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A B S T R A C T

Determining the visual focus of attention of people in a scene is a fundamental cue to understand social
interactions from videos. Gaze direction is ideal for determining eye contact, a basic cue of non-verbal
communication, but it is not always easy to recognize. Head direction is a well-known proxy of gaze direction,
more robust to the variability of the scene, thus offering a valuable alternative. In this work, we consider
HHP-net, a method for estimating the head direction from single frames based on a heteroscedastic neural
network to estimate people’s head pose from a minimal set of head key points. We formulate the problem as
a multi-task regression, to predict the pose as a triplet of Euler angles from the output of a 2D pose estimator.
HHP-net also provides a measure of the aleatoric heteroscedastic uncertainties associated with the angles,
through an ad-hoc loss function we introduce. In a thorough experimental analysis, we show that our model is
efficient and effective compared with the state of the art, with only ∼2 degrees of degradation in the worst case
counterbalanced by a space occupation ∼12 times smaller. We also show the beneficial effects of uncertainty
on interpretability. Finally, we discuss the robustness of our method to input variability, showing that it can
be seen as a plug-in to different pose estimators. As a proof-of-concept, we address social interaction analysis,
with an algorithm to detect dyadic interactions in images.
. Introduction

Analysing the social attitude of humans is paramount for a num-
er of application domains – ranging from assisted living (Grossi
t al., 2020) to robotics (Saunderson and Nejat, 2019), health (Al-
hamdi et al., 2023), sports (Bagautdinov et al., 2017), education and
rts (Schiavio et al., 2019) – where observing the interactions flow
n a non-invasive way is fundamental to guarantee the naturalness
f the experience, and thus the meaningfulness of the analysis. With
hese motivations, video-based approaches emerged in the last years as
ffective tools to address the task.

A trigger to social interaction analysis is the understanding of
uman attention, an important cue of non-verbal communication that
an also deepen the understanding of human behaviours (see for in-
tance (Cristani et al., 2013; Fan et al., 2018)). In video-based analysis,
uman attention is usually encoded by the gaze direction (Wang et al.,
021b), which unfortunately is very difficult to recognize if the subject
s placed at a certain distance from the camera. It is known, however,
hat the eyeball orientation can differ only by ±35◦ degrees from the
ead orientation (Stahl, 1999). Hence, a suitable proxy for the gaze is
he head direction (Madrigal and Lerasle, 2020; Dias et al., 2020; Grossi
t al., 2020), encoded as the rotation of human heads with respect to
reference (frontal) pose.

∗ Corresponding author.
E-mail address: nicoletta.noceti@unige.it (N. Noceti).

Recent approaches to Head Pose Estimation (HPE) may vary on
the input — the entire image or the face region provided by a face
detector (Liu et al., 2023, 2021a; Hong et al., 2021; Liu et al., 2021b),
or 3D models and point clouds (Zhu et al., 2019; Ruan et al., 2021; Xu
et al., 2022) – and in their objectives – as some of them tackle multiple
tasks concurrently (see e.g. Bulat and Tzimiropoulos (2017), Kumar
et al. (2017), Ranjan et al. (2019), Xia et al. (2022)). Most of them
provide very good estimates, at least in relatively uncluttered scenarios,
to the price of significant complexity and limited modularity. For this,
they may not be an ideal choice for real-time computation.

In this work, we discuss how to estimate the head pose of one or
more subjects in images effectively and efficiently, proposing a very
light and modular neural network that estimates the head direction as
a triplet of yaw–pitch–roll angles. As an input, we consider key points
obtained by 2D human pose estimators (Cao et al., 2019; Martinez
et al., 2019; Duan et al., 2019; Lugaresi et al., 2019). Their widespread
diffusion for a variety of tasks makes them an ideal input for our
method so that it can be easily integrated into already existing pipelines
and applications, without a significant further load in the computation.
Specifically, we estimate the head direction only relying on the pose
estimation key points, with no need for additional input (Fig. 1).

We formulate the problem as a multi-task regression and discuss
the use of HHP-net (Heteroscedastic Head Pose network) to estimate
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Fig. 1. The pipeline of the proposed method: pose detection is used to extract the pose of each human in the image (left), and then the facial key points are injected into a neural
network that retrieves the 3D head pose for each person. Our method provides the 3D head pose as a triplet of angles yaw, pitch and roll (centre) and a measure of uncertainty
associated with each angle in the triplet (right). A higher uncertainty can be visually represented as a larger visual cone centred on the subject. Notice how uncertainty relates to
the subject’s visibility.
the head pose expressed in Euler angles (yaw-pitch-roll). Thanks to the
adoption of an appropriately designed loss function, we also associate
an uncertainty value – learned from the data – with each output angle.
Specifically, we estimate aleatoric heteroscedastic uncertainty, that is
uncertainty due to data and varying on different inputs (Kendall and
Gal, 2017). The estimated uncertainty provides an additional cue that
may help the interpretation of the network output.

Our method, with negligible additional effort in terms of space and
time resources with respect to a 2D human pose estimator, allows us to
extract precise (in line with more complex state-of-the-art algorithms)
head poses. Indeed, as a positive side effect of operating on a very
compact input, the architecture we propose is small in size (it occupies
less than 0.5 MB) – with the potential to run on devices with limited
space resources – and performs in real-time (at about 100 fps); for these
reasons it may also be easily adapted to portable devices, considering
appropriate pose estimators are now available (Choi et al., 2021;
Lugaresi et al., 2019). Our approach can be seen as a plug-in to any
given pose estimator, as we will experimentally assess associating it with
different 2D pose estimators, specifically, OpenPose (Cao et al., 2019),
CenterNet (Duan et al., 2019), MediaPipe (Lugaresi et al., 2019).

We report a thorough experimental analysis based on three refer-
ence benchmarks (Fanelli et al., 2011; Yin et al., 2017; Sagonas et al.,
2013), with ablation studies and comparisons with existing approaches.
We empirically show that our method is comparable or better than
other approaches in terms of computational load and accuracy of the
estimates, providing an ideal trade-off between them. Moreover, to
show the potential use of our method, we consider its application to
social interaction analysis, where the ability to understand the focus of
attention of people is a core element. We focus in particular on dyadic
interactions and show that the head poses provided by our method
can be profitably employed to detect Looking-At-Each-Other (LAEO)
events (Marin-Jimenez et al., 2019; Marín-Jiménez et al., 2020) in
images and videos with a simple and lightweight approach. Here the
uncertainty estimates contribute to obtaining improved performance.

This paper extends an early publication (Cantarini et al., 2022), with
the following main contributions:

• From a methodological viewpoint, we thoroughly discuss a mod-
ular pipeline for head pose estimation based on a multi-task
regression loss where the uncertainties act as weights of each
sub-loss responsible for the estimation of each angle. We provide
a theoretical derivation of loss and uncertainties and show that
the latter is tightly related to the estimation errors, indicating its
importance for the interpretability of the results.

• From the experimental viewpoint, we provide a thorough assess-
ment of the pipeline including the impact of choosing different
 c

2

loss functions and ablation studies on different publicly available
datasets. Moreover, we present an assessment with a variety of
well-known 2D human pose estimators. In this way, we show
the robustness of the pipeline against a variety of usages and
challenging conditions.

• We show that our method has the potential to be used on devices
with limited resource availability and has a space occupancy ∼12
times smaller than state-of-the-art while providing comparable
results (in the worst case with about 2 degrees of degradation).
This may widen the range of its applicability.

• We apply the pipeline to a problem of dyadic interaction analysis,
considering the LAEO events detection. We discuss the use of a
simple LAEO measure, showing how it smoothly changes over
time, allowing the detection of the event and possibly enabling
its anticipation.

We provide code for the network1 and a demo on Hugginface
Spaces.2

The remainder of the paper is organized as follows: Section 2 covers
related works on head pose estimation in images and uncertainty evalu-
ation; Section 3 presents the proposed HHP-Net architecture, Section 4
focuses on the method assessment and the comparison with state-of-
the-art. Section 5 is about the application of our method to mutual
interaction, while Section 6 is left to a final discussion.

