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A B S T R A C T

A multifield continualization technique is introduced that offers a thermodynamically consistent description of
the constitutive and dispersive properties of beam-lattice inertial metamaterials with periodic microstructures.
The balance equations governing the mechanics of the discrete Lagrangian system are appropriately handled
using an innovative continualization scheme to derive an equivalent integral-type continuum model. Based on
formal Taylor series expansion of the integral kernels or the corresponding pseudo-differential functions incor-
porating shift operators and appropriate pseudo-differential downscaling laws, the proposed multifield enhanced
continualization scheme allows the derivation of a gradient-type continuum model of given rank and equivalent
to lattices. Two different resolution techniques are proposed. Firstly, the corresponding infinite-order average
differential equations are tackled using a perturbative approach to describe the forced Bloch wave propagation in
the metamaterial. Secondly, higher-order continuum models are employed through proper differential equation
truncation to characterize the dispersive properties of the metamaterial in both high- and low-frequency regimes.
Moreover, an energetically consistent generalized equivalent Micropolar continua, with non-local inertial terms,
are here identified. The multifield continualization procedure is applied to two-dimensional periodic micro-
structures with tetrachiral, hexachiral, and hexa-tetrachiral topologies. Illustrative examples highlight the ability
of the equivalent continuum model to accurately describe the effective constitutive properties of inertial met-
amaterials with periodic microstructures and to define a dynamic response consistent with the discrete
Lagrangian model, validated and tested through virtual experimental verification under free and forced wave
conditions.

1. Introduction

Periodic reticular micro-architectured materials represent a class of
functionally engineered materials associated, in general, with light-
weight properties and whose peculiar macroscopic physical/mechanical
characteristics result from the unique combination of tailored micro-
structure and intrinsic material properties [1-4]. The advancements in
three-dimensional printing and additive manufacturing technologies
have now enabled the large-scale design and production of truss,
beam-like, block-like, and other periodic reticulated lattices (micro)
structures exhibiting unconventional and remarkable elastic and
acoustic properties [5-12]. To achieve unique elastic properties such as
auxeticity, bulk strain-rotation and axial/shear-bending couplings, a
variety of lattice-like microstructures can be employed [13-20]. Addi-
tionally, recent advances in the use of periodic lattice-like materials
have focused on the active and passive control of mechanical behavior

using techniques like time-modulated tunable lattices and other fre-
quency spectrum tuning devices [21-29].

Periodic reticulated materials characterized by rigid solid phases
interconnected by elastic ligaments or interfaces, known as beam or
block-lattice materials, represent a distinct class of lattice-like solids
with profound similarities to blocky rock and masonry-like systems,
granular materials, biological and bio-inspired microstructures, grids,
honeycombs, and other heterogeneous composites [30-42]. A salient
feature of artificial architectured materials of this kind lies in the pos-
sibility of periodically assembling lumped masses or rigid units of
specified geometry with elastic elements or generic soft phases of
varying characteristics, thereby achieving diverse overall mechanical
and physical properties while providing simple and intuitive
micro-macro correspondence [43-48]. Actually, from a mechanical
perspective, beam-lattice materials (along with block-lattices and spring
networks with lumped masses), can be effectively modeled as discrete

* Corresponding author.
E-mail address: andrea.bacigalupo@unige.it (A. Bacigalupo).

Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

https://doi.org/10.1016/j.ijmecsci.2024.109794
Received 24 July 2024; Received in revised form 26 September 2024; Accepted 18 October 2024

International Journal of Mechanical Sciences 286 (2025) 109794 

Available online 20 October 2024 
0020-7403/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:andrea.bacigalupo@unige.it
www.sciencedirect.com/science/journal/00207403
https://www.elsevier.com/locate/ijmecsci
https://doi.org/10.1016/j.ijmecsci.2024.109794
https://doi.org/10.1016/j.ijmecsci.2024.109794
https://doi.org/10.1016/j.ijmecsci.2024.109794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2024.109794&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Lagrangian systems. In these systems, a node-centered periodic cell with
specific size and lattice periodicity vectors can be identified, with
generalized interactions between elements being derived from a prop-
erly defined elastic potential which turns out to be a function of pairwise
defined kinematics and pairwise constitutive properties [49,50]. It is
well established that due to the finite dimension of the periodic micro-
structure, these materials shows length-scale sensitivity which manifests
itself in size/boundary layer effects and dispersion phenomena of elastic
waves induced by diffuse Bragg scattering. However, the frequency band
structures associated with the aforementioned architectured materials
exhibit, in general, high spectral density.

To achieve low and full-frequency band gaps, the use of local reso-
nators, typically consisting of a hard core surrounded by a soft coating,
has proven particularly effective. Indeed, locally resonant materials
(namely inertial metamaterials) may exhibit stop bands at frequencies
close to that proper of the resonator and induced by both diffusive Bragg
and localized Mie scattering, resulting in overall negative mass density
and bulk modulus of the lattice [51-57]. Recently, chiral periodic
architectured materials with internal locally resonant structures with
tunable low-frequency band-gaps have been proposed by [58-64],
demonstrating that the physical coupling of rotational and translational
local resonances in chiral microstructures creates low-frequency stop
bands and other exotic acoustic/elastic effects [65]. Numerical analysis
and experimental validation confirmed hexachiral beam-lattices with
softly coated heavy cylinder resonators achieve low-frequency band
gaps [60,66].

Although discrete Lagrangian modeling provides a simple and ac-
curate description of the mechanical behavior of lattice-like materials,
the parallel identification of continuum models derived through specific
homogenization schemes is needed to obtain an overall and synthetic
characterization of the static and dynamic behavior of periodic archi-
tectured material [67]. Moreover, the definition of tensor-valued
constitutive laws for continua equivalent to lattices allows for an accu-
rate and effective description of material symmetries,
direction-dependent mechanical properties, and elastic coupling effects.
First-order continualization is the classical homogenization strategy for
materials with a periodic lattice structure, which identifies constitutive
parameters for the equivalent standard Cauchy continuum by replacing
nodal displacements with first-order Taylor approximations. However,
due to the intrinsic limits of classical elasticity, the corresponding
equivalent continuum fails to capture elastic size effects and acoustic
wave dispersion in discrete periodic materials [68]. Non-local homog-
enization schemes overcome these limitations by introducing charac-
teristic lengths. Continualization of the Lagrangian functional
approximates differences in node displacements, yielding fourth-order
differential equations for the equivalent continuum. Despite the
positive-definite potential energy density of the discrete model, this
property is not retained in the continuous model, leading to
ill-conditioning and instability phenomena [44,47,69]. Truncated series
or shift and pseudo-differential operators are used in a dual strategy
based on the continualization of the Lagrangian discrete governing
equations. Partial-differential equations with non-local constitutive
tensors and local inertial terms are produced by generalized con-
tinualization processes, retaining pathologies from non-positive-defined
potential energy density in the analogous continua [70-72]. Regularized
continualization methods offer solutions to these challenges. One com-
mon approach involves employing shift operators to convert discrete
system equations into pseudo-differential equations, approximated
using Padé approximants. This introduces non-local inertial terms
indirectly, enriching the continuum models [73-77]. However, in some
cases, this strategy may fail to ensure positive-definite elastic potential
energy density in the homogenized continuum. Other continualization
approaches, such as spatial discrete Fourier transforms or bilateral
Z-transforms, yield integral-differential equations for non-local con-
tinua. Despite potential advantages, similar issues with elastic potential
energy density persist [78-80]. Rosneau [69] proposed a first-order

regularization method for monoatomic chains, using finite forward
differences to relate continuous macro-displacement fields to nodal
displacements in discrete Lagrangian models. This method modifies the
governing equations of the equivalent continuum by introducing
non-local inertial terms. Bacigalupo and Gambarotta have suggested a
generalized improved continualization approach for one-dimensional
beam lattices. This method used shift operators to generate
macroscale-defined pseudo-differential field equations through the use
of a first-order regularization technique based on central differences
with second-order precision [67,81]. By employing formal power series
expansion of the pseudo-differential equations, the resultant governing
differential equations were derived, incorporating inertial and consti-
tutive non-local terms with matching energetically compatible
Lagrangian functionals. It has been demonstrated that using this method
an equivalent non-local continuum is obtained that closely reproduces
both the static and dynamic response of the discrete model. Gómez-
Silva conducted a thorough analysis evaluating several con-
tinualization/homogenization procedures for one-dimensional lattices
with first-nearest interactions [82,83].

In this scientific scenario, an enhanced high-frequency con-
tinualization technique for inertial metamaterials is proposed, providing
a thermodynamically consistent characterization of the constitutive and
dispersive properties of locally resonant metamaterials with generic
periodic microstructures. It is important to highlight that the enhanced
high-frequency continualization scheme, here presented, has been
developed in a completely general and rigorous mathematical frame-
work that consents to describe in a very accurate way the fundamental
aspects of the physical problem at hand. By starting from periodic
lattice-like metamaterials, realised by a regular assembling of rigid el-
ements elastically connected to each other, continuum models, gov-
erned by integral-differential or averaged differential governing
equations (with infinite and finite order), can be consistently identified.
Once the equivalent continuum model is characterized, two distinct
solution strategies of their field equations are proposed and discussed in
detail. One technique employs a perturbative approach to tackle the
infinite-order averaged differential equations, which are asymptotically
equivalent to the discrete Lagrangian equations, to describe the forced
Bloch wave propagation in the metamaterial. The other technique in-
volves determining a higher-order continuum model by appropriately
truncating the corresponding infinite-order averaged differential equa-
tions, to characterize the dispersive properties of the metamaterial in
both high- and low-frequency regimes. The analytical formulation is
applied to two-dimensional periodic structures with tetrachiral
(Fig. 1b), hexachiral (Fig. 1c), and hexa-tetrachiral (Fig. 1d) topologies.
Firstly, energetically consistent generalized micropolar continua with
non-local inertial terms have been identified for these topologies, using
the proposed enhanced multifield continualization scheme. Particular
attention has been then devoted to the propagation of Bloch free waves,
investigating how these identified continuum models can convergently
approximate the actual frequency spectrum with increasing orders of
truncation. Under these free dynamic conditions, a universal charac-
terization of the frequency band structure of the metamaterials is pro-
vided for a generic lattice, represented by a monoatomic periodic cell
elastically coupled with local resonators and elastically connected with
the adjacent atoms/cells. For a fixed direction, the governing structure
of the problem is explored, noting that a palindromic characteristic
polynomial with respect to the Floquet multiplier governs the general
lattice systems being analyzed. Furthermore, a virtual experimental test
for the case of forced wave propagation in the first-order continualized
model has been developed, extending the applicability of the con-
tinualization procedure results.

The paper is structured as follows. Section 2 outlines the dynamic
problem formulation for the discrete Lagrangian model. Section 3 in-
troduces the multifield continualization technique, resulting in non-
homogeneous integral-differential equations characterized by pseudo-
differential operators, which describe the non-local integral-type
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generalized continuum models equivalent to the discrete Lagrangian
lattices. In sub-Section 3.1, these equations are reformulated as non-
homogeneous differential equations of infinite order using a Taylor se-
ries expansion and solved via a perturbative approach to characterize
the forced dynamic response of the inertial metamaterials. Subse-
quently, Section 4 derives the governing equations for multifield
gradient-type continuum models by truncating the previously
mentioned infinite-order differential equations. Section 5 provides
illustrative examples, including the identification of the global consti-
tutive relation of equivalent generalized micropolar continua for simple
non-resonant beam-lattice materials (sub-Section 5.1) and for various
considered topologies. Additionally, the propagation of homogeneous
free Bloch waves in the discrete Lagrangian system is examined (sub-
Section 5.2). In sub-Section 5.3, the non-resonant beam-lattice mate-
rials, as well as the full inertial metamaterial, are considered, and the
effectiveness of the multifield continualization is validated against the
discrete Lagrangian solution for different microstructure topologies. In
conclusion, sub-Section 5.4 presents a virtual experimental test aimed at
the resolution of harmonic forced wave propagation in the continualized
model governed by second-order differential equations, specifically
focusing on the case of the hexachiral beam lattice.

2. Discrete Lagrangian model

Let’s analyse a generic two-dimensional periodic lattice structure
composed of rigid blocks connected by elastic elements, equipped with
local resonators in each elementary cell. The dynamics of the cell are

described by the vector of degrees of freedom U(i1 ,...,in/2)(t) =

(
u(i1 ,...,in/2)(t) v(i1 ,...,in/2)(t)

)T
whose components are shown in Fig. 1.

