
Understanding Humans in Videos
From Pose to Action Recognition

Federico Figari Tomenotti

Supervisor: Prof. Nicoletta Noceti

Dipartimento di Informatica, Biongegneria, Robotica e Ingegneria dei
Sistemi - DIBRIS

Università degli Studi di Genova

This dissertation is submitted for the degree of
Doctor of Philosophy in Computer Science and Systems Engineering

Università degli Studi di Genova July 2024



Ph.D. Thesis in Computer Science and Systems Engineering (S.S.D. INF/01)
Thesis Series DIBRIS-xx-2024-xx

Computer Science Curriculum
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi (DIBRIS)
Università di Genova

Candidate
Federico Figari Tomenotti
federico.figaritomenotti@edu.unige.it

Title
Understanding Humans in Videos: From Pose to Action Recognition

Supervisor
Nicoletta Noceti
DIBRIS, Università di Genova
nicoletta.noceti@unige.it

External Reviewers
Alessandra Sciutti
Center for Human Technologies - CONTACT Unit
Istituto Italiano di Tecnologia

Liliana Lo Presti
Dipartimento di Ingegneria
Università Degli Studi di Palermo
liliana.lopresti@unipa.it

Location
DIBRIS, Università di Genova
Via Dodecaneso, 35
I-16145 Genova, Italy



Ad Alessandra che mi sostiene sempre e mi dona il sorriso.

A Francesco che mi sopporta ogni giorno e a cui voglio un mondo di bene.

A mamma e papà che mi hanno accompagnato fin’ora.





“Many that live deserve death and some that die deserve life. Can you give it to them? Then
do not be so eager to deal out death in judgement. For even the wise cannot see all ends.”

J.R.R. Tolkien





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Federico Figari Tomenotti
July 2024





Acknowledgements

Innanzitutto vorrei ringraziare la mia supervisor Nicoletta per aver creduto in me fin
dall’inizio e avermi dato lo sprone nei momenti in cui sembrava tutto particolarmente
buio o difficile.

Ringrazio particolarmente i miei colleghi con i quali in questi anni abbiamo condiviso tanti
momenti insieme e ci siamo confrontati e scambiati idee. Sarebbero troppi per menzionarli
tutti e non vorrei dimenticare nessuno, quindi per tutti menziono solo i due che più mi hanno
sopportato negli ultimi due anni: Larbi e Jacopo.

Infine ringrazio gli amici che mi supportano sempre e mi ricordano che la bellezza della
Vita sta specialmente nelle relazioni e nelle risate in compagnia.





Abstract

This doctoral dissertation focuses on designing, developing, and evaluating methodologies
for representing and understanding human motion and humans in the scene (interactions with
objects or in small groups). The motivation arises from the growing interest in vision-based
solutions which can understand and anticipate human behaviours, not only for robotics but
also for surveillance or rehabilitation applications. Associated with specific objectives of this
thesis, three distinct methodologies are presented: MOSAIC which focuses on hierarchical
motion representation for action recognition; ACROSS which leverages the complexity of
activity recognition using scene-graphs representations; HHP-Net which is a Head Pose
Estimation Network with a focus on interpretability and computational costs. Experiments
and discussions support all the presented methods to highlight their strengths and weaknesses
and are assessed using state-of-the-art benchmark datasets.
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Chapter 1

Introduction

1.1 Context and Motivations

Computer Vision applications are becoming ubiquitous and increasingly disruptive thanks to
machine learning techniques and the widespread access to computational resources. In this
fast-paced evolving landscape, there is enhanced attention on human-centric solutions across
various domains and for different purposes. For example, in the medical and rehabilitation
domain algorithms are emerging to help the diagnosis of some diseases Garello et al., 2021
and to assist patients in the rehabilitation process Debnath et al., 2022. In the surveillance
domain, many systems already rely on computer vision approaches based on neural networks
Şengönül et al., 2023, and also public authorities are using them. Furthermore, there exists a
considerable demand for computational methodologies in robotics applications, spanning
various domains such as factories Othman and E. Yang, 2023, industries Y. Yang et al.,
2023, and human-robot interaction (HRI) K. M. Lee et al., 2023; Robinson et al., 2023.
In robotics applications, it is imperative to possess the capability to discern the presence
of individuals and their motions, thereby enabling safe and effective interaction between
intelligent machines and humans.

In all these contexts the human is the focus of attention. In other words, in each of the
mentioned applications, and probably in additional domains, the detection of human presence
along with the comprehension of their behaviours and intentions stand as pivotal objectives

This thesis aims to design, develop and assess methodologies for the representation and
understanding of humans in a scene. We are interested in scenarios where the focus of
attention is on single subjects or small groups involved in social interactions.

We present three different methodologies, with specific peculiarities although overall they
can be seen as different pieces of the same puzzle. The first methodology, called MOSAIC, is
fully motion-based: it focuses on the use of a hierarchical motion representation exploited for



2 Introduction

action recognition as a downstream task. The second one considers humans in the scene and
it is called ACROSS; it is a recognition pipeline with a different flavour from the previous
one; here, the relationships between the person and the environment (location, objects, etc)
are used by the algorithm to learn to classify and anticipate longer activities. The third and
last is focused on Humans in groups: we present an algorithm for Head Pose Estimation, a
solution targeting the human understanding problem under a social interaction perspective. It
addresses the problem of human behaviour when multiple people are present in the scene.

In the presented methodologies we are not only interested in performances but we balance
effectiveness, computation and interpretability. Regarding the computational aspects, we
investigate the possibility of reducing network sizes in order to reduce the economic and
environmental impact. On the interpretability of the solutions, when possible, we prefer
modular approaches to black-box architectures. Modularity improves interpretability because
it helps to understand what can happen in the middle of the computations and has intermediate
data representations. In other cases, we help the interpretation of the results by using the
notion of confidence in our predictions.

1.2 Objectives

The main objectives of the thesis may be summarised as follows:

• The First one is the study of the human in its social context, to model their interactions
with other people. A key to understanding social interaction is gaze, which we
approximated with head pose direction. The objective is to develop a light and flexible
algorithm to retrieve the head pose starting from keypoints data. We demonstrate
its efficacy and applicability by deploying it onto a test bed task to detect dyadic
interactions. As a result of this work, the following article has been published:“HHP-
Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty”
Cantarini et al., 2022, and “Head pose estimation with uncertainty and an application
to dyadic interaction detection” Figari Tomenotti et al., 2024.

• The second one is the study of human motion from sparse inputs in the form of body
keypoints. The goal is to learn methods to represent human motion and characterise it
in a machine-understandable way. The choices we have made take inspiration from
cognitive science for the data representation part, using primitives of motions. These
are encoded in a latent space of a neural network which preserves similarity between
input data. The outcome of this work is a submitted article to ECCV and we are
working towards a journal extension.
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• The second one is the study of human action recognition in a general setting where we
can derive info about people and their surrounding environment from RGB videos. In
this task, we devise a model capturing subject-object relationships and add the temporal
evolution of this structure which we modelled as a graph. The aim is to develop an
algorithm able to anticipate human activity goals by exploiting the connections between
humans and scene elements.

1.3 Structure of the Thesis

The work encompasses two main parts where the contributions of this thesis unfold, plus
an introduction devoted to background material useful for general comprehension. The
objectives presented in the previous section are reported following their temporal occurrences
in the PhD path, while also considering the evolution of the entire project, transitioning from
specific details to broader conceptual frameworks. Indeed, the project commenced with a
specific focus on the head pose, subsequently expanded towards the representation of full-
body motion and ultimately culminated in the integration of environmental contextual cues
alongside human body motion. To have a clearer understanding of how the different parts
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unfold and interconnect we can have a look at the Fig. 1.1. The two orange boxes are the two
main topics in which we move, and inside we divided the work into two sub-parts each; the
yellow boxes are the four main contributions of the thesis. Each one of the four contributions
is associated with one well-established problem in the community. The contributions of this
work are mainly in two directions: understanding human motion per se and understanding
humans in context. The thesis is structured to present these two topics in an across-the-board
way. The first part is focused on retrieving the head orientation and using it as a cue for social
interaction analysis. In contrast, the second is devoted to the whole human, so human motion
understanding takes into account the complete body and the person in the environment.

• The Background chapter is devoted to presenting some theoretical foundations and
explaining background notions useful to understand and contextualise the rest of this
work.

• Part I addresses the Head Pose Estimation and Social Interaction. It includes 3
chapters:

– Chapter 3 is the literature review of Part I and it serves as a comprehensive
introduction and state-of-the-art exploration of Head Pose Estimation and its
applications. It encompasses a multifaceted examination of Social Interactions
Analysis under a computer vision perspective, Gaze understanding and Head
Pose Estimation methodologies.

