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A Non-Linear Body Machine Interface for
Controlling Assistive Robotic Arms

Fabio Rizzoglio , Marco Giordano, Ferdinando A. Mussa-Ivaldi, and Maura Casadio

Abstract—Objective: Body machine interfaces (BoMIs)
enable individuals with paralysis to achieve a greater mea-
sure of independence in daily activities by assisting the
control of devices such as robotic manipulators. The first
BoMIs relied on Principal Component Analysis (PCA) to
extract a lower dimensional control space from information
in voluntary movement signals. Despite its widespread use,
PCA might not be suited for controlling devices with a
large number of degrees of freedom, as because of PCs’
orthonormality the variance explained by successive com-
ponents drops sharply after the first. Methods: Here, we
propose an alternative BoMI based on non-linear autoen-
coder (AE) networks that mapped arm kinematic signals
into joint angles of a 4D virtual robotic manipulator. First,
we performed a validation procedure that aimed at selecting
an AE structure that would allow to distribute the input vari-
ance uniformly across the dimensions of the control space.
Then, we assessed the users’ proficiency practicing a 3D
reaching task by operating the robot with the validated AE.
Results: All participants managed to acquire an adequate
level of skill when operating the 4D robot. Moreover, they
retained the performance across two non-consecutive days
of training. Conclusion: While providing users with a fully
continuous control of the robot, the entirely unsupervised
nature of our approach makes it ideal for applications in a
clinical context since it can be tailored to each user’s resid-
ual movements. Significance: We consider these findings
as supporting a future implementation of our interface as
an assistive tool for people with motor impairments.

Index Terms—Assistive manipulator, autoencoders,
human-machine interface, motor learning.

I. INTRODUCTION

EVERY year, around the world, between 250,000 to 500,000
people suffer a spinal cord injury (SCI). Depending on

the level of injury, SCI might lead to the loss of the ability
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to perform selective movements, coordinate body motions, and
ultimately limit the performance of functional activities of daily
living (ADLs). Common activities, such as walking, grooming
and object manipulation, could be facilitated using assistive
devices, including electrically powered wheelchairs and robotic
manipulators. However, designing interfaces for controlling
such devices can be challenging - especially when dealing with
systems with many degrees of freedom (DoFs). For instance, the
use of a common interface for controlling a powered wheelchair,
such as a joystick, does not take into account the limited arm
and hand mobility or coordination in individuals with cervical
SCI, which might limit the operation of the device [1]. Alterna-
tive controllers, like sip-and-puff, head-mounted switches and
tongue-based devices are available, although these provide the
user with only a limited set of discrete commands [2], [3], [4].

Here, we consider a class of human-machine interfaces,
the body machine interface (BoMI) [5], [6], which exploits
the fact that, even after a severe injury, most individuals re-
tain some movement, especially of their head and shoulders,
that can be used to control external devices. BoMIs convert
high-dimensional body signals (e.g., upper body kinematics,
muscle activities) into lower-dimensional commands to operate
the device. As a result, BoMIs allow individuals with motor
disabilities to overcome some of their impairments. Importantly,
BoMIs allow recovering continuous control of external devices,
as opposite for example to methods based on the recognition of
discrete gestures [7].

BoMIs have been tested in situations involving the control of
a computer cursor [8], a powered wheelchair [9], a robotic ma-
nipulator [10], [11], and quadcopters [6], [12]. They most often
rely on a linear dimensionality reduction (DR) technique such as
Principal Component Analysis (PCA) [13]. Linear control meth-
ods generate full repertoires of actions by summation of simpler
actions. Moreover, linear models have a low computational cost
and produce consistent results, independent of the choice of
structural parameters (often referred to as “hyperparameters”).
Obviously, linear models cannot account for non-linear features
of the input dataset, and this leads to overestimating the ac-
tual dimensionality of the input signal source [14], potentially
affecting the control of external devices. Moreover, despite its
widespread use, PCA might not be suited for controlling devices
with a large number of DoFs, as because of PCs’ orthonormality
the variance explained by successive components drops pre-
cipitously. Therefore, most signal information is captured by
the first few PCs while the residual is considered to be noise.
Here, we propose using non-linear autoencoder (AE) networks
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Fig. 1. Setup of the experiment. Quaternions from two IMUs (red
boxes) were mapped by the AE encoder to the four joints (orange dots)
of the virtual MICO. The participant received visual feedback on a PC
monitor.

to overcome these difficulties. AEs are artificial neural networks
that compress data into a latent representation by minimizing the
reconstruction error. Not only non-linear AEs provide estimates
of the dimensionality of their input that are more parsimonious
than PCA [15], but their structure can also be customized to
distribute variance more uniformly across the latent dimensions.
Although there are only a few examples of the use of AEs within
a BoMI framework [16], [17], [18], the hypothesis of this study is
that the AE architecture and non-linear features offer an efficient
platform for operating manipulators with more than two DoFs,
such as assistive robotic arms.

Here, we developed a BoMI based on a non-linear AE al-
lowing users to control a 4D virtual robotic manipulator. First,
we performed a validation procedure that aimed at selecting an
appropriate AE structure that would allow distributing the vari-
ance uniformly across the dimensions of the control space. Then,
we assessed the users’ performance practicing a 3D reaching
task by operating the robot with the validated AE. Finally, we
characterized the motor strategies employed by the BoMI users
over the course of training across two non-consecutive days. A
preliminary version of this work has been reported in [19].

II. METHODS

A. Experimental Apparatus

The BoMI recorded 8 kinematic signals from the participants’
upper arms and transformed them into 4 control signals speci-
fying the configuration of the virtual robotic manipulator. The
body signals were generated by two inertial measurement units
(IMUs, BN0055 Sensors, Bosch, Gerlingen-Schillerhfiohe, Ger-
many) positioned bilaterally on the participants’ arms (Fig. 1).
The IMU sensors derived orientation in the quaternion for-
mat using a sensor fusion algorithm that combined the raw
measurements of the embedded accelerometer, gyroscope, and
magnetometer. Orientation data from the IMUs were acquired
in real-time using a WiPy 2.0 (Pycom, Guildford). The software
of the WiPy was developed in MicroPython.

The kinematic data were then used to control a virtual robot
simulated on Gazebo [20]. Specifically, we simulated the MICO
robotic arm (Kinova Robotics, Canada), a modular robotic ma-
nipulator that is suitable for advanced assistive manipulation
research and can easily be installed on powered wheelchairs.
The control of the virtual robot was achieved via ROS packages
[21].

We used an AE to map the 8-dimensional (8D) vector q
of body signals - quaternions from the IMUs - into the 4D
vector θ of virtual-MICO’s joint angles. An AE is composed
of two main elements: an encoder compressing the input into a
lower-dimensional latent representation, or code, followed by a
decoder converting the latent representation into the output, with
the same dimensionality as the input. In the BoMI, the code layer
generates the control signal for the external device. For instance,
when controlling a 2D computer cursor, an AE with 2 code units
(CUs) allows mapping the first CU to control cursor movements
along the x-axis, and the second CU allows to control movements
along the y-axis. In this study, the external device controlled
via the AE had 4 DoFs. Therefore, the BoMI forward map
that transformed the eight signals from the body-space signals
into the lower-dimensional (4D) control-space was set to be the
encoder subnetwork of an AE with a 4D CU layer. We used
the first code of the AE to control the movements of the wrist
angle of the manipulator – the most distal joint - and proceeding
in order toward the base so that the fourth code controlled the
robot’s base-joint angle, as illustrated in Fig. 1. Each code was
re-scaled to fit the maximum extension of each joint angle (360°
for the base-joint angle, 180° for the others).

B. Validation of the AE

The validation procedure aimed at selecting the parameters
of a 4D AE that would yield (i) minimum information loss and
(ii) uniform distribution of variance across the CUs. This step
was performed using a dataset obtained via an unsupervised
calibration procedure with the same structure as reported in
[18], [22]. A subject (age 25, male) that did not participate
in the subsequent study was asked to freely move his arms
for 60s. The movements performed were intended to span the
range of possible upper body movements without executing
uncomfortable or extreme gestures. The calibration procedure
shared the same experimental setup considered in this study –
two IMUs were placed bilaterally on the participant’s arms to
record the 8D body signal. The kinematic data recorded during
calibration consisted of 3000 samples (60s with 50 Hz sampling
frequency). The calibration dataset was split into 80% of training
points (2400) and 20% of test points (600). The calibration
dataset was randomly shuffled along the time dimension before
the split to avoid potential discrepancies between the training
and test distributions.

The hyperparameters and architecture of the AE needed to
be fine-tuned for designing the most effective forward map for
the online control of the MICO. The optimal AE network was
chosen among two candidate architectures:! under-parametrized AE: first, we trained an AE with fewer

parameters (364) than the number of training samples
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(2400). The network was designed with four hidden layers
(two in the encoder subnetwork and two in the decoder
subnetwork), with eight neurons per layer.! over-parametrized AE: then, we trained an AE with a
higher number of parameters (2652), that were comparable
to the number of training samples (2400). This network
also had four hidden layers, but 30 neurons per layer.

Both architectures were based on a nonlinear activation func-
tion, a hyperbolic tangent (tanh, [23]), for each hidden layer and
a linear function for the code and output layers. The initial AE
weights were chosen following the Xavier normal initialization
[24], while the initial biases were set to zero.

In order to measure the information preserved by each AE
during training, we computed a goodness-of-fit metric, the Vari-
ance Accounted For (VAF), defined as the percentage of variance
of the calibration dataset explained by the AE:

V AF =

(
1− var (q − q̂)

var (q)

)
∗ 100 (1)

where q is the original calibration dataset and q̂ is the dataset
reconstructed by the AE. A VAF of 100% indicated that the
AE could perfectly reconstruct the variance of the calibration
dataset.

Then, we quantified the variance of the ith AE CU (vi) and
evaluated how it was distributed across all CUs. We defined as
latent variance (vlati) the percentage with respect to the overall
variance of all considered CUs:

vlati =
vi∑4
i=1 vi

∗100 (2)

Unlike with PCA, training an AE does not guarantee a convex
solution [25]. Therefore, the VAF and latent variance might
differ depending on the initial conditions of the AE. While the
VAF is typically less prone to depend on the initial conditions,
the latent variance can change drastically with different ini-
tializations [15]. Therefore, to evaluate the impact of different
initializations on the VAF and the latent variance, we trained
each type of network with five different sets of initial parameters.

The goal of the validation was to select the AE architecture
that would yield a high VAF (i.e., V AF > 90%) concurrently
with a uniformly distributed variance across code units (i.e.,
vlati ∼25% for each CU). In addition to the various nonlinear
AEs, we also applied PCA on the same training dataset and
compared its performances with those of the nonlinear AEs.

The results from the tuning procedure were obtained consid-
ering the test dataset only and are presented in Section III.A. The
final choice leaned towards one of the five under-parametrized
networks. Therefore, we assigned the encoder sub-network de-
rived after training the selected AE structure on the calibration
dataset as the BoMI forward map for the online control of the
MICO. The transformations operated by the encoder to obtain
the 4D control vector θ from the 8D body vector q were:

layer1 = tanh (w1 ∗ q + b1)

layer2 = tanh (w2 ∗ layer1 + b2)

θ = w3 ∗ layer2 + b3 (3)

where wj and bj , j = 1 : 3 were the weights and biases of the
encoder subnetwork, respectively.

C. Participants

For testing the online control of the virtual MICO, we enrolled
12 right-hand dominant, unimpaired participants (5 females, age
24±3 yo). They did not have any evidence or known history of
postural, musculoskeletal, or neurological disorders, and exhib-
ited normal joint range of motion and muscle strength. They
signed a consent form approved by the Institutional Review
Board (DIBRIS UNIGE n. 009/2020). All participants were
assigned with the same BoMI forward map, derived from the
validation procedure.

D. Experimental Protocol

The experimental protocol consisted of a 3D center-out reach-
ing task. Participants performed the task while comfortably
seated. An LCD computer screen, positioned in front of them
about 1.5 m away at eye level, displayed the position of the
virtual manipulator and the targets. The experiment was divided
into two identical sessions performed on different days of the
same week. The maximum duration of a single session was
set to two hours. Participants were asked to reach six targets
distributed on a cylindrical surface, at different heights, with
the robot’s end effector (EE). To start a reaching movement,
participants were asked to comfortably put their hands on their
lap and not flex their shoulders. The resulting resting position
(q0) was then transformed by the BoMI forward map into the
robot initial configuration (θ0, shown in Fig. 1). A trial was
considered successful if the target remained between the fingers
of the manipulator’s EE for 500 ms.

The protocol included training and test phases, alternating as
follows:! initial test: a baseline test of participants’ performance in

the reaching task.! initial training: first phase of extensive training with the
interface.! mid test: a second test of participants’ performance.! final training: second phase of extensive training with the
interface.! final test: a final test of participants’ performance at the
end of the training.

If the participant failed to complete the whole protocol within
2 hours, the training phase (either initial or final) would be
interrupted before its completion and the final test would still be
performed. The details of test and training phases are as follows:

1) Training Phases: In these phases, participants learned
how to maneuver the robot. Participants were required to reach
six different targets, distributed on a cylindrical surface, with
the elliptical base of axes length 0.98 and 0.8 Gazebo units
respectively and centered on the base of the manipulator. Targets
appeared at three different heights: 0.30, 0.41, 0.51 Gazebo units
(from the manipulator base). Position of the targets with respect
to the manipulator is shown in Fig. 1. Note that Gazebo units
are meant to replicate distances in the real world. Hence, if
controlling an actual MICO robot, all the targets position to
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reach would be in meters [26]. The six targets were presented
twelve times in pseudorandom order, with the condition that each
target was not presented again before all six targets had been
reached. Both the initial and the final training consisted of 12∗6
= 72 reaching trials, for a total of 72+72 = 144 training targets.
Starting from the resting position, participants were required
to reach the peripheral targets with a timeout of 60 seconds. If
they failed to complete the trial within 60 s, the target would
disappear, and they had to come back to the resting position
before the following target was presented.

2) Test Phases: In these phases, we tested participants’
ability to transfer the skills acquired during the training phase
to conditions where they had to move toward 6 targets that
required moving in (i) different directions and/or (ii) different
displacement amplitudes (scaling-expansion) with respect to
the training targets. The coordinates of the test targets were
randomly displaced from their original position during training
within a range of 0.15-0.35 m. For each test phase, the six targets
were presented three times in pseudorandom order (6∗3 = 18
targets), for a total of 18+18+18 = 54 test targets. Starting
from the resting position, participants had to reach the presented
peripheral target within 20 seconds. If they failed to do so, the
target disappeared, and the trial was considered unsuccessful.
At the end of each reaching, regardless of it being successful or
not, participants were asked to come back to the resting position
and get ready for the next target.

E. Outcome Metrics

We computed four metrics to evaluate the performances of
the participants during the online test of the BoMI:! Reaching Time (RT): time from the first appearance of a

new target to when the target is reached successfully. A
reduction of RT indicates improvement in performance.! Success rate (SR): percentage of trials completed within
timeout during test blocks.! Normalized path length (NPL): path-length travelled by
the robot end effector to reach the target divided by the
distance of the target to the starting point. This is an index
of straightness of the robot’s EE movements.! Smoothness index (SI): number of peaks in the robot end
effector speed profile. We considered every peak larger
than a threshold set to be 20% of the maximum speed
of each trajectory. This is an index of smoothness of the
robot’s EE movements.

In addition, we evaluated how BoMI users redistributed con-
trol authority across right and left arm during the training phases
and which control strategies they employed to move the robot
efficiently toward the targets.

1) Control Strategies During Training: First, we studied
the dimensionality of movements both in terms of IMU and robot
joint variance. Among the wide variety of existing dimensional-
ity estimation algorithms [27], here we decided to use PCA and
nonlinear AE to investigate how the embedded (linear) and true
(nonlinear) dimensionality of movements changed over training
with the interface. PCA and AE can estimate dimensionality
by finding the number of latent components required to reach

a predetermined threshold of explained variance. Rather than
setting an arbitrary threshold, here we focused on the movement
variance explained by PCA and trained AE with one, two and
three latent dimensions. We applied PCA and AE on movement
signals recorded during 12 consecutive reaching trials on both
IMU and robot-joint spaces. As usual, the data was split into
80% of training points and 20% of test points. Three different
AEs were trained, with each AE having a different number of
neurons in the code layer (one, two and three respectively). Other
than the CU size, the AE architectures were equivalent to that
of the under-parametrized AE described in Section II.B. Then,
we computed the Variance Accounted For (VAF), defined as
the proportion of variance of the IMU and robot-joint signals
explained by a lower number of components extracted with PCA
and AE during training phases as specified by (1). Given the same
latent dimensionality, we expected a nonlinear AE to account for
more variance (i.e., higher VAF) than PCA. In other words, we
expected the nonlinear dimensionality estimated by the AE to
be inferior to the linear dimensionality estimated by PCA for
both body and robot movements.

Applying PCA on the robot-joint space also allowed us to in-
vestigate which robot coordination participants employed during
the online operation of the robot, i.e., how they organized the
movements of each robot joint over training time. We considered
the first 3 principal components (PCs) derived from applying
PCA on the 4D robot joints kinematic data and evaluated their
loadings. Since we computed the loadings on the 4D robot joint
space, we obtained four loadings for each PC - one for each joint.
The higher the loading of a joint, the higher its contribution to
the corresponding PC. We computed the loadings across day
1 and day 2 to highlight potential differences in the motor
strategies employed by participants across days. Similarly, we
also wanted to investigate which body coordination patterns
participants employed across the two days of training. To do so,
we computed the loadings of the first three PCs derived from the
8 IMU body signals across day 1 and 2. In this case, we obtained
eight loadings for each PC - one for each IMU component.

Finally, we computed the variance of each of the four robot
joints recorded during training to determine the net amount of
motion of the four robot joints over blocks of 12 consecutive
reaching trials. Since the robot joints had different ranges of
motion, we normalized the variance to the maximum extension
of each joint angle (360° for the base-joint angle, 180° for the
others) and expressed it in percentage. We refer to this metric as
normalized variance.

F. Statistical Analysis

To test the effect of practice on the indicators related to
performance during training, we ran repeated measures analysis
of variance (rANOVA) with training time (1-24: start training
day 1 to end training day 2, each level consisted in the average
of a block of 12 consecutive trials) as within-subjects factor. For
the test phases, we ran rANOVA to test the effect of practice on
the success rate with time (1-6: baseline day1, mid test day1,
final test day 1, baseline day2, mid test day2, final test day2) as
within-subject factors. We tested (Kolmogorov-Smirnov test)
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Fig. 2. Analysis of variance on the calibration dataset. (a) Variance
accounted for with four latent dimensions by PCA (black bar), under-
parametrized AE (red bar) and over-parameterized AE (pink bar). Mean
and standard deviation across five different initializations is shown for
the nonlinear AEs. (b) Latent variance for PCA (black) and the selected
under-parametrized AE (red bars). Nonlinear AE allowed to distribute
the variance uniformly along its latent dimensions, while PCA presented
the typical drop of variance for the last PCs. (c) Mean and standard
deviation of latent variance across the five different initializations for the
under-parametrized AE (red) and the over-parametrized AE (pink).

the hypothesis that data were normally distributed. We used
Mauchly’ test [28] to verify the sphericity assumption.

Post-hoc analysis was carried out to verify the overall effect
of practice across the two training days and whether users were
able to retain their performances across days. To test the effect
of learning across days, we ran a Fisher LSD test between
the start of training in day 1 (level 1 in the rANOVA for the
training metrics and the success rate) and the end of training
in day 2 (level 24 for the training metrics and level 6 for the
success rate). To test the retention across days, we ran a Fisher
LSD test between the end of training in day 1 (level 12 in the
rANOVA for the training metrics and level 3 in the rANOVA for
the success rate) and the beginning of training in day 2 (level
13 for the training metrics and level 4 for the success rate).
The threshold for significance was set at 0.05. For the post-
hoc analysis, the threshold for significance was set using the
Bonferroni correction (0.025). All analyses were performed in
Statistica (Statsoft, Tulsa, OK, USA).

III. RESULTS

A. Validation of the AE

With four latent dimensions, both PCA and nonlinear AE
retained over 95% of the variance of the calibration dataset
(Fig. 2(a)). As for the AE, the number of parameters did not im-
pact the VAF, as the difference between the under-parametrized

Fig. 3. Participants acquired an adequate level of skill by training with
the interface on the first day and retained the performance on the second
day. Reaching time (a), normalized path length (b) and smoothness in-
dex (c) over training phases, divided into blocks of 12 consecutive trials.
(d) Percentage of successful reaching movements over the different test
phases. Mean and standard deviation across participants is plotted for
each block. A dashed line separates values across day 1 and 2.

and the over-parametrized AEs was negligible (Fig. 2(a)). How-
ever, as expected, the latent variance changed depending on
the initialization of the AEs, as indicated by the high stan-
dard deviation in Fig. 2(c). One of the initializations of the
under-parametrized AE yielded a nearly uniform distribution
of variance across the code units (Fig. 2(b)). Accordingly, we
chose the parameters of this network (specifically of its encoder
sub-network) for the online test of the BoMI. Note that if we
were to select PCA to be the BoMI forward map, we would
obtain a control space in which the variance dropped rapidly
across the first principal components (PCs). This would have
an impact during the online test, as the movement of the robot
joints associated with PC3 and PC4 would be extremely limited
or associated with high noise. In fact, a common practice for
PCA-based BoMI is to normalize the variance of each PC, so
as to make each robot joint variance uniform [29]. However,
PC3 and PC4 accounted for only 6% and 4% of the overall
calibration movement variance. Thus, they had a significantly
smaller signal-to-noise ratio than PC1 and PC2. Accordingly,
augmenting their gain would lead to a less efficient control of
the associated robot joints.

B. Task-Related Metrics

With practice, all indicators improved between the beginning
of the first day and the end of the second day, with a retention
across days. Specifically, participants were able to move the
robot significantly faster towards the targets (F (23, 230) =
92.6, p < 0.001, Fig. 3(a)). The largest performance improve-
ment was recorded during the first day of training (from over 50s
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to under 20s for a single reaching movement). On the second day
of training, performance kept improving and reached a plateau
at 10s for a single reaching. In a post-hoc analysis, we found that
the performance increase across the training days was significant
(p < 0.001), while the difference in reaching time between the
end of day 1 and the start of day 2 was not (p = 0.4), indicating
that participants were able to retain their performance across
days. Interestingly, there was an effect of training time on both
the straightness (F (23, 230) = 47.5, p < 0.001, Fig. 3(b))
and the smoothness (F (23, 230) = 24.3, p < 0.001, Fig. 3(c))
of robot trajectories. A post-hoc comparison revealed that the
performance improvement from the start of day 1 to the end
of day 2 was significant for both metrics (p < 0.001 for both
NPL and SI). In the second day of training, both movement
straightness and smoothness were retained (p = 0.21 and
p = 0.2 respectively).

During the test phase, there was a significant increase in
the number of trials completed within 20s as an outcome of
training (F (5, 55) = 47.8, p < 0.001, Fig. 3(d)). The largest
improvement was recorded during the first day of training.
During baseline, participants were not able to reach almost any
of the test targets before timeout (20s), but they managed to
complete over 50% of the trials at the end of the day 1. This
level of performance was retained at the start of the second day
(p = 0.341). Participants managed to complete a significantly
higher number of trials at the end of day 2, with approximately
70% of them being successful. The overall increase of success
rate from the start of the first day to the end of the second
day was significant (p < 0.001). The level of performance at
the end of day 2 is in line with the reaching time achieved by
participants during the training sessions at the end of day 2 and
the few unsuccessful targets could be due to the test targets being
placed in different directions and/or displacement amplitudes
with respect to the training ones.

C. Analysis of Robot Motions

Next, we investigated how the dimensionality of robot joint
movements changed with interface training. We found a sub-
stantial difference between non-linear AE and PCA for the VAF
calculated on the movements of the four robot joints when
considering the first latent dimension (Fig. 4(a)). In fact, while
AEs values were consistently above 90% with a slight increase
over time, PCA values were on average well below 90% and
had a higher increase over time. Adding one latent dimension
drastically increased the VAF with PCA, but did not have a
significant effect on the VAF with nonlinear AE (Fig. 4(b)).
When considering three latent dimensions, the VAF was instead
similar for both methods and close to 100% (Fig. 4(c)). Taken
together, these observations suggest that the robot movements
became increasingly linear over time, while their dimensionality,
accounted by the nonlinear AE, remained fairly consistent over
time (i.e., PCA underestimated the true dimensionality of robot
movements).

The loadings distribution over each robot joint showed that
in the first day all four joints contributed to the first PC with a

Fig. 4. Analysis on variance on the robot joint movements during train-
ing with the interface. VAF with 1 (a), 2 (b), and 3 (c) latent dimensions
calculated on 4D robot joints space with nonlinear AE (red) and PCA
(black). Mean and standard deviation across participants is shown for
blocks of 12 consecutive reaching trials. PCA indicated that robot move-
ments became more linear with interface training but underestimated
their true dimensionality. (d) Loadings distribution over the robot joints
for the first 3 PCs during day 1 (blue dots) and day 2 (yellow dots).
Mean and 95% confidence interval across participants is shown for
each loading. The more distal joints had a higher loading than the more
proximal ones, especially during day 2. Moreover, the standard deviation
across participants of the loadings decreased on day 2, indicating that
participants moved the robot joints more consistently with each other
after the first day of training.

predominant contribution of the more distal joints (Fig. 4(d)),
while the second PC depended mainly on the base joint. During
the second day of training, the loading of the base on PC1 joint
drastically decreased with respect to its value on day 1. On the
other hand, the loading of PC2 and PC3 remained similar in
both days of training. Interestingly, the variance across subjects
of all loadings during day 2 decreased drastically from that of
day 1, indicating that participants moved the robot joints more
consistently with each other after the first day of training.

To get a more comprehensive view of how participants learned
to move the robot over training, we also looked at the normalized
variance of the robot joints over time. The net amount of motion
of the more distal robot joints was superior to that of the more
proximal joints (Fig. 5). We also noticed that the movements
of the base robot joint were drastically decreased during day 2
and that movements of all the joints were much more consistent
across participants during day 2 than during day 1, as the differ-
ence (95% confidence interval) across subjects was significantly
lower. These results are in line with the robot joints loadings
distribution described before.
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Fig. 5. Analysis on net amount of motion of the robot joint during train-
ing with the interface. Percentage of variance of each of the four robot
joints recorded during training with respect to the maximum extension
of each joint angle is shown for blocks of 12 consecutive reaching trials.
Each point represents the mean and 95% confidence interval across
participants. The distal joints had higher net motion compared to the
proximal joints. During the second day of training, the standard devia-
tion across subjects drastically deceased, indicating that movements of
robot joints became more consistent across participants with interface
training.

D. Analysis in the Signal Space of the Body Motion

At the beginning of the first day, participants started exploring
which body movements were more appropriate for reaching the
targets. After few training time, the structure of their movement
became more linear. In fact, the values of the VAF by PCA
with 1 (Fig. 6(a), black lines) and 2 (Fig. 6(b), black lines)
latent dimensions were lower at the beginning than at the end of
the training, with a sharper increase on the first day. Similarly,
the VAF of the AE with 1 and 2 latent dimensions steadily
increased and approached a plateau at the end of the first day of
training with the interface (Fig. 6(a) and (b), red lines). Adding
an additional AE latent dimension had a very minor effect on
the VAF, especially during the second day of training (Fig. 6(c),
red lines). Conversely, adding the third latent dimension allowed
PCA to achieve similar VAF values to those of the AE with 2
latent components (Fig. 6(c), black lines). Therefore, we could
infer that PCA underestimated the true dimensionality of the
participants’ body movements, which the AE estimated to be
two from the end of the first day of training onwards.

The loadings distribution over each IMU component for the
first 3 PCs during day 1 and day 2 indicated that participants
primarily moved their right arm to operate the robot, as the IMU
placed on the right arm had the highest loadings for both PC1
and PC2 (Fig. 6(d)). As for the robot joint loadings distribution,
we noticed that the variance across participants of the body
loadings decreased during day 2, suggesting that participants’
body movements became more consistent with each other after
the first day of training.

Fig. 6. VAF with 1 (a), 2 (b) and 3 (c) latent dimensions calculated
on 8D IMUs space with nonlinear AE (red) and PCA (black). Mean and
95% confidence interval across participants is shown for blocks of 12
consecutive reaching trials. PCA indicated that body movements be-
came substantially more linear with interface training but underestimated
their true dimensionality. (d) Loadings distribution over the components
of left and right IMU for the first 3 PCs during day 1 (blue dots) and
day 2 (yellow dots). The PC1 and PC2 loadings of the IMU placed on
the right arm were higher than those of the IMU placed on the left,
suggesting that participants employed an asymmetric control. Moreover,
the loadings’ standard deviation decreased on day 2, indicating that
participants movements were more consistent with each other after the
first day of training.

IV. DISCUSSIONS

In this study, we implemented a nonlinear AE to map arm
movements into command signals for controlling a 4D robot.
After validating the AE architecture to spread the latent variance
uniformly across the four control dimensions, we tested the
ability of twelve users to operate the device over two consecutive
days of training. The study delivered three main findings: all
participants (i) through training with the interface on the first day
succeeded to acquire an adequate level of skill when operating
the 4D robot; (ii) retained the performance reached by the end of
the first day of training; (iii) converged towards a more consistent
solution over the course of training. These findings highlight the
potential of this interface design as an assistive tool for people
with motor impairments.

A. Controlling a Device With Multiple DoFs

Assistive devices such as powered wheelchairs and robotic
manipulators can return independence to people with motor
impairments. However, controlling a mechanism with multiple
DoFs is a specific challenge [11], [30], [31], [32]. Commercially
available interfaces can ease the users’ burden of controlling
the device by making use of a discrete control system. With a
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discrete interface, users are given the control over a selection
of “modes”, where each mode controls a single DoF, or a
combination of DoFs. The main advantage of discrete control
is its simplicity, as it can be effectively used to control the
n-dimensional device. In other words, the user can fully control
the device by switching between a few modes. However, discrete
controllers do not allow their users to regulate the magnitude
of the control signals, thus resulting inadequate for performing
dexterous tasks.

To offer greater authority to a device user, one might want
to consider a continuous controller. Nonetheless, adopting a
continuous control comes with the possibility of introducing
an excessive computational and cognitive burden. If the user
were to share the control with the machine, this burden could
be alleviated and the user autonomy over the device would
still be maintained, even if not fully [33]. However, as pointed
out in a recent study by Javaremi and Argall [34], there is no
one-size-fits-all method for control sharing, as each person is
unique in their desired control preference.

In this sense, the approach adopted in our study stands out
because, not only it is continuous, but it also allows users to
operate the robot in a fully autonomous way. As far as this
study is concerned, the computational burden of learning to
simultaneously control 4 DoFs was not excessive, as, at the
end of the second day of training, participants were able to
reach the targets that they explored the most during training
in less than 10s (Fig. 3(a)). Moreover, this level of performance
is expected to further improve on additional training with the
interface, as the learning curve shown in Fig. 3(a) does not
seem to have attained convergence yet. The performances are
slightly inferior when reaching the test targets (Fig. 3(d)), likely
because participants were not used to operate the robot in those
directions as much. Again, additional (spatially denser) training
should allow participants to further improve performance on the
test targets as well. While the performance on the test targets can
be seen as more representative of how people with SCI might
perform in daily life, it also needs to be said that people with
SCI would likely benefit of a more extensive training than that
provided in this study. Additionally, our results are comparable
to those described in other studies involving the control of the
Jaco [35], [36], [37], [38], [39], [40], despite differences in the
interface, the controlled DoFs, and the task protocols make a
direct comparison with our results rather difficult. Therefore,
we argue that the performance levels achieved by participants
in this study offer a valid and encouraging baseline that can be
further improved with additional training on the interface, by
SCI individuals as well.

B. Motion Strategies to Operate the Robot

When users learn to operate a machine via BoMIs, it is crucial
to determine how learning takes place. We addressed this point
by studying (i) how users distributed their movements over
training time and (ii) which strategies they employed to move
the robot efficiently toward the targets.

Previous studies suggested that learning to efficiently op-
erate a device with a BoMI comes with a reorganization of

users’ movements towards a structure whose dimensionality
approaches that of the device itself [41], [42]. This is not trivial,
since the redundant nature of the BoMI forward map would
allow participants to maneuver the device with a combination
of movements that lies on a higher dimensional space with
respect to that of the device itself. However, in these studies
the dimensionality of user movements was estimated with a
linear method (PCA). PCA can only approximate a participant’s
control strategy with a linear manifold and may not fully ac-
count for the variance of body signals associated with nonlinear
control. Hence, in case participants were to employ such non-
linear control strategy, the true dimensionality of participants
movements would be underestimated by PCA, thus potentially
leading to misleading interpretations. The limitation of using
linear methods for this sort of analysis was confirmed by our
analysis. In fact, we showed that the true dimensionality of the
users’ (and robot’s) movements was accurately estimated only
when using a nonlinear method (AE, Figs. 4 and 6).

Nonetheless, PCA allowed us to further broaden our views
on the motor strategies adopted by the participants during the
two days of training. Participants started moving the robot with
individually distinct strategies, but with practice they converged
towards a more consistent solution over the course of training,
as indicated by the sharp decrease of the variability across
subjects for each PC loading (Figs. 4(d) and 6(d)). Interestingly,
we noticed that participants adopted an asymmetric control
strategy, as they relied more on the movements of the right
arm to operate the robot (Fig. 4(d)). This could either be a
result of the participants’ personal preference or of the BoMI
forward map that we imposed. However, we want to remark
that we extracted the BoMI map from a calibration dataset in
which each arm contributed equally to the overall movement
variance.

Investigating the movement variance of the singular robot
joints confirmed that the consistency across participants in-
creased over the course of training (Fig. 5). The robot had 4
joints and the last is the wrist that rotates the end-effector of
the robot. The task was 3D and consisted of positioning the
end-effector in a 3D space, with the final orientation of the
end-effector not being a task variable. However, the end-effector
joint was still important in the 3D positioning task because the
end-effector itself was not a point, but a two-fingers gripper. The
gripper was maintained open and, to solve the task, participants
had to place the virtual ball presenting the target inside the
two-fingers gripper. Thus, a same task solution could be reached
with the gripper fingers in different positions (e.g., both with
the same z coordinate or both with the same y coordinate)
and – more importantly- by following different trajectories to
approach that position. Of course, a subject can choose not to
use this possibility and solve the task without using the wrist
joint. This will determine not only to always have the gripper
fingers on the same position with respect to the target, but it
would also require planning the motion accordingly, e.g., by
avoiding all trajectories that will result in a collision between
the fingers with the target itself.

In summary, the first 3 joints would be sufficient to solve the
positioning task in the 3D space, but the redundancy offered
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by the additional joint, the wrist, allows users to find solutions
(trajectories) that are more comfortable for them, avoiding un-
desired collisions. In our case, the subjects largely exploited
this possibility since the end effector joint was indeed a major
contributor to the overall variance of the robot joints trajectories
(Fig. 5).

C. Linear vs Non-Linear Dimensionality Reduction in
Human-Machine Interfaces

Whether a linear or a nonlinear dimensionality reduction
method should be used in a control framework is a question of
crucial importance when designing a human-machine interface.
In this study, we tried to investigate the differences between
these two approaches when estimating kinematics of the upper
body and focused on the use of a nonlinear model to control an
external device.

Linear DR models, such as PCA and Factor Analysis, have
seen the most uptake both in brain machine interfaces [43],
[44] and in body machine interfaces [8], [29], [45]. Linear
models are convenient due to their low computational cost
and, perhaps most importantly, to the possibility of obtaining
a full repertoire of actions via summation of simpler actions.
However, linear models are intrinsically limited when attempt-
ing to reduce the dimensionality -i.e., the complexity- of a
nonlinear signal. Since most of the neurophysiological signals
have nonlinear properties, linear algorithms are inadequate to
derive a low-dimensional latent space [14]. Thus, as both brain
and body machine interfaces typically rely on such latent space
for representing and controlling an external device, the user’s
learning with a linear interface could potentially be disrupted.

An alternative approach is to exploit nonlinear DR meth-
ods. As demonstrated by recent studies, a nonlinear AE can
be used to accurately estimate the dimensionality of full hand
kinematics [15] and, more importantly, to efficiently control a
2D computer cursor [16], [17], [18]. Our results confirm these
outcomes, as all participants became proficient at operating
the 4D robot (Fig. 3). Nevertheless, applications of nonlinear
models to human-machine interfaces did not historically arouse
the same enthusiasm. A reason for this is that nonlinear models
may be difficult to interpret and often need to be specifically
tuned to properly suit a particular application. For instance, in
this study, finding the most suitable AE structure required a
validation procedure, which is naturally time-consuming. As a
result, this approach might not be ideal for those contexts where
immediacy of use is preferable. On the other hand, if one is
willing to sacrifice the convenience of linear models, the intrinsic
customizability of nonlinear methods makes them attractive to
be tailored to any scenario. For instance, in controlling a device
with multiple DoFs, we demonstrated that a properly tuned
nonlinear AE can be more suitable than a linear model, as the
former allows to uniformly distribute the variance among latent
dimensions (Fig. 2). In this study, we decided not to compare the
learning performance between AE- and PCA-based interface.
The spread of latent variance obtained by PCA was highly
unbalanced across its first four principal components (Fig. 2(b)).
Specifically, the third and fourth PC (that would have controlled

the third and fourth robot joint, respectively) accounted for an
incredibly small percentage of movement variance (both less
than 5%). In other studies that leveraged PCA as a BoMI map,
users were given uniform control over each latent dimension
by normalizing the latent variance across the PCs [42], [46].
Since the percentage of variance of the later PCs in this study
was so small, normalizing it would have resulted in an exces-
sive increase of noise. As a result, learning how to operate
the more distal robot joints with such a PCA-based interface
would have been extremely challenging. Importantly, we also
showed that even if BoMI users could not exploit the property
of superposition offered by linear control, the online operation
of the interface was not impaired as all participants managed
to acquire an adequate level of skill by the end of the training
sessions.

D. Limitations and Future Clinical Applications

Developing new technologies to be applied in clinical context
is a leading motivation for this work. However, before testing
this paradigm with people with spinal cord injury, stroke, and
other causes of disability, it is essential to provide solid proof
of their inherent soundness, which is the prime goal of this
study. Moreover, there is an important application of this in-
strument to the basic investigation of motor learning. Our study
significantly expands on previous efforts that investigated human
motor learning when controlling devices with few degrees of
freedom using some linear map [8], [29], [45]. Here, not only
we used a nonlinear map, whose application in BoMIs is far
less common and its effectiveness far-less proven, but we also
tested the control of a device with 4 DoFs, which is obviously a
far more challenging task than controlling simpler systems. The
test of the BoMI in unimpaired participants serves the specific
purpose of providing a normative baseline for understanding
of how these different challenges can be solved by the motor
control system. This is an essential preliminary step to evaluate
performance in a vulnerable population, such as people with SCI
or other neurological conditions.

In this study, the BoMI map was designed using a fully
unsupervised method. The unsupervised nature of the BoMI
makes it ideal for applications in a clinical context since it is
based only on exploratory movements and allows to incorporate
the subject’s residual abilities. Here, we wanted to follow the
same philosophy and extend it to conditions that had never been
tested before. In particular, we wanted to investigate a purely
unsupervised method that was more appropriate for the control
of a device with more than 2-3 DoFs, as PCA is inherently
limited because the spread of variance along its latent/control
dimensions was quite unequal. On the other hand, autoencoder
networks, although far-less common in body machine interface
applications, provided a uniform variance distribution and re-
sulted in a much more appealing unsupervised technique for
controlling devices with many DOFs, despite the drawback of
being more time consuming than linear methods due to the
necessity of a validation process.

A promising alternative to a fully unsupervised approach
was proposed by Macchini et al., where elements of supervised
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learning were included during the BoMI map design [12]. When
compared to a purely unsupervised approach, the resulting “hy-
brid” one allowed to speed up learning of BoMI users controlling
a quadcopter at the start of training. However, as users practiced
with both types of interfaces over time, the difference between
the hybrid and the unsupervised approach became marginal by
the end of the session. These results are consistent with ours,
as we also found that all the participants struggled to operate
the robot with the unsupervised interface at first (Fig. 3, day
1, start training), but became significantly much more efficient
with training (also Fig. 3). Nonetheless, our proposed platform
could be further improved by designing an interface that is based
on nonlinear autoencoders but includes elements of supervised
learning, and is also adaptive, as the process of co-adaptation
has shown to guide the redundancy resolution towards increased
movement efficiency [18], [41].

The BoMI map used in this study was derived from the AE
validation procedure performed using data from the single-male
subject (who did not participate in the learning study presented
in the manuscript). While the overall philosophy of BoMIs is
to base their operation on a subject-specific mapping, here we
decided to use the same BoMI map for all participants for the
following reasons. First of all, we wanted all participants to start
from a common initial condition to ensure a fair comparison
of their learning curves during the operation with the interface.
Our group has used this design in previous studies as well [18],
[47], [48]. Secondly, a subject-specific mapping implemented
in real life is time consuming, as the process of AE validation
requires to train several AE models. When testing the interface
in a clinical context, however, it will be necessary to perform the
AE validation procedure using a calibration dataset collected on
the impaired participant to ensure the BoMI map to be better
suited to their reduced movement distribution.

V. CONCLUSION

In the context of non-invasive human-machine interfaces, the
use of non-linear methods for generating commands to operate
external devices has not been broadly studied. In this study, we
filled this gap of knowledge by envisioning a novel interface
that applies nonlinear autoencoder networks to convert arm
movements into a control signal for a 4D virtual manipula-
tor. We hypothesized that the customizability offered by an
autoencoder makes it a versatile control platform for complex
multi-dimensional devices. Our findings support this hypothesis,
as a cohort of participants were able to acquire an adequate level
of skill by training with the interface and retain such performance
over two non-consecutive days of training. Importantly, the
approach tested here provided users with a fully continuous
control of the robot. Moreover, its entirely unsupervised nature
makes it ideal for applications in a clinical context since it can
be tailored to each user’s residual movements.
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