services.

The most recent version of Google Analytics is GA4, which was created to cope with privacy problems and improve some
functionalities. This library categorizes Events for mobile apps into three distinct types: automatically collected, recommended, and
custom events [22]. Automatically collected events include actions such as app removal, app_remove, first open after installation,
first_open, changing screen, screen_view, among others. In contrast, developers must manually trigger the other two types within the
app’s code. Firebase library facilitates this through a method called logEvent(), which requires the event name and a bundle
containing relevant parameters as input.

The recommended events allow for measuring additional features and behavior and generating more valuable reports. Since
these events require additional context to be meaningful, they are not sent automatically. Examples include add_payment_info [23],
which users should use when submitting their payment information. Custom events enable developers to define event names and
arameters based on specific contextual requirements.

Similar to Events, Google Analytics offers custom and automatic user properties. Developers can define custom user properties
using the setUserProperty() method provided by Google Analytics libraries, which requires specifying a name-value pair,
such as favorite_food and pizza. On the other hand, automatic user properties automatically transmit information regarding the app’s
usage, user data, and session details, including first_open_time and session_id. Given their similarity, we use the generic term events
to refer to both Events and User Properties, only specifying differences when necessary.

1 https://anonymous.4open.science/r/MarvelHideDroid-5BC4
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Fig. 1. The internal structure of an Android virtual environment.

2.2. Android virtualization

Android virtualization (AV) enables an app (known as container) to create a virtual environment where other apps (known as
plugins) can run. A user can install several containers, which generate their corresponding virtual environment. In this environment,
the user can execute several plugins independently from the underlying Android OS and other virtual environments. DroidPlugin [24]
and VirtualApp [25] are the two most well-known frameworks that support the generation of virtual environments on Android and
share a standard design. The AV technology does not require any additional privileges enabled on the device (e.g., root privileges,
custom ROM). It allows the use of multiple apps simultaneously, even if they are not installed on the device. To do so, the container
must manage the life cycle of all the plugin’s components, hiding the app from the Android OS.

The virtualization technology relies on the Dynamic Code Loading (DCL) and Java dynamic proxy [26]. The former enables an
Android app to load external code in a supported executable format, such as .dex and .apk files. From a technical standpoint,
DCL allows us to bypass the 64K reference limit imposed by the .dex format. On the other hand, the Java dynamic proxy allows
creation of a wrapper object to intercept all method calls towards a specific object instance, eventually adding some functionality.

Fig. 1 shows the internal architecture of an app that generates a virtual environment for a plugin. The architecture involves
the following components: the Container App (i.e., container), the Plugin App (i.e., plugin), the Dynamic Proxy Module, and the
ClassLoader.

ClassLoader loads Java code (.apk or .dex files) in the Android system. To make the classes and methods of the plugin, the
container extracts the bytecode of the plugin from its .apk (i.e., the classes.dex file(s)) and loads them into the ClassLoader
of the container. Then, it forks its process (i.e., 𝑝𝑖𝑑0) into a new process to host the plugin (i.e., 𝑝𝑖𝑑1). Each Android app is assigned
a unique user ID (UID) and group (GID) when installed. Therefore, the container and the plugin share the same UID (i.e., 𝑢𝑖𝑑0),
allowing the container to access all the plugin’s resources and vice versa. However, plugins and containers run in different processes.
At runtime, the ClassLoader resolves the plugin’s classes and methods (i.e., 𝑀𝑖) by returning the appropriate code (𝐶 𝑀𝑖).

Unlike the User Interface (UI) components (e.g., button, view), the life cycle of the app components (e.g., Activity) can
be managed only by the Android system. Thus, to hide the plugin app, the container has to manage the life cycle of all the
plugin’s components. In detail, Android apps contain several components (i.e., Activities, Services, Broadcast Receivers, and Content
Providers), which must be declared in the AndroidManifest.xml file so the Android OS can register them at the installation
time. The management of each component involves an interaction between the Android app and the Android OS [27]: for example,
to show an Activity (A) on the screen of the smartphone, an app has to send a request to open that Activity (startActivity(A))
to the Android OS and it has to receive a reply containing the details of the device where the app is running (e.g., the dimension
of the screen). If an app runs in a virtual environment, the Android OS receives all requests from the container. Thus, the container
is expected to declare the same components as the plugins running in its virtual environment: it declares a generic number of stub
components in its Manifest file. Thus, it can rely on the Dynamic Proxy Module to intercept each request (reply) going towards
(coming from) the Android OS to dynamically change the component’s name. From a technical point of view, this module relies
on Java dynamic proxy, creating a proxy object (known as hook) for each Android manager. In the example of Fig. 1, the Proxy
module creates a Stub Activity (SA) and sends the modified call to the Android OS (startActivity(SA)). Then, the result of the
invocation (𝑅𝑒𝑠[𝑆 𝐴]) is mapped back to the original component (𝑅𝑒𝑠[𝐴]), fooling the plugin app to execute on the actual device.
Regarding permissions, the container requires all existing Android permissions to support all possible plugins.
4 
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2.3. Static code instrumentation of Android apps

Static code instrumentation of Android apps involves analyzing and manipulating an application’s bytecode to gain insights into
ts behavior or to modify its functionality.