– Chapter 4 introduces our algorithm for Head Pose Estimation and the LAEO
algorithm, which uses the head pose to understand if people in the scene are
looking at each other.

– Chapter 5 reports the experimental analysis we performed to assess our approach.
We first discuss in detail the implementation, the datasets and the experimental
protocols we adopted, and then provide qualitative and quantitative results.

• Part II unfolds in two subparts with a common fil rouge, which is motion recognition.
It includes 3 chapters:

– Chapter 6 presents the literature and recent advances in action classification
through skeleton data and the usage of graph neural networks for action classifi-
cation.

– Chapter 7 is methodological and it is two-folded: the first half presents the
work about human motion representation from primitives of motion (MOSAIC
architecture); the second half presents the activity recognition pipeline –ACROSS–
focused on human-object interactions.
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– Chapter 8 encompasses all the experiments to validate the presented methodology
and it has been structured in two main parts, the first for the MOSAIC algorithm
and the other devoted to the ACROSS algorithm.

• Chapter 9 is where conclusions are drawn.





Chapter 2

Background

This introductory chapter is devolved to present some theoretical foundations and to explain
background notions useful to understand and contextualise the rest of this work. The
chapter is organised starting with a general introduction to Deep Learning and progressively
presenting some architectures and their usage; the topics are the following:

• Deep Learning introduction

• Convolutional Neural Networks – (used almost anywhere in Pose Estimation Networks
so are a general background for this manuscript)

• Heteroscedastic Neural Networks – ( are used throughout Part I and in particular in
Chapter 4)

• Autoencoders – (are used in Part II, especially in the MOSAIC architectures Chapter 7)

• Models for sequential data

• Recurrent Neural Networks

• Long-Short Term Memory Networks – (are used in MOSAIC preliminary experiments
in Section 8.1.1)

• Transformers – (are a main building block in MOSAIC in Chapter 7.)

• Graph Neural Networks – (are used in Section 7.2 as a foundation building block.)

The chapter ends with an explanation of Human Pose Detection, which is considered back-
ground knowledge as it is an input in the presented methods. Not all the sections in this
chapter are equally explained in detail because mainly only details needed for future compre-
hension have been included.
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2.1 Deep Learning Introduction

Neural networks represent a powerful paradigm in machine learning and artificial intelligence,
drawing inspiration from the structure and function of the human brain. These computational
models consist of interconnected nodes, or "neurons," organized in layers. Each neuron
processes information and transmits signals to neurons in subsequent layers, ultimately
enabling the network to learn complex patterns and make predictions.

At the core of a neural network is the neuron, which mimics the behaviour of biological
neurons. Each neuron receives input signals, applies a transformation function, and pro-
duces an output signal. The strength of connections between neurons, known as "weights,"
determines the impact of input signals on neuron activation.

Activation functions introduce non-linearity into the neural network, allowing it to learn
complex relationships between inputs and outputs.

In the following there is a brief and more formal introduction to different types of
networks which will be used in the following dissertation.

2.1.1 Feedforward Neural Networks

Feedforward neural networks (NN), or multilayer perceptrons (MLPs) are the simplest kind
of deep learning models. The feedforward networks are used to approximate functions f ∗.
So a feedforward network defines a mapping y = f (x,W ), learning the set of parameters W
resulting in the best function approximation.

These models are usually composed of many simpler functions which are stacked and
connected together by a direct and acyclic graph, each function is called a layer and the
number of layers determines the depth of the model. The first layer is called the Input layer,
the final layer is called the Output layer and all the others in between are the Hidden layers
(see Fig. 2.1).

Since the input data flows through the layers and there are no feedback connections in
which outputs of the model are fed back in input, such models are called feedforward.

A layer can be thought of as the composition of many units (or neurons) that act in
parallel, each one receives input from many other units in the previous layer and computes
its own scalar value. A hidden unit can be described by a linear function with a bias term b, a
vector w of d elements, where d is the length of the input vector x. Hence the computation of
a unit is given by:

y =
u

∑
i=1

xiwi +b (2.1)
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information propagation; each connection can be associated with a different weight.

To allow a non-linear parameterization we can introduce an activation function σ to be
applied to the output of the unit:

y = σ

(
u

∑
i=1

xiwi +b

)
(2.2)

Since each hidden unit of the same layer is associated with the same activation function
σ and given the u×d weight matrix W , where u is the number of units in the layer, and b is
a vector of length u, the output of a hidden layer can be represented as:

Φ(x) = σ (Wx+b) , Φ(x) : Rd 7→ Ru (2.3)

As previously said a feedforward network is a chain of hidden layers, so we can write the
output of a L layer network as

ΦL(x)◦ ...◦Φ1(x) = σL (WL...(σ1 (W1x+b1))+bL) (2.4)

Since MLP is a composition of fully connected layers (i.e. each unit of a layer is
connected with all the units of the following layer ), adding a few layers to the network
increase dramatically the number of parameters to learn.
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A feedforward neural network can be seen as an approach to learning data representation
(i.e a features vector), thus the output layer should provide some additional transformation
from the features to complete the task that the network must perform.

There are also several theorems about the usage of Neural Networks as universal Ap-
proximators, so capable of approximating any function f ∗ with arbitrary precision. This
specifically holds for the Perceptron network with a single infinitely wide hidden layer which
can approximate arbitrary functions. These results proceed from the seminal work Cybenko,
1989 by George Cybenko.

2.1.1.1 Activation functions

As previously mentioned, the activation functions allow to include in the model a non-linear
parametrization. The most common activation functions σ are :

Linear Assuming the hidden unit represents the linear function y = ∑
u
i=1 xiwi +b the linear

activation function is the identity function

σ(x) = x

With such function we are assuming the task can be modelled with a linear function. A
traditional MLP uses such a σ function.

Relu or Rectified Linear Unit
σ(x) = max(0,x) x ∈ R

It is widely used in computer vision tasks and placed in the hidden layers of the
network, it is not differentiable in zero but differentiable anywhere else and the value
of the derivative at zero can be arbitrarily chosen to be 0 or 1. The negative inputs
are lost and if the weights of the unit is set to zero, it becomes stuck in a perpetually
inactive state and such a phenomenon is known as dying ReLU problem.

Leaky Relu Mitigate the dying ReLU problem by assigning a small slope to the negative
values so that the data are not completely lost.

σ(x) =

αx, if n < 0

x, if n≥ 0
,α ∈ [0,+ inf],x ∈ R
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Sigmoid corresponds to the logistic function

σ(x) =
1

1+ e−x x ∈ R

Since it maps the inputs in [0,1] it is normally used as activation of the last layer of
the network, in particular for binary classification tasks. It may cause problems in the
weight update since the function is not zero-centred and the gradient may update the
weights with different scales.

Tanh is the scaled version of the Sigmoid, it maps the input in [−1,1] and it is zero-centred

σ(x) =
ex− e−x

ex + e−x x ∈ R

2.1.1.2 Learning procedure

The goal of training a NN is to find the set of parameters W that let our network approximate
a target function f ∗. Neural networks are usually trained to solve a minimisation problem,
defining an appropriate cost function for the task, and trying to minimise it. The minimisation
procedure is done by doing a forward propagation along the network of out input data x,
so retrieving a value ŷ and calculating the cost of estimating ŷ instead of the real value y.
Having this cost to solve the minimisation problem of

min
W

J(W ) (2.5)

Optimisation in deep learning is done in an iterative way computing an estimate of the
cost function on a subset of the data and updating the weights according to it. The problem is
solved using the Gradient Descent algorithm (or all its variants: Stochastic Gradient Descent,
Adam etc) Tian et al., 2023. The weights update is done by computing the partial derivatives
of the cost function with respect to the weights ∇W J(W ). In modern optimisation algorithms
this is done in a mini-batch fashion: computing it on a subset of the dataset. When all the
dataset has passed through the network an epoch is passed. The learning usually encompasses
many epochs to converge to a good solution. To examine in depth the topic we suggest
having a look at Goodfellow et al., 2016; Tian et al., 2023; A. Zhang et al., 2021
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2.1.1.3 Addressing Classification using NNs

When dealing with a classification task, we would like to represent the probability distribution
over n different classes, this helps in calculating the cost function for the learning procedure
Section 2.1.1.2: first, a linear layer predicts unnormalised log probabilities

z =Wx+b (2.6)

Next, it uses the Softmax activation function σ : Rn 7→ [0,1]n to convert z into a probabil-
ity:

σ(z)i =
exp(zi)

∑
n
j exp(z j)

(2.7)

It applies the exponential function to each element zi of the input vector z and normalizes
these values by dividing by the sum of all these exponential, it guarantees that the sum of the
components of the output vector is 1.