2. Related works

2.1. Human pose estimation

Human Pose Estimation, aiming to extract the semantics and topol-
ogy of the human body from images, finds applications in several
domains, including human motion analysis in sports (Colyer et al.,
2018) and medicine (Moro et al., 2022), action recognition (Luvizon
et al., 2020; Shi et al., 2019), human–machine and social interaction
analysis (Luvizon et al., 2020; Song et al., 2021), biometric recogni-
tion (Barra et al., 2020) and driver attention detection (Campbell, 2012;
Wang et al., 2021a).

Comprehensive studies (Gong et al., 2016; Zheng et al., 2023; Wang
et al., 2021a) analyse differences in approaches like 2D (Cao et al.,
2019; Duan et al., 2019; Bazarevsky et al., 2020) versus 3D (Yu et al.,
2017; Zhou et al., 2021), handcrafted features versus deep learning,
and single-person versus multi-person scenarios. The focus here is on

1 https://github.com/Malga-Vision/HHP-Net
2 https://huggingface.co/spaces/FedeFT/Head_Pose_Estimation_and_LAEO_

omputation
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2D pose estimation from monocular images, where we may identify
bottom-up algorithms like Openpose (Cao et al., 2019) and top-down
approaches like AlphaPose (Fang et al., 2022). Regarding computa-
tional performances, one of the fastest and most recent methods is in
the MediaPipe framework (Lugaresi et al., 2019), employing a com-
bined heatmap, offset, and regression approach (Bazarevsky et al.,
2020). Distinctions in algorithms include the number of key points and
topology, with ‘standards’ like COCO format (Lin et al., 2014) with
17 key points, OpenPose (Cao et al., 2019) with 25 key points, and
MediaPipe encompassing 33 key points. More complex approaches aim
to incorporate spatial and appearance consistency (Yang et al., 2016)
and video-based methods (Luo et al., 2018), but are out of the scope of
this work.

2.2. Head pose estimation

Head pose estimation has been addressed by a number of relatively
recent methodologies (Cao et al., 2021a; Zhou and Gregson, 2020;
Madrigal and Lerasle, 2020; Zhang et al., 2020; Liu et al., 2021a;
Dhingra, 2022; Liu et al., 2022), with classical applications to Human–
Machine Interaction or to social interaction analysis. The more recent
and comprehensive survey on the topic is probably (Abate et al., 2022).

Some methods use additional information such as depth (Fanelli
et al., 2011; Mukherjee and Robertson, 2015; Hong et al., 2018) or
time (Gu et al., 2017), but also points clouds as in Xu et al. (2022)
or infrared as in Liu et al. (2021b). In the field of driver-assistive
technology and safety, infrared cameras are used to estimate the head
pose (Ju et al., 2022), but with ad-hoc solutions due to the camera
setup (the camera is commonly located in the centre of the rear-
view mirror of the car). Differently from these approaches which use
different sensors, in our work, we only employ RGB images, which
guarantee less expensive and more general applications. In alternatives
methodologies, the head pose is derived by fitting an image onto a 3D
face model, or on some approximation of it. An estimation of a 3D
model is first presented in Fanelli et al. (2013), while more recently
deep learning-based methods have been presented: such as 3DDFA (Zhu
et al., 2019), a CNN able to fit a 3D model to an RGB image, or
SADRNet (Ruan et al., 2021) which specifically tackles the problem
of face occlusions. Furthermore, FAN (Bulat and Tzimiropoulos, 2017)
is a state-of-the-art facial landmark detection method, that performs
also face alignment. These approaches propose complex computational
pipelines and have demonstrated the potential to yield notably accurate
results.

One of the most recent challenges is in estimating pose directly from
individual 2D images. In this respect, we start by mentioning a different
but related task of estimating the 2D gaze: GazeFollow (Recasens et al.,
2015) is a two-pathway CNN architecture that estimates the apparent
direction of the human gaze and the object being observed; it combines
saliency maps of the whole image with the position of subjects’ head
to obtain a pose prediction. A very efficient strategy to estimate the
apparent direction of gaze is proposed in Dias et al. (2020).

Moving to 3D head pose estimation, nowadays it is mostly ob-
tained by deep learning architectures that start from the output of
face detectors, often implemented as a Convolutional Neural Network
(CNN). Besides recent few exceptions such as Bisogni et al. (2021),
the literature presents several works starting from images: Shao et al.
(2019) propose an adjustment of the ROI obtained by face detection (it
incorporates an offset around the face) and a combined regression and
classification loss. HopeNet is a regression method with ResNet and a
joint MSE and cross-entropy loss (Ruiz et al., 2018). LwPosr (Dhingra,
2022) introduces a lightweight architecture based on a mixture of
depthwise separable convolutional and transformer encoder layers,
structured in two streams and three stages to provide fine-grained
regression. Transformers have also been used in Liu et al. (2023) which
specifically addresses challenges related to occlusions, illuminations,

and extreme orientations. FSA-net (Yang et al., 2019) is a two-stream

3

multi-dimensional regression network able to provide accurate fine-
grained estimations. Rahmaniar et al. (2022) presents an approach
based on a combination of coarse and fine feature map classification
to train a multi-loss CNN architecture. CNNs are also used in Hsu et al.
(2018), where an L2 regression loss and an ordinal regression loss are
jointly employed, and in Albiero et al. (2021), which regresses 6DoF
pose in a Faster R-CNN–based framework.

In contrast to these methods, our 3D head pose estimation pipeline
relies exclusively on the output of a human pose detector, similar to
the strategy proposed in Dias et al. (2020). This allows us to design
a very lightweight architecture, capable of attaining accurate results,
acting sequentially to a 2D pose estimator. Our approach also differs
from multi-task approaches such as KEPLER (Kumar et al., 2017) –
predicting facial key points and pose–, Hyperface (Ranjan et al., 2019)
– simultaneously performing face and landmark detection, pose esti-
mation and gender recognition –, or the method proposed in Xia et al.
(2022) – jointly learning Head Pose Estimation, face alignment and face
tracking. Concerning these methodologies, our approach prioritizes
modularity, offering the flexibility to seamlessly integrate with various
pose estimators.

As recently observed in Zhou and Gregson (2020), head pose es-
timation is intrinsically harder on certain viewpoints. Starting from
this observation, in Ruiz et al. (2018) an approach for improving on
lateral views is proposed, to obtain wide-range head pose estimation.
Instead, our work follows the observation in Dias et al. (2020): certain
viewpoints are associated with different levels of uncertainty, creating a
large discrepancy in accuracy. This can be formalized with the concept
of aleatoric heteroscedastic uncertainty (Kendall and Gal, 2017), which
depends on the inputs and may be estimated from data. Conventional
deep learning methods cannot estimate the uncertainty of their inputs,
consequently, Bayesian deep learning is becoming very popular as
an effective approach to address this limitation. In our method we
propose a multi-task approach where a task is associated with one of the
three pose angles, extending (Kendall and Gal, 2017) to the multi-loss
case. Indeed (Cipolla et al., 2018) reports a loss with homoscedastic
uncertainty, also called task-dependent uncertainty, that is constant
across different inputs. In this way, their model can learn the weight of
each task.

2.3. Social interaction analysis

A specific case within the realm of social interaction analysis is
that of dyadic interactions involving two individuals. In this con-
text, the initial phase involves identifying pairs of individuals engaged
in interaction, commonly achieved through the detection of mutual
gaze or ‘‘Looking At Each Other’’ (LAEO) as referenced in the liter-
ature (Marín-Jiménez et al., 2014; Fan et al., 2019). Early work on
LAEO detection in images utilized a Gaussian process predicting yaw
and pitch, generating a LAEO score per frame (Marín-Jiménez et al.,
2014). More recently, LAEO-Net and LAEO-Net++, introduced by the
same authors, proposed a CNN-based extension to estimate LAEO over
temporal windows (Marin-Jimenez et al., 2019; Marín-Jiménez et al.,
2020). Recent advancements include an end-to-end pipeline based on
Transformers for mutual gaze detection (Guo et al., 2022) and a late
fusion approach combining head and scene features encoded with
variants of a ResNet (Chang et al., 2023).