The vector u(i1 , ..., in/2) =
(

u(i1 , ..., in/2)
1

u(i1 , ..., in/2)
2

ϕ(i1 , ..., in/2)
)T

repre-

sents the generalized displacement associated with the centroid
(
i1, ...,

in/2
)
∈ Zn/2 of the elementary block, and the vector v(i1 , ..., in/2) =

(

v(i1 , ..., in/2)
1

v(i1 , ..., in/2)
2

θ(i1 , ..., in/2)
)T
is the generalized displacement of

the resonator. The multi-index (i1, ..., in/2) allows for a unique
description of the lattice topology considered through the coordination
number n (Fig. 2a). The differential equations governing the dynamic
problem can be formulated as

∑

P(j1 , ..., jn/2)

K̃
uu
(j1 , ..., jn/2)u(i1+j1 , ..., in/2+jn/2)

+Kuvv(i1 , ..., in/2) +Muuü(i1 , ..., in/2)

= K̃
uu
(− 1, ...,0)u(i1 − 1, ..., in/2) + K̃

uu
(0, ...,0)u(i1 , ..., in/2) + K̃

uu
(1, ...,0)u(i1+1, ..., in/2) + ...+

+K̃
uu
(0, ..., − 1)u(i1 , ..., in/2 − 1) + K̃

uu
(0, ...,1)u(i1 , ..., in/2+1) +Kuvv(i1 , ..., in/2)+

+Muuü(i1 , ..., in/2) = f(i1 , ..., in/2),

Kvuu(i1 , ..., in/2) +Kvvv(i1 , ..., in/2) +Mvvv̈(i1 , ..., in/2) =0,

(1)

where K̃
uu
(j1 , ..., jn/2), K

uv, Kvu and Kvv are the 3 × 3 coefficient matrices
dependent on the stiffnesses of the connecting elastic elements of the
structure and the local resonator, Muu and Mvv are the 3 × 3 inertia
matrices of the cell and the resonator respectively, while f(i1 , ..., in/2) is the

external force applied to the centroid (i1, ..., in/2) of the elementary

Fig. 1. a) Degrees of freedom associated with a lattice structure equipped with resonators, b) tetrachiral lattice’s degrees of freedom, c) hexachiral lattice’s degrees of
freedom, d) tetra-hexachiral lattice’s degrees of freedom.
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block. The subgroup P (j1 , ..., jn/2) =
{
j1, ..., jn/2 : j1, ..., jn/2 ∈ Z≤1

≥− 1 ∪ |j1|

+...+ |jn/2| ≤ 1
}
collects the (j1, ..., jn/2) increment values on the

(i1, ..., in/2) coordination lines, identified in the physical space by the
periodicity vectors pA

k ∈ X ≐
{
X : X= clwA

l ; cl ∈ Z, l= 1, 2
}
∈ R2

wherewA
l = wA ,l

r er with r = 1, 2 are the independent spatial periodicity
vectors in the plane, and {e1,e2} is the orthonormal basis, with
k = 1, ..., n /2 indicating the k − th coordination direction (references in
Fig. 2a–c). Firstly, the Eq. (1) presented are initially modified by intro-
ducing the bilateral Z-transform, which transforms a generic vector

y(i1 , ..., in/2) defined for the discrete points of the domain (i1, ..., in/2)

into a vector dependent on the n/2 continuous complex variables z1, ...,
zn/2 ∈ C, i.e.

Z

[
y(i1 , ..., in/2)(t)

]
=
∑

i1∈Z

...
∑

in/2∈Z

y(i1 , ..., in/2)z
− i1
1 ... z− in/2

n/2 ≐ŷ
(
z1, ..., zn/2, t

)
.

(2)

Applying this definition to the variables defined in the differential
equations formulated in (1) yields

Fig. 2. a) Lattice’s reference centroids, b) physical lattice for periodic tetrachiral structure, c) physical lattice for periodic hexachiral structure, d) reciprocal lattice
for tetrachiral structure, e) reciprocal lattice for hexachiral structure. Regions A and B identified in physical and reciprocal lattices represent respectively the periodic
elementary cell and the Brillouin zone for the various geometries.

∑

P(j1 , ..., jn/2)

K̃
uu
(j1 , ..., jn/2) û

(
z1, ..., zn/2, t

)
zj11 ... z

jn/2
n/2 + Kuv v̂

(
z1, ..., zn/2, t

)
+Muu ¨̂u

(
z1, ..., zn/2, t

)
=

= K̃
uu
(− 1, ..., 0) û

(
z1, ..., zn/2, t

)
z− 11 + K̃

uu
(0, ..., 0) û

(
z1, ..., zn/2, t

)
+ K̃

uu
(1, ..., 0) û

(
z1, ..., zn/2, t

)
z1 + ...+

+K̃
uu
(0, ..., − 1) û

(
z1, ..., zn/2, t

)
z− 1n/2 + K̃

uu
(0, ..., 1) û

(
z1, ..., zn/2, t

)
zn/2+

+Kuv v̂
(
z1, ..., zn/2, t

)
+Muu ¨̂u

(
z1, ..., zn/2, t

)
= f̂
(
z1, ..., zn/2, t

)
,

Kvu û
(
z1, ..., zn/2, t

)
+ Kvv v̂

(
z1, ..., zn/2, t

)
+Mvv ¨̂v

(
z1, ..., zn/2, t

)
= 0,

(3)
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and by defining Kuu( z1, ..., zn/2
)
=

∑

P(j1 , ..., jn/2)

K̃
uu
(j1 , ..., jn/2)z

j1
1 ... z

jn/2
n/2, it is

possible to express the Eq. (3) in the following compact form
[
Kuu( z1, ..., zn/2

)
Kuv

Kvu Kvv

]{
û
(
z1, ..., zn/2, t

)

v̂
(
z1, ..., zn/2, t

)

}

+

+

[
Muu 0

0 Mvv

]{ ¨̂u
(
z1, ..., zn/2, t

)

¨̂v
(
z1, ..., zn/2, t

)

}

=

{
f̂
(
z1, ..., zn/2, t

)

0

}

.

(4)

Exploiting a polar-like representation of the complex variable, it is
possible to define the expressions in thek − space through the definition zα

= exp (Ik ⋅ xα) with α ∈ N
≤n/2
≥1 , k = kiei ∈ C2 being the complex wave

vector, and xα = lαnα the position vector relative to the centroid of the
reference block (with α not summed index), which in this context co-
incideswith theperiodicity vector in thephysical spacepA

k . Additionally, lα
denotes the distance between the centroids concerning the direction of the

α − th unit vector nα. It is worth noting that in the space R (k) =

R (ki)ei ∈ R2, The reciprocal lattice is also periodic and is characterized
by periodicity vectors pB

k ∈ G ≐
{
G : G= clwB

l ; cl ∈ Z, l= 1, 2
}
∈ R2

wherewB
l = wB ,l

r er for r= 1, 2 are the independent reciprocal periodicity
vectors,with k = 1, ..., n /2 characterizing the corresponding coordination
directions of the reciprocal lattice (Fig. 2d and e). Furthermore, the in-
dependent periodicity vectors of the reciprocal lattice are associated with
their counterparts in the physical space lattice through the conditionwA

i ⋅
wB

j = 2πδij, where δij represents the Kronecker delta. By substituting the
complex terms with their corresponding polar forms, the Eq. (4) become
[
Kuu(k) Kuv

Kvu Kvv

]{
ũ(k, t)
ṽ(k, t)

}

+

[
Muu 0
0 Mvv

]{
¨̃u(k, t)
¨̃v(k, t)

}

=

{
f̃(k, t)
0

}

, (5)

and by utilizing the temporal bilateral Laplace transform applied to the
Eq. (5) defined

L [ỹ(k, t)] =
∫

R

ỹ(k, t)exp(− st)dt≐y⌢(k, s), (6)

where ỹ(k, t) is a generic field, the governing equations in the complex
frequency domain associated with the Laplace variable s ∈ C and in the
k − space are obtained
[
Kuu(k) + s2Muu Kuv

Kvu Kvv + s2Mvv

]{
u⌢(k, s)
v⌢(k, s)

}

=

{
f
⌢

(k, s)
0

}

. (7)

The detailed analysis of the wave vector k ∈ C2 allows for observa-
tions on the propagation and spatial attenuation of both homogeneous
and non-homogeneous waves. For purely elastic problems, where s = Iω
with ω ∈ R the angular frequency, and under unforced wave conditions
(i.e. f = 0), the subsequent eigenproblem is determined from the Eq. (7)

Clag(k,ω)U
⌢

(k,ω) =

=

[
Kuu(k) − ω2Muu Kuv

Kvu Kvv − ω2Mvv

]{
u⌢(k,ω)

v⌢(k,ω)

}

=

{
0

0

}

.
(8)

The dispersion spectra are obtained in an implicit form by enforcing
the singularity of the matrix Clag from Eq. (8), which means

Dlag(k,ω) = det
(
Clag(k,ω)

)
= 0. (9)

The wave vector k ∈ C2 can be represented as the sum of two vector
components k = kR + IkI = kRnR + IkInI with kR, kI ∈ R2 real part
(characterizing spatial wave propagation) and imaginary part (charac-
terizing spatial wave damping) respectively. In the case of non-
homogeneous waves, the directions

nR =
kR

‖ kR ‖2
= cosφR e1 + sinφR e2,

nI =
kI

‖ kI ‖2
= cosφI e1 + sinφI e2,

(10)

of these components are generally distinct, hence φR ∕= φI. The charac-
teristic equation can be reinterpreted in the form Dlag(kR, kI, φR, φI, ω) =

Dlag

R + IDlag

I = 0, thus obtaining the dispersion curves as the intersection
of two hypersurfaces in implicit form, which are represented by the
nullification of the real and imaginary parts of the characteristic equa-
tion to identify the following locus of points

In the case of homogeneous waves where the equality φR = φI = φ
holds, the wave vector kcan be rewritten as k = (kR + IkI)n = kn with
k ∈ C the wave number and n the unique unit propagation vector. The
dispersion curves can be obtained by imposing the intersection of the
hypersurfaces Dlag

R = 0, Dlag

I = 0, thus obtaining the locus of points

S
lag

=
{
(kR , kI , φ, ω) : D

lag

R (kR , kI , φ, ω)=0 ∩ D
lag

I (kR , kI , φ, ω)=0
}
.

(12)

Note that, by fixing the propagation directions of the wave and
spatial attenuation, identified by the angles φR, φI or φ in the case
of homogeneous waves, the intersections expressed in (11) and (12)
are imposed for surfaces immersed in R3. In the particular condition
where k∈R2, the pseudo-polar definition of the complex variable
zα = exp (Ik ⋅ xα) defines a mapping onto the unit circle in the complex
domain, a condition in which the Z transform coincides with the finite
Fourier transform (or finite-domain Fourier transform), while the
discrete sequences u(i1 , ..., in/2) and v(i1 , ..., in/2) represent the Fourier co-

efficients. The following standard eigenproblem can be formulated to
obtain dispersion spectra for this particular case
(
Hlag − λI

)
U
⌢

=

=

([
(Muu)

− 1Kuu(k) Kuv

Kvu (Mvv)
− 1Kvv

]

− λ

[
I 0

0 I

]){
u⌢(k,ω)

v⌢(k,ω)

}

= 0,

(13)

where λ = ω2 eigenvalue and U
⌢
polarization vector. The j − th co-

efficients Ij of the characteristic polynomial
∑6

j=0Ijλ
j = 0 enforced to be

null, are detailed as the trace of matrix Hlag and the powers of Hlag, as
described in the Appendix A through the Faddeev-Leverrier method
[84-86].

3. Enhanced multi-field integral-differential continuum model

This Section aims to present a continuous multi-field model that
extends the degrees of freedom of the structure to include those of the
resonator, providing an equivalent representation of the previously
described discrete Lagrangian system. Building on the enhanced con-
tinualization proposed for two-dimensional monoatomic lattices by

S
lag

=
{
(kR , kI , φR , φI , ω) : D

lag

R (kR , kI , φR , φI , ω)=0 ∩ D
lag

I (kR , kI , φR , φI , ω)=0
}
. (11)
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Bacigalupo and Gambarotta in [67], this procedure is now extended to
these multi-field systems, understood as multiatomic lattices. In partic-
ular, a thermodynamically consistent multi-field continuous model can

be defined by introducing the regularized field variable Q̃
R
(k, t) =

(
q̃R

(k, t) p̃R
(k, t)

)T with q̃R
(k, t) and p̃R

(k, t) as the field variables
related to the degrees of freedom of the structure and the resonator,

respectively. Specifically, the variable Q̃
R
(k, t) is associated with the

variable Ũ(k, t) = ( ũ(k, t) ṽ(k, t) )T of the discrete Lagrangian system
through the following bridging scale relationship in the k − space

F(k)Q̃
R
(k, t) = Q̃(k, t) = F[Q(x, t)]≐

≐Ũ(k, t) = Z

[
U(i1 , ..., in/2)(t)

]⃒
⃒
⃒
zα=exp(Ixα ⋅k)

,
(14)

where F(k) is the regularization kernel defined as

F(k) ≐
∏n/2

α=1

2Ixα⋅k
exp(Ixα⋅k) − exp(− Ixα⋅k)

=

=
∏n/2

α=1

xα⋅Ik
sinh(xα⋅Ik)

=
∏n/2

α=1

xα⋅k
sin(xα⋅k)

=
∏n/2

α=1
sinc− 1(xα⋅k),

(15)

while Q(x, t) = (q(x, t) p(x, t) )T is the auxiliary generalized displace-
ment field correlated through the spatial Fourier transform with a
complex argument

F [y(x, t)] =
∫

R2
y(x, t)exp(− I k⋅x)dx≐ỹ(k, t), (16)

with y(x, t) as a generic field defined in the physical space. It is
important to note that for F = 1, the continualization procedure yields
analogous results to those obtained from the standard continualization,
which is derived from the Taylor series expansion centered concerning
the position of the elementary cell of the generalized displacement field
Q(x, t), which directly represents the macro-displacement. Invoking the
property of the inverse spatial Fourier transform applied to the product
and by exploiting the definition in the Eq. (14), it is possible to obtain
the following up-scaling relation in the physical space

Here, the symbol * indicates the convolution in the space while F− 1

denotes the inverse spatial Fourier transform with a complex argument,
defined for the generic field ỹ(k, t) as

F
− 1[ỹ(k, t)] =

1
(2πI)2

∫

C2ς

ỹ(k, t)exp(Ik⋅x)dk≐y(x, t), (18)

with C2
ς =

{

k= kjej : kj ∈ lim
ρj→∞

(
ςj − Iρj; ςj +Iρj

)
}

and ςj real constant

chosen appropriately within the holomorphic domain of the function
ỹ(k,t). It is worth to note that the inverse transform of the regularization
kernel introduced in the Eq. (17) leads to an indicator function
compactly supported on a rectangular region section that coincides with
the periodic cell of the microstructured material. Proceeding by
leveraging the definition (14) in the Eq. (5) formulated in the k − space,
one obtains