The zi variables defining such a distribution over variables are called logits.
In case we are resolving a classification task we can use the point-wise Cross entropy

loss defined as

H(yx, p(x)) =−
M

∑
j

y j
x log(p(x) j) (2.8)

The formula above computes loss for a multi-classification task with M different classes,
where y j

x ∈ {0,1} is a binary indicator if the class j is the correct classification for the
example x, p(x) j is the softmax probability for the j-th class.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks or CNNs are a specialized kind of neural network for
processing data that has a known grid-like topology, such as images. CNNs use convolution
in place of general matrix multiplication in at least one of their layers. First, let us define
what a convolution is in the continuous case:

s(t) = (x∗w)(t) =
∫

x(a)w(t−a)da (2.9)

The first argument x is the input of the convolution, the second argument w is usually called
kernel and the result of the operation is named feature map, in this case, all these elements
are continuous.
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In the discrete version, the input and the kernel are sampled and defined on the time index
t which can assume only integer values:

s(t) = (x∗w)(t) =
∞

∑
a=−∞

x(a)w(t−a) (2.10)

Since in CNN the inputs are multidimensional data, usually two-dimensional images
referred to as tensors, we need to use convolutions over more than one axis at a time, so
given an input image I and a two-dimensional kernel K the 2D convolution is defined as:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n) (2.11)

Discrete convolution can be viewed as the sum of a matrix multiplications between a kernel
matrix K and image patches. Or, the other way around, a sum of all the possible multipli-
cations between the kernel and its superimposition over the image. Such kind of operation
brings some advantages like sparse interactions and parameter sharing. Traditional neural
networks seen in the previous sections use matrix multiplication to describe the interaction
between each input unit and each output unit so that every output unit interacts with every
input unit, on the other hand, sparse interaction is achieved when CNNs use kernels smaller
than the input which both reduces the memory requirements of the model and improves
its statistical efficiency because the model needs to learn fewer parameters. Instead with
parameter sharing, we mean that the same parameter is used by more than one function in
the model: in traditional NNs, each weight is used exactly one time when computing the
output, instead in CNNs each member of a kernel (a weight) is used at every position of the
input. The goal of a NN is to learn these sets of weights which are also called filters.

We can control the size of the output of a convolutional layer with three different
parameters:

• Depth is the number of filters of the layer and has all the same K×K shape.

• Stride S is the step size the filter slide the input.

• Padding P is the number of rows and columns added to the input to enlarge it, it is
usually used to allow the filter to be applied to each point of the original input.

Assuming the input to be of size I× I, the shape of the output will be O×O where

O =
I−K +2P

S
+1 (2.12)

A typical convolutional layer is made up of three stages. First, several convolutions are
applied to the input in parallel resulting in a set of linear activations, then in the second stage,
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each element of the set is transformed by an activation function. In the third stage, a pooling
function transforms the output of the layer.

A pooling function down-samples the input to reduce the dimensions of the feature maps,
and to provide invariance to small translations and variations of the input. The dimension is
reduced by performing some summary statistics to nearby elements.

2.1.2.1 Modern Convolutional Neural Networks

Modern Convolutional Networks incorporate also other small strategies to overcome prob-
lems during training (e.g. vanishing gradients), or increase their performances, such as
training with data augmentation or dropout. But, above all modern CNNs exhibit huge size
in terms of parameters. To have an idea of some modern architectures we present some of
the winners of famous benchmark competitions: AlexNet Krizhevsky et al., 2012 developed
in 2021 has 62 Million parameters, VGG Simonyan and Zisserman, 2014b and Inception
Szegedy et al., 2015 are both from 2014 and they have respectively 138M and 6.4M parame-
ters; the newest one to present is ResNet He et al., 2016 from 2015 which encompasses a
total of 60.3M parameters. So the dimensions are not the only way to dominate the lead, but
they are of course a requirement for good performance.

2.1.3 Heteroscedastic Neural Networks

We present now a more advanced topic in NN, a class of networks capable of learning a
regression function for the requested task but also incorporating a measure of the level of
uncertainty of its own prediction.

Heteroscedastic Neural Networks (HNNs) represent a specialized class of neural networks
designed to address the heteroscedasticity in data, where the variance of the target variable is
not constant across all levels of the predictor variables. In traditional neural networks, the
assumption of homoscedasticity is implicit, meaning that the model assumes a consistent level
of uncertainty in its predictions irrespective of the input values. HNNs, on the other hand,
introduce a novel approach by explicitly modelling and predicting the variance or uncertainty
associated with each prediction. This is achieved by incorporating an additional output layer
that provides a separate set of parameters representing the variance of the predicted values.
By doing so, HNNs not only offer more accurate point predictions but also enable a more
nuanced understanding of the underlying data distribution, especially in situations where the
variability in the data is not uniform. This capability has wide-ranging applications, from
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financial forecasting to medical diagnosis, where recognizing and quantifying heteroscedastic
uncertainty is crucial for making reliable decisions.

Training Heteroscedastic Neural Networks involves optimizing not only for accurate
mean predictions but also for accurate variance predictions. This introduces a dual-task
learning paradigm, where the network simultaneously learns to model both the mean and
variance of the target variable. Various loss functions, such as a combination of mean
squared error and variance-related terms, are employed to guide the network during training.
The incorporation of heteroscedasticity modelling in neural networks contributes to a more
comprehensive understanding of the uncertainty inherent in the data. HNNs provide a
valuable tool for applications where the reliability of predictions is paramount, offering a
more sophisticated and interpretable approach to uncertainty quantification compared to
traditional homoscedastic models. As machine learning continues to be integrated into diverse
domains, the adaptability of Heteroscedastic Neural Networks to handle varying levels of
uncertainty makes them a promising avenue for improving the robustness of predictive
models in real-world scenarios.

2.1.3.1 Uncertainty Estimation

Different types of uncertainty arise in data and they need to be addressed differently. In
particular, uncertainty in predictions can arise from various sources, including limited data,
measurement errors, or model complexity. Bayesian Neural Networks provide a natural
framework for estimating two type of it: epistemic uncertainty and aleatoric uncertainty.

Epistemic Uncertainty: this type of uncertainty arises from a lack of knowledge or data.
BNNs model epistemic uncertainty by capturing the uncertainty associated with the model
parameters. As more data becomes available, the uncertainty about the parameters decreases.

Aleatoric Uncertainty: this uncertainty is inherent in the data itself and cannot be reduced
with additional observations. BNNs capture aleatoric uncertainty by associating a distribution
with the output predictions, providing a measure of confidence in the model’s predictions.

2.1.3.2 Bayesian vs Heteroscedastic Neural Networks

Bayesian Neural Networks (BNNs) (for further details see Duvenaud, 1999; Jospin et al.,
2022) and Heteroscedastic Neural Networks (HNNs) share a common goal of enhancing
neural networks’ capacity to handle uncertainty, yet they differ in their approaches. Both
models acknowledge and address the limitations of traditional neural networks by introducing
a more nuanced understanding of uncertainty in predictions. In BNNs, uncertainty is captured
through probabilistic modelling of the network parameters, treating them as probability
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distributions. On the other hand, HNNs focus on explicitly modelling and predicting the
variance of the target variable, acknowledging heteroscedasticity in the data. While BNNs
offer a broader framework for uncertainty estimation, encompassing both epistemic and
aleatoric uncertainties, HNNs specialize in capturing heteroscedastic uncertainty, which
arises from varying levels of variability in the data. The key similarity lies in their departure
from the traditional deterministic paradigm, allowing both models to provide richer and
more informative predictions. Despite these differences, both BNNs and HNNs contribute
to a more robust and trustworthy deployment of machine learning models, each tailored to
address specific aspects of uncertainty in diverse applications.

2.2 Autoencoder & Variational Autoencoder

2.2.1 Autoencoder

Fig. 2.2 Schematic representation of an Autoencoder network, composed of two sub-networks:
an Encoder and Decoder respectively. x is the input vector, x̂ the reconstructed output. And
in the middle, we have a usually compact representation of the input.

Fig. 2.3 Schematic representation of a Variational Autoencoder network, composed of two
sub-networks: an Encoder and Decoder respectively, and a sampling function ε . x is the
input vector, x̂ the reconstructed output. And in the middle we have a compact representation
of the input, respecting certain statistics properties.