A leading tool utilized for this purpose is Soot [28], along with its successor SootUp [29]. Soot is a sophisticated Java
ptimization framework designed for static analysis and manipulation of Android .dex and .apk files. Notably, the framework
nables comprehensive program execution flow extraction through representations such as call graphs and control-flow graphs [30].

Moreover, Soot facilitates bytecode manipulation and code injection using the Jimple intermediate representation.
The static code instrumentation of Android apps has been used in numerous studies. For example, authors in [31] used static code

instrumentation to analyze security vulnerabilities in Android applications. In contrast, the work in [32] used code instrumentation
o calculate code coverage during dynamic analysis of Android applications.

2.4. Data anonymization techniques

In data privacy, the set of attributes in a microdata set [33,34] can be mainly divided into three categories:

• Explicit Identifiers (EI). EI are user-identifying attributes, such as the name/surname, the social security number (SSN), or the
Insurance ID.

• Quasi-Identifiers (QI). This category includes attributes that can be combined with other external data sources (e.g., publicly
available databases) to indirectly identify a user. Examples of QI include geographic and demographic information, phone
numbers, and e-mail IDs.

• Sensitive Data (SD). SD are attributes that contain relevant information for the recipient of the microdata set, such as health
diseases, salaries, and eating habits.

The events generated by analytics libraries are multidimensional data. Multidimensional data is presented as a (relational) table
in which each row represents an individual, and each column represents information associated with that individual. Taking a single
row and grouping a set of columns to identify the QIs and SDs is possible. Considering the nature and variety of the information
resent, this type of data is challenging to anonymize; however, in some cases, it is possible to build hierarchies on the single
ttribute by varying the granularity of the information carried by the latter, or it is possible to hide some pieces of data or to

modify it, to generalize the result.
In general, the choice of anonymization technique depends on the data processing type, the privacy level, and the utility to be

achieved. The two anonymization techniques used for the study will be illustrated below:

• Generalization techniques replace specific values of attributes belonging to the same domain with more generic ones [35].
In a nutshell, given an attribute A belonging to a domain 𝐷0(𝐴), it is possible to define a Domain Generalization Hierarchy
(DGH) for a Domain (D) as a set of n anonymization functions 𝑓ℎ ∶ ℎ = 0,… , 𝑛 − 1, such that:

𝐷0 ←←→ 𝐷1 ←←→ ... ←←→ 𝐷𝑛 (1)

and:

𝐷0(𝐴) ⊆ 𝐷1(𝐴) ⊆ ⋯ ⊆ 𝐷𝑛(𝐴) (2)

It is worth noting that the more generalization functions are invoked on the original data, the higher the resulting privacy
value (and the lower the data utility), as heterogeneous data are transformed into a more reduced set of general values.
Generalization techniques are suitable for semantically independent data, such as the set of personal data collected by analytics
libraries (e.g., the device name or the phone number).

• Differential Privacy (DP) involves altering the original distribution of a set of interdependent data using a perturbation
function [36]. This approach is usually applied in a context where (i) the main requirement is the confidentiality of the
data exchanged between pairs, and (ii) the receivers’ identity is unknown a priori. There are two main models for defining
DP problems: centralized and local. The centralized model sends the data to a trusted entity that applies DP algorithms and
then shares the anonymized dataset with an untrusted third-party client [36]. On the contrary, the local model assumes all
external entities and communication channels as untrusted [37,38]. In such a situation, local DP techniques aim to perform
the data perturbation locally before releasing any dataset to an external party. In our scenario, the user is the sole owner of
its data, and we trust neither the analytics company nor the developer. The local DP model is suitable for anonymizing the
sequences of events logged by analytics libraries. The objective of DP is to transform a sequence of events (𝑒1, 𝑒2,… , 𝑒𝑛) ∈ D
in a different sequence of events (𝑧1, 𝑧2,… , 𝑧𝑛) ∈ D through the application of a perturbation function R : D ←←→ D to each event.
This function is commonly a probability distribution, defined a priori: 𝑧𝑖 = 𝑅(𝑒𝑖).
5 
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Fig. 2. Threat model of a malicious anonymizing container app.