Kuu(k)q̃(k, t) + Kuvp̃(k, t) +Muu ¨̃q(k, t) = f̃(k, t),
Kvuq̃(k, t) + Kvvp̃(k, t) +Mvv ¨̃p(k, t) = 0,

(19)

thus deriving the following relationships

Kuu(k)F(k)q̃R
(k, t) + KuvF(k)p̃R

(k, t) +MuuF(k)¨̃q
R
(k, t) = s̃(k, t),

KvuF(k)q̃R
(k, t) + KvvF(k)p̃R

(k, t) +MvvF(k)¨̃p
R
(k, t) = 0,

(20)

where the source term s̃(k, t) is the complex-argument Fourier transform
of the continuous field s(x, t), which satisfies the property

s̃(k, t) = F [s(x, t)]≐Z

[
f(i1 , ..., in/2)(t)

]⃒
⃒
⃒
zα=exp(Ixα ⋅k)

= f̃(k, t). (21)

By applying the inverse of the transform (16) to each term of Eq.
(20), it is possible to obtain the integral-differential relationships of the
variables qR(x,t) and pR(x,t) in the physical and temporal domains,
namely

According with [87,88,81], the equation of the equivalent
integral-type continuum model (22) can be reformulated using
pseudo-differential notation. It is worth noting that the terms as func-
tions of the wave vector k are reliant on the independent variable Ik,
thereby open to being redefined as F(k) ≡ F⋄(Ik), Kuu(k) ≡ Kuu

⋄ (Ik)
pseudo-differential operators that can be identified by introducing the
following definitions

F
− 1[Kuu

⋄ (Ik)F⋄(Ik)F
[
qR(x, t)

]]
≐Kuu

⋄ [D1,D2]F⋄[D1,D2]qR(x, t),
F

− 1[KuvF⋄(Ik)F
[
pR(x, t)

]]
≐KuvF⋄[D1,D2]pR(x, t),

F
− 1
[
MuuF⋄(Ik)F

[
q̈R

(x, t)
]]

≐MuuF⋄[D1,D2]q̈R
(x, t),

F
− 1[KvuF⋄(Ik)F

[
qR(x, t)

]]
≐KvuF⋄[D1,D2]qR(x, t),

F
− 1[KvvF⋄(Ik)F

[
pR(x, t)

]]
≐KvvF⋄[D1,D2]pR(x, t),

F
− 1
[
MvvF⋄(Ik)F

[
p̈R

(x, t)
]]

≐MvvF⋄[D1,D2]p̈R
(x, t),

(23)

where Dj(y(x, t)) = ∂y(x, t) /∂xj, for j = 1, 2, being y(x, t) a generic

QR(x, t) = F
− 1[F− 1(k)Q̃(k, t)

]
= F

− 1[F− 1(k)
]
*Q(x, t) =

= F
− 1[F− 1(k)

]
*F − 1[Ũ(k, t)] = F

− 1[F− 1(k)
]
*F − 1

[

Z

[
U(i1 , ..., in/2)(t)

]⃒
⃒
⃒
zα=exp(Ixα ⋅k)

]

.
(17)

F
− 1
[
Kuu(k)F(k)F

[
qR(x, t)

]
+ KuvF(k)F

[
pR(x, t)

]
+MuuF(k)F

[
q̈R

(x, t)
]]

= F
− 1 [̃s(k, t)],

F
− 1
[
KvuF(k)F

[
qR(x, t)

]
+ KvvF(k)F

[
pR(x, t)

]
+MvvF(k)F

[
p̈R

(x, t)
]]

= 0.
(22)
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continuum field. It is interesting to observe that regarding the definition
of the regularization kernel F(k) in the Eq. (15) and reminding that F(k)
≡ F⋄(Ik), the pseudo-differential operator F⋄[D1,D2] defined in the Eq.
(23) enables to notice that the partial derivatives with respect to the
spatial field variables of the model (which are involved in the macro-
directional derivative) are by definition equivalent to the first-order
finite difference with second-order accuracy of the micro-displacement
fields. From the relationships expressed in (23), it is possible to refor-
mulate the equations of motion (22), obtaining the equivalent integral-
differential equations in the form

Kuu
⋄ [D1,D2]F⋄[D1,D2]qR(x, t) + KuvF⋄[D1,D2]pR(x, t)+
+MuuF⋄[D1,D2]q̈R

(x, t) = s(x, t),
KvuF⋄[D1,D2]qR(x, t) + KvvF⋄[D1,D2]pR(x, t)+

+MvvF⋄[D1,D2]p̈R
(x, t) = 0.

(24)

It is worth noting that from the definitions of the regularized fields in
(14), it follows that the equations of motion in (20) transformed into the
frequency domain ω, are the same equations obtained starting from the

discrete model (7) by imposing s⌢(k,s) = f
⌢

(k,s) = 0. Consequently, the
frequency band structure of the integral-type continuum model is
identical to that of the previously treated Lagrangian discrete model.

The pseudo-differential down-scaling law can be consistently defined
in the following operatorial form

U(i1 ,...,in/2)(t) =
(
F⋄[D1,D2]QR(x, t)

)⃒
⃒
x∈X. (25)

Based on the definition of the pseudo-differential operator refer-
enced in Eq. (23) (see for details [81]) and considering the bridging
relationship (14), the down-scaling law in differential form can be
reformulated through the formal Taylor series expansion of the
pseudo-differential operator F⋄[D1,D2], which can be expressed in the
following form

U(i1 ,...,in/2)(t)∼
∑

r∈N

∑

|α|=r
l1+l2=r

1
r!

(
r

l1, l2

)
∂|α|

(F⋄[D1,D2])
∂Dα

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

DαQR(x, t)
⃒
⃒
x∈X =

=
∑

l1 ,l2∈N

1
l1!l2!

∂l1+l2 (F⋄[D1,D2])
∂Dl1

1 ∂Dl2
2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dl1
1 D

l2
2Q

R(x, t)
⃒
⃒
x∈X =

=

(
∑

l1 ,l2∈N

1
l1!l2!

∂l1+l2 (F⋄[D1,D2])
∂Dl1

1 ∂Dl2
2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

∂l1+l2QR(x, t)
∂xl1

1 ∂xl2
2

)⃒
⃒
⃒
⃒
⃒
x∈X

,

(26)

where Dα = Dα1Dα2 ...Dαr = Dl1
1D

l2
2 with α = (α1,α2, ...,αr) ∈ Nr the multi-

index of length |α|= r such that α1,α2,..., αr= 1, 2 considering that l1 and
l2 are integers denoting the repetition of D1, D2 to order r = l1 + l2. In
Appendix B, a specialization for the case of orthogonal coordination
directions aligned with the coordinate axes n1 = e1 and n2 = e2 is
detailed.

3.1. Average infinite order differential equations and perturbative
solution approach

The integral-differential equations can be equivalently reformulated
as infinite-order differential equations by applying Taylor expansion to
pseudo-differential operators

Substituting expansions (27) into Eq. (24) yields the average infinite
order governing equations, namely

Kuu
⋄ [D1,D2]F⋄[D1,D2] ∼

∑

r∈N

∑

|α|=r
l1+l2=r

1
r!

(
r

l1, l2

)
∂|α|( Kuu

⋄ [D1,D2]F⋄[D1,D2]
)

∂Dα

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dα =

=
∑

r∈N

∑

|α|=r
l1+l2=r

1
r!

(
r

l1, l2

)
∂|α|( Kuu

⋄ [D1,D2]F⋄[D1,D2]
)

∂Dα1 ...∂Dαr

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dα1 ...Dαr =

=
∑

l1 ,l2∈N

1
l1!l2!

∂l1+l2
(
Kuu

⋄ [D1,D2]F⋄[D1,D2]
)

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dl1
1 D

l2
2 ,

F⋄[D1,D2] ∼
∑

r∈N

∑

|α|=r
l1+l2=r

1
r!

(
r

l1, l2

)
∂|α|

(F⋄[D1,D2])
∂Dα

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dα =

=
∑

r∈N

∑

|α|=r
l1+l2=r

1
r!

(
r

l1, l2

)
∂|α|

(F⋄[D1,D2])
∂Dα1 ...∂Dαr

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dα1 ...Dαr =
∑

l1 ,l2∈N

1
l1!l2!

∂l1+l2 (F⋄[D1,D2])
∂Dl1

1 ∂Dl2
2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dl1
1 D

l2
2 ,

(27)
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∑

l1 ,l2∈N

−
1

l1!l2!

[

Aqq
l1 l2

∂l1+l2qR(x, t)
∂xl1

1 ∂xl2
2

+ Aqp
l1 l2

∂l1+l2pR(x, t)
∂xl1

1 ∂xl2
2

]

+ s(x, t) =

=
∑

l1 ,l2∈N

1
l1!l2!

Bqq
l1 l2

∂l1+l2 q̈R
(x, t)

∂xl1
1 ∂xl2

2

,

∑

l1 ,l2∈N

−
1

l1!l2!

[

Apq
l1 l2

∂l1+l2qR(x, t)
∂xl1

1 ∂xl2
2

+ App
l1 l2

∂l1+l2pR(x, t)
∂xl1

1 ∂xl2
2

]

=

=
∑

l1 ,l2∈N

1
l1!l2!

Bpp
l1 l2

∂l1+l2 p̈R
(x, t)

∂xl1
1 ∂xl2

2

,

(28)

where the coefficient matrices are

Aqq
l1 l2≐

∂l1+l2
(
Kuu

⋄ [D1,D2]F⋄[D1,D2]
)

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

, Aqp
l1 l2≐Kuv∂l1+l2 (F⋄[D1,D2])

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

,

Apq
l1 l2≐Kvu∂l1+l2 (F⋄[D1,D2])

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

, App
l1 l2≐Kvv∂l1+l2 (F⋄[D1,D2])

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

,

Bqq
l1 l2≐Muu∂l1+l2 (F⋄[D1,D2])

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

, Bpp
l1 l2≐Mvv∂l1+l2 (F⋄[D1,D2])

∂Dl1
1 ∂Dl2

2

⃒
⃒
⃒
⃒
⃒D1⇒0
D2⇒0

.

(29)

The governing equations of infinite order described in Eq. (28) can be
solved through an appropriate order truncation, as will be illustrated in
Section 4, or through a perturbative approach. The perturbative solution
strategy is discussed in detail in Appendix C, where the ordering
parameter η is introduced in Eq. (65) to categorize the orders of the
averaged infinite order governing Eq. (28). The solution is sought as an
asymptotic expansion in η that orders the various sensitivities of the
generalized displacement vector. Such sensitivities are determined by
solving hierarchical differential problems at different orders of η, and
resulting in a subsequent absorption of the ordering parameter. It is
noteworthy that the mathematical structure of the non-homogeneous
differential equations defining the generating problem, coincides with
the governing equations of a first-order gradient model or a generalized
micropolar model with non-local inertias and non-zero source terms that
match those of the infinite order equation. Hierarchical differential
problems of higher order exhibit the same mathematical structure but
include source terms involving solutions in terms of sensitivities ob-
tained from the solutions of lower-order hierarchical differential prob-
lems. It is important to note that the generating problem of the
perturbative approach coincides with that obtained from the appro-
priate truncation to the lowest consistent order of the infinite order
equation, as illustrated in the example provided in sub-Section 5.1.

4. Continualized higher-order model and dynamic identification

The integral-differential governing Eq. (24) can be addressed
through a preliminary transformation into infinite-order differential Eq.
(29). Formally, these equations can be solved directly using the per-
turbative technique outlined in Section 3.1. Alternatively, Eq. (29) can
be solved through an appropriate truncation, aiming to achieve a higher-
order gradient-type continuum model. A generic N order gradient-type
continuum model is described by field equations that include terms up
to continualization order 2N, namely

∑2N

r=0

∑

l1+l2=r

−
1

l1!l2!

[

Aqq
l1 l2

∂rqR(x, t)
∂xl1

1 ∂xl2
2

+ Aqp
l1 l2

∂rpR(x, t)
∂xl1

1 ∂xl2
2

]

+ s(x, t) =

=
∑2N

r=0

∑

l1+l2=r

1
l1!l2!

Bqq
l1 l2

∂rq̈R
(x, t)

∂xl1
1 ∂xl2

2

,

∑2N

r=0

∑

l1+l2=r
−

1
l1!l2!

[

Apq
l1 l2

∂rqR(x, t)
∂xl1

1 ∂xl2
2

+ App
l1 l2

∂rpR(x, t)
∂xl1

1 ∂xl2
2

]

=

=
∑2N

r=0

∑

l1+l2=r

1
l1!l2!

Bpp
l1 l2

∂rp̈R
(x, t)

∂xl1
1 ∂xl2

2

.

(30)

The Eq. (30) can be expressed in terms of the wave vector k and the
Laplace variable s through a Fourier transform with a complex argument
in the spatial domain and the bilateral Laplace transform in the temporal
domain, namely

∑2N

r=0

∑

l1+l2=r

−
Irkl11 k

l2
2

l1!l2!

[
Aqq

l1 l2q
⌢R

(k, s) + Aqp
l1 l2p

⌢R
(k, s)

]
+ s⌢(k, t) =

= s2
∑2N

r=0

∑

l1+l2=r

Irkl11 k
l2
2

l1!l2!
Bqq
l1 l2q

⌢R
(k, s),

∑2N

r=0

∑

l1+l2=r

−
Irkl11 k

l2
2

l1!l2!