2.2 Autoencoders 17

An autoencoder (see Fig. 2.2) is a neural network that is trained to attempt to copy its
input to its output. It has a hidden layer h that is -a usually smaller- description of the input.
The network is formed by an encoder f (·):

h = f (x)

and a decoder g(·) which from the latent space retrieves a reconstruction of the input

x̂ = g(h)

The loss function (or cost function) to be minimised is

min
W

L(x,g( f (x))) (2.13)

Where W are the network weights. However the simplest solution to Eq. (2.13) is for the two
functions to be equal to the Identity, which is of no utility. Indeed, the autoencoder is forced
to learn a non-perfect reconstruction of the input with two different functions. One of the
most used cases of autoencoder is to do a dimensionality reduction or feature extraction. One
solution to force the networks to learn a non-trivial function it is to use a penalisation term to
enforce the sparsity of the representation and having small weights.

min
W

L(x,g( f (x)))+Ω(h) (2.14)

2.2.2 Variational Autoencoder

A variational autoencoder (see Fig. 2.3) -introduced in Diederik P Kingma and Welling,
2013a- can be assimilated to an Autoencoder for its Encoder-Decoder structure but differs
from it for its mathematical structure. The VAE is a probabilistic generative network where
the encoder and decoder are function approximators.
We want to find a latent space Z= RQ using a given set of samples {ym} ⊆ Y= RR where
Q << R. So a dimensionality reduction is requested. We also want to enforce that the
samples in the latent space are normally distributed (computing the KL distance over a
distribution). So, in short, we have an encoder and a decoder trained with the following loss:

min
W

L(x,g( f (x)))−KL( f (x)||N(0,1) (2.15)
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The first term is the reconstruction term as in Eq. (2.13), and the second can be seen as a
regularisation term. The rest of the sections has some of the passages to come to this equation,
but are not an exhaustive mathematical description of VAEs.

Setting the problem in a probability distribution setting, the question is to find a model
distribution q(z) to approximate the true posterior distribution p(z|y)

q(z) = argminq KL(q(z)|p(z|y)) (2.16)

Where the KL is the Kullback-Leibler divergence (measure on distributions). We can rewrite
the divergence to obtain a lower bound on the intractable marginal likelihood p(y).

log pθ (x) = Eqφ (z|x)[log pθ (x)]

= Eqφ (z|x)[log
pθ (x,z)
pθ (z|x)

]

= Eqφ (z|x)[log[
pθ (x,z)
qφ (z|x)

×
qφ (z|x)
pθ (z|x)

]]

= Eqφ (z|x)[log[
pθ (x,z)
qφ (z|x)

]]+DKL(qφ (z|x)||pθ (z|x))

(2.17)

Evidence Lower Bound

Lθ ,φ (x) = Eqφ (z|x)[log pθ (x,z)− logqφ (z|x)] (2.18)

Substituting Eq. (2.17) in Eq. (2.18), and rearranging the terms, we can notice that the loss
has two terms with opposite signs. One is the reconstruction loss and the second is the
KL divergence from the learned distribution to the target prior distribution. In this respect,
the similarity with the Autoencoder is in the fact that both of them push the train to learn
to reconstruct the input samples, however, the VAE tries also to have a latent space with
variables distributed as the target prior: in many cases a Standard Normal distribution N(0,1).

In the real implementation, the sampling is done via the reparametrisation trick Diederik
P. Kingma and Welling, 2013b

z∼ qµ,σ (z) = N (µ,σ2)ε ∼N (0,1)z = µ + ε ·σ (2.19)
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2.3 Classical Sequence Modelling

2.3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks for processing sequential
data. The recurrence adds memory to the NN and it provides a way to model relationships
between data, it means that the samples "seen" by the network at time step t−1 affect the
computation at time t. Hence RNNs have two inputs: the present data and the recent past
data, which are combined to determine how they respond to new data.

2.3.2 Long Short-Term Memory

Long short-term memory (LSTM) Hochreiter and Schmidhuber, 1997 and Gated Recurrent
Units (GRU) K. Cho et al., 2014 are specially designed to find correlations between events
separated by many moments, and these correlations are called “long-term dependencies”, in
practice they help in learning the correlation while forgetting that information not necessary
to the computation of the output. On the other hand, simple RNNs do not have the ability to
"forget" leading to instability in the gradient computation.

They have been successfully used in multiple application domains like speech recognition
and text-to-speech synthesis, and machine translation. Furthermore, there exist tasks combin-
ing LSTM and CNNs, such as Automatic image captioning Vinyals et al., 2015 generating
textual description from an image.

2.4 Modern Sequence Modelling: Transformers

Fig. 2.4 Transformer architecture scheme: en-
coder layer on the left, decoder layer on the
right [source Vaswani et al., 2017].

The Transformer architecture introduced in
Vaswani et al., 2017 has taken the lead as
state-of-the-art neural network architecture
in many tasks. It is well suited to process
sequential data, and coversely of Recurrent
Neural Networks based on their capacity to
model long-term dependencies on the At-
tention mechanism. It is basically a matrix
multiplication operation between inputs and
important learned weights. The advantage of
the Attention mechanism is that it can be ex-
ecuted multiple times in parallel on the same
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inputs, and this gives the flexibility of hav-
ing more nuances of the same representation
for a single input. For these reasons, they
are employed in all state-of-the-art models
for Natural Language Processing, such as
OpenAI’s GPT networks.

A transformer is composed of an encoder
and a decoder structure, see Fig. 2.4. The en-
coder receives in input sequential data, and
encode them in a fixed-size representation
called a token (e.g. one work is a token) and
then applies a positional encoding strategy (e.g. usually a multiplication by a time dependant
function). Afterwards, all the tokens in parallel are passed through Attention layers. Each
one is composed of a self-attention block and a feed-forward block. The former is built of
attention heads, where the entire sequence is processed and attention between intra-sequence
tokens are highlighted. Self-Attention is a mechanism of computing three vectors: Key,
Query, and Values, and thanks to dot products between them, the output is a matrix of
weights telling how much each token is in a relationship with another one. The complexity
is quadratic in sequence length O(L2). The latter -the feedforward- applies a non-linear
transformation to the attention output. It add expressivity and it makes up two-thirds of the
parameters in a transformer model.

The decoder, instead is made up of two building blocks: the self-attention and the encoder-
decoder attention block. The former we have already explained, the latter conversely is
used to get the context of the sequence and to perform attention computation between the
encoder-output with respect to the decoder-output. The final output of a Transformer is a
representation of the same length of the input but transformed in another space. Indeed, the
language-to-language transformation does exactly this. The transformer training procedure
is done using an increasing learning rate and then after a few epochs of warm-up, it starts
the decreasing period. The schedulers used for this architecture use often cosine or cyclical
functions. After this general overview, we add some more in-depth insights and formal
definitions of the different building blocks of the Transformer network.
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2.4.1 Attention Mechanism

The attention mechanism is formalised per each head as follows

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V (2.20)

where
√

dk is the dimension of k and q vector, which are respectively the keys and queries.
The K, Q and V are the matrices composed of the vectors k q and v; the V are the values
calculated through keys and queries. In Fig. 2.5a we show the operation in detail in a diagram
fashion.

The multi-head attention used in the full architecture is the concatenation of many
attention’s heads, as in Fig. 2.5b. Formally

MultiHead(Q,K,V ) =Concat(head1, ...,headh)W O (2.21)

where
headi = Attention(QW Q

i ,KW K
i ,VWV

i ) (2.22)

2.4.2 Positional Encoding

The positional encoding can be formalised in several different ways which are equivalent
from theoretical viewpoints. Often it is implemented as the original formulation of Vaswani
et al., 2017 which is:

PEpos,2i = sin(pos/10002i/dmodel)PEpos,2i+ = cos(pos/10002i/dmodel) (2.23)

where pos is the position and i is the dimension, so each dimension is have its own sinusoid.

2.5 Graph Neural Networks

Graph Neural Networks (GNNs) represent a cutting-edge class of neural networks designed
to handle data structured as graphs. In contrast to traditional deep learning models, which
primarily operate on grid-like data such as images or sequences, GNNs excel in processing
non-Euclidean data, capturing intricate relationships and dependencies inherent in graph
structures.

Graph Neural Networks are a specialized category of neural networks tailored for graph-
structured data. They have gained significant attention due to their applicability in various
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(a) (b)

Fig. 2.5 In Fig. 2.5a Transformer dot attention scheme. In Fig. 2.5b Transformer multi-head
scheme. Both images [source Vaswani et al., 2017]

domains such as social network analysis, recommendation systems, drug discovery, and
computational biology. At the core of GNNs lies the ability to learn and propagate infor-
mation across the nodes and edges of a graph, enabling them to perform tasks such as node
classification, graph classification, link prediction, and graph generation.

The input to a Graph Neural Network comprises a graph G = (V,E), where V represents
the set of nodes and E represents the set of edges connecting these nodes. Each node in
the graph is associated with a feature vector, capturing information relevant to that node.
Similarly, each edge may also have associated features representing the relationship between
connected nodes. Additionally, the graph may possess a global feature vector encoding
overall graph-level information.

The construction of a Graph Neural Network involves several key components:

1. Graph Convolutional Layers (Graph Convolution): These layers are the fundamental
building blocks of GNNs. They aggregate information from neighbouring nodes and
edges, enabling nodes to learn representations based on their local graph neighbour-
hood.