3. Threat model

In the privacy-related scenario discussed, the attacker aims to steal users’ sensitive data from the analytics data generated by the
victim’s apps. The victim is a general Android user, daily enjoying her mobile device and regularly downloading apps from any app
market (e.g., Google Play Store and Amazon Appstore) and using Android virtualization solutions – such as the VirtualHideDroid
container [19] – to control the privacy of the data extracted by analytics libraries from her apps.

We argue that previous assumptions are too optimistic. A more reasonable assumption in actual deployments is that the container
app is untrusted. In particular, we assume that the attacker could be able to perform a virtualization-based repacking attack [39]
to create and redistribute in app stores a malicious version of the VirtualHideDroid container that logs the analytics data generated
by the plugin apps before applying the anonymization procedure.

The scenario is illustrated in Fig. 2. The malicious container application has been extended with a Data Logger function embedded
in its functionality that intercepts data to anonymize. To simplify, we refer to this component (a module, a function, or an API) as
Interceptor. The malicious container supports installing Android APK files as plugin apps (Step 1). At runtime, after the Interceptor
is triggered by the hook on the APIs of the analytic library (Step 2a in the case of custom events, otherwise Step 2b in the
case of automatic events), the Data Logger collects the generated events and user-specific properties (Step 3a) and forwards them
to the attacker without any anonymization (Step 3b). Finally, the malicious container continues with the intended workflow of
anonymization, and forwards anonymized data to the analytics backend (i.e., Steps 3c, 4, and 5) to maintain the expected behavior
from the user’s standpoint.

4. Anonymization methodology

In this section, we describe the methodology for adding an anonymization layer of the user’s sensitive data directly in the plugin
app to cope with the scenario of untrusted container apps described in the previous threat model. In summary, the methodology
consists of injecting the anonymization module directly inside the plugin app and instrumenting all the method invocations contained
in the plugin app before sending the user’s sensitive data to the analytic libraries.

Fig. 3 shows a high-level overview of the process. First, we build a list of all the analytics library APIs that manage data through
events and user properties. To do so, we rely on an offline analysis of the analytics libraries (Step a) to retrieve and store the list of
APIs (Step b). It is worth noticing that such a phase is done on a per-library basis and must be updated only in the case of newer
releases on the same library or to support other libraries than Google Play analytics.

Then, we apply the anonymization layer on each plugin app using a four-step approach. First, the methodology extracts the
app’s Control Flow Graph (CFG) related to the main app code and the analytics library code (Step 1). The resulting CFG evaluates
6 
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Fig. 3. Overview of the anonymization process of plugin apps.

all the method calls invoking the analytics libraries’ APIs. To do so, the APIs Caller Extraction phase analyzes the CFG (Step
2), fetches the list of signatures of the methods of the analytics library that receive the user’s sensitive data (Step 3), and retrieves
from the CFG of the app the list of methods that needs to be modified (Step 4). The Anonymization Procedure instruments
the app binary by (i) adding an anonymization module that implements differential privacy and data generalization as described
in Section 2.4, and (ii) modifying the body of all the methods identified in Step 4 to invoke the anonymization process before
invocation of the analytics API. The local and runtime execution of the data anonymization process prevents the container module
from hooking inside the API invocation and, thus, accessing the users’ data. Finally, the modified app is built and signed in the App
Repacker phase (Step 5) to generate a valid plugin app installed inside a virtual container and executed by the container app
(Step 6).

The rest of this section details the anonymization strategies exploited by the anonymization module and the process related to
the app modification.

4.1. Notes on the anonymization procedure

The anonymization procedure involves a set of compiled classes that adapt two different techniques to the analytics libraries
scenario, i.e., generalization and differential privacy. The anonymization procedure exploits a buffer to store every anonymized event
sent to the Analytics backend. For each intercepted event, it applies generalization to the data contained in the event, putting the
results into a buffer that includes every anonymized event sent to the analytic library backends. The anonymization is not applied
if the buffer does not reach a predefined minimum length. The last step of the anonymization procedure involves triggering the
differential privacy algorithm if the buffer reaches a predefined minimum length. The complete data anonymization procedure
follows the algorithm described in Listing 1, detailed in the rest of this section.

4.1.1. Generalization
The anonymization procedure exploits generalization techniques to anonymize the data related to the device and the user. Due

to the high heterogeneity of data that can be collected, we opted to suppress certain characters in a number dependent on the level
of anonymization set within the container.

In detail, the adopted heuristic consists of the following three rules:

• if the attribute is a sequence of alphanumeric characters, the generalization replaces the last p characters with the ‘*’
character. The 𝑝-value is defined as a percentage of the length of the string, and it is set statically.