[
Apq

l1 l2q
⌢R

(k, s) + App
l1 l2p

⌢R
(k, s)

]
=

= s2
∑2N

r=0

∑

l1+l2=r

Irkl11 k
l2
2

l1!l2!
Bpp
l1 l2p

⌢R
(k, s).

(31)

From the (31) equation, focusing on the free wave propagation
analysis where s⌢(k, s) = 0, and recalling that s = Iω, the following
eigenproblem is obtained

Chom(k,ω)V
⌢R

(k,ω) =

=

⎡

⎣
Chomqq (k,ω) Chomqp (k,ω)

Chompq (k,ω) Chompp (k,ω)

⎤

⎦

{
q⌢
R
(k,ω)

p⌢
R
(k,ω)

}

=

{0
0

}

,
(32)

where the 3 × 3 submatrices that compose the 6 × 6 Chom matrix are
defined as follows

Chomqq =
∑2N

r=0

∑

l1+l2=r

Irkl11 k
l2
2

l1!l2!

[
Aqq

l1 l2 − ω2Bqq
l1 l2

]
, Chomqp =

∑2N

r=0

∑

l1+l2=r

Irkl11 k
l2
2

l1!l2!
Aqp

l1 l2 ,

Chompq =
∑2N

r=0

∑

l1+l2=r

Irkl11 k
l2
2

l1!l2!
Apq

l1 l2 , C
hom
pp =

∑2N

r=0

∑

l1+l2=r

Irkl11 k
l2
2

l1!l2!

[
App

l1 l2 − ω2Bpp
l1 l2

]
.

(33)

The dynamic identification of the equivalent higher-order contin-
uum model is determined by imposing that

Dhom(k,ω) = det
(
Chom(k,ω)

)
= 0. (34)

In the specific case of a non-homogeneous wave propagation prob-
lem, where k ∈ C2, k = kR + IkI = kRnR + IkInI with kR, kI ∈ R2 and nR,
nI are the directional unit vectors defined by relations (10), the char-
acteristic equation associated with (34) can be decomposed as Dhom =

DhomR + IDhomI = 0 and solvable in k by imposing the intersection of hy-
persurfaces to pinpoint the locus of points in space

S
hom

=
{
(kR , kI , φR , φI , ω) : D

hom

R (kR , kI , φR , φI , ω)=0 ∩ D
hom

I (kR , kI , φR , φI , ω)=0
}
. (35)
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In the condition of homogeneous waves where φR = φI = φ, the locus
of points (35) simplifies the dependencies as

S
hom

=
{
(kR ,kI ,φ,ω) : D

hom

R (kR ,kI ,φ,ω)=0 ∩ D
hom

I (kR ,kI ,φ,ω)=0
}
.

(36)

This condition can alternatively be resolved by formulating an
equivalent polynomial eigenproblem associated with the wave vectors k
= (kR + IkI)n = kn with k∈C, i.e.

Chom(k,ω,n)V
⌢R

=

[
∑2N

r=0

∑

l1+l2=r

(
Chom1,r (n) − ω2Chom2,r (n)

)
kr
]

V
⌢R

= 0, (37)

with k eigenvalue and V
⌢R

eigenvector, representing the wave number
and the polarization vector respectively, with the direction n fixed. The
formulation (37) is obtained by defining the components of the eigen-
problem (32) with the 6 × 6 matrices

Chom1,r =

⎡

⎣
Chomqq,1r Chomqp,1r

Chompq,1r Chompp,1r

⎤

⎦, Chom2,r =

⎡

⎣
Chomqq,2r 0

0 Chompp,2r

⎤

⎦, (38)

whose constituent submatrices of size 3 × 3 are defined as

Fig. 3. Geometric description of the example topologies: a) tetrachiral lattice, b) hexachiral lattice, c) tetra-hexachiral lattice.
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Chomqq,1r≐
Inl1
1 n

l2
2

l1!l2!
Aqq

l1 l2 , C
hom
qp,1r≐

Inl1
1 n

l2
2

l1!l2!
Aqp

l1 l2 ,

Chompq,1r≐
Inl1
1 n

l2
2

l1!l2!
Apq

l1 l2 , C
hom
pp,1r≐

Inl1
1 n

l2
2

l1!l2!
App

l1 l2 ,

Chomqq,2r≐
nl1
1 n

l2
2

Il1!l2!
Bqq
l1 l2 , Chompp,2r≐

nl1
1 n

l2
2

Il1!l2!
Bpp
l1 l2 .

(39)

The eigenproblem (37) can be solved by linearization, reducing the
polynomial formulation to the standard eigenproblem

(L − kI)W
⌢ R

= 0, (40)

with L = L− 11 L0 where L1, L0 matrices of size 12N × 12N (of which L1 is

invertible) and W
⌢R

eigenvector 12N × 1 appropriately detailed in
Appendix D. By imposing the singularity of the matrix L − kI, the 12N −

th order characteristic polynomial is determined in the form

∑12N

j=0
Ijkj = I0 + I1k+ … + I12Nk12N = 0, (41)

with Ij the j − th invariant determinable using the Faddeev-Leverrier
method described in Appendix A. The identification related to the
pure wave propagation, i.e., k= kn, with k ∈ R eigenproblem parameter
and λ = ω2 eigenvalue, is determined by manipulating the Eq. (37) into
the form

(Hhom − λI)V
⌢R

=
[[
Chom2 (k,n)

]− 1Chom1 (k,n) − λI
]
V
⌢R

= 0, (42)

where the 6× 6 invertible matrices Chom1 (k,n) and Chom2 (k,n) can be
expressed as a linear combination of the matrices defined in (38) in the
form

Chom1 (k,n)≐
∑2N

r=0

∑

l1+l2=r

Chom1,r (n)kr,Chom2 (k,n)≐
∑2N

r=0

∑

l1+l2=r

Chom2,r (n)kr.

The solution of equation Eq. (42) is obtained by determining the
roots of the associated characteristic polynomial, having the same
structure expressed in Eq. (41) for order 6. The coefficients of the
polynomial are calculated using the Faddeev-Leverrier method, detailed
in Appendix A.

5. Illustrative examples

This Section presents the static and dynamic properties of the con-
tinuum models for three different topologies, illustrated in Fig. 3. These
are two-dimensional beam-lattice materials with tetrachiral (Fig. 3a),
hexachiral (Fig. 3b), and tetra-hexachiral (Fig. 3c) structures, composed
of a periodic repetition of unit cells with a characteristic size a that
coincides with the distance between the nodes of the associated lattice
(see Fig. 3). The structure consists of rigid disks with radius R and mass
per unit thickness M interconnected by elastic ligaments with Young’s
modulus E. For the tetrachiral and hexachiral topology, the geometric
parameters related to the ligaments are the slenderness δ = s/l with
length l, and the ligament’s thickness and depth s and b, respectively,
while the angle between the coordination direction and the direction of
the ligament parametrizes the chirality of geometry β. On the other
hand, the ligaments of the tetra-hexachiral topology are defined by the

slenderness parameters δ, δ́ = s/ĺ = δ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
1 − 4(R/a)2

]
/
[
2 − 4(R/a)2

]√

with l and ĺ =
̅̅̅
2

√
a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − 2(R/a)2
√

ligaments’ lengths, respectively in-
clined by the chirality angles β, β′ correlated through the following re-
lationships cosβʹ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (1 − cos2β)/2

√
, sinβʹ =

( ̅̅̅
2

√
/2
)
sinβ. In the first

sub-Section 5.1, the constitutive tensors of first-order gradient-type
micropolar continuous are identified. In the sub-Section 5.2, the

determination of the dispersive properties of the discrete Lagrangian
models related to the different topologies is addressed. Subsequently,
local circular resonators with radius r and mass per unit thickness m and
translational and rotational stiffnesses kv and kθ, respectively, are cen-
trally inserted into the rigid disks; this integration defines the meta-
materials in the example geometries. In sub-Section 5.3, static and
dynamic benchmark tests are explored, where the solutions derived
from the introduced multifield continuum model are compared with
those from discrete Lagrangian models to assess the validity of the
enhanced procedure. Finally, in sub-Section 5.4, forced wave propaga-
tion is explored in the first-order gradient-type continuum model (gov-
erned by second-order truncated partial differential equations),
broadening the introduced models’ applicability.

5.1. Constitutive identification of the equivalent micropolar continuous

Starting from Eq. (30) related to the multifield higher-order contin-
uum model, the expressions are simplified under the conditions of
single-layer beam-lattice material without a local resonator. By omitting
the inertial term, the corresponding first-order gradient-type continuum
model (N = 1) is governed by field equations of order 2N = 2, aligning
with those of a micropolar continuous as the following specific
expression

Aqq
20

2
∂2qR

∂x21
+ Aqq

11
∂2qR

∂x1∂x2
+
Aqq
02

2
∂2qR

∂x22
+ Aqq

10
∂qR

∂x1
+ Aqq

01
∂qR

∂x2
+ Aqq

00qR = 0.

(43)

It is noted that the structure of the differential Eq. (43) shows a
similar structure to the field equations of an equivalent micropolar
continuous, if appropriately developed and defined in an equivalent
operatorial form as detailed in the Eq. (81) in Appendix E. By compar-
ison, it is obtained that

Aqq
00 = C00

(
Eijhk

)
, Aqq

10 = C10
(
Eijhk

)
, Aqq

01 = C01
(
Eijhk

)
,

Aqq
20 = 2C20

(
Eijhk, Sij

)
, Aqq

11 = C11
(
Eijhk, Sij

)
, Aqq

02 = 2C02
(
Eijhk, Sij

)
,

(44)

where Eijhk, Sij are the overall elastic tensor components with i, j, h, k= 1,
2. The linear operators Abl with b, l = 0, 1, 2 can be deduced using
standard methods of structural mechanics concerning the various
analyzed topologies, following Bacigalupo et al. in [89], while the linear
operators Cblwith b, l= 0, 1, 2 are detailed in terms of components of the
equivalent micropolar continuous in Appendix E.

5.1.1. Constitutive properties for the tetrachiral topology
Referring to the tetrachiral topology illustrated in Fig. 3a, the com-

ponents of the coefficient matrices Abl in (43) are specified for the
directional unit vectors n1 = e1 and n2 = e2, with e1, e2 being the
relative canonical basis (see Fig. 3a), and for the micromechanical pa-
rameters δ, β, a and E. The overall elastic tensor components

E1111 = E2222 = Eδ
(
cos2β + δ2sin2β

)
,

E1121 = − E2212 = Eδ
(
1 − δ2

)
sinβcosβ,

E1212 = E2121 = Eδ
(
sin2β + δ2cos2β

)
,

S11 = S22 =
1
12

Eδa2
(
2δ2cos2β + sin2β

)
,

(45)

are determined by exploiting the relationship (44) and manipulating the
Eq. (82) in Appendix E.

5.1.2. Constitutive properties for the hexachiral topology
The coefficient matrices Abl for the hexachiral beam-lattice material

(Fig. 3b) are obtained analogously to sub-Section 5.1.1, for n1 = e1,
n2 = 1

2
(
e1+

̅̅̅
3

√
e2
)
and n3 = 1

2
(
− e1+

̅̅̅
3

√
e2
)
where e1,e2 are the rela-

tive canonical basis (see Fig. 3b). Following the same procedure as
presented for the tetrachiral case, the non-zero components of the elastic
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Fig. 4. Overall elastic tensor components for the tetra-hexachiral topology, a) E1111/E, E2222/E, b) E1122 /E, c) E2212/E, E1112/E and d) S11/Ea2, S22 /Ea2. For β = π /6,
δ = 1 /20, diagrams e) and f) depict the nonlocal elastic constitutive tensor Ŝ11/Ea2 (blue), Ŝ12/Ea2 (red) and Ŝ22/Ea2 (green) expressed in polar and Cartesian
representations, respectively, relative to a generic orthonormal basis rotated of φ.
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constitutive tensors are so determined

E1111 = E2222 = Eδ
[ ̅̅̅
3

√

2
(
1+ δ2

)
+

̅̅̅
3

√

4
(
1 − δ2

)
cos(2β)

]

,

E1122 =
̅̅̅
3

√

4
Eδ
(
1 − δ2

)
cos(2β),

E1121 = E2221 = − E1112 = − E2212 =
̅̅̅
3

√

4
Eδ
(
1 − δ2

)
sin(2β),

E1212 = E2121 = Eδ
[ ̅̅̅
3

√

4
(
1+ δ2

)
+

̅̅̅
3

√

2
(
cos2β + δ2sin2β

)
]

,

E1221 = Eδ
[ ̅̅̅
3

√

4
(
1+ δ2

)
−

̅̅̅
3

√

2
(
cos2β + δ2sin2β

)
]

,

S11 = S22 =
̅̅̅
3

√

12
Eδa2

(
4δ2cos2β + 3sin2β

)
.