2. Message Passing: GNNs leverage message-passing schemes to propagate information
between nodes in the graph. At each layer, nodes receive messages from their neigh-
bours, aggregate these messages, and update their own representations accordingly.

3. Pooling Layers: These layers aggregate node-level representations to obtain a graph-
level representation. This global representation captures the holistic characteristics of
the entire graph.
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4. Output Layers: Depending on the task, GNNs may have different output layers such
as softmax layers for node classification, sigmoid layers for link prediction, or fully
connected layers for graph classification.

GNNs offer a versatile framework for analysing and extracting insights from complex rela-
tional data, making them indispensable in domains where data exhibit graph-like structures.

2.5.1 Graph Convolutional Networks

They aim to extend the concept of convolutional operations, traditionally applied in grid-like
data such as images, to irregular graph structures. One key feature of GCNs is their ability to
learn representations of nodes by aggregating information from their neighbours, similar to
how convolutional layers in traditional neural networks aggregate information from local
regions in grid-like data. Formally the output of a node in a GCN is calculated by aggregating
the features of its neighbours. GCN has the following layer-wise propagation rule Kipf and
Welling, 2016:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W (l)) (2.24)

where Ã = A+ IN is the adjacency matrix of the graph G with self-connections added (it is
a requirement for the processing). D̃ii = ∑ j Ãi j is a degree matrix, W (l) is a layer-specific
trainable weight matrix, or a kernel,σ is an activation function such as ReLU, H(l) is the data
matrix in the lth layer, H(0) = X .

2.5.2 Attention Graph Networks

Attention Graph Networks (AGNs) are a variant of Graph Neural Networks (GNNs) that
leverage attention mechanisms to selectively focus on relevant nodes or edges within a graph
during message passing. Unlike traditional GNNs that typically aggregate information from
all neighbouring nodes uniformly, AGNs dynamically compute attention weights for each
neighbour based on their relevance to the current node. This allows AGNs to adaptively
attend to important nodes or edges while ignoring irrelevant ones, enabling more efficient
and effective information propagation across the graph. More formally we can write the
update function over the edges as:

αi j = So f tmax(σ(W T
a .[Whl

i⊕Whl
j])) (2.25)

where αi j are the edge weights, W T
a ∈ R2d′ and W ⊆ Rd′×d are learned parameters and

d is the embedding dimension,⊕ is the concatenation operation. The combined message
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aggregation and update steps are a weighted sum over all the neighbours and the node, such
as:

H l+1
i = ∑

j∈Ni∪{i}
αi j.WH l

j (2.26)

For a more in depth description have a look at Veličković et al., 2017.

2.6 Human Pose Estimation

Human Pose Estimation is a well-established problem in computer vision which overcomes
simple human detection and aim at detecting single points of the human figures, such as
mouth, eyes, ears, shoulders and wrists, knees and feet and of course the torso.

Nowadays, many algorithms emerged and we explain in details two of the most used:
Openpose, Centernet and AlphaPose. Conversely, we only mention MediPipe for its spread
usage, but its implementation details are not public. OpenPose is one of the most well-
renowned bottom-up approaches for real-time multi-person body pose estimation. Just
like the other bottom-up approaches, Open Pose initially detects parts belonging to every
person in the image, known as key points, trailed by allocating those key points to specific
individuals. The pipeline is composed of a two-branch CNN (Convolutional Neural Network):
one predicts confidence of key-points presence and the other of affinity fields to connect
the joints (parts association). The difficult stage is associating keypoints with the correct
affinity fields (so the correct person) when multiple people are present and superimposed on
the image plane, and it is achieved with a graph technique.

(b) Part Confidence Maps

(c) Part Affinity Fields(a) Input Image (d) Bipartite Matching (e) Parsing Results

Fig. 2.6 Openpose Pipeline: Starting from the left: the input RGB image, then the part affinity
fields and Confidence maps retrieval are presented. Then the matching procedure where
keypoints are assigned to the correct skeletons is shown. Finally, the output drawn onto the
input image. [source Z. Cao et al., 2019].

CenterNet: This results in a regression-based one-stage multiperson human pose estimator
similar to the slow-RCNN. This pipeline utilises a novel heat-map regression approach to
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accurately detect human keypoints such as joints and body parts. Unlike traditional methods
that rely on complex multi-stage processes, CenterNet simplifies the pipeline by directly
regressing the keypoints locations from image features. Through its efficient architecture
and effective feature learning, CenterNet Pose Detector achieves impressive performance in
real-time applications. And it is, by design, a multi-person approach. Alpha Pose: Alpha-
Pose is a well-known top-down technique of pose estimation. The creators of this technique
suggest that top-down methods are usually based on the precision of the person detector, as
pose estimation is conducted on the area where the person is present. This is why errors in
localization and replicate bounding box predictions can result in the pose extraction algorithm
working sub-optimally. To solve this issue, the creators introduced a Symmetric Spatial
Transformer Network (SSTN) to pull out a high-quality person region from an incorrect
bounding box. A Single Person Pose Estimator (SPPE) is applied in this extracted area to
estimate the human pose skeleton for that individual. Mask-RCNN: This technique is very
similar to the top-down method, but the person detection step is conducted along with the
part detection step. Put simply, the keypoint detection phase and the person detection phase
are independent of each other.





Part I

Head Pose Estimation and Social
Interaction

Part I is focused on the retrieval of the head pose as a cue of social
interaction; the second half of the current Part presents an application
to a real task, which employs the head pose estimation algorithm
highlighting its utility and strength in real domains.





Introduction To Part I

Part I of this work is devoted to explaining motivations and goals for developing a Head Pose
Estimation pipeline from keypoints. It pauses on the importance of Head Pose Estimation for
many applications of Computer Vision where humans are at the core and main object of study,
such as all rehabilitative and video-surveillance scenarios, but also Human-Robot Interfaces.
Another focal point of the research is to build upon existing tools, to use consolidated
technology to carry on and open to new application scenarios. Indeed, our pipeline relies on
Human Pose Detectors and focuses its development on interoperability with several state-of-
the-art Estimators. Moreover, special attention is devoted on the consumption -in terms of
power and computational resources- of our solution both for environmental concern and also
for ubiquitous adoptions also on embedded technology or at the edge of the infrastructure.
Indeed, it adds a negligible amount of computation to the one of a Human Pose Estimator.
We also present several experiments to asses our proposed solution, to demonstrate its points
of strength and to investigate its weaknesses presenting a very broad and complete set of
tests. The scientific curiosity has driven the experimental part to be as solid and extended as
possible. Furthermore, we tested the Head Pose solution as a component in a second new
algorithm we invented and tested. This second algorithm is much simpler than the first one,
but it is more application-oriented and serves to understand if two people are looking at
each other in a scene. This, we claim, can be beneficial in many social science experimental
settings, to study groups and social interactions. The following chapters unfold as follows:

• Introduction and state of the art

• Head Pose Estimation methodology

• Experiments, results and discussions





Chapter 3

Literature Review

This chapter serves as a comprehensive introduction and state-of-the-art exploration of Head
Pose Estimation and its applications, delving into various aspects crucial to the understanding
and advancement of the research area. It encompasses a multifaceted examination of Social
Interactions Analysis under a computer vision perspective, Gaze understanding and Head
Pose Estimation methodologies. Through a synthesis of theoretical frameworks, empirical
analyses, and methodological approaches, this chapter offers the reader a complete yet
non-exhaustible introduction to the topics of this first part of this work.

3.1 Social Interactions

Detecting and recognising social interactions from videos is becoming a relevant topic in
Computer Vision and Artificial Intelligence, mainly because a massive amount of human
communication and interactions is conveyed through nonverbal cues. In this regard, and
on the idea of creating intelligent machines, some scientists claim that “next-generation
computing needs to include the essence of social intelligence” (Vinciarelli et al., 2009).
Some others (Bolotta and Dumas, 2022) argue that “social interactions not only are largely
unexplored in this field but also are an essential element of advanced cognitive ability and
therefore constitute metaphorically the dark matter of AI”. They also suggest that intelligence
comes in time and not over time, implicitly saying that modelling time in computer vision
helps to think more like humans (do we want AI to resemble human intelligence? (Cristianini,
2023)).

Following these ideas the research is moving in multiple directions: human-human
interaction (both dyadic and group interactions (Corbellini et al., 2022)) and human-machine
interactions (Suma, 2019). We could ask whether computer vision -and not other disciplines-
should take a step forward in addressing these issues; one strong motivation is expressed in
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(McMahon and Isik, 2023) which outlines “the behavioural evidence that social relations in
particular are processed visually”. In this respect, computer vision is the enabling technology
to push machines to be more in touch to humans. There are a plethora of small tasks that
need to be addressed to solve such an ambitious goal. Our brain does everything in a very
robust and natural way, with almost no effort, but machines need to learn everything from
scratch. Some studies suggest that “systems that explicitly represent social primitives in their
input do better than unstructured end-to-end learning systems at detecting interactions”. This
approach is the one followed in our work where every task has its own importance and it is a
brick to build novel and richer algorithms. In the social interaction domains, we focus on
the specific case of dyadic interactions and among them on the interactions conveyed by the
gaze.