• if the attribute is a number, the value is rounded to the first most significant decimal digit to maintain the semantics of the
data such that the analysis backend can process it.
7 
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• if the attribute is the name of an event, the generalization leverages an LLM [40] to extract a more generalized version of the
event name without losing the original name’s semantics. It is worth noticing that this kind of generalization is just applied
to the event name and not to the other types of attributes, as the event name is usually the only attribute that always appears
in every analytics request.

4.1.2. Differential privacy
The algorithm in Listing 1 takes in input five different parameters, namely, the current intercepted event (interceptedEvent),

a threshold value to determine which procedure to carry out between replaceEvent and injectEvent (threshold), the percentage of
characters to generalized in alphanumeric values (anonymizationPercentage), the minimum number of events stored inside
the event queue needed to apply the differential privacy (minNumberOfRequests), and the list of events already anonymized
and sent to analytics backend (sentEvents), i.e., the buffer of anonymized events.

The algorithm can be divided into several steps:

• Initialization phase: this phase is needed to initialize all the parameters for the differential privacy algorithm (lines 1–
4). In lines 1 and 2, it initialized the sentEventsSize variable with the size of sentEvents, and it initialized the
anonymizedEvents list. The anonymizedEvents is a temporary list where the intercepted events are added after being
anonymized and emptied whenever the algorithm returns the events. In line 3, the algorithm initializes the 𝑃 𝑟𝑖𝑛𝑗 variable
sampling from a uniform probability distribution. This variable contains the probability that a new event could be generated.
Also, in line 4, the algorithm initializes the 𝑃 𝑟𝑟𝑒𝑝 variable sampling from a uniform probability distribution. This variable
contains the probability that the intercepted event could be substituted with another one taken from the buffer.

• Less than minNumberOfRequest inside the event buffer: in this case, the anonymization algorithm checks if the event
buffer contains more than minNumberOfRequest events (line 5). If so, it cannot apply differential privacy and generalizes
the intercepted event (see Section 4.1.1) before returning it (lines 7–8).

• Both 𝑃 𝑟𝑖𝑛𝑗 and 𝑃 𝑟𝑟𝑒𝑝 higher than the threshold: in this case, the algorithm applies differential privacy as the number of
events inside the queue is more elevated than minNumberOfRequest. In line 10, the algorithm checks if both the 𝑃 𝑟𝑖𝑛𝑗
and 𝑃 𝑟𝑟𝑒𝑝 values are higher than the threshold. If so, it randomly selects an action between replaceEvent and injectEvent, with
a probability of 50%, by checking if a random number (initialized at line 11) is less than or higher than 0.5 (line 13). If
the first condition is verified, the algorithm performs the injectEvent action. In this case, two events are sent: the generalized
intercepted event (lines 14-15) and a generalized event taken from the buffer (line 12). Otherwise, the algorithm performs the
replaceEvent action, returning (line 18) only the anonymized event extracted from the event queue (line 12).

• 𝑃 𝑟𝑖𝑛𝑗 higher than the threshold: in this case, the algorithm executes the injectEvent action (line 22). It generalizes the
intercepted event (line 21), saves it in the temporary list (line 22), extracts another generalized event from the buffer (line
23), and puts it in the queue (line 24). Then, it returns both events (line 25).

• 𝑃 𝑟𝑟𝑒𝑝 higher than the threshold: here, the algorithm performs the replaceEvent action (line 27): it extracts a generalized
event from the event queue (line 28), adds the event to the temporary list (line 29), and returns the same instead of the
intercepted event (line 30).

• None of 𝑃 𝑟𝑖𝑛𝑗 and 𝑃 𝑟𝑟𝑒𝑝 are higher than the threshold: If any of the 𝑃 𝑟𝑖𝑛𝑗 and 𝑃 𝑟𝑟𝑒𝑝 are higher than the threshold, the
algorithm generalizes the intercepted event (line 32) and returns it (line 34).

5. Methodology implementation

We implemented the methodology in a prototype tool called MarvelHideDroid for the Android OS that anonymizes the traffic
enerated by analytic libraries directly inside the app’s code, preventing the stealing of sensitive information from a malicious
ontainer app, as described in Section 3. To assess the reliability of our methodology, we explicitly target Google Firebase Analytics
ince state-of-the-art solutions cannot apply proper anonymization techniques to the requests generated by this library.

In the rest of this section, we present the internal aspects of the Google Analytics library to understand how analytics events
re generated. Then, we detail the implementation of MarvelHideDroid, underlying the technique used to instrument the app’s code
tatically, and the adopted anonymization algorithms.