Multimodal approaches have also been explored for mutual gaze
detection. In Trabelsi et al. (2017), authors leverage RGB data with
depth information, while Kukleva et al. (2020) presents an approach
integrating vision and text to jointly address interaction detection and
long-term relationship prediction. Joint learning of LAEO and 3D gaze
estimation is discussed in Doosti et al. (2021).

In comparison to existing methods, our LAEO method relies solely
on head orientation as a proxy for mutual gaze, which introduces
limitations concerning the usage of the proper gaze. However, it of-
fers notable advantages, such as effectiveness even when subjects are
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Fig. 2. A visual representation of our architecture. A set of key point locations with associated confidences {𝑥𝑖1 , 𝑥
𝑖
2 , 𝑐

𝑖}𝑛𝑖=1 is provided in input to the network, and processed with
1D convolutional layers. With a CGU we combine the intermediate outputs, that is then provided to the second part of the networks, composed of 3 FC layers to produce the
final output, i.e. yaw, pitch and roll estimates with associated uncertainties.
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positioned at a distance from the camera, expanding its applicability
to diverse real-world scenarios. Moreover, our presented approach is
engineered to be effective but simple enough to be placed in cascade
to our HHP-net without compromising its speed and lightweight nature.
Our HHP-net is fast and very lightweight, so the usage of a deep
network as in Guo et al. (2022) was not an option for us.

3. Head pose estimation method: HHP-net

The starting point of our approach is the output of a 2D pose
estimator providing a set of key points describing the pose of a human
body in an image. These detectors commonly provide also a confi-
dence measure on the keypoint location estimate, which represents an
additional source of knowledge that can be injected into our approach.

We model the estimation of the head orientation as a multi-task
regression problem, where a Neural Network predicts the 3D vector
of the head orientation with angles in Euler notation (yaw, pitch and
oll). The input is formed by a set of 𝑛 semantic keypoints located on
he image plane: {(𝑥𝑖1, 𝑥

𝑖
2, 𝑐

𝑖)}𝑛𝑖=1, with 𝑥𝑖1 the horizontal and 𝑥𝑖2 vertical
oordinates and 𝑐𝑖 the confidence of the 𝑖th keypoint. Coordinates
re centred and normalized according to, respectively, their centroid
nd maximum value; 𝑐𝑖 is provided in the range [0, 1]. The value of
onfidence is particularly important, as it encodes missing points (𝑐 =
) and low confidence points. These situations may frequently occur
n real-world applications, in particular in human–human interaction,
ecause of occlusions, self-occlusions or lateral poses.

.1. The architecture

Fig. 2 provides a sketch of our architecture. We formalize the
nput of the network as a triplet of vectors 𝐱1 = [𝑥11,… , 𝑥𝑛1], 𝐱2 =
𝑥12,… , 𝑥𝑛2] and 𝐜 = [𝑐1,… , 𝑐𝑛] incorporating positions and confidence
f 𝑛 key points describing a face. The input vectors are first processed
n independent streams, with 5-channels 1D convolutions, followed by
Leaky ReLU for 𝐱1 and 𝐱2 – to avoid vanishing gradient issues – and

igmoid activation for the confidence vector 𝐜 – to smoothly control the
mpact of different confidence values.

The outputs of the 1D convolutional layers are flattened to obtain
∗
1 , 𝐱∗2 and 𝐜∗ from the independent streams. They are then combined,
sing an element-wise multiplication to obtain two vectors 𝐯1 = 𝐱∗1 ⊗𝐜∗
nd 𝐯2 = 𝐱∗2⊗𝐜∗, following the logic of the Confidence Gated Unit (CGU)
roposed in Dias et al. (2020). The CGU is composed as ReLU+sigmoid
ctivation functions. As visualized in Fig. 3, ReLU and sigmoid are
pplied, respectively, to coordinates (𝑥𝑖1 or 𝑥𝑖2) and confidence (𝑐𝑖); their
utputs are finally multiplied. The CGU emulates the behaviour of a
ate, controlled by the confidence, as it returns values near 0 in the
ase of low confidence.
4

Fig. 3. Confidence Gated Unit (CGU).

The two gated outputs 𝐯1 and 𝐯2 are concatenated to obtain a single
ector, which is provided to the intermediate part of the architecture,
here a sequence of three fully connected layers consisting of 250,
00 and 150 neurons respectively is employed. Each layer includes a
eakyReLU, again to avoid vanishing gradients, as a non-linear activa-
ion function. Three output layers return the estimated angles, each of
hich is associated with its uncertainty value — details are reported in

he next section.

.2. HHP-net multi-task loss

To train the network we design a multi-task loss function incorpo-
ating heteroscedastic aleatoric uncertainty. With respect to classical
eural Networks, a Heteroscedastic Neural Network provides an esti-
ate of the uncertainty of each prediction. This is particularly useful

o capture noise within input observations: noise in our case is related
o inherent noise in key point localization which may be affected by
ifficult viewpoints or occlusions. Indeed, some poses are intrinsically
oisier and more prone to self-occlusions (see for instance examples
n Fig. 4). This type of uncertainty may be learned as a function of the
ata, thus the output will include not only the three angles (yaw, pitch,
oll), stored in a vector 𝐪 = [𝑞𝑦, 𝑞𝑝, 𝑞𝑟], but also the uncertainty values
ssociated with them 𝝈 = [𝜎𝑦, 𝜎𝑝, 𝜎𝑟]. We now discuss how we derive

the multi-task loss function starting from a simple heteroscedastic loss
formulation

3.2.1. A heteroscedastic loss function
Without loss of generality, we reason on a simple regression prob-

lem where we want to estimate a function 𝑓𝜔 ∶ R𝑛 → R so that
𝑦 = 𝑓𝜔(𝐱) + 𝜖(𝐱). (1)
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The output is thus the sum between the function 𝑓𝜔(𝐱) – that
epends on some parameters 𝜔 and the input 𝐱 – and 𝜖(𝐱), that is the
oise only depending on the input 𝐱 (Nix and Weigend, 1994).

To quantify the uncertainty, we train a model to learn from a
raining set 𝑋 = {(𝐱𝑖, 𝑦𝑖)}𝓁𝑖=1 a function that estimates both the mean
nd the variance of a target distribution using a maximum-likelihood
ormulation of a neural network (MacKay, 1992). To this purpose,
e need to assume that the errors are normally distributed 𝜖(𝐱𝑖) ∼
(

0, 𝜎(𝐱𝑖)2
)

hence the likelihood for each point 𝐱𝑖 is:

(𝑦𝑖|𝐱𝑖;𝜔) =  (𝑓𝜔(𝐱𝑖), 𝜎(𝐱𝑖)2) =
1

√

2𝜋𝜎(𝐱𝑖)2
𝑒

(

− (𝑦−𝑓𝜔 (𝐱𝑖 ))2

2𝜎(𝐱𝑖 )2

)

(2)

here 𝑦𝑖 is the mean of this distribution and 𝜎(𝐱𝑖)2 is the variance.
ence, from a structural point of you, in addition to the estimation of

he 𝑦𝑖, the heteroscedastic neural network architecture must be mod-
fied to also output a prediction of the variance: the latter quantifies
he uncertainty associated with the prediction based on the noise in the
raining samples. Notice that the uncertainty is a function of the input
.g. if the noise is uniform over all the input values, the uncertainty
hould be constant.