3.2 Gaze Understanding

Recent literature, supported by social sciences has investigated the role of gaze in the human
nonverbal communication realm; in the following, we will have a brief excursus through some
of the more recent or important work addressing the topic. We commence by delineating a
purely geometric approach proposed in the literature (Soo Park and J. Shi, 2015)(Park et al.,
2012). In this method, the gaze is conceptualized as a cone characterized by a Gaussian
distribution positioned in front of the subject. In particular, the scene information is captured
by head-mounted cameras. The focal interest of the work is the study of the spatio-temporal
characteristics of the birth and death of gaze concurrence (useful in human-robot interactions
and in the monitoring of neurological and developmental disorders). Another work states
that the eye gaze can be approximated by the head orientation ±35◦ (Massé et al., 2018),
and the method to solve the problem of inferring the gaze and linking it to the interactions is
based on State changes and Kalman filters for the state estimation; however the experimental
environments is very much controlled.

Probably the first article using Deep Neural Networks to solve the Gaze Direction problem
is "Where are they looking?" (Adria Recasens et al., 2015). The problem is formulated as a
regression problem: in an image depicting many people detect where each one is focusing
their attention, as a (x,y) coordinate on the image plane. (Adria Recasens et al., 2015)
proposes also the GazeFollow dataset, which is nowadays a benchmark for this type of
application. The dataset has been used in (H. Zhao et al., 2019) by Zhao et al., and it states
that biases are present so they propose a new dataset GazeShift. And, their approach to
tackling the problem is based on a CNN which projects the gaze direction on a polar plane,
and traces it back to the image plane; out-of-frame target are not taken into account in this



3.2 Gaze Understanding 33

method. In (Chong et al., 2018; Chong et al., 2020) we found a CNN which tries to grasp if a
person is looking at a target which is inside the frame (or scene) or not, and a novel dataset
built on purpose for the task VideoAttentionTarget is presented. Another interesting work
explores six different types of interaction using gaze: single, mutual, avert, refer, follow, and
share (for more details refer to (L. Fan et al., 2019). The latter six actions are consistently
performed by humans, yet proving challenging for machines to discern due to their contextual
dependencies, such as location and audio cues. They presented a new dataset Vacation (L.
Fan et al., 2019) and a new spatiotemporal graph network to detect and classify these six
subtle interactions.
A specific case within the realm of social interaction analysis is that of dyadic interactions
involving two individuals. In this context, the initial phase involves identifying pairs of
individuals engaged in interaction, commonly achieved through the detection of mutual gaze
or "Looking At Each Other" (LAEO) as referenced in the literature (M. J. Marín-Jiménez
et al., 2014; L. Fan et al., 2019). In (Manuel Marin-Jimenez and Ferrari, 2011) the TVHID-
LAEO dataset has been realised, and afterwards, also the AVA-LAEO and UCO-LAEO
have been proposed in (Marin-Jimenez et al., 2019) by the same authors. An early work on
LAEO detection in images utilises a Gaussian process predicting yaw and pitch, generating a
LAEO score per frame (M. J. Marín-Jiménez et al., 2014). More recently, LAEO-Net and
LAEO-Net++, introduced by the same authors, proposed a CNN-based extension to estimate
LAEO over temporal windows (Marin-Jimenez et al., 2019; M. Marín-Jiménez et al., 2020).
Recent advancements include an end-to-end pipeline based on Transformers for mutual gaze
detection (Guo et al., 2022) and a late fusion approach combining head and scene features
encoded with variants of a ResNet (F. Chang et al., 2023).

Multimodal approaches have also been explored for mutual gaze detection. In (Trabelsi
et al., 2017), authors leverage RGB data with depth information, while (Kukleva et al.,
2020) presents an approach integrating vision and text to jointly address interaction detection
and long-term relationship prediction. Joint learning of LAEO and 3D gaze estimation is
discussed in (Doosti et al., 2021), where each face is detected and some features are extracted
using a Neural Network; then all the faces detected are passed to a second network with their
relative (3D) positions and features to be classified for LAEO frames.

In comparison to existing methods, our LAEO method relies solely on head orientation
as a proxy for mutual gaze, which introduces limitations concerning the usage of the proper
gaze. However, it offers notable advantages, such as effectiveness even when subjects are
positioned at a distance from the camera, expanding its applicability to diverse real-world
scenarios. Moreover, our presented approach is engineered to be effective but simple enough
to be placed in cascade to our HHP-net without compromising its speed and lightweight
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nature. Our HHP-net is fast and very lightweight, so the usage of a deep network as in (Guo
et al., 2022) was not an option for us.

3.3 Human Pose Estimation

Human Pose Estimation, aiming to extract the semantics and topology of the human body
from images, finds applications in several domains, including human motion analysis in
sports (Colyer et al., 2018) and medicine (Moro et al., 2022), action recognition (Luvizon
et al., 2020; L. Shi et al., 2019), human-machine and social interaction analysis (Luvizon
et al., 2020; Song et al., 2021), biometric recognition (Barra et al., 2020) and driver attention
detection (Campbell, 2012; J. Wang et al., 2021).

Comprehensive studies (Gong et al., 2016; Zheng et al., 2023; J. Wang et al., 2021) anal-
yse differences in approaches like 2D (Z. Cao et al., 2019; K. Duan et al., 2019; Bazarevsky
et al., 2020) versus 3D (J. Yu et al., 2017; H. Zhou et al., 2021), handcrafted features versus
deep learning, and single-person versus multi-person scenarios. The focus here is on 2D
pose estimation from monocular images, where we may identify bottom-up algorithms like
Openpose (Z. Cao et al., 2019) and top-down approaches like AlphaPose (Fang et al., 2022).
Regarding computational performances, one of the fastest and most recent methods is in the
MediaPipe framework (Lugaresi et al., 2019), employing a combined heatmap, offset, and
regression approach (Bazarevsky et al., 2020)). Distinctions in algorithms include the number
of key points and topology, with ’standards’ like COCO format (Lin et al., 2014) with 17 key
points, OpenPose (Z. Cao et al., 2019) with 25 key points, and MediaPipe encompassing 33
key points. More complex approaches aim to incorporate spatial and appearance consistency
(W. Yang et al., 2016) and video-based methods (Luo et al., 2018), but are out of the scope
of this work.