5.1. Anatomy of google analytics

To understand how the Google Analytics library collects the user’s data and information about the device and creates the events,
we performed a manual static analysis task leveraging the jadx [41] tool. For the activity, we considered the version 21 of the
library, downloaded from the mavern official repository.2

The main goal of this analysis is to identify the privacy-sensitive API method(s) that process automatic and custom events. It
is worth noting that this phase directly impacts the methodology’s overhead because it determines, for instance, the number of
nstrumented methods. For example, injecting the anonymization procedure into a recursive method would trigger the procedure
ach time the function is invoked, resulting in a significant resource overhead at runtime.

2 https://mvnrepository.com/artifact/com.google.firebase/firebase-analytics/21.0.0
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Listing 1 Data Anonymization Pipeline.
Input: 𝑖𝑛𝑡𝑒𝑟𝑐 𝑒𝑝𝑡𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡,𝑡ℎ𝑟𝑒𝑎𝑠ℎ𝑜𝑙 𝑑,𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒, 𝑚𝑖𝑛𝑁 𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑅𝑒𝑞 𝑢𝑒𝑠𝑡𝑠,𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠
Output: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠

1: Initialize 𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠𝑆 𝑖𝑧𝑒 ← 𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠.𝑠𝑖𝑧𝑒()
2: Initialize 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠 ← 𝑙 𝑖𝑠𝑡()
3: 𝑃 𝑟𝑖𝑛𝑗 ← rand()
4: 𝑃 𝑟𝑟𝑒𝑝 ← rand()
5: if sentEventsSize < minNumberOfRequests then
6: 𝑛𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡 ← generateNewGeneralizeEvent(𝑖𝑛𝑡𝑒𝑟𝑐 𝑒𝑝𝑡𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒)
7: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑁 𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡)
8: return 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠
9: else

10: if 𝑃 𝑟𝑟𝑒𝑝 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 AND 𝑃 𝑟𝑖𝑛𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 then
11: 𝑟𝑎𝑛𝑑 𝑜𝑚𝑁 𝑢𝑚 ← rand()
12: 𝑓 𝑟𝑜𝑚𝑅𝑒𝑎𝑙 𝑚𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡 ← injectEventFromRealm(𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠,𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠𝑆 𝑖𝑧𝑒)
13: if 𝑟𝑎𝑛𝑑 𝑜𝑚𝑁 𝑢𝑚 < 1∕2 then
14: 𝑛𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡 ← generateNewGeneralizeEvent(𝑖𝑛𝑡𝑒𝑟𝑐 𝑒𝑝𝑡𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒)
15: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑛𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡)
16: end if
17: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑓 𝑟𝑜𝑚𝑅𝑒𝑎𝑙 𝑚𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡)
18: return 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠
19: end if
20: if 𝑃 𝑟𝑖𝑛𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 then
21: 𝑛𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡 ← generateNewGeneralizeEvent(𝑖𝑛𝑡𝑒𝑟𝑐 𝑒𝑝𝑡𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒)
22: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑛𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡)
23: 𝑓 𝑟𝑜𝑚𝑅𝑒𝑎𝑙 𝑚𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡 ← injectEventFromRealm(𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠,𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠𝑆 𝑖𝑧𝑒)
24: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑓 𝑟𝑜𝑚𝑅𝑒𝑎𝑙 𝑚𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡)
25: return 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠
26: end if
27: if 𝑃 𝑟𝑟𝑒𝑝 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙 𝑑 then
28: 𝑓 𝑟𝑜𝑚𝑅𝑒𝑎𝑙 𝑚𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡 ← injectEventFromRealm(𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠,𝑠𝑒𝑛𝑡𝐸 𝑣𝑒𝑛𝑡𝑠𝑆 𝑖𝑧𝑒)
29: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑓 𝑟𝑜𝑚𝑅𝑒𝑎𝑙 𝑚𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡)
30: return 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠
31: end if
32: 𝑛𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡 ← generateNewGeneralizeEvent(𝑖𝑛𝑡𝑒𝑟𝑐 𝑒𝑝𝑡𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡.𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒)
33: 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠.add(𝑁 𝑒𝑤𝐺 𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑧𝑒𝐸 𝑣𝑒𝑛𝑡)
34: return 𝑛𝑒𝑤𝐴𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑒𝑑 𝐸 𝑣𝑒𝑛𝑡𝑠
35: end if

return

During the activity, we identified three different API methods related to the management of analytics events, namely,
he logEvent method (located in the com.google.firebase.analytics.FirebaseAnalytics class), the <init>
ethod of the class com.google.android.gms.measurement.internal, and the logEvent method belonging to the
om.google.firebase.analytics.connector.AnalyticsConnector Java interface. All the methods accept a set of
arameters that include the name of the collected event (of type java.lang.String), whose value could either be custom or
elected from a list of predefined events provided by the library and a android.os.Bundle,3 which contains all the information

related to the event.
We similarly identified the setUserProperty method belonging to the

om.google.firebase.analytics.FirebaseAnalytics class, responsible for sending User Properties information to the
nalytics backend. This method is the standard public method that is exposed to the developer from the Google Analytics library to
ump this information. It receives the name of the property as a parameter (of type java.lang.String), whose value could be
ecided by the developer or selected from a list of predefined user properties provided by the library, and a java.lang.String,
hich contain the property extracted from the user and linked to the corresponding property name decided from the developer. Sim-

larly, we identified a constructor method of the package com.google.android.gms.measurement.internal responsible
or building User Properties.

5.2. Marvelhidedroid

MarvelHideDroid is a standalone tool implemented in Java 8 that uses the Soot framework [28] to instrument Android application
packages.

First,MarvelHideDroid leverage Soot to compute the app’s control flow graph to identify the position of the API methods identified
in Section 5.1 inside the app’s code and all the methods that directly call them (i.e., the APIs caller list).

3 Android class which creates a mapping from String keys to various Parcelable values.
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For each method in the list, MarvelHideDroid runs a custom Soot Transformer that converts the compiled body of the function
into a Jimple representation. Then, the tool generates the Jimple representation of the anonymization code and injects it inside the
caller’s body before the function invokes the analytics library’s hooked API.

The anonymization code takes the original parameter values and anonymizes them according to the Differential Privacy
nd Generalization algorithms described above. The Differential Privacy and Generalization algorithms are
mplemented in Java code. In particular, the Differential Privacy algorithm’s implementation leverages an SQLite database
o store all the events previously generated from the app to be potentially used in case the generated event has to be replaced.
oncerning the Generalization algorithm’s implementation, MarvelHideDroid leverages the ChatGPT LLM [42] API to generalize

the event’s name. In detail, the Generalization module calls the ChatGPT API4 through a network request sending the prompt
alongside the event name. In detail, the generalization procedure asks the LLM to generalize the event’s name with just one English

ord.
After injecting the anonymization code to anonymize the parameter values of the methods we identified, MarvelHideDroid

converts the Jimple representation of the caller methods to their bytecode representation to be packed inside the statically
instrumented app. Finally, MarvelHideDroid builds and signs the .apk.

6. Results

We tested the feasibility and the effectiveness of our methodology enforced by MarvelHideDroid. In particular, our tests aim
to quantify the utility of the data preserved after anonymization. This section describes the setup and the result obtained by the
experimental campaign.

6.1. Experimental setup

In the current implementation, MarvelHideDroid targets the latest version of Google Analytics library (version 21.0.0).
To test the prototype, we collected a dataset of the first 80 top apps on Google Play in February 2024 that use Google Analytics

library version 21.0.0 and are compatible with the Android Virtualization environment. The search for apps with such a specific
prerequisite involved the execution of a pre-processing script where apps were automatically downloaded from the store, unpacked,
scrutinized whether they contained the signature methods identified in Section 5.1, and installed on a clean version of Android
Virtual App [25].

6.2. Testing pipeline

The pipeline aims to evaluate the effectiveness of MarvelHideDroid regarding the anonymization impact on the data utility. It also
seeks to assess the robustness of MarvelHideDroid against the proposed threat model. This requires the app to be statically instru-
mented through MarvelHideDroid before being executed from a container app implemented through the Virtual App framework [25].
We leverage the VirtualHideDroid [19] tool as our container app since it implements anonymization strategies to anonymize user
data. After instrumenting each app with MarvelHideDroid, we upload them to VirtualHideDroid. We executed each instrumented
app of the dataset through VirtualHideDroid, logging the anonymization process’s results (i.e., original and anonymized events).

To automatically interact with Android apps, we customized ARES [43], a black-box tool that leverages Deep Reinforcement
earning to explore the app dynamically. In particular, the extended version of ARES (from now on ARES++) can (i) execute
everal plugin apps in the VirtualHideDroid container and (ii) log the anonymization results. Thus, the testing procedure consists
f the following steps:

1. Container App installation. The container app is installed using the Android Debug Bridge (ADB) tool.
2. Plugin App installation. For each app of the dataset, ARES++ installs it as a plugin inside the container. To do so, ARES++

pushes the plugin app into the SD card and triggers the installation procedure of the VirtualHideDroid container, thereby
giving it the permission to access the external storage5 thanks to ADB.

3. Plugin App assessment. ARES++ executes each plugin app for 10 min, spawning a separate process to monitor the system
logcat.

For the pipeline, we used a Mac OS machine with 64 GB of RAM and an Intel i9 processor for the instrumentation phase and an
Emulator of a Pixel 8 Pro with four cores and 1536 MB of RAM with the Google Play services to evaluate the runtime behavior of
the plugin apps instrumented with MarvelHideDroid.

4 https://api.openai.com/v1/chat/completions
5 The WRITE_EXTERNAL_STORAGE allows both to read and write in external storage in Android.
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Fig. 4. Number of events generated from the first 10 top apps in the dataset.

6.3. Experimental results

The experimental campaign allowed the evaluation of the impact of the anonymization of MarvelHideDroid on the users’ data
by checking how its utility is impacted. We recall that the anonymization result depends on two variables: threshold and
anonymizationPercentage of Listing 1. The former determines the amount of data to anonymize. This value, in the prototype,
is assigned to 55%. In contrast, the threshold determines the probability of injecting or replacing events in the queue, affecting
the final sequence. We executed the testing pipeline with the threshold value at 60%.

The experimental activities allowed the logging of 774 events collected during the stimulation of the plugin apps of the dataset.
Fig. 4 details the number of events generated from each app during the testing campaign.

To determine the impact of the anonymization process, we computed several statistical metrics to evaluate the difference between
the original and anonymized events distributions and the content of the anonymized events.

The first measure is 𝐾 𝐿𝑑 𝑖𝑣𝑒𝑟𝑔 𝑒𝑛𝑐 𝑒 (Kullback–Leibler divergence) [44] which evaluates the difference between two PDFs, i.e., prob-
ability distribution functions, 𝑃 (𝑥) and 𝑄(𝑥). The 𝐾 𝐿𝑑 𝑖𝑣𝑒𝑟𝑔 𝑒𝑛𝑐 𝑒 is computed with the following formula:

𝐾 𝐿𝑑 𝑖𝑣𝑒𝑟𝑔 𝑒𝑛𝑐 𝑒(𝑃 , 𝑄) =
∑

𝑥
𝑃 (𝑥)𝑙 𝑜𝑔(𝑃 (𝑥)

𝑄(𝑥)
),

𝑃 (𝑥)|𝑄(𝑥) = # 𝑜𝑐 𝑐 𝑢𝑟𝑟𝑒𝑛𝑐 𝑒𝑠 𝑜𝑓 𝑥
# 𝑡𝑜𝑡𝑎𝑙

(3)

In our case, 𝑃 (𝑥) represents the probability that an event of type 𝑥 will occur in the anonymized event list, while 𝑄(𝑥) refers to the
original list of events. The closer a KL divergence value is to zero, the more 𝑃 (𝑥) and 𝑄(𝑥) are similar.

Then, we focused on evaluating whether MarvelHideDroid preserves data utility by maintaining statistical similarity between the
original and anonymized events distributions. First, we applied the Shapiro–Wilk test to assess the normality of the distributions. If
the distributions were Gaussian, we performed the ANOVA test and calculated Cohen’s d effect size, classifying it as Negligible (N),
Small (S), Medium (M), or Large (L) using the standard thresholds of 0.2, 0.5, and 0.8, respectively. For non-Gaussian distributions,
instead, we used the Wilcoxon signed-rank non-parametric test and computed the Vargha-Delaney effect size, with thresholds
(applied to 2 ⋅ | 𝑒𝑓 𝑓 _𝑠𝑖𝑧𝑒 − 0.5|) of 0.147, 0.33, and 0.474, using the same classification labels as those for the ANOVA test.

Finally, we computed the Edit distance (or Levenshtein distance) [45], which can be used to evaluate the content of the generated
events that are anonymized using the generalization procedure explained in Section 4.1.1. In particular, this metric evaluates the
minimum number of insertion, deletion, and substitution operations needed to make a single parameter of two distinct events equal.
In this scenario, a high value of Edit distance means that the parameter and its anonymized version are substantially different.

Fig. 5 shows the KL-Divergence values based on the event distributions and their anonymized versions for each app in the testing
dataset. Table 1 shows some statistics related to the KL-Divergence metric of the event’s distributions generated from the apps. In
detail, the value of the KL-Divergence on the tested apps is 0.30 on average, which means that the original event distributions
and their respective anonymized versions are different, in agreement with the Differential Privacy’s threshold value we
initialized for the testing campaign. Also, the standard deviation value of 0.28 ensures that the anonymization task is practical
regardless of the app under test.

The Wilcoxon-ANOVA tests revealed that 12 out of 80 apps exhibited a statistically significant difference. In detail, Table 2 shows
the number of statistically significant original-anonymized event pairs per app, categorized by their effect-size level. These results
indicate that compared to the original distributions, the number of apps with altered behavior in the anonymized event distributions
is relatively low. This finding is consistent with the results obtained using the KL-Divergence metric.
11 
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Fig. 5. KL-Divergence for the first 10 top apps in the dataset.

Table 1
Statistics on values of KL-
Divergence.
Measure Value

Mean 0.30
Median 0.20
St. dev. 0.28
Max 0.9
Min 0.0

Table 2
Number of apps where the original event sequence differs from
the corresponding anonymized sequence. Effect sizes are reported
only when statistically significant (N = Negligible; S = Small; M
= Medium; L = Large).
Measure N S M L

Effect Size 0 3 6 3

Table 3
Statistics on values of Edit Dis-
tance.
Measure Value

Mean 3.22
Median 3.62
St. dev. 1.4
Max 5.0625
Min 0.88

Fig. 6 shows the Edit Distance values between the user’s data and their respective anonymized versions. For our experimental
activity, we computed the Edit distance of all parameters in each logged event by pairing the original and anonymized version and
computing the Edit distance value. It is worth noticing that we excluded from this computation the events that are replaced by the
Differential Privacy procedure since we may not find a correspondence between the parameter in the original event and the
substituted one. After obtaining the edit distances between all the pairs of parameters, we computed the average value associated
with the entire plugin app.

Table 3 summarizes the results of the Edit distance values on the apps of the dataset. The table shows that the average Edit
Distance across the app’s dataset is 3.22, which means that an attacker needs a minimum of four operations (among insertions,
replacement, or deletion) to transform the anonymized parameter into the original one. The Edit distance’s standard deviation
across the dataset is equal to 1.4, which means the variability of the Edit distances across the apps is low. It implies that the
Generalization procedure injected by MarvelHideDroid is effective regardless of the app under analysis.
12 
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Fig. 6. Edit distance for the first 10 top apps in the dataset.

Table 4
Original and generalized event names.
Original event Generalized event

screen_view Display
login Access
app_open Opening
search lookup
add_to_cart Shopping
view_item Browse
purchase Buy
level_start beginning
add_payment_info Transaction
share Exchange

Finally, we measured the time overhead the anonymization process imposes on each app’s execution. The experimental results
show the anonymization procedure imposes an average overhead of 0.92 s for each event generated from the apps, which is
reasonable considering the execution time required from the Differential Privacy algorithm and the execution of a network request
to get the generalized version of the event’s name that labels each event.

7. Discussion on LLM generalization

We exploited LLM technologies to generalize the names of the events generated from the target app. In this study, we chose to
study the application of an LLM-based generalization only on the event’s name parameter because it is the only parameter present in
every analytic request. Moreover, we also chose to use an LLM-based anonymization approach only on the event’s name parameter
because most of the events generated from the apps share a similar semantic, which means we were able to tune the prompt to be
given to the LLM model we used for event names generalization. Using LLM-based generalization on the event’s name demonstrated
encouraging results regarding the original semantic preservation of the event’s names. Table 4 shows the mapping between the most
generated event names and their anonymized version.

The results we achieved during the testing campaign’s execution highlight that the LLM-based generalization approach can
reasonably anonymize the event’s names. However, extending the study to support other kinds of data in the anonymization process
is an exciting challenge outside this paper’s scope.

8. Conclusion and future works

In this paper, we discussed a novel methodology for the on-the-fly anonymization of user data captured by an analytics library in
Android virtualized environments. More specifically, we extended VirtualHideDroid [19] to deal with attackers able to successfully
tweak the VirtualHideDroid tool, run as a container app, and steal plain user data. The proposed solution allows the plugin
app running inside VirtualHideDroid to apply some form of anonymization to make data robust against theft from a malicious
VirtualHideDroid instance. We implemented the proposed approach in a tool called MarvelHideDroid, which we plan to make fully
available to the research community soon. The experimental campaign with MarvelHideDroid suggests the approach is viable and
reliable. We also explored using LLM to support specific tasks in the anonymization procedure (e.g., the generalization of event
13 
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names). The preliminary results encourage using such technologies to overcome the limitations of existing approaches, e.g., the
need to define data generalization hierarchies for multidimensional data manually.

Future extensions of the work include testing MarvelHideDroid on a more comprehensive set of real-world apps and more analytic
libraries to assess the reliability of the selected LLM. Indeed, the results obtained in the testing campaign demonstrate that the
proposed methodology could be used to anonymize the user data extracted from the Google Analytics library. Still, the approach
could be further extended to other analytics libraries. The extension of the approach to other analytics libraries requires the analysis
of the library artifact and identifying the procedures that extract the user’s sensitive data from the device. It could be interesting
o extend this research work with the automation of the sensitive procedure discovery phase to avoid the manual reversing phase

of the library. Considering other LLM alternatives is an exciting extension that would make the approach scalable and adaptable in
he wild to different analytics and change the syntax and semantics of the event captured during app execution.
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