Applying the logarithm to both sides of Eq. (2), we obtain a log-
ikelihood to maximize over the training set, i.e.

ax
𝜔

1
𝑛

𝓁
∑

𝑖=1
− 1

2�̂�
(

𝐱𝑖
)2

(𝑦𝑖 − 𝑓𝜔
(

𝐱𝑖
)

)2 − 1
2
log �̂�

(

𝐱𝑖
)2 − 1

2
log(2𝜋) (3)

where 𝑓𝜔 and �̂� are, respectively, the prediction function and uncer-
tainty estimated by the heteroscedastic neural network.3 Equivalently:

min
𝜔

1
𝑛

𝓁
∑

𝑖=1

1

2�̂�
(

𝐱𝑖
)2

(𝐲𝑖 − 𝑓𝜔
(

𝐱𝑖
)

)2 + 1
2
log �̂�

(

𝐱𝑖
)2 (4)

An alternative formulation based on the change of variable �̂�𝑖 =
og �̂�(𝐱𝑖)2 can be adopted to avoid exploding uncertainties during train-
ng (Kendall and Gal, 2017), leading to the final problem formulation:

in
𝜔

1
𝑛

𝓁
∑

𝑖=1

1
2
𝑒(−�̂�𝑖)(𝑦𝑖 − 𝑓𝜔

(

𝐱𝑖
)

)2 + 1
2
�̂�𝑖 (5)

from which we derive the heteroscedastic loss function in Eq. (6)
similarly to Kendall and Gal (2017)

𝐻 (𝑦, 𝑓𝜔(𝐱), �̂�) =
1
2
𝑒(−�̂�)(𝑦 − 𝑓𝜔 (𝐱))2 + 1

2
�̂� (6)

otice finally that

𝐻 (𝑦, 𝑓𝜔(𝐱), �̂�) =
1
2
𝑒(−�̂�)𝑀𝑆𝐸 (𝑦, 𝑓𝜔(𝐱)) +

1
2
�̂� (7)

where 𝑀𝑆𝐸 is the classical square loss.

3.2.2. The heteroscedastic multi-task (HMT) loss function
We now specify to our problem the general formulation of the

heteroscedastic loss function derived in the previous section.
We extend the model in Eq. (1) to represent a multi-task problem

where the three components of the output are 𝐪 = [𝑞𝑦, 𝑞𝑝, 𝑞𝑟] and the
ssociated uncertainties are 𝜎 = [𝜎𝑦, 𝜎𝑝, 𝜎𝑟] (as usual we refer to the
hree angles yaw (y), pitch (p) and roll (r)). Hence, the single tasks
ithin the multi-task formulation refer to the estimation of the three
ngles separately. In our solution, we estimate them by optimizing a
nique function and exploiting their synergies. The input is composed
f 𝐱1, 𝐱2, and 𝐜, that are respectively the coordinates of the key points
etected on the face and the confidence in their detection.

We can now derive the multi-task heteroscedastic loss function we
mploy in our method:

𝐻𝑀𝑇 (𝐪, �̂�, �̂�) =
∑

𝑘∈{𝑦,𝑝,𝑟}
𝐻 (𝑞𝑘, 𝑓𝑘(𝐱1, 𝐱2, 𝐜), �̂�𝑘)

3 In the following the last term is ignored as it is a constant.
 V

5

=
∑

𝑘∈{𝑦,𝑝,𝑟}

( 1
2
𝑒(−�̂�𝑘)(𝑞𝑘 − 𝑓𝑘

(

𝐱1, 𝐱2, 𝐜
)

)2 + 1
2
�̂�𝑘
)

. (8)

where

�̂� = 𝐟𝜔(𝐱1, 𝐱2, 𝐜) = [𝑓𝑦(𝐱1, 𝐱2, 𝐜), 𝑓𝑝(𝐱1, 𝐱2, 𝐜), 𝑓𝑟(𝐱1, 𝐱2, 𝐜)] (9)

and

�̂�(𝐱1, 𝐱2, 𝐜) = [�̂�𝑦(𝐱1, 𝐱2, 𝐜), �̂�𝑝(𝐱1, 𝐱2, 𝐜), �̂�𝑟(𝐱1, 𝐱2, 𝐜)] (10)

re, respectively, function and uncertainty estimated by the
eteroscedastic neural network, and for 𝑘 ∈ {𝑦, 𝑝, 𝑟}

̂𝑘 = log �̂�𝑘(𝐱1, 𝐱2, 𝐜)2. (11)

With this formulation, we obtain a data-driven uncertainty estima-
ion for each angle, used as a weight of each sub-loss. The uncertainty
an increase the robustness of the network when dealing with noisy
nput data, we will empirically show a correlation between uncertainty
nd estimation error

. Experiments

In this section we report the experimental analysis we performed
o assess our approach. We first discuss in detail the implementation,
he datasets and the experimental protocols we adopt, and then provide
ualitative and quantitative results. In particular, we perform ablation
tudies to show the benefit of each element in the method, discuss the
ole of the uncertainty and the relation with the estimated error, and
valuate the transfer capability of the model across datasets.

It is worth observing that there are no free parameters to be tuned
n our method.

.1. Implementation details

Unless otherwise stated, we adopt OpenPose (Cao et al., 2019) as a
ey points extractor, as it provides a good balance between efficiency
nd accuracy. Among the 25 body key points it provides, in this work
e focus on the five located on the face – left and right eye, left
nd right ear, nose – thus obtaining a triplet of input vectors 𝐱1 =
𝑥11,… , 𝑥51], 𝐱2 = [𝑥12,… , 𝑥52] and 𝐜 = [𝑐1,… , 𝑐5].

For the initialization, the weights of each layer are randomly sam-
led from a normal distribution with 𝜇 = 0 and 𝜎2 = 0.05. The network
as been trained for a number of epochs that ranges from 100 to
000 depending on the dataset. We used Adam as an optimizer, with
learning rate 0.001, and a batch size of 64. The weights associated
ith the best validation loss have been selected as the final model.4

.2. Datasets and protocols

We evaluate the effectiveness of our approach on three different
atasets (see sample frames in Fig. 4):

• BIWI (Fanelli et al., 2011) includes ∼ 15𝐾 images of 24 people
acquired in a controlled scenario. The head pose orientation
covers the range ±75◦ for the yaw angle and ±60◦ for the pitch.
The ground truth has been obtained by fitting a 3D face model.

• AFLW-2000 (Yin et al., 2017) contains the first 2000 images of the
in-the-wild AFLW dataset (Koestinger et al., 2011), a large-scale
collection of face images with a large variety in appearance and
environmental conditions. The annotation has been obtained by
fitting a 3D face model.

• 300W-LP (Sagonas et al., 2013) is a collection of different in-the-
wild datasets, grouped and re-annotated to account for different
types of variability, such as pose, expression, illumination, back-
ground, occlusion, and image quality. A face model is fit on each
image, distorted to vary the yaw of the face.

4 Code and pre-trained weights are available at https://github.com/Malga-
ision/HHP-Net.

https://github.com/Malga-Vision/HHP-Net
https://github.com/Malga-Vision/HHP-Net
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Fig. 4. Sample frames from the public datasets we adopted in our experimental analysis: BIWI (top row), AFLW-2000 (middle row), and 300W-LP (bottom). For readability of
he figures, we report their greyscale version with an arrow in red which is the 2D projection of the head direction. Being the projection of a 3D vector, it can also be a point,
.g. like in the top-left image where the direction of view is ‘outside’ the page. (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)
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or all the datasets, the ground truth takes the form of a triplet of angles
n Euler notation expressed with respect to a reference frontal pose

According to previous works (e.g. Yang et al., 2019), in the com-
arative analysis we adopt two main protocols:

P1 Training is performed on a single dataset (300W-LP), while BIWI
and AFLW-2000 are used as test.

P2 Training and test set are derived from the BIWI dataset using the
split 16–9 sequences, for training and test respectively, following
the procedure proposed in Fanelli et al. (2013).

.3. Method assessment

In this section, we present an experimental assessment to discuss
he core properties of our approach.

The output is visualized by projecting the angles on the image plane
ccording to the Tait-Bryan angles. The projections are computed as

𝑥𝑟 = cos 𝑞𝑦 ⋅ cos 𝑞𝑟 + 𝛥𝑥 (12)
𝑦𝑟 = cos 𝑞𝑝 ⋅ sin 𝑞𝑟 + cos 𝑞𝑟 ⋅ sin 𝑞𝑦 ⋅ sin 𝑞𝑝 + 𝛥𝑦

𝑔 = −cos 𝑞𝑦 ⋅ sin 𝑞𝑟 + 𝛥𝑥

𝑦𝑔 = cos 𝑞𝑝 ⋅ cos 𝑞𝑟 − sin 𝑞𝑦 ⋅ sin 𝑞𝑝 ⋅ sin 𝑞𝑟 + 𝛥𝑦

𝑥𝑏 = sin 𝑞𝑦 + 𝛥𝑥

𝑦𝑏 = −cos 𝑞𝑦 ⋅ sin 𝑞𝑝 + 𝛥𝑦

here (𝑥𝑟, 𝑦𝑟), (𝑥𝑔 , 𝑦𝑔) and (𝑥𝑏, 𝑦𝑏) are the image coordinates of the end-
points of red, green and blue vectors, while (𝛥𝑥, 𝛥𝑦) is the application
point they have in common.

In the following we provide an assessment of the properties and
meaningfulness of the uncertainty measures.

Uncertainty estimations quality. Fig. 5 (above) reports a cumulative
nalysis of the amount of data associated with a given uncertainty,
 t

6

highlighting how the average error grows with the uncertainty — in
agreement with what has been reported in Dias et al. (2020). Given
the assumptions in Section 3.2.1 of a normal distribution for the errors,
the 𝜎(𝐱𝐢)2 is the variance of this distribution and the parameter we are
oing to estimate for each angle in the regression process. So, fixed
ne angle (e.g. yaw) it can be seen as the variance of the retrieved
ngle (yaw). Under this perspective, it is straightforward to read it in
egrees. However, having implemented the algorithm and defined the
ncertainty as 𝑙𝑜𝑔(�̂�(𝐱𝐢))2 or better 𝑙𝑜𝑔(�̂�(𝐱𝟏, 𝐱𝟐, 𝐜))2, we retrieved the
egree information as

𝑜𝑔(�̂�(𝐱𝟏, 𝐱𝟐, 𝐜))2 = 𝑠𝑖 ⇔ 𝜎 =
√

𝑒𝑠𝑖 (13)

Hence, the interpretability of our uncertainty measure is strengthened
by the fact it can be expressed in degrees, as the estimated angles. In
this way, the two outcomes of our model can be directly compared. In
Fig. 5 (bottom) we report the histogram of the absolute value of the
difference between the angle and corresponding uncertainty. It can be
observed that it is predominantly very low, in 71% of the cases below 3
degrees, 88% below 5 degrees and 98% below 10 degrees. This shows
that the uncertainty measures can be adopted as an indicator of the
reliability of our estimated angles.

Similarly to what was observed in Feng et al. (2019), we also notice
a strong correlation between the uncertainty values associated with the
three predicted angles. To quantify the correlation we computed the
Pearson correlation between the uncertainties of all pairs of angles,
obtaining 0.72 for (yaw, pitch), 0.78 for (yaw, roll), and 0.92 for (pitch,
oll).

ncertainty estimation and model interpretation. We now analyse
he factors that may influence the uncertainty estimation, with a focus
n the characteristics of the head pose to be predicted. In Fig. 6 we
eport the trend of the uncertainty associated with the prediction ob-
ained from video sequences where a subject rotates the head offering
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Fig. 5. (a) Cumulative angular error as a function of the average uncertainty (red),
nd data proportion with at least the uncertainty written in the 𝑥-axis (blue). (b)
ccurrences of test data divided in bins of the absolute difference between uncertainty

in degrees) and error; the zeroth bin on the 𝑥-axis is when error and uncertainties
oincide. (For interpretation of the references to colour in this figure legend, the reader
s referred to the web version of this article.)

ifferent test poses to the method. Representative frames, providing
n intuition about the transitions between poses in the sequence, are
eported below the plot. It is easy to observe that for some poses (the
nes associated with ambiguous views or partial occlusions that hide
ome key points on the face) the uncertainty is higher. The lowest
ncertainty values are associated with frontal views, the ones providing
he most visible and non-ambiguous key points.

Inspired by these observations, we now evaluate the dependence of
he uncertainty and the error on the quality and quantity of the input
ey points.

umber of key points. We observe the influence of the quality and
uantity of input semantic features on the final head pose estimate.
n Fig. 7, we analyse the performance of our method in terms of
ncertainty values (bottom) and absolute angular error (top) as the
umber of available key points changes. On the left, we cluster faces
ccording to the number of key points detected by OpenPose. When
nly 3 key points are available the uncertainty is rather high on
verage. Increasing the number of points uncertainty is progressively
educed, with a similar trend shown by the error. This confirms the
ntuition that the more input points the method has, the higher its
onfidence in the prediction, which is more reliable and accurate.

On the right, we randomly drop points from the available input
o simulate an even more challenging scenario for our method. When
oints are randomly dropped, we only consider samples with more
han two points. When all 5 key points are available, the uncertainty
s compactly lower (confirming what was already observed in the
revious experiment) as the method can rely on a more comprehensive
epresentation of the input. In the intermediate cases – where we
ay have 2, 3, or 4 key points available in input – the uncertainty
7

Table 1
Training and testing HHP-Net with inputs from different 2D pose
estimators on the BIWI dataset. In the table, we report the MAE
(Mean Absolute Error in degree) averaged over the three angles and
the standard deviation.

Train
Test Centernet Mediapipe Openpose

Centernet 3.33 ± 0.91 7.57 ± 2.48 6.73 ± 5.88
Mediapipe 13.31 ± 7.96 5.99 ± 1.56 14.55 ± 7.59
Openpose 4.64 ± 1.99 7.08 ± 2.37 4.51 ± 1.27

progressively decreases, but we also have a higher degree of variability,
as some key-point configurations are more significant than others and
thus the amount of information they provide to the model may be
unevenly reflecting the concept that the noise could be different for
each input sample. With respect to the plots in the left column of Fig. 7,
the box plots at right show a higher standard deviation since randomly
dropping points from the input we simulate a higher variability in
the input configurations with respect to the ones usually provided by
OpenPose and from the datasets we used.

Plugging in different Pose detectors. Here we assess the robustness
of our approach to different choices of 2D pose estimators. More
specifically, we employ OpenPose (Cao et al., 2019), CenterNet (Duan
et al., 2019), and MediaPipe (Lugaresi et al., 2019) and consider all the
pairs for train–test. The results are reported in Table 1. If we read the
table row-wise we may analyse the behaviour of models obtained from
the different pose detectors on the output of different nature. It shows
that CenterNet and Openpose are rather interchangeable (OpenPose in
particular provides very similar results when tested on itself or Cen-
ternet), while Mediapipe is not. The reason is that its output is rather
different in terms of localization of the key points and behaviour in
the presence of occlusions (MediaPipe never provides a zero confidence
for occluded key points), reducing the benefit of the Confidence Gated
Unit.

4.4. Removing the uncertainty: An ablation study

We perform an ablation study by removing the uncertainty from our
model. To this purpose, we consider two variations of the method (with
𝑦 = yaw, 𝑝 = pitch and 𝑟 = roll):

SE: we directly regress the three angles adopting a loss computed as
the sum of the Mean Squared Error (MSE) on each angle:

𝑀𝑆𝐸−𝑀𝑇 (𝐪, �̂�) =
∑

𝑘∈{𝑦,𝑝,𝑟}
(𝑞𝑘 − 𝑓𝑘

(

𝐱1, 𝐱2, 𝐜
)

)2. (14)

where 𝐪 = [𝑞𝑦, 𝑞𝑝, 𝑞𝑟], and �̂� = [𝑓𝑦(𝐱1, 𝐱2, 𝐜), 𝑓𝑝(𝐱1, 𝐱2, 𝐜),
𝑓𝑟(𝐱1, 𝐱2, 𝐜)].

OMB: we employ an alternative loss function 𝐶𝑂𝑀𝐵 proposed
in Ruiz et al. (2018) which has been proved to be very successful
on the same estimation task. The loss allows for jointly solving
a multi-class classification (with 𝑁 classes corresponding to
binned angles) and a regression task, and it can be formalized
as follows :

𝐶𝑂𝑀𝐵(𝐪, �̂�) = 𝐶𝐸−𝑀𝑇 (𝐪, �̂�) + 𝛼 ∗ 𝑀𝑆𝐸−𝑀𝑇 (𝐪, �̂�) (15)

where

𝐶𝐸−𝑀𝑇 (𝐪, �̂�) =
∑

𝑘∈{𝑦,𝑝,𝑟}

[

−
𝑁
∑

𝑗=1
𝑞𝑗𝑘 log

(

𝑓 𝑗
𝑘 (𝐱1, 𝐱2, 𝐜)

)

]

(16)

is the cross-entropy loss adapted to our multi-task problem,
while 𝑀𝑆𝐸−𝑀𝑇 is the multi-task square loss of Eq. (14). Hence,
the loss combines the cross entropy, computed between the
binned angles, and the MSE loss, computed between the scalar
angles; 𝛼 is a hyperparameter that controls the weight of the re-
gression loss. According to the original work, in the experiment

we set 𝛼 = 1.
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Fig. 6. Examples of how the uncertainties (in degrees) are influenced by the instantaneous head pose of a subject moving in front of a camera over time. We report in blue the
yaw uncertainty, in orange the pitch uncertainty and in yellow the roll uncertainty. In dotted-purple we mark the mean uncertainty. The scale is in degrees of uncertainty. It can
be observed that the uncertainties are very close to zero for the neutral head pose (frame 1 of the first sequence) and start to increase when the head rotates. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
In Table 2 we report the angular errors we obtain with the three
different losses. As it can be observed, learning the angles associated
with the uncertainty provides the best average performance, showing
the benefit of the uncertainty not only in terms of the interpretability
of the model but also as a way to improve its effectiveness.

4.5. Comparisons with other approaches

We now perform a comparative analysis with state-of-the-art head
pose estimators. For a fair comparison, we consider methods that use
RGB images as inputs or features extracted from them.
8

The analysis is reported in Tables 3, 4, and 5, where all errors are
expressed in degrees (err𝑦 = yaw error, err𝑝 = pitch error, err𝑟 = roll
error), the model size is reported in MegaBytes (MB), and the MAE is
the Mean Absolute Error.

As a first important observation, notice that our approach produces
a significantly smaller model (0.4 MB). This was the main purpose of
our work and it has been clearly achieved, as our method is about ∼12
times smaller than the closest model in the literature. According to the
protocol followed by other works – all requiring a face detector but
not including its size in their analysis – the size of our model does not
include the pose estimator.
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Fig. 7. Performance of our method (top row: mean angular error in angles, bottom
ow: uncertainty) with respect to the number of input points, considering the outputs of
penPose (left) and randomly dropping points (right). Training: 300W-LP Test: BIWI.
ncertainty is presented in a log scale visualization for a clearer view.

Table 2
Comparison among different loss functions (see text). All errors are expressed in
degrees (◦): err𝑦 = yaw error, err𝑝 = pitch error, err𝑟 = roll error, MAE = Mean
Absolute Error.

Train Val Loss err𝑦 err𝑝 err𝑟 MAE

BIWI BIWI 𝑀𝑆𝐸 2.90 4.80 3.34 3.70
BIWI BIWI 𝐶𝑂𝑀𝐵 3.15 4.85 3.40 3.80
BIWI BIWI 𝐻𝑀𝑇 3.04 4.79 3.21 3.68

300WLP BIWI 𝑀𝑆𝐸 4.75 6.65 4.45 5.28
300WLP BIWI 𝐶𝑂𝑀𝐵 4.67 8.08 4.87 5.88
300WLP BIWI 𝐻𝑀𝑇 4.14 7.00 4.40 5.18

300WLP AFLW2000 𝑀𝑆𝐸 5.72 10.41 8.08 8.07
300WLP AFLW2000 𝐶𝑂𝑀𝐵 5.55 10.39 8.18 8.04
300WLP AFLW2000 𝐻𝑀𝑇 5.26 10.12 7.73 7.70

AFLW AFLW2000 𝑀𝑆𝐸 7.60 6.43 4.76 6.26
AFLW AFLW2000 𝐶𝑂𝑀𝐵 7.31 6.55 4.68 6.18
AFLW AFLW2000 𝐻𝑀𝑇 7.40 6.63 4.47 6.16

In terms of performances, Table 3 reports a comparison with respect
o Protocol P2 (BIWI dataset for training and test): the results we obtain
re superior to Mukherjee and Robertson (2015), Drouard et al. (2015),
anelli et al. (2013) and slightly below (Gu et al., 2017; Lathuiliere
t al., 2017; Yang et al., 2019; Zhang et al., 2020) (less than 0.1 degrees
f difference for the first three, less than 0.4 for the latter).

Table 4 refers to Protocol P1 (training carried out on 300W-LP, BIWI
or the test): the experiment mainly evaluates the transfer potential to a
ifferent dataset with different properties. The table reports results ob-
ained with methods relying on the estimation of 3D face models (Zhu
t al., 2019; Kumar et al., 2017; Kazemi and Sullivan, 2014; Bulat
nd Tzimiropoulos, 2017) and methods based on analysing RGB image
ortions obtained by face detectors, such as Shao et al. (2019), Ruiz
t al. (2018), Yang et al. (2019).

We share with the latter group the main motivation for design-
ng simple and more efficient procedures while keeping competitive
erformances. In this sense, our approach does not require complex
re-processing steps or highly resource-demanding training, but at
he same time, it wisely leverages structural information on the face.
able 4 reports results that are more accurate than all methods with
he exception of FSA-Caps, although the difference is on average only
lightly above 1 degree. This small accuracy loss is counterbalanced by
he benefits in terms of a smaller size, and it may be explained by the
9

Fig. 8. A visual sketch with our formulation of the LAEO detection task (for readability
the vectors are denoted with arrows).

simplicity and compactness of our input: while nicely behaving in the
majority of non-ambiguous situations, our sparse input is more severely
influenced by occlusions, and missed or noisy detections.

Finally, Table 5 follows again Protocol P1, on a more complex
test set, AFLW2000, where images are acquired in a less controlled
environment. In this case, our methodology is reporting slightly worse
results, but with a loss always less than 3 degrees on average. We
noticed this is due in particular to keypoint detection errors, as the
synthetic data manipulation introduced artefacts.

To further evaluate the transfer potential of our approach we also
report the result we obtained on the same test set when training the
network on a related dataset (AFLW without the AFLW2000 section):
the results are in this case comparable to the previous experiments.

We conclude by mentioning that we do not include in our compari-
son the approach in Fanelli et al. (2013) since it uses the depth as input,
and the methods Dlib (Kazemi and Sullivan, 2014) and FAN (Bulat and
Tzimiropoulos, 2017) that solve a different problem (face alignment).
Also, among the very recently proposed approaches, our analysis does
not mention EVA-GCN (Xin et al., 2021) and KEPLER (Kumar et al.,
2017) as they solve a different problem (jointly solving different tasks,
one of them being head pose estimation), and 3DDFA (Zhu et al., 2019)
that uses a richer input (image and 3D model).

4.6. Model size and inference time

We now show the robustness of our method with respect to reduc-
tions of size, which may be needed when the available computational
resources are very limited. More specifically, we analyse how the
performance changes as we reduce the size of the model. We choose
300W-LP training and BIWI test (protocol P1) for their larger training
and test sets and decrease the number of neurons in the fully connected
layers so the backbone remains the same as proposed in the paper,
while its size decreases. Given a reduction factor 𝛽 ∈ (0, 1), we obtain
a ‘‘reduced’’ version of our architecture by multiplying the original
number of neurons in each layer (250, 200 and 150 in, respectively,
the first, second and third layer) by 𝛽.

By varying 𝛽 in the range (0, 1) we reduce the model size (the num-
ber of parameters) and thus also the number of sum and multiplication
operations. Table 6 compares our baseline (𝛽 = 1) with two reduced
models (overall size in MB up to 10× smaller) causing a very limited
degradation in the MAE (below 1 degree). This experiment highlights
the possibility of further reducing the size of the architecture, with a
very limited performance loss, if required by the system.

We finally briefly mention the computational performance of our
method, which is an average of 142 fps (approximately an inference
time of 7 × 10−3 s per frame). In the full inference pipeline, we should
also consider the cost of running the key points detection, which de-
pends on the specific approach. Empirical estimation of inference times
can be found in Lugaresi et al. (2019) for Openpose and Mediapipe, and
in Duan et al. (2019) for Centernet.
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Table 3
Comparison following Protocol P2: BIWI is both training and test. Our model is the smallest (∼0.4 MB)
while providing only a small degradation with respect to the best result (∼ 0.4◦).

Method MB Par. × 106 err𝑦 err𝑝 err𝑟 MAE

D-HeadPose (Mukherjee
and Robertson, 2015)

– – – 5.67 5.18 –

Drouard et al. (2015) – – 4.9 5.9 4.7 5.16
DFA (Gu et al., 2017) 500† 138‡ 3.91 4.03 3.03 3.66
DMLIR (Lathuiliere
et al., 2017)

500 – 3.12 4.68 3.07 3.62

FSA-Caps-Fusion (Yang
et al., 2019)

5.1 1.2 2.89 4.29 3.60 3.60

FND (Zhang et al.,
2020)

5.8 – 3.0 3.98 2.88 3.29

img2pose (Albiero
et al., 2021)

– – 4.57 3.55 3.24 3.79

LwPosr (Dhingra, 2022) – 0.15 3.62 4.65 3.78 4.01
QTNet (Hsu et al.,
2018)

– – 4.01 5.49 2.94 4.15

Ruiz (Ruiz et al., 2018)
(𝛼 = 2)

– – 3.29 3.39 3.00 3.23

TriNet (Cao et al.,
2021b)

– 26‡ 2.44 3.04 2.93 2.80

Our approach ∼0.4 ∼0.09 3.04 4.79 3.21 3.68

†, ‡ data respectively from Yang et al. (2019),Dhingra (2022).
Table 4
Comparison following Protocol P1, where 300W-LP is the training, while BIWI is the test. Our method is
still the smallest and performs better than all other approaches but Yang et al. (2019). The latter is however
associated with a model significantly larger than ours.

Method MB Par. ×106 err𝑦 err𝑝 err𝑟 MAE

Shao (K = 0.5) (Shao
et al., 2019)

93 24.6†† 4.59 7.25 6.15 6.00

Ruiz (Ruiz et al., 2018)
(𝛼 = 2)

95.9† 23.9 5.17 6.98 3.39 5.18

Ruiz (Ruiz et al., 2018)
(𝛼 = 1)

95.9† 23.9 4.81 6.61 3.27 4.90

LwPosr 𝛼 (Dhingra,
2022)

– 0.15 4.41 5.11 3.24 4.25

LwPosr (Dhingra, 2022) – 0.15 4.11 4.87 3.19 4.05
FSA-Caps-Fusion (Yang
et al., 2019)

5.1 1.2 4.27 4.96 2.76 4.00

TriNet (Cao et al.,
2021b)

– 26‡ 3.05 4.76 4.11 3.97

FND (Zhang et al.,
2020)

5.8 – 4.52 4.70 2.56 3.93

WHENet-V (Zhou and
Gregson, 2020)

– 4.4 – – – 3.48

Our approach ∼0.4 ∼0.09 4.14 7.00 4.40 5.18

†, ‡, ††, ∗ data respectively from Yang et al. (2019), Dhingra (2022), Zhou and Gregson (2020), Ruiz et al.
(2018).
c

5. An application to dyadic interaction detection

We finally discuss a task where our method finds a natural ap-
plication, i.e. the analysis of social interactions, for which the head
directions represent a strong visual cue of non-verbal human–human
communication (Abele, 1986). We consider scenarios where a small
group of people is involved in a social experience, and we pay particular
attention to people looking at each other (LAEO).

LAEO algorithm. Fig. 8 provides a visual sketch of our formulation of
the task. Let us consider the two people present in the scene, 𝐴 and 𝐵 in
our example, whose positions can be compactly described with the head
centroids (𝑥𝐴, 𝑦𝐴) and (𝑥𝐵 , 𝑦𝐵). We start from the head pose estimated
for each of them, 𝐪𝐴 and 𝐪𝐵 respectively, and obtain a projection of
the corresponding direction on the image plane: for the subject 𝐴,
given the triplet of angles (𝑞𝐴𝑦 , 𝑞

𝐴
𝑝 , 𝑞

𝐴
𝑟 ), we derive the end-point of the

ead direction on the image plane (𝑥′𝐴, 𝑦
′
𝐴) as 𝑥′𝐴 = sin(𝑞𝐴𝑦 ) and 𝑦′𝐴 =

−cos(𝑞𝐴𝑦 ) sin(𝑞
𝐴
𝑝 ). The projection is computed as 𝐡𝐴 = (𝑥′𝐴 −𝑥𝐴, 𝑦′𝐴 − 𝑦𝐴).

Similarly we obtain 𝐡𝐵 for the other subject.
Then, we estimate a measure of interaction between each pair of

people considering the vector 𝐮 connecting the two head centroids,
𝐴𝐵
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the vector 𝐡𝐴 and the angle 𝛼𝐴 between the two: the measure of the
interaction is given by the cosine of the angle 𝛼𝐴. The same applies
to person 𝐵 with 𝐮𝐵𝐴 = −𝐮𝐴𝐵 and 𝛼𝐵 . The average between the two
measures gives the LAEO value and thresholding on such measure
allows us to detect LAEO pairs.

We build our approach on this baseline method, incorporating
knowledge from the uncertainty associated with the 3D angles (the
method is sketched in Algorithm 1). Given the triplets of uncertainties
associated with the two heads poses, (𝑠𝑦𝐴, 𝑠

𝑝
𝐴, 𝑠

𝑟
𝐴) and (𝑠𝑦𝐵 , 𝑠

𝑝
𝐵 , 𝑠

𝑟
𝐵), we

ompute the averages, �̂�𝐴 = 1
2 (𝑠

𝑦
𝐴 + 𝑠𝑝𝐴) and �̂�𝐵 = 1

2 (𝑠
𝑦
𝐵 + 𝑠𝑝𝐵); the

roll component is discarded because it does not affect the gaze vector
projection on the image plane. Following the intuition that estimates
with high uncertainty should be less reliable, we compute a weight
to adjust the contribution of each subject to the interaction measure
depending on the confidence we have in it, essentially deciding a
threshold above which the estimate is considered unreliable. For the
subject 𝐴 this can be formulated as 𝑤𝐴 = 1𝑋 (�̂�𝐴) where 𝑋 = [0, 𝛿] with
𝛿 an appropriate threshold on the uncertainty, and 1𝑋 ∶ R → {0, 1}
the indicator function on the interval 𝑋. 𝛿 is computed as the average
uncertainty plus the standard deviation, both of them computed on the

entire training set (in the experiments 𝛿 = 7).



F. Figari Tomenotti, N. Noceti and F. Odone Computer Vision and Image Understanding 243 (2024) 103999

L
f
T

Table 5
Comparison following Protocol P1, where 300W-LP is the training and AFLW 2000 is the test (note: ✠

= Trained on AFLW - AFLW2000). The performances show a slightly higher worsening with respect to
alternative approaches, but the difference is still very limited (always less than 3◦).

Method MB Par. ×106 err𝑦 err𝑝 err𝑟 MAE

3DDFA (Zhu et al.,
2019)

– – 5.40 8.53 8.25 7.39

Ruiz (Ruiz et al.,
2018)) (𝛼 = 1)

95.9† 23.9 6.92 6.64 5.67 6.41

Ruiz (Ruiz et al., 2018)
(𝛼 = 2)

95.9† 23.9 6.47 6.56 5.44 6.16

Shao (K = 0.5) (Shao
et al., 2019)

93 24.6†† 4.59 7.25 6.15 6.00

FSA-Caps-Fusion (Yang
et al., 2019)

5.1 1.2 4.50 6.08 4.64 5.07

Shao (K = 0.5) (Shao
et al., 2019)

93 24.6 5.07 6.37 4.99 5.48

WHENet-V (Zhou and
Gregson, 2020)

– 4.4 – – – 4.83

LwPosr (Dhingra, 2022) – 0.15 4.80 6.38 4.88 5.35
LwPosr 𝛼 (Dhingra,
2022)

– 0.15 4.44 6.06 4.35 4.95

TriNet (Cao et al.,
2021b)

– 26‡ 4.20 5.77 4.04 4.67

FND (Zhang et al.,
2020)

5.8 – 3.78 5.61 3.88 4.42

Our approach ∼0.4 ∼0.09 5.26 10.12 7.73 7.70

Our approach✠ ∼0.4 ∼0.09 7.40 6.63 4.47 6.16

†, ‡, †† data respectively from Yang et al. (2019), Dhingra (2022), Zhou and Gregson (2020).
Table 6
Comparison among models with different sizes (Protocol P1: 300W-LP
train, BIWI test). 𝛽 = neurons reduction factor (see text), MAE = Mean
Absolute Error.
𝛽 MAE Parameters MB

1 5.18 94 031 0.385
0.6 5.43 37 206 0.158
0.2 5.54 6006 0.032

Table 7
The performance of our method for LAEO detection on the UCO-LAEO dataset. AP is
estimated as in Marín-Jiménez et al. (2020), 𝜏 = 0.93.

Method PREC REC F AP

LAEO-Net (Marin-Jimenez
et al., 2019)

– – – 0.80

LAEO-Net++
(Marín-Jiménez et al.,
2020)

– – – 0.87

Gaze Pattern Rec. (Chang
et al., 2023)

– – – 0.80

Baseline (Ours) 0.77 0.80 0.78 0.86

With uncertainty (Ours) 0.80 0.72 0.76 0.88

LAEO estimation assessment. We evaluate our method on the UCO-
AEO dataset (Marin-Jimenez et al., 2019), which includes sequences
rom four popular TV shows in the form of 129 shots of variable length.
he annotation is provided at a frame level – is there a pair of LAEO
people in the frame? – and at a pair level – i.e. each head pair is labelled
as LAEO or not. The task we solve is a binary classification task: for
each frame in the sequence we consider all pairs of people detected in
the frame and label them as LAEO or not using the method in Algorithm
1. Finally, a threshold 𝜏, selected on the ROC curve of the training set,
is used to detect the LAEO pairs.

We report in Fig. 9 examples to show how our LAEO measure
smoothly changes during the interaction event.

We report in Table 7 the performance provided by our baseline
method and the one incorporating the uncertainty on the test set.
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Algorithm 1 Fast LAEO Detection
1: Input: Head centroids (𝑥𝐴, 𝑦𝐴) and (𝑥𝐵 , 𝑦𝐵); projections of head

directions (𝑥′𝐴, 𝑦
′
𝐴) and (𝑥′𝐵 , 𝑦

′
𝐵); uncertainty weights 𝑤𝐴 and 𝑤𝐵

2: 𝐮𝐴𝐵 ← (𝑥𝐵 − 𝑥𝐴, 𝑦𝐵 − 𝑦𝐴)
3: 𝐡𝐴 ← (𝑥′𝐴 − 𝑥𝐴, 𝑦′𝐴 − 𝑦𝐴)
4: 𝐡𝐵 ← (𝑥′𝐵 − 𝑥𝐵 , 𝑦′𝐵 − 𝑦𝐵)
5: 𝑐𝑜𝑠(𝛼𝐴) ←

𝐮𝐴𝐵 ⋅𝐡𝐴
|𝐮𝐴𝐵 |⋅|𝐡𝐴|

6: 𝑐𝑜𝑠(𝛼𝐵) ←
−𝐮𝐴𝐵 ⋅𝐡𝐵
|𝐮𝐴𝐵 |⋅|𝐡𝐵 |

7: Compute the level of mutual interaction 𝐿𝐴𝐸𝑂𝑣𝑎𝑙𝑢𝑒 = 𝑤𝐴𝑐𝑜𝑠(𝛼𝐴) +
𝑤𝐵𝑐𝑜𝑠(𝛼𝐵)

8: Return 𝐿𝐴𝐸𝑂𝑣𝑎𝑙𝑢𝑒

The results suggest that using the prior knowledge derived from the
uncertainty allows us to significantly reduce the number of false pos-
itives (−6%, with a slight increase of the precision) to the price of
a small reduction of true positive (−7%, with a small reduction of
the recall). Overall, the uncertainty brings improvements as the AP
increases (+0.02). As a reference, we also show in the table the results
provided by Marin-Jimenez et al. (2019), Marín-Jiménez et al. (2020),
Chang et al. (2023).

Examples of the obtained results are reported in Fig. 10, where we
show that our method is tolerant to the presence of more than 2 people,
and to the scene variability.

6. Conclusions

In this work, we discussed a method for head pose estimation from
the head key points extracted on RGB images, that provides the head
pose as a triplet of Euler angles. Each angle is also associated with a
measure of the aleatoric heteroscedastic uncertainty. We approached
the problem as a multi-task regression and designed a neural network
which is very efficient both in terms of space occupancy (less than 0.5
MB) and inference time (it runs at 100 fps), thus providing the potential
to run on mobile devices. A core element of the architecture is the
multi-task loss we employed, in which the data-driven uncertainties act
as a weight of the sub-losses.
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Fig. 9. Examples of LAEO measures over time. In the plots we report in blue the
ground truth, and in red our LAEO measure. In green, we mark the threshold we
adopt. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

We provided a thorough experimental assessment, showing our
method couples a very light computation with precision in the esti-
mates superior or very close to state-of-the-art methods. When our
performance does not reach such precision, the loss is always very lim-
ited (in the order of a few degrees) and counterbalanced by a significant
saving in terms of space–time computational demand. Indeed, this may
happen mainly when the quality of the input is not sufficient, i.e. when
some of the keypoints are missing (e.g. due to occlusions or more in
general detection failures) or when the localization of the key points
(that may be uneven, depending on the specific pose detector that has
been employed) is . Nevertheless, for its inherent characteristics, our
method is particularly suitable for settings with a limited computational
budget: with respect to alternative approaches relying on images of the
detected face or on 3D face models, our very sparse input makes the
cost of our method negligible with respect to a full end-to-end pipeline.

In this respect, its use in the robotics setting is currently under
investigation.

We also discussed the connections between estimation error and
uncertainty, which improves the interpretability of our model. In par-
ticular, we observed tolerance to variability of the input points (for
instance the feasibility of using different pose detectors). On the neg-
ative side, as mentioned before, we experienced the negative impact
12
Fig. 10. Examples of LAEO detections. The arrows represent the head direction
estimated by HHP-Net and projected on the image plane and are green if the
corresponding person has been found involved in a LAEO. The prediction of our method
for LAEO detection is reported in yellow and, in the case of LAEO, it specifies the
identifier of the other interacting person. The identifiers are in red close to the subjects.
In the last row, we report examples of failures, due to the ambiguities of the information
on the image plane. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

of key point detection failures that could be attenuated by adopting
a video-based instead of an image-based analysis. This extension will
be addressed in future research, along the line of Her et al. (2023).
A further future direction of improvement, that may help address-
ing more challenging scenarios, is related with exploiting orientation
relationships, as observed in Liu et al. (2023).

As an application, we discussed a proof-of-concept application for
the detection of Looking-At-Each-Other events. In consideration of the
encouraging results we obtained, we are currently performing a more
comprehensive investigation of the use of the proposed methodology
in analysing the activity of small groups of people.
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