3.4 Head Pose Estimation

Head pose estimation has been addressed by a number of relatively recent methodologies
(Zhiwen Cao et al., 2021a; Y. Zhou and Gregson, 2020; Madrigal and Lerasle, 2020; H.
Zhang et al., 2020; Hai Liu et al., 2021; Dhingra, 2022; Hai Liu et al., 2022), with classical
applications to Human-Machine Interaction or to social interaction analysis. The more recent
and comprehensive survey on the topic is probably (Abate et al., 2022).
Some methods use additional information such as depth (Gabriele Fanelli et al., 2011;
Mukherjee and Robertson, 2015; Hong et al., 2018) or time (J. Gu et al., 2017), but also
points clouds as in (Xu et al., 2022) or infrared as in (T. Liu et al., 2021). In the field of
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driver-assistive technology and safety, infrared cameras are used to estimate the head pose(Ju
et al., 2022), but with ad-hoc solutions due to the camera setup (the camera is commonly
located in the centre of the rear-view mirror of the car). Differently from these approaches
which use different sensors, in our work, we only employ RGB images, which guarantee less
expensive and more general applications.
In alternative methodologies, the head pose is derived by fitting an image onto a 3D face
model, or on some approximation of it. An estimation of a 3D model is first presented in (G.
Fanelli et al., 2013), while more recently deep learning-based methods have been presented:
such as 3DDFA (X. Zhu et al., 2019), a CNN able to fit a 3D model to an RGB image, or
SADRNet (Ruan et al., 2021) which specifically tackles the problem of face occlusions.
Furthermore, FAN (Bulat and Tzimiropoulos, 2017) is a state-of-the-art facial landmark
detection method, that performs also face alignment. These approaches propose complex
computational pipelines and have demonstrated the potential to yield notably accurate results.
One of the most recent challenges is in estimating pose directly from individual 2D images.
In this respect, we start by mentioning a different but related task of estimating the 2D gaze:
GazeFollow (A. Recasens et al., 2015) is a two-pathway CNN architecture that estimates the
apparent direction of the human gaze and the object being observed; it combines saliency
maps of the whole image with the position of subjects’ head to obtain a pose prediction. A
very efficient strategy to estimate the apparent direction of gaze is proposed in (Dias et al.,
2020).
Moving to 3D head pose estimation, nowadays it is mostly obtained by deep learning archi-
tectures that start from the output of face detectors, often implemented as a Convolutional
Neural Network (CNN). Besides recent few exceptions such as (Bisogni et al., 2021), the
literature presents several works starting from images: (Shao et al., 2019) propose an adjust-
ment of the ROI obtained by face detection (it incorporates an offset around the face) and a
combined regression and classification loss. HopeNet is a regression method with ResNet and
a joint MSE and cross-entropy loss (Ruiz et al., 2018). LwPosr (Dhingra, 2022) introduces
a lightweight architecture based on a mixture of depthwise separable convolutional and
transformer encoder layers, structured in two streams and three stages to provide fine-grained
regression. Transformers have also been used in (Hai Liu et al., 2023) which specifically
addresses challenges related to occlusions, illuminations, and extreme orientations. FSA-
net (T.-Y. Yang et al., 2019) is a two-stream multi-dimensional regression network able to
provide accurate fine-grained estimations. (Rahmaniar et al., 2022) presents an approach
based on a combination of coarse and fine feature map classification to train a multi-loss
CNN architecture. CNNs are also used in (Hsu et al., 2018), where an L2 regression loss and
an ordinal regression loss are jointly employed, and in (Albiero et al., 2021), which regresses
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6DoF pose in a Faster R-CNN–based framework.
In contrast to these methods, our 3D head pose estimation pipeline relies exclusively on
the output of a human pose detector, similar to the strategy proposed in (Dias et al., 2020).
This allows us to design a very lightweight architecture, capable of attaining accurate results,
acting sequentially to a 2D pose estimator. Our approach also differs from multi-task ap-
proaches such as KEPLER (Kumar et al., 2017) – predicting facial key points and pose–,
Hyperface (Ranjan et al., 2019) – simultaneously performing face and landmark detection,
pose estimation and gender recognition –, or the method proposed in (Xia et al., 2022) –
jointly learning Head Pose Estimation, face alignment and face tracking. Concerning these
methodologies, our approach prioritises modularity, offering the flexibility to seamlessly
integrate with various pose estimators.
As recently observed in (Y. Zhou and Gregson, 2020), head pose estimation is intrinsically
harder on certain viewpoints. Starting from this observation, in (Ruiz et al., 2018) an ap-
proach for improving on lateral views is proposed, to obtain wide-range head pose estimation.
Instead, our work follows the observation in (Dias et al., 2020): certain viewpoints are
associated with different levels of uncertainty, creating a large discrepancy in accuracy. This
can be formalised with the concept of aleatoric heteroscedastic uncertainty (Kendall and Gal,
2017), which depends on the inputs and may be estimated from data. Conventional deep
learning methods cannot estimate the uncertainty of their inputs, consequently, Bayesian
deep learning is becoming very popular as an effective approach to address this limitation. In
our method we propose a multi-task approach where a task is associated with one of the three
pose angles, extending (Kendall and Gal, 2017) to the multi-loss case. Indeed (Cipolla et al.,
2018) reports a loss with homoscedastic uncertainty, also called task-dependent uncertainty,
that is constant across different inputs. In this way, their model can learn the weight of each
task.



Chapter 4

Head Pose Estimation: HHP-Net

This chapter introduces our algorithm for Head Pose Estimation and the LAEO algorithm,
which uses the head pose to retrieve if people in the scene are looking at each other. The
method called HHP-Net is particularly attractive due to its lightness and versatility with
respect to different pose estimators.

4.1 Introduction

Social interaction analysis is becoming increasingly important in the computer vision com-
munity, thanks to the fact that some novel methods open the field of new studies in this
context. The recent advances of Neural Networks and the accessibility of hardware resources
drawn the interest towards the automation of some known techniques used to monitor human
behaviours and interactions.

There is a lot of information that can be acquired via cameras to analyse people and
interactions in couples or groups, in the social analysis domain. One of these cues is the
head orientation which can give information about the location or direction of interest of a
person in the scene. Furthermore, in Human-Machine interactions the amount of information
acquired by the head direction -so indirectly to the focus of attention- can be fundamental:
both for safety issues, a person often moves towards its focus of attention, and also for
humanoid robotics, because humans use the head also to take turns in speaking, finding
confirmation or pointing to the listener their focus of attention.

In this chapter, we will outline our novel approach (Cantarini et al., 2022; Figari Tomenotti
et al., 2024) designed to address the task of Head Pose Estimation using single RGB images
as input. The output of our methodology consists of three vectors describing the head pose
orientation in the 3D World and an uncertainty value which states how much the network is
confident of its output.
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We will emphasise its efficiency in terms of computational time and resources and
highlight its flexibility as a plug-in method for any human pose estimator. The chapter is
organised in the following manner:

• Introduction to the Neural Network architecture

• Explanation and derivation of our proposed loss function

Fig. 4.1 Head Pose expressed as a triplet of angles: Yaw, Pitch and Roll [source (Fernández
et al., 2016)].

4.2 Problem Formulation

The starting point of our approach is the output of a 2D pose estimator providing a set of key
points describing the pose of a human body in an image (Z. Cao et al., 2019; K. Duan et al.,
2019; Lugaresi et al., 2019). These detectors commonly provide also a confidence measure
on the keypoint location estimate, which represents an additional source of knowledge that
can be injected into our approach.

We model the estimation of the head orientation as a multi-task regression problem, where
a Neural Network predicts the 3D vector of the head orientation with angles in Euler notation
(yaw, pitch and roll) see Fig. 4.1. The input is formed by a set of n semantic keypoints located
on the image plane: {(xi

1,x
i
2,c

i)}n
i=1, with xi

1 the horizontal and xi
2 vertical coordinates and ci

the confidence of the i-th keypoint. Coordinates are centred and normalized according to,
respectively, their centroid and maximum value; ci is provided in the range [0,1]. The value of
confidence is particularly important, as it encodes missing points (c = 0) and low confidence



4.3 HHP-Net: The architecture 39

points. These situations may frequently occur in real-world applications, in particular in
human-human interaction, because of occlusions, self-occlusions or lateral poses.

Fig. 4.2 A visual representation of our architecture. A set of keypoint locations with associ-
ated confidences {xi

1,x
i
2,c

i}n
i=1 is provided in input to the network, and processed with 1D

convolutional layers. With a CGU we combine the intermediate outputs, that is then provided
to the second part of the networks, composed of 3 FC layers to produce the final output, i.e.
yaw, pitch and roll estimates with associated uncertainties [source (Figari Tomenotti et al.,
2024)].

4.3 HHP-Net: The architecture

The Fig. 4.2 provides a sketch of our architecture. We formalize the input of the network as a
triplet of vectors x1 = [x1

1, . . . ,x
n
1], x2 = [x1

2, . . . ,x
n
2] and c= [c1, . . . ,cn] incorporating positions

and confidence of n key points describing a face. The input vectors are first processed in
independent streams, with 5-channels 1D convolutions, followed by a Leaky ReLU for x1

and x2 – to avoid vanishing gradient issues – and sigmoid activation for the confidence vector
c – to smoothly control the impact of different confidence values.

The outputs of the 1D convolutional layers are flattened to obtain x∗1, x∗2 and c∗ from
the independent streams. They are then combined, using an element-wise multiplication
to obtain two vectors v1 = x∗1⊗ c∗ and v2 = x∗2⊗ c∗, following the logic of the Confidence
Gated Unit (CGU) proposed in (Dias et al., 2020). The CGU is composed of ReLU+sigmoid
activation functions. As visualised in Fig. 4.3, ReLU and sigmoid are applied, respectively,
to coordinates (xi

1 or xi
2) and confidence (ci); their outputs are finally multiplied. The CGU

emulates the behaviour of a gate, controlled by the confidence, as it returns values near 0 in
the case of low confidence.



40 HHP-Net

Fig. 4.3 Confidence Gated Unit (CGU) [source (Figari Tomenotti et al., 2024)].

The two gated outputs v1 and v2 are concatenated to obtain a single vector, which
is provided to the intermediate part of the architecture, where a sequence of three fully
connected layers consisting of 250, 200 and 150 neurons respectively is employed. Each
layer includes a LeakyReLU, again to avoid vanishing gradients, as a non-linear activation
function. Three output layers return the estimated angles, each of which is associated with
its uncertainty value – details are reported in the next section.

4.4 The Loss Function

To train the network we design a multi-task loss function incorporating heteroscedastic
aleatoric uncertainty. With respect to classical Neural Networks, a Heteroscedastic Neural
Network provides an estimate of the uncertainty of each prediction. This is particularly useful
to capture noise within input observations: noise in our case is related to inherent noise in key
point localization which may be affected by difficult viewpoints or occlusions. Indeed, some
poses are intrinsically noisier and more prone to self-occlusions (see for instance examples
in Fig. 5.1). This type of uncertainty may be learned as a function of the data, thus the output
will include not only the three angles (yaw, pitch, roll), stored in a vector q = [qy,qp,qr], but
also the uncertainty values associated with them σ = [σy,σp,σr].