(46)

5.1.3. Constitutive properties for the tetra-hexachiral topology
By the procedures described in 5.1.1 and 5.1.2 sub-Sections, the

tetrachiral case with square elementary cell is identified for n1 = e1 and
n2 = e2 directional unit vectors, referring to the relative canonical basis
e1, e2 (Fig. 3c). The non-zero constitutive components obtained are

E1111 =
E2222
3

=
1
2
Eδ
[
1+ cos2β + δ2sin2β

]
,

E1122 = E1221 =
1
2
Eδ
(
1 − δ2

)
cos(2β),

E1112 = − E2221 =
1
2
Eδ
(
1 − δ2

)
sin(2β),

E2212 = Eδ
(
1 − δ2

)
sinβ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ cos2β
√

,

E2121 =
1
2
Eδ
[
δ2
(
1+ cos2β

)
+ sin2β

]
,

S11 =
1
12

Eδa2
[
2δ2
(
1+ 2 cos2β

)
+ 3 sin2β

]
,

S22 =
1
12

Eδa2
[
2δ2
(
1+ 6 cos2β

)
+ 9 sin2β

]
,

(47)

which are depicted in Fig. 4 in their dimensionless form. The compo-
nents of the obtained constitutive tensor exhibit strong non-linearities in
relation to the chirality and slenderness parameters. Specifically, the
dimensionless components E1111/E and E2222/E show monotonically
increasing trends with increasing ligament slenderness δ and decreasing
chirality angle β, following topological configurations that determine

Fig. 5. Floquet multipliers χ(ω) for propagation n ≡ e2 in the hexachiral beam-lattice material, δ = 1 /10 and β = π /8. a) Curves (in red) of Floquet multipliers on
the unit radius cylinder, b) curves (in red) of Floquet multipliers on the unit radius torus in the cartesian coordinate system γj, c) normalized Floquet multipliers χn(ω)
(ψ = 10 /11) on the unit circle in the complex plane. Floquet multipliers parameterized ω are indicated in gray, while red dots represent the multipliers related to the
green planes’ sections in Fig. 5.a.
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the overall stiffness. This monotonically increasing trend is also evident
in Fig. 4b, regarding the component E1122 /E,which increases influenced
by the decrease in the chirality of the elementary cell starting from
negative values. The components correlating normal stresses with
tangential strains are illustrated in Fig. 4c. In this context, the compo-
nent E2212/E exhibits a monotonically increasing behavior with
increasing chirality β and ligament slenderness δ, while E1112 /E does not
show a monotonic character and identifies relative maximum values
represented by the red line in Fig. 4c. Due to the overall Z2 invariance,
the non-local constitutive tensor components S11/Ea2 and S22 /Ea2 are
distinct for this topology, albeit with a similar increasing behavior with
increasing chirality. This aspect is further explored in the diagrams in
Fig. 4e and f, with a fixed ligament’s slenderness δ = 1 /20 and chirality
β = π /6. These diagrams represent the dimensionless non-local
constitutive tensor components Ŝij/Ea2 referred to as a generic ortho-
normal basis {ê1, ê2}, obtained by rigidly rotating the reference basis
depicted in Fig. 3c by the angle φ = Arg(ê1⋅e1 + Iê1⋅e2). Specifically,
the second-order non-local tensor exhibits orthotropic properties owing
to D2 invariance, with components dependent on the variation of φ.

5.2. Propagation of free Bloch homogeneous waves in the Lagrangian
system

This sub-Section investigates the dynamic response of discrete
Lagrangian models related to the introduced example topologies,
applying the observations developed in Section 2. The attention is
devoted to the propagation of homogeneous waves, where the wave
vector is described as k = (kR + IkI)n = kn with k ∈ C the wave number
and n the unit propagation vector. By substituting the polar represen-
tation of the wave vector into the characteristic Eq. (9) and introducing
the relation χ±1 = exp (± Ikar) where χ denotes the (spatial) Floquet
multiplier and ar is a suitable reference length representing the micro-
structure, it can be verified that for specific propagation directions n the
characteristic equation is a sixth-order palindromic polynomial in the
variable χ ∈ C expressible in the form (for details, see [90])

P
lag
(χ,ω) = χ6 + I1(ω)χ5 + I2(ω)χ4+

+I3(ω)χ3 + I2(ω)χ2 + I1(ω)χ + 1 = 0.
(48)

Referring to the Floquet multiplier’s polar form χ = |χ|exp (IArg(χ))
and separating the real and imaginary parts of the characteristic

Fig. 6. Floquet multipliers χ(ω) for propagation n ≡ e1 in the tetrachiral metamaterial, with parameters δ = 1 /10, β = π /8, m /M = 5 /2, kv /E ≃ 7 /20 e
kθ /Ea2 ≃ 3 /500. a) Curves (in red) of Floquet multipliers on the unit radius cylinder, b) curves (in red) of Floquet multipliers on the unit radius torus in the cartesian
coordinate system γj, c) normalized Floquet multipliers χn(ω) (ψ = 21 /22) on the unit circle in the complex plane. Floquet multipliers parameterized on ω are
indicated in gray, while red dots (and magenta, in case of overlaps) represent the multipliers related to the green planes’ sections in Fig. 6.a.
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polynomial, the Eq. (48) can be reformulated as follows

with I1, I2, I3 ∈ R since the considered systems are elastic. The pro-
cedure is general and can also be applied to the periodic beam-lattice
material, neglecting the components related to the resonator’s degrees
of freedom v⌢ in the eigenproblem (8). The obtained characteristic
equation can be converted into the polynomial form (49) following a
similar approach to that adopted for the metamaterial. By solving the
roots of the characteristic polynomial in the parametrization ω /ωr with
ωr =

̅̅̅̅̅̅̅̅̅̅
E/M

√
, it is found that the Floquet multipliers χ lie on the unit

circle in the complex plane when associated with wave propagating in

the metamaterial, identifying pure propagation modes. Conversely,
within the spectral configurations of wave propagation’s stop bands, the
modulus is |χ| ∕= 1 exclusively at Arg(χ) = 0, π, a condition valid only in
the case of elastic systems as those treated here.

Considerations regarding the Floquet multipliers emerge from the
diagrams in Figs. 5 and 6, respectively concerning the hexachiral beam-
lattice material and the tetrachiral metamaterial.

The results illustrated in Fig. 5 pertain to wave propagation for n≡ e2
and ar =

̅̅̅
3

√
a /2, in relation to β = π /8 and δ = 1 /10. In particular,

Fig. 5a shows the obtained Floquet multipliers χ(ω), indicated by the red

Fig. 7. a) Manifold M (red surface) and contour plots L1, L2, L3 and L4 related to the tetrachiral beam-lattice material for δd = 1 /10, in relation to planes P1 and P2
that express conditions of incipient damping, b) planes P1, P±

1 , P2, P±
2 , P3 e P4 and contour plots L4 in the invariants’ three-dimensional space I1, I2 and I3.

P
lag
R (χ,ω) = |χ|6cos(6Arg(χ)) + I1(ω)|χ|

[
|χ|4cos(5Arg(χ)) + cos(Arg(χ))

]
+

+I2(ω)|χ|2
[
|χ|2cos(4Arg(χ)) + cos(2Arg(χ))

]
+ I3(ω)|χ|3cos(3Arg(χ)) + 1 = 0,

P
lag
I (χ,ω) = |χ|6sin(6Arg(χ)) + I1(ω)|χ|

[
|χ|4sin(5Arg(χ)) + sin(Arg(χ))

]
+

+I2(ω)|χ|2
[
|χ|2sin(4Arg(χ)) + sin(2Arg(χ))

]
+ I3(ω)|χ|3sin(3Arg(χ)) = 0,

(49)

A. Bacigalupo et al. International Journal of Mechanical Sciences 286 (2025) 109794 

14 



curves encircling the unit radius cylinder, defining the frequency band
structure of the hexachiral beam-lattice material. Specifically, it’s
feasible to identify the regions of complete or partial wave propagation or
blocking, an aspect explored by the significant sections shown in Fig. 5c.
For convenience of representation, these sections express the six
solutions of Eq. (49) with respect to the normalized Floquet multiplier
χn = ζ(|χ|)|χ|exp(IArg(χ)), where the auxiliary |χ|- dependent function
ζ(|χ|) = {|χ|− ψ if |χ|>1or1 if |χ|≤1}, with ψ ∈Q<1

≥0 properly fixed scalar
parameter, is introduced. Analogous observations can be made for
Fig. 5.b, which illustrates the dynamic behavior of the system
considering the modulus of χ and the arguments of χ and the introduced

temporal Floquet multiplier υ=exp(Iωt) as toroidal coordinates.
Referring to these coordinates, by defining the coefficients ξ
=sinh(|χ|)/[cosh(|χ|)− cos(Arg(υ))] and ϑ= 1/[cosh(|χ|)− cos(Arg(υ))],
it is possible to determine the cartesian coordinates from the relation-
ships γ1 = ξcos(Arg(χ)), γ2=ξsin(Arg(χ)) and γ3 = ϑsin(Arg(υ)). The di-
agrams in Fig. 6 illustrate the effect induced by the presence of
resonators, in the specific case of the tetrachiral metamaterial with
β = π/8, δ=1/10 and for the wave propagation n≡e1 and ar = a.The
introduced resonator has a mass of m/M=5/2 and dimensionless stiff-
nesses kv/E≃7/20 and kθ/Ea2≃3/500 in accordance with Bacigalupo
and Gambarotta in [91]. As shown in the diagrams in Fig. 6.c, the fre-
quencies ω/ωr=2/5 and ω/ωr=13/20 fall within total band gaps.

Moreover, the formula ζ(|χ|) = {|χ|− ψ if |χ| > 1 or 1 if |χ| ≤ 1} must
be written in a unique row as well as the formula γ2 = ξsin(Arg(χ)).

To determine the locus of points in the three-dimensional space of
the invariants I1, I2 and I3 where modes of pure spatial damping or
conditions of incipient damping are characterized by I(χ) = 0, the con-
dition Arg(χ)= 0, π is substituted into the real and imaginary parts of the
characteristic polynomial given in the Eq. (49). This condition auto-
matically satisfies the implicit equation P

lag
I (χ, ω) = 0, while the real

parts specialize to the form

P
0
R (I1, I2, I3; |χ|, Arg(χ) = 0) =
= |χ|6 + I1|χ| + I2|χ|2 + I3|χ|3 + 1 = 0,

P
π
R (I1, I2, I3; |χ|, Arg(χ) = π) =

= |χ|6 − I1|χ|
(
|χ|4 + 1

)
+ I2|χ|2

(
|χ|2 + 1

)
− I3|χ|3 + 1 = 0,

(50)

identifying a pair of planes for each fixed value of |χ|. Specifically, in
Fig. 7 the planes corresponding to the following conditions are depicted

P1 = P
0
R (I1, I2, I3; |χ| = 1, Arg(χ) = 0) = 0,

P2 = P
π
R (I1, I2, I3; |χ| = 1, Arg(χ) = π) = 0,

P+
1 = P

0
R (I1, I2, I3; |χ| = 3, Arg(χ) = 0) = 0,

P+
2 = P

π
R (I1, I2, I3; |χ| = 3, Arg(χ) = π) = 0,

P−
2 = P

0
R

(

I1, I2, I3; |χ| = 1
2
, Arg(χ) = 0

)

= 0,

P−
2 = P

π
R

(

I1, I2, I3; |χ| = 1
2
, Arg(χ) = π

)

= 0.

(51)

In the three-dimensional space of invariants, planes P1 and P2 iden-
tify the locus of points determining critical points in the frequency band
structure. These critical points correspond to conditions of incipient
spatial damping, characterized respectively by |χ|= 1 and Arg(χ)= 0, π.
Additionally, planes P±

i (with i = 1, 2) identify the points’ locations
which determine modes of pure damping for progressive and regressive
homogeneous waves, characterized by Arg(χ) = 0, π and
|χ| ∈ R≥0 ∪ |χ| ∕= 1. On the contrary, to determine the locus of points in
the three-dimensional space of invariants I1, I2 and I3 for which pure
propagation modes characterized by |χ| = 1 are identified, this condi-
tion is substituted into the Eq. (49) resulting in

in which it is verified that the trigonometric functions plagR (Arg(χ)) and
plagI (Arg(χ)) satisfy the condition plagI (Arg(χ)) = plagR (Arg(χ) − π /6), while
ρlag represents a plane in the three-dimensional space of invariants I1, I2
and I3 for a fixed Arg(χ). Specifically, in Fig. 7 the planes P3 and P4, for
which plagI = 0 and plagR = 0 respectively, are depicted as defined by the
following implicit functions

P3 = ρlag(I1, I2, I3; Arg(χ) = π/3) = I1 − I2 − I3 + 2 = 0,
P4 = ρlag(I1, I2, I3; Arg(χ) = 5π/6) = I1 −

̅̅̅
3

√
I2 + I3 = 0.

(53)

It is important to note that the planes in the three-dimensional space
of invariants defined from the Eq. (49), which identify the locus of points
for which pure propagation modes, pure spatial damping modes, and
conditions of incipient damping occur, are completely general and
depend solely on the mathematical structure of the palindromic poly-
nomial that governs propagation in the beam-lattice material or periodic
metamaterial, considered as generic dynamic elastic-linear systems. By
focusing on a particular topology, it is possible to express the invariants
in closed form in terms of the angular frequency ω and the micro-
mechanical parameters β and δ. Particularly, for the tetrachiral beam-
lattice material the invariants are described as follows

I1=
1
δ3

{(
ω
ωr

)2(
δ2 − 2

)
− δ
[
12tan2β+18δ2

]
}

,

I2=
1
δ5

{(
ω
ωr

)2
[

δ

[

8 − 16δ3 − 5
(

ω
ωr

)2
]

+12

]

+3δ3
(
21δ2 − 16

)
}

+
3

δ5cos2β

{(
ω
ωr

)2
[

δ

[(
ω
ωr

)2

− 8δ

]

− 4

]

+16δ3
}

,

I3=
1
δ7

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ω
ωr

)2

⎡

⎢
⎢
⎢
⎣

(
ω
ωr

)2
[

24δ − 14δ3 − 3
(

ω
ωr

)2
]

+

+6δ2
(
5δ4 − 2δ2 − 4

)

⎤

⎥
⎥
⎥
⎦
+4δ5

(
18 − 23δ2

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+

+
3

δ7cos2β

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ω
ωr

)2

⎡

⎢
⎢
⎢
⎣

(
ω
ωr

)2
[(

ω
ωr

)2

− 2δ3 − 8δ

]

+

+8δ2
(
2δ2+1

)

⎤

⎥
⎥
⎥
⎦
− 24δ5

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(54)

P
lag
R (I1, I2, I3; |χ| = 1, Arg(χ)) = plagR (Arg(χ))ρlag(I1, I2, I3; Arg(χ)) =
= cos(Arg(χ))

[
4cos2(Arg(χ)) − 3

]{
I3 + 2cos(Arg(χ))I2 + 2

[
2cos2(Arg(χ)) − 1

]
I1+

+2cos(Arg(χ))
[
4cos2(Arg(χ)) − 3

]}
= 0,

P
lag
I (I1, I2, I3; |χ| = 1, Arg(χ)) = plagI (Arg(χ))ρlag(I1, I2, I3; Arg(χ)) =
= sin(Arg(χ))

[
4cos2(Arg(χ)) − 1

]{
I3 + 2cos(Arg(χ))I2 + 2

[
2cos2(Arg(χ)) − 1

]
I1+

+2cos(Arg(χ))
[
4cos2(Arg(χ)) − 3

]}
= 0,

(52)
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which, for a fixed value of ligament slenderness δd, define a manifold
M= {I1= f1(ω, β, δ = δd), I2= f2(ω, β, δ = δd), I3= f3(ω, β, δ = δd)} param-
eterized in ω, β and embedded in the three-dimensional space of invariants
I1, I2 and I3. It is definable Li =

{
I1 = f1

(
ω, β= βd

i , δ= δd
)
,

I2= f2
(

ω, β= βd
i , δ= δd

)
, I3= f3

(
ω, β= βd

i , δ= δd
)}

the contour curves

of manifold M for fixed values of the chiral angle βd
i with i ∈ N>0. The

intersectionbetween themanifoldM and the planesP1,P±
1 ,P2,P±

2 eP3,P4 in
(51), (53), i.e. M∩P1, M ∩ P±

1 , M∩P2, M ∩ P±
2 , defines curves in the three-

dimensional space of invariants expressed by implicit functions of the
type f(ω, β)= 0 that identify the values of ω and the micromechanical
parameter β for which pure propagation modes, pure spatial damping
modes, and conditions of incipient damping (in the spectral situations
defined in (51) and (53)) are realized in the tetrachiral beam-lattice ma-
terial. Instead, the intersection between the curves Li and the planes (51),
(53) defines a set of points in the three-dimensional space of invariants
obtained as a solutionof thenonlinear equation that arises from the implicit
function obtained as the intersection ofM and the planes evaluated for the

fixed values of chiral βd
i i.e. f

(
ω, β = βd

i

)
= 0. Specifically, in Fig. 7 the

manifold (red surface) for δd = 1 /10and the contour curves L1,L2,L3 andL4
for βd

1 = π /24, βd
2 = π /12, βd

3 = π /6 e βd
4 = π /3, respectively, are

illustrated.

5.3. Representative benchmark tests: higher-order continualized models
vs. discrete Lagrangian model

In this sub-Section, the validation of the previously introduced
higher-order gradient-type continuous models is examined to ensure
their reliability in different contexts. Two validation tests are developed.
The first, described in sub-Section 5.3.1, illustrates the effectiveness of
the micropolar model identified in sub-Section 5.1.1 in capturing the
kinematic solutions in a static problem, where a semi-indefinite domain
is subjected to specific applied force conditions and boundary condi-
tions. The second test focuses on the dispersive properties of the meta-
material and highlights how the enhanced continualization procedure
can lead to continuous models capable of accurately describing the

Fig. 8. Comparison of dimensionless displacements u(i)1 /ma, qR1/ma and rotation ϕ(i) and φR between the discrete models (markers) and continuous models (curves)
for β = 0, F /Ea2 = 1 /100 (blue color) and β = π /6,F /Ea2 = 1 /20 (purple color), with η = 1 /20, a) number of cells m = 6, b) number of cells m = 10.
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associated dispersion curves.

5.3.1. Static benchmark test: an infinite strip subjected to punctual loads
It is possible to validate the constitutive identification presented in

sub-Section 5.1 through a physically representative time-independent
boundary problem, in which the solution obtained by the

continualized model at the macroscopic scale is compared with the
corresponding discrete Lagrangian one at the microscopic scale. Spe-
cifically, it is considered an infinite microstructured strip, realized
through tetrachiral beam-lattice material and with height L= ςawhere ς
represents the even number of unit cells and a the size of the periodic cell
(see sub-Section 5.1.1). At the horizontal upper and lower ends of the

Fig. 9. Comparison between the spectra of the continualized models for the 2N = 4 (blue), 2N = 8 (green) and 2N = 16 (red) order with those of the discrete
Lagrangian model (black). Column a) spectra related to wave propagation for n ≡ e1 in the tetrachiral beam-lattice material, with views and sections in the real and
imaginary planes. Column b) spectra related to wave propagation for n ≡ e2 in the hexachiral beam-lattice material, with views and sections in the real and imaginary
planes. For both topologies, the micromechanical parameters are set to β = π /8 and δ = 1 /10..
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Fig. 10. Comparison of spectra between the discrete Lagrangian model (black) and the 2N = 8 order multifield continualized model (red) referenced to the tet-
rachiral metamaterial for β = π /8, δ = 1 /10, m /M = 5 /2, kv /E ≃ 7 /20 and kθ /Ea2 ≃ 3 /500, for fixed homogeneous wave propagation n ≡ e1, a) views, b) real
plane section, c) imaginary plane section.
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Fig. 11. Comparison of spectra between the discrete Lagrangian model (black) and the 2N = 8 order multifield continualized model (red) referenced to the tet-
rachiral metamaterial for β = π /8,δ = 1 /10, m /M = 5 /4, kv /E ≃ 7 /20 e kθ /Ea2 ≃ 3 /500, for fixed homogeneous wave propagation n ≡ e1, a) views, b) real plane
section, c) imaginary plane section.
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Fig. 12. Dimensionless wave amplitudes related to the solution of the forced hexachiral beam-lattice material. Column a) wave amplitudes for kf a
(h)
r = 0 (purple curve),

kf a
(h)
r = π /2 (blue curve), kf a

(h)
r = π (pink curve), with micromechanical parameters β = π /8 and δ = 1 /20 fixed. Column b) variation of the amplitudes |QR

j,0| /a with

respect to the micromechanical parameters for ωf/ωr = 0.5 and kf a
(h)
r = π /2..
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infinite microstructured domain, the following kinematic discrete
boundary conditions are applied u(i1 ,i2=0,ς)

1
= u(i1 ,i2=0,ς)

2
= 0, ϕ(i1 ,i2=0,ς)

= π /100 in any nodes lying on the upper and lower ends identified with
the label (i1 ,i2=0) and (i1 ,i2=ς), respectively. Moreover, a series of punctual
horizontal forces, with the same intensity F, is applied in the nodes lying
in the averaging alignment of the strip identified with the label (i1 ,i2=ς/2).
Due to the indeterminacy along the horizontal direction exists an
invariance of the solution along the same direction. Consequently, the
boundary algebraic difference problem can be reduced in a one-
dimensional model.

At the macroscopic level, it is considered the infinite strip realised by
homogeneous materials characterized by the constitutive point of view
from the elastic tensor components reported in sub-Section 5.1.1 and
any of its material points is kinematically described by the regularized
field vector qR =

(
qR1 qR2 ϕR )T. Also in this case, due to the inde-

terminacy along the horizontal direction exists an invariance of the so-
lution along the same direction. Consequently, the boundary differential
problem can be described by a one-dimensional model governed by the
equations

[(
1 − η2

)
cos2β − 1

]
(
d2

dx22
qR1 (x2) +

d
dx2

φR(x2)

)

+

+
1
2
sin(2β)

(
η2 − 1

) d2

dx22
qR2(x2) −

F
Eηa3 δ

(

x2 −
L
2

)

= 0,

[(
η2 − 1

)
cos2β − η2

] d2

dx22
qR
2(x2)+

+
1
2
sin(2β)

(
η2 − 1

)
(
d
dx2

φR(x2) +
d2

dx22
qR1 (x2)

)

= 0,

[
1
2
+

(

η2 − 1
2

)

cos2β
]

a2
d2

dx22
φR(x2) + 6

[(
1 − η2

)
cos2β − 1

] d
dx2

qR
1(x2)+

+3
(

η2 − 1
)
sin(2β)

d
dx2

qR2 (x2) − 12φR(x2)
[
1+

(
η2 − 1

)
cos2β

]
= 0,

(55)

where δ(x2 − L /2) is the Dirac delta function. It is important to note that
the source term appears in (55) is obtained by using the bridging scale
relationship in the k − space for the source terms reported in (21) in
relation to the punctual load distribution at the microscopic level.
Moreover, the consistent boundary conditions applied at the horizontal
upper and lower ends of the infinite homogeneous domain are deter-
mined starting by the down-scaling relation expressed in differential form
reported in the Eq. (64) of Appendix B. Specifically, via its appropriate
truncation in agreement with the order of the governing equations of the
continuous model the kinematic boundary conditions are determined in
the form qR1 (x2 = 0, L) = 0, qR2 (x2 = 0, L) = 0, φR(x2 = 0,L) = π /100..

The results analytically obtained for the parameters η = 1 /20 and β
= 0 (blue curves) and β = π /6 (purple curves) are illustrated for ς = 6
and ς = 10 respectively in Figs. 8a and b. The dimensionless concen-
trated forces applied to the discrete model are F /Ea2 = 1 /100 and
F /Ea2 = 1 /20 for the cases with chirality β = 0 and β = π /6. The di-
agrams in Fig. 8 show good agreement with the discrete Lagrangian
solutions, which can be further improved via higher-order continuous
models. It is also important to note that an ulterior better deal with the
discrete Lagrangian solution exists between the local generalized
displacement of the homogenized model obtained via the pseudo-
differential down-scaling relationships shown in Eq. (64) of
Appendix B and the corresponding solution obtained by the discrete
Lagrangian model (see for details [81]). The achirality (β = 0) and
chirality (β = π /6) of the topologies lead to distinctly different re-
sponses, influenced respectively by the non-auxetic and auxetic intrinsic
properties of each model, leading to lower rotation values under chiral
conditions, even though the applied force is greater. Moreover as

expected, the non-local effects of the static response tend to decrease as
the height of the infinite strip increases.

5.3.2. Dynamic benchmark tests: comparison of dispersive spectra
Highlighting the effectiveness of the higher-order continualized

models introduced in Section 4, the formulations of the continuum
model are applied to various significant examples and compared with
the corresponding discrete Lagrangian models. Specifically, Fig. 9 il-
lustrates the dimensionless spectra for two example topologies: the
tetrachiral beam-lattice material (Fig. 9, column a) and the hexachiral
beam-lattice material (Fig. 9, column b) for β = π /8 and δ = 1 /10
analyzing the homogeneous free wave directions n ≡ e1 and n ≡ e2,
respectively. For the tetrachiral beam-lattice material where ar = a(t)r =

a and for the hexachiral topology where ar = a(h)r =
̅̅̅
3

√
a /2, it can be

observed that the dispersion curves for the enhanced continualized
models, described by Eq. (30) reduced to the case of beam-lattice ma-
terial and truncated to the 2N = 4 (blue), 2N = 8 (green) and 2N = 16
(red) order (with N being the order of the gradient-type continuum
model), show a progressive convergence with the curves associated with
the discrete Lagrangian model (black) as the order of approximation
increases. The sections of the real and imaginary planes reported in rows
2 and 3 in Fig. 9 highlight the effectiveness of the continualized models
in approximating the curves related to pure propagation and pure

damping. Focusing on the results obtained for the R

(
ka(t)r

)
and

R

(
ka(h)r

)
, the dispersion curves determine two respective band gaps.

The first band gap is observed for the tetrachiral beam-lattice material at
the dimensionless frequency centered in ω /ωr = 13 /2, while the sec-
ond is identified for the hexachiral topology in the interval ω /ωr ∈ [3 /5,
4 /5]. Once the effectiveness of higher-order continuummodels has been
verified, it is possible to extend the continualization procedure to the
metamaterial. Taking into consideration the geometric and constitutive
characteristics of the tetrachiral metamaterial introduced in sub-Section
5.2, Figs. 10 and 11 illustrate the spectra related to the corresponding
truncated multifield continualized model at 2N = 8 order. The spectra,
evaluated under homogeneous free wave conditions for n ≡ e1, are
referred to two different resonator/structure mass ratios, m /M = 5 /2
and m /M = 5 /4, respectively. It is important to note that the 2N = 8
order gradient-type continuum model (red) is once again validated,
showing a clear convergence to the discrete Lagrangian model (black)
for both mass ratio configurations. By comparing the solutions obtained
for the tetrachiral beam-lattice material (Fig. 9a) and the tetrachiral
metamaterial (Figs. 10 and 11), the continualization procedure
described demonstrates the ability to provide a continuum model
capable of approximating the variation of band gaps by alternating
model parameters. As expected, this allows for the detection of the
effectiveness of resonators and distinguishing the effects produced by
modifying the system’s mass relationships.

Specifically, it is important to note that the first pass-band amplitude
associated with the Bloch wave propagating along the coordination di-
rection in both the configurations of the tetrachiral metamaterial is
substantially minor than the corresponding one in the associate tetra-
chiral beam-lattice material determining the opening of a large partial
low-frequency band gap between the acoustic branches and the first
optical one. Moreover, it is also possible to remark that the solution
obtained via the continualized models, being able to convergently
approximate the actual frequency spectrum of the discrete Lagrangian
model, is also able to detect accurately the frequency band structures in
terms of pass- and stop-band amplitudes.

5.4. Experimental virtual test: harmonically forced wave propagation in
the continualized second-order model

After validating the multi-field continuum models under free wave
conditions, this Sub-section aims to develop a virtual experimental test
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by analytically solving the first set of differential equations used in the
perturbative approach introduced in Eq. (71) of Appendix C. This in-
volves characterizing the response of the continualized model governed
by second-order differential equations (j = 2 in Eq. (71)) of the beam-
lattice material subjected to a harmonic forcing of type g0(x1) =

G0
(
exp
[
I
(
kfx1 − ωf t

)]
0 0

)T, where kf and ωf represent the wave-
number and angular frequency of the forcing, respectively, while G0
denotes its relative amplitude. Considering the spatial dependence of the
forcing and taking into account the indeterminacy of the model in the
physical space along the xi directions with i= 1, 2, only the strip along x1
is analyzed. Based on these assumptions and recalling the definitions in
Appendix C of the linear differential operators (68) and developing the
Eq. (71) is obtained

Aqq
00q

R
0 + Bqq

00
∂2qR

0
∂t2 + Aqq

10
∂qR

0
∂x1

+ Bqq
10

∂2

∂t2

(
∂qR

0
∂x1

)

+

+
1
2
Aqq
20

∂2qR
0

∂x21
+
1
2
Bqq
20

∂2

∂t2

(
∂2qR

0
∂x21

)

= g0.

(56)

The solution of the Eq. (56), characterizing the steady-state response
of the mechanical system, has the following structure

qR
0 (x1, t) =

(
Chom,2)− 1g0(x1, t) =

cof
(
Chom,2)T

det
(
Chom,2) g0(x1, t), (57)

in which the term Chom,2( kf ,ωf
)
, dependent on the problem parameters

kf and ωf (due to the harmonic nature of the forcing), is expressed by the
relation

Chom,2( kf ,ωf
)
=

[

Aqq
00 + IkfAqq

10 −
k2f
2
Aqq
20 − ω2

f

(

Bqq
00 + IkfBqq

10 −
k2f
2
Bqq
20

)]

,

(58)

while the term cof
(
Chom,2) represents the corresponding cofactor matrix.

As expected, the Eq. (57) determines parametric singularities for kf and
ωf such that det

(
Chom,2) = 0, corresponding to wavenumber and angular

frequency values related to the Floquet spectra associated with the
continualized model governed by a second-order differential equation.
Characterizing the problem for the hexachiral beam-lattice material, it is
possible to determine the dimensionless wave solution amplitudes |QR

j,0|

with j = 1, 2, 3, as functions of the micromechanical and dynamic pa-
rameters in the steady state regime, as illustrated in Fig. 12. From the
diagrams in column 12.a, it is observed that for kf = 0 a wave solution is
obtained where the oscillation modes are pure translation and rotation.
In this case, an excitation like g0(x1) does not affect displacements along
x2 and rotations, unlike when kf ∕= 0. Furthermore, the diagrams in
column 12.b show that for kfa

(h)
r = π /2 and ω /ωr = 0.5, the magnitude

of the amplitude component |QR
1,0| exhibits a monotonically increasing

trend with increasing δ. This behavior is replicated for |QR
3,0| with

increasing δ and β, while |QR
2,0| does not exhibit a monotonic surface.

6. Conclusions

A novel enhanced high-frequency continualization scheme is intro-
duced, delivering a thermodynamically consistent characterization of
the constitutive and dispersive properties of periodic beam-lattice in-
ertial metamaterials. The proposed continualization scheme is based on
a completely general mathematical framework grounded on integral
transforms and/or pseudo-differential operators which consents to
describe in a very accurate way the essential aspects of the physical
problem under investigation governed by the difference (in space) -
differential (in time) equations. More specifically, by employing the Z-
transform on the discrete spatial variable and the bilateral Laplace
transform on the temporal variable, the eigenproblem governing the

dynamic behaviour of the discrete Lagrangian system is formulated. This
continualization approach formally equates the spatial Z-transform,
reinterpreted in reciprocal space and applied to the micro-variables of
the discrete system, with the spatial Fourier transform applied to the
macro-variables of the equivalent integral-type continuum multifield
model. Thermodynamic consistency is ensured by incorporating an
appropriate regularization kernel, inducing inertial nonlocality in the
integral-type continuum model, thereby aligning the frequency band
structure with that of the discrete Lagrangian model.

By incorporating pseudo-differential operators and leveraging Taylor
series expansions, the infinite-order gradient-type continuum multifield
model is derived and resolved through two different methodologies. The
first method employs a perturbative approach to tackle the infinite-order
averaged differential equations asymptotically equivalent to the discrete
Lagrangian equations to describe the forced Bloch wave propagation in
the metamaterial. The second method addresses the problem by deter-
mining a higher-order gradient-type continuum model through appro-
priate truncation of the corresponding differential equations, aiming to
characterize the dispersive properties of the metamaterial in both high-
and low-frequency regimes. The analytical multifield continualization
procedure is then applied to two-dimensional periodic microstructures
with tetrachiral, hexachiral, and hexa-tetrachiral topologies. The ap-
plications highlight the ability of the obtained equivalent continuum
models to describe the effective constitutive properties of the inertial
metamaterial with periodic microstructure and to define a dynamic
response that converges to that of the discrete Lagrangian model as the
truncation order increases. Subsequently, a universal/general charac-
terization of the frequency band structure of the metamaterials is fur-
nished for a generic lattice with a monoatomic periodic cell elastically
coupled with local resonators and elastically connected with the adja-
cent atoms/cells. A comprehensive characterization of the frequency
band structure of the metamaterials is provided for a generic lattice with
a monoatomic periodic cell that is elastically coupled with local reso-
nators and elastically connected to adjacent atoms or cells. For these
cases, under the conditions of free homogeneous elastic wave propa-
gation of Bloch waves and for a fixed propagation direction, the dynamic
problem is governed by a palindromic characteristic polynomial related
to the Floquet multiplier. This framework allows for the observation of
properties in analogy with the Floquet theory and provides significant
representations in the three-dimensional space of invariants. By identi-
fying notable conditions of pure propagation, pure spatial damping, and
incipient damping modes through implicit functions, these conditions
are subsequently compared with the invariants obtained in a closed form
specific to a particular topology. Moreover, the modes of pure propa-
gation are identified as the branches of the complex spectra that lie
within the cylinder or torus manifolds, while the modes of spatial
damping are identified as the branches that extend outward from these
manifolds. Extending the application of the introduced continuum
models, the resolution procedure for forced wave propagation has also
been described, examining how the solution amplitudes vary with the
micromechanical and dynamic parameters of the studied lattice.
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Appendix A

One method used to determine the invariants Ij as well as coefficients of the associated characteristic polynomial is the Faddeev-Leverrier method.
The characteristic polynomial associated with the standard eigenproblem related to a generic n order matrixA can be written in the form det(A − λI) =
∑n

j=0Ijλ
j, where I0 = (− 1)ndet(A) while In = 1. The invariants In− k(with k ∈ N parameter identifying the k − th phase of the scheme) can be deter-

mined by introducing the auxiliary matrices Mk, defined as follows

Mk≐
{

0 k = 0
AMk− 1 + In− k+1I k = 1, ..., n , (59)

from which the invariants In− k of the matrix A are derived with respect to the relation

In− k =

⎧
⎨

⎩

1 k = 0

−
1
k
tr(AMk) k = 1, ..., n

. (60)

Characterizing the eigenvalue problem for n = 6, the corresponding invariants are obtained

I6 = 1,

I5 = − tr(A),

I4 = −
1
2
tr
(
A2
)
+
1
2
(tr(A))2,

I3 = −
1
3
tr
(
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+
1
2
tr
(
A2
)
tr(A) −

1
6
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1
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tr
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tr(A)tr

(
A3
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+
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8
(
tr
(
A2
))2

−
1
4
tr
(
A2
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1
24
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I1 = −
1
5
tr
(
A5
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+
1
4
tr(A)tr

(
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+
1
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tr
(
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)
tr
(
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−
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))2tr(A) +

1
12

(tr(A))3tr
(
A2
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−

1
120

(tr(A))5,

I0 = det(A),

(61)

and by substituting the matrices Hlag and Hhom for matrix A in Eq. (61), the coefficients of the characteristic polynomial associated with the eigen-
problems (13) and (50) in the main text are obtained, respectively. Furthermore, if A = L and n = 12N, the 12N+ 1 invariants are recursively ob-
tained following the method described in Eqs. (59) and (60), knowing that I12N = 1 and I0 = (− 1)12Ndet(Hhom).

Appendix B

The formal equality (26) can be suitably specialized in the case of tetrachiral beam-lattice material for n1 = e1 and n2 = e2 (see Fig. 3a). Under
these conditions, the formal Taylor expansion of the pseudo-differential regularization operator becomes

F⋄[D1,D2] =
a2D1D2

sinh(aD1)sinh(aD2)
∼

∼
∑

r=2n
n∈N

∑

|α|=r
l1+l2=r

1
r!

(
r

l1, l2

)
∂|α|

∂Dα1 ...∂Dαr

(
a2D1D2

sinh(aD1)sinh(aD2)

)⃒⃒
⃒
⃒
⃒D1⇒0
D2⇒0

Dα1 ...Dαr =

= 1 −
1
6
a2
(
D21 + D22

)
+

7
360

a4
(
D41 + D42

)
+
1
36

a4D21D
2
2 + ... .

(62)

By applying the relation (62) to the down-scaling relationships introduced in Eq. (26) it is possible to obtain
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U(i1 ,i2)(t) ∼
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(63)

Moreover, in the mechanical problems governed by one-dimensional differential equations, as in the case of the infinite strip treated in sub-Section
5.3.1, the down-scaling relationship (63) can be specialized in the compact form

U(i1 ,i2)(t) ∼
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, (64)

where the term en is given by the recursive relation en = − 1
a0

∑n− 1
j=0 an− jej, where an = 1 /(2n+1)! with n ∈ N. It is important to note that being the

macroscopic field is x1-indipendent also the associated microscopic discrete field turns out to be invariante with respect the index i1 involved in the
sub-set X that characterize the position of the nodes of the lattice (see for details the nomenclature indroduced in Section 2).

Appendix C

In this Appendix, an alternative perturbative solution procedure for the integro-differential equations defined in Eq. (28) is proposed. Firstly, the
ordering parameter η is introduced into the governing equations
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(65)

where h(j) = {0 if l1+l2 = r< j or 1 if l1 +l2= r ≥ j} is the discrete step function, with j ∈ N>0, which rewrites the Eq. (65) as

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{

Aqq
l1 l2

∂rqR(x, t)
∂xl1

1 ∂xl2
2

+ Aqp
l1 l2

∂rpR(x, t)
∂xl1

1 ∂xl2
2

+ Bqq
l1 l2

∂rq̈R
(x, t)

∂xl1
1 ∂xl2

2

}

+ s(x, t)+

−
∑

l1 ,l2∈N

l1+l2=r≥j

ηr

l1!l2!

{

Aqq
l1 l2

∂rqR(x, t)
∂xl1

1 ∂xl2
2

+ Aqp
l1 l2

∂rpR(x, t)
∂xl1

1 ∂xl2
2

+ Bqq
l1 l2

∂rq̈R
(x, t)

∂xl1
1 ∂xl2

2

}

= 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{

Apq
l1 l2

∂rqR(x, t)
∂xl1

1 ∂xl2
2

+ App
l1 l2

∂rpR(x, t)
∂xl1

1 ∂xl2
2

+ Bpp
l1 l2

∂rp̈R
(x, t)

∂xl1
1 ∂xl2

2

}

+

−
∑

l1 ,l2∈N

l1+l2=r≥j

ηr

l1!l2!

{

Apq
l1 l2

∂rqR(x, t)
∂xl1

1 ∂xl2
2

+ App
l1 l2

∂rpR(x, t)
∂xl1

1 ∂xl2
2

+ Bpp
l1 l2

∂rp̈R
(x, t)

∂xl1
1 ∂xl2

2

}

= 0.

(66)

It is important to note that the parameter η only categorizes the orders in the infinite order mean governing equations. The solution of the Eq. (66)
is sought as a power series expansion concerning the parameter η, in the form

qR(x, t) ∼ qR
0 (x, t) + ηqR

1 (x, t) + η2qR
2(x, t) + ... =

∑

m∈N>0

ηmqR
m(x, t),

pR(x, t) ∼ pR
0(x, t) + ηpR

1(x, t) + η2pR
2 (x, t) + ... =

∑

m∈N>0

ηmpR
m(x, t),

(67)

where qR
m, pR

m representm − th sensitivities of generalized displacements. The sensitivities given in (67) are derived by solving hierarchical differential
problems at different orders of η. From the mathematical structure of Eq. (66) linear differential operators with double and single arguments can be
defined
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W
1,q
l1 l2 (y1, y2)≐A

qq
l1 l2

∂ry1
∂xl1

1 ∂xl2
2

+ Aqp
l1 l2

∂ry2
∂xl1

1 ∂xl2
2

, W
1,p
l1 l2 (y1,y2)≐A

pq
l1 l2

∂ry1
∂xl1

1 ∂xl2
2

+ App
l1 l2

∂ry2
∂xl1

1 ∂xl2
2

,

W
2,q
l1 l2 (y1)≐B

qq
l1 l2

∂2

∂t2

(
∂ry1

∂xl1
1 ∂xl2

2

)

, W
2,p
l1 l2 (y1)≐B

pp
l1 l2

∂2

∂t2

(
∂ry1

∂xl1
1 ∂xl2

2

)

,

(68)

with y1, y2 being generic vector fields of appropriate dimension. It is possible to rewrite Eq. (66) by introducing the power series expansions expressed
in (67), thus obtaining

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{

W
1,q
l1 l2

(
∑

m∈N>0

ηmqR
m,
∑

m∈N>0

ηmpR
m

)

+ W
2,q
l1 l2

(
∑

m∈N>0

ηmqR
m

)}

+ s+

−
∑

l1 ,l2∈N

l1+l2=r≥j

ηr

l1!l2!

{

W
1,q
l1 l2

(
∑

m∈N>0

ηmqR
m,
∑

m∈N>0

ηmpR
m

)

+ W
2,q
l1 l2

(
∑

m∈N>0

ηmqR
m

)}

= 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{

W
1,p
l1 l2

(
∑

m∈N>0

ηmqR
m,
∑

m∈N>0

ηmpR
m

)

+ W
2,p
l1 l2

(
∑

m∈N>0

ηmpR
m

)}

+

−
∑

l1 ,l2∈N

l1+l2=r≥j

ηr

l1!l2!

{

W
1,p
l1 l2

(
∑

m∈N>0

ηmqR
m,
∑

m∈N>0

ηmpR
m

)

+ W
2,p
l1 l2

(
∑

m∈N>0

ηmpR
m

)}

= 0.

(69)

Due to the linearity of the newly introduced differential operators and manipulating the expressions appropriately, one obtains
∑

l1 ,l2∈N

l1+l2=r<j

∑

m∈N>0

−
ηm

l1!l2!

{
W

1,q
l1 l2

(
qR
m,p

R
m
)
+ W

2,q
l1 l2

(
qR
m
)}

−
∑

l1 ,l2∈N

l1+l2=r<j

1
l1!l2!

{
W

1,q
l1 l2

(
qR
0 ,p

R
0
)
+ W

2,q
l1 l2

(
qR
m
)}

+

+s+
∑

l1 ,l2∈N

l1+l2=r≥j

∑

m∈N>0

−
ηr+m− 1

l1!l2!

{
W

1,q
l1 l2

(
qR
m− 1,p

R
m− 1
)
+ W

2,q
l1 l2

(
qR
m− 1
)}

= 0,

∑

l1 ,l2∈N

l1+l2=r<j

∑

m∈N>0

−
ηm

l1!l2!

{
W

1,p
l1 l2

(
qR
m,p

R
m
)
+ W

2,p
l1 l2

(
pR
m
)}

−
∑

l1 ,l2∈N

l1+l2=r<j

1
l1!l2!

{
W

1,p
l1 l2

(
qR
0 ,p

R
0
)
+ W

2,p
l1 l2

(
pR
0
)}

+

+
∑

l1 ,l2∈N

l1+l2=r≥j

∑

m∈N>0

−
ηr+m− 1

l1!l2!

{
W

1,p
l1 l2

(
qR
m− 1,p

R
m− 1
)
+ W

2,p
l1 l2

(
pR
m− 1
)}

= 0.

(70)

It is observable that the generating solution q0, p0 can be derived from the Eq. (70) truncated to order 0 in the following manner
∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1, q
l1 l2

(
qR
0 ,p

R
0
)
+ W

2, q
l1 l2

(
qR
0
)}

+ g0 = 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1, p
l1 l2

(
qR
0 ,p

R
0
)
+ W

2, p
l1 l2

(
pR
0
)}

+ h0 = 0.
(71)

The first system of differential equations includes source terms aligned with the dominant order, corresponding to the forces exerted on the real
system, namely g0 = s and h0 = 0. By considering only terms of order s < j, the differential equations become

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1, q
l1 l2

(
qR
u ,p

R
u
)
+ W

2, q
l1 l2

(
qR
u
)}

= 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1, p
l1 l2

(
qR
u ,p

R
u
)
+ W

2, p
l1 l2

(
pR
u
)}

= 0,
(72)

where, after successive simplifications, the differential equations system obtained is homogeneous. Consequently, the solution for Eq. (72) reduces to
the trivial solution qR

u = pR
u = 0. At order j, the differential equations system becomes

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1, q
l1 l2

(
qR
j ,p

R
j

)
+ W

2, q
l1 l2

(
qR
j

)}
+ gj

(
qR
0 ,p

R
0
)
= 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1,p
l1 l2

(
qR
j ,p

R
j

)
+ W

2, p
l1 l2

(
pR
j

)}
+ hj

(
qR
0 ,p

R
0
)
= 0,

(73)
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with gj, hj source terms at order j dependent on the generating solutions obtained at order 0, explicitly characterized by the following relations

gj
(
qR
0 ,p

R
0
)
=

∑

l1 ,l2∈N

l1+l2=r=j

−
1

l1!l2!

{
W

1,q
l1 l2

(
qR
0 ,p

R
0
)
+ W

2,q
l1 l2

(
qR
0
)}

,

hj
(
qR
0 ,p

R
0
)
=

∑

l1 ,l2∈N

l1+l2=r=j

−
1

l1!l2!

{
W

1,p
l1 l2

(
qR
0 ,p

R
0
)
+ W

2,p
l1 l2

(
pR
0
)}

.

(74)

Moreover, by dealing with equations at order n with n > j, one obtains
∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1,q
l1 l2

(
qR
n ,p

R
n
)
+ W

2,q
l1 l2

(
qR
n
)}

+ gn

(
qR
0 ,p

R
0 , ...,q

R
n− j,p

R
n− j

)
= 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1,p
l1 l2

(
qR
n ,p

R
n
)
+ W

2,p
l1 l2

(
pR
n
)}

+ hn

(
qR
0 ,p

R
0 , ...,q

R
n− j,p

R
n− j

)
= 0,

(75)

with gn, hn forcing terms resulting from the combination of various components summed over the term r = l1 + l2 distinguished for the value of j,
namely

gn

(
qR
0 ,p

R
0 , ...,q

R
n− j,p

R
n− j

)
=

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1,q
l1 l2

(
qR
j ,p

R
j

)
+ W

2,q
l1 l2

(
qR
j

)}
+ ...+

−
∑

l1 ,l2∈N

j≤l1+l2≤n

1
l1!l2!

{
W

1,q
l1 l2

(
qR
0 ,p

R
0
)
+ W

2,q
l1 l2

(
qR
0
)}

+ ... −
∑

l1 ,l2∈N

l1+l2=j

1
l1!l2!

{
W

1,q
l1 l2

(
qR
n− j,p

R
n− j

)
+ W

2,q
l1 l2

(
qR
n− j

)}
,

hn

(
qR
0 ,p

R
0 , ...,q

R
n− j,p

R
n− j

)
=

∑

l1 ,l2∈N

l1+l2=r<j

−
1

l1!l2!

{
W

1,p
l1 l2

(
qR
j ,p

R
j

)
+ W

2,p
l1 l2

(
pR
j

)}
+ ...+

−
∑

l1 ,l2∈N

j≤l1+l2≤n

1
l1!l2!

{
W

1,p
l1 l2

(
qR
0 ,p

R
0
)
+ W

2,p
l1 l2

(
pR
0
)}

+ ... −
∑

l1 ,l2∈N

l1+l2=j

1
l1!l2!

{
W

1,p
l1 l2

(
qR
n− j,p

R
n− j

)
+ W

2,p
l1 l2

(
pR
n− j

)}
,

(76)

which arise from the expansion of Eq. (70) into the following relationships
∑

l1 ,l2∈N

l1+l2=r<j

−
ηj

l1!l2!

{
W

1,q
l1 l2

(
qR
j ,p

R
j

)
+ W

2,q
l1 l2

(
qR
j

)}
−

∑

l1 ,l2∈N

l1+l2=r<j

ηj+1

l1!l2!

{
W

1,q
l1 l2

(
qR
j+1,p

R
j+1

)
+ W

2,q
l1 l2

(
qR
j+1

)}
+

+... −
∑

l1 ,l2∈N

l1+l2=r<j

ηn

l1!l2!

{
W

1,q
l1 l2

(
qR
n ,p

R
n
)
+ W

2,q
l1 l2

(
qR
n
)}

−
∑

l1 ,l2∈N

j≤l1+l2≤n

ηr

l1!l2!

{
W

1,q
l1 l2

(
qR
0 ,p

R
0
)
+

+W
2,q
l1 l2

(
qR
0
)}

−
∑

l1 ,l2∈N

j≤l1+l2≤n− 1

ηr+1

l1!l2!

{
W

1,q
l1 l2

(
qR
1 ,p

R
1
)
+ W

2,q
l1 l2

(
qR
1
)}

+ ...+

−
∑

l1 ,l2∈N

l1+l2=j

ηn

l1!l2!

{
W

1,q
l1 l2

(
qR
n− j,p

R
n− j

)
+ W

2,q
l1 l2

(
qR
n− j

)}
= 0,

∑

l1 ,l2∈N

l1+l2=r<j

−
ηj

l1!l2!

{
W

1,p
l1 l2

(
qR
j ,p

R
j

)
+ W

2,p
l1 l2

(
pR
j

)}
−

∑

l1 ,l2∈N

l1+l2=r<j

ηj+1

l1!l2!

{
W

1,p
l1 l2

(
qR
j+1,p

R
j+1

)
+ W

2,p
l1 l2

(
pR
j+1

)}
+

+... −
∑

l1 ,l2∈N

l1+l2=r<j

ηn

l1!l2!

{
W

1,p
l1 l2

(
qR
n ,p

R
n

)
+ W

2,p
l1 l2

(
pR
n

)}
−

∑

l1 ,l2∈N

j≤l1+l2≤n

ηr

l1!l2!

{
W

1,p
l1 l2

(
qR
0 ,p

R
0

)
+

+W
2,p
l1 l2

(
pR
0
)}

−
∑

l1 ,l2∈N

j≤l1+l2≤n− 1

ηr+1

l1!l2!

{
W

1,p
l1 l2

(
qR
1 ,p

R
1
)
+ W

2,p
l1 l2

(
pR
1
)}

+ ...+

−
∑

l1 ,l2∈N

l1+l2=j

ηn

l1!l2!

{
W

1,p
l1 l2

(
qR
n− j,p

R
n− j

)
+ W

2,p
l1 l2

(
pR
n− j

)}
= 0.

(77)
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Appendix D

Defining the coefficient terms Chomr (n,ω)≐
(
Chom1,r (n) − ω2Chom2,r (n)

)
for simplicity of notation, the linearization of the eigenproblem (37) can be

addressed by observing that
[
∑2N

r=0

∑

l1+l2=r

Chomr (n,ω)kr
]

V
⌢R

= kChom2N k2N− 1V
⌢R

+ Chom2N− 1k
2N− 1V

⌢R
+ ...+ Chom0 V

⌢R
= (kL1 +L0)W

⌢ R
= 0, (78)

with W
⌢R

≐
(

k2N− 1V
⌢R

⋯ kV
⌢R

V
⌢R
)T
eigenvector 12N× 1, while L1 and L0 are matrices 12N× 12N defined as

L1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Chom2N 0 ⋯ ⋯ ⋯ 0
0 I ⋱ ⋯ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋯ ⋮
⋮ ⋯ ⋱ ⋱ ⋱ ⋮
⋮ ⋯ ⋯ ⋱ ⋱ 0
0 ⋯ ⋯ ⋯ 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, L0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Chom2N− 1 Chom2N− 2 ⋯ Chomr ⋯ Chom0

− I 0 ⋯ ⋯ ⋯ 0
0 ⋱ ⋱ ⋯ ⋯ ⋮
⋮ ⋱ ⋱ ⋱ ⋯ ⋮
⋮ ⋯ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ 0 − I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (79)

Due to the invertibility of the matrix L1, the linear polynomial eigenproblem (78) can be defined in the standard form
(
L− 1
1 L0 − kI

)
W
⌢ R

= 0, whose
solution in terms of eigenvalues coincides with what can be obtained in the Eq. (78).

Appendix E

The in-plane field equations for the Cosserat micropolar continuum for a homogeneous material can be defined as

Eijhk
(
uh,k − δ3jiϕ

)

,j = 0
Sijϕ,ji + δ3jiEijhk

(
uh,k − δ3khϕ

)
= 0,

(80)

In the particular static and unforced condition, for i, j, h, k= 1, 2. The partial differential Eq. (80) (where the symbol •, represents the spatial partial
derivative) are related to the translational component uh, micro-rotation ϕ, and the overall elastic tensor components Eijhk and Sij. The Eq. (80) can be
rewritten in the following matrix form

C20
∂2qm
∂x21

+ C11
∂2qm

∂x1∂x2
+ C02

∂2qm
∂x22

+ C10
∂qm
∂x1

+ C01
∂qm
∂x2

+ C00qm = 0 (81)

where qm =
(
um1 um2 ϕm

)T generalized displacement vector refers to the micropolar continuum, while the non-zero components of the 3× 3 co-
efficient matrices take the form

[C20] 11 = E1111, [C20] 12 = [C20] 21 = E1121, [C20] 22 = E2121, [C20] 33 = S11,
[C11] 11 = 2E1211, [C11] 12 = E1221 + E1122, [C11] 21 = E1122 + E1221, [C11] 22 = 2E2122, [C11] 33 = 2S12,
[C02] 11 = E1212, [C02] 12 = [C02] 21 = E1222, [C02] 22 = E2222, [C02] 33 = S22,
[C10] 13 = E1211 − E1121, [C10] 23 = E1221 − E2121, [C10] 31 = E2111 − E1211, [C10] 32 = E2121 − E1221,
[C01] 13 = E1212 − E1221, [C01] 23 = E1222 − E2122, [C01] 31 = E1221 + E1221,
[C00] 33 = 2E1221 + E1212 − E2121,

(82)

in reference to the major symmetry properties of the elasticity tensors.
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