We now discuss how we derive the multi-task loss function starting from a simple
heteroscedastic loss formulation

4.4.1 Heteroscedastic Single-Task Loss Function: general formulation

Without loss of generality, we reason on a simple regression problem where we want to
estimate a function fω : Rn→ R so that

y = fω(x)+ ε(x). (4.1)



4.4 The Loss Function 41

The output is thus the sum between the function fω(x) – that depends on some parameters
ω and the input x – and ε(x), that is the noise only depending on the input x (Nix and Weigend,
1994).

To quantify the uncertainty, we train a model to learn from a training set X = {(xi,yi)}ℓi=1

a function that estimates both the mean and the variance of a target distribution using a
maximum-likelihood formulation of a neural network (MacKay, 1992). To this purpose,
we need to assume that the errors are normally distributed ε(xi)∼N

(
0,σ(xi)

2) hence the
likelihood for each point xi is:

p(yi|xi;ω) = N ( fω(xi),σ(xi)
2) =

1√
2πσ(xi)2

e

(
− (y− fω (xi))

2

2σ(xi)2

)
(4.2)

where yi is the mean of this distribution and σ(xi)
2 is the variance. Hence, from a structural

point of view, in addition to the estimation of the yi, the heteroscedastic neural network
architecture must be modified to also output a prediction of the variance: the latter quantifies
the uncertainty associated with the prediction based on the noise in the training samples.
Notice that the uncertainty is a function of the input e.g. if the noise is uniform over all the
input values, the uncertainty should be constant.

Applying the logarithm to both sides of Eq. (4.2), we obtain a log-likelihood to maximize
over the training set, i.e.

max
ω

1
n

ℓ

∑
i=1
− 1

2σ̂ (xi)
2 (yi− f̂ω (xi))

2− 1
2

log σ̂ (xi)
2− 1

2
log(2π)1 (4.3)

where f̂ω and σ̂ are, respectively, the prediction function and uncertainty estimated by the
heteroscedastic neural network. Equivalently:

min
ω

1
n

ℓ

∑
i=1

1

2σ̂ (xi)
2 (yi− f̂ω (xi))

2 +
1
2

log σ̂ (xi)
2 (4.4)

An alternative formulation based on the change of variable ŝi = log σ̂(xi)
2 can be adopted

to avoid exploding uncertainties during training (Kendall and Gal, 2017), leading to the final
problem formulation:

min
ω

1
n

ℓ

∑
i=1

1
2

e(−ŝi)(yi− f̂ω (xi))
2 +

1
2

ŝi (4.5)

1In the following the last term is ignored as it is a constant.
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from which we derive the heteroscedastic loss function in Eq. (4.6) similarly to (Kendall and
Gal, 2017)

LH(y, f̂ω(x), ŝ) =
1
2

e(−ŝ)(y− f̂ω (x))2 +
1
2

ŝ (4.6)

Notice finally that

LH(y, f̂ω(x), ŝ) =
1
2

e(−ŝ)LMSE(y, f̂ω(x))+
1
2

ŝ (4.7)

where LMSE is the classical square loss.

4.4.2 Heteroscedastic Multi-Task Loss Function:

We now specify to our problem the general formulation of the heteroscedastic loss function
derived in the previous section.
We extend the model in Eq. (4.1) to represent a multi-task problem where the three compo-
nents of the output are q = [qy,qp,qr] and the associated uncertainties are σ = [σy,σp,σr]

(as usual we refer to the three angles yaw (y), pitch (p) and roll (r)). Hence, the single tasks
within the multi-task formulation refer to the estimation of the three angles separately. In our
solution, we estimate them by optimizing a unique function and exploiting their synergies.
The input is composed of x1, x2, and c, that are respectively the coordinates of the key points
detected on the face and the confidence in their detection.
We can now derive the multi-task heteroscedastic loss function we employ in our method:

LHMT (q, q̂, σ̂) = ∑
k∈{y,p,r}

LH(qk, f̂k(x1,x2,c), ŝk)

= ∑
k∈{y,p,r}

(
1
2

e(−ŝk)(qk− f̂k (x1,x2,c))2 +
1
2

ŝk

)
. (4.8)

where
q̂ = f̂ω(x1,x2,c) = [ f̂y(x1,x2,c), f̂p(x1,x2,c), f̂r(x1,x2,c)] (4.9)

and
σ̂(x1,x2,c) = [σ̂y(x1,x2,c), σ̂p(x1,x2,c), σ̂r(x1,x2,c)] (4.10)

are, respectively, function and uncertainty estimated by the heteroscedastic neural network,
and for k ∈ {y, p,r}

ŝk = log σ̂k(x1,x2,c)2. (4.11)

With this formulation, we obtain a data-driven uncertainty estimation for each angle, used
as a weight of each sub-loss. The uncertainty can increase the robustness of the network when
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dealing with noisy input data, we will empirically show a correlation between uncertainty
and estimation error

4.5 Human Interactions: LAEO detection

We finally discuss a task where our method finds a natural application, i.e. the analysis of
social interactions, for which the head directions represent a strong visual cue of non-verbal
human-human communication (Abele, 1986). We consider scenarios where a small group of
people is involved in a social experience, and we pay particular attention to people looking at
each other (LAEO). Particular requirements for developing this task were devoted in finding
a technical solution with very few computational requirements, to be added to our Head Pose
Estimation pipeline without compromising its lightness and computational efficiency. So the
goal was not to have a state-of-the-art solution such as (M. Marín-Jiménez et al., 2020) but
to use it as a benchmark for our performances.

Fig. 4.4 A visual sketch with our formulation of the LAEO detection task (for readability the
vectors are denoted with arrows) [source (Figari Tomenotti et al., 2024)].

LAEO algorithm. Fig. 4.4 provides a visual sketch of our formulation of the task. Let
us consider the two people present in the scene, A and B in our example, whose posi-
tions can be compactly described with the head centroids (xA,yA) and (xB,yB). We start
from the head pose estimated for each of them, qA and qB respectively, and obtain a pro-
jection of the corresponding direction on the image plane: for the subject A, given the
triplet of angles (qA

y ,q
A
p,q

A
r ), we derive the end-point of the head direction on the image

plane (x′A,y
′
A) as x′A = sin(qA

y ) and y′A = −cos(qA
y )sin(qA

p). The projection is computed as
HA = (x′A− xA,y′A− yA). Similarly we obtain HB for the other subject.
Then, we estimate a measure of interaction between each pair of people considering the
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vector uAB connecting the two head centroids, the vector HA and the angle αA between the
two: the measure of the interaction is given by the cosine of the angle αA. The same applies
to person B with uBA = −uAB and αB. The average between the two measures gives the
LAEO value and thresholding on such measure allows us to detect LAEO pairs.
We build our approach on this baseline method, incorporating knowledge from the uncertainty
associated with the 3D angles (the method is sketched in Algorithm 1). Given the triplets of
uncertainties associated with the two heads poses, (sy

A,s
p
A,s

r
A) and (sy

B,s
p
B,s

r
B), we compute

the averages, ŝA = 1
2(s

y
A + sp

A) and ŝB = 1
2(s

y
B + sp

B); the roll component is discarded because
it does not affect the gaze vector projection on the image plane. Following the intuition that
estimates with high uncertainty should be less reliable, we compute a weight to adjust the
contribution of each subject to the interaction measure depending on the confidence we have
in it, essentially deciding a threshold above which the estimate is considered unreliable. For
the subject A this can be formulated as wA = 1X(ŝA) where X = [0,δ ] with δ an appropriate
threshold on the uncertainty, and 1X : R→{0,1} the indicator function on the interval X . δ

is computed as the average uncertainty plus the standard deviation, both of them computed
on the entire training set (in the experiments δ = 7).

Algorithm 1 Fast LAEO Detection
1: Input: Head centroids (xA,yA) and (xB,yB); projections of head directions (x′A,y

′
A) and

(x′B,y
′
B); uncertainty weights wA and wB

2: uAB← (xB− xA,yB− yA)
3: HA← (x′A− xA,y′A− yA)
4: HB← (x′B− xB,y′B− yB)

5: cos(αA)← uAB·HA
|uAB|·|HA|

6: cos(αB)← −uAB·HB
|uAB|·|HB|

7: Compute the level of mutual interaction LAEOvalue = wAcos(αA)+wBcos(αB)
8: Return LAEOvalue

4.5.1 Extension to 3D

This small section presents two ideas to extend in 3D what has been done in 2D until now.
The former 2.5D extension can be done for the LAEO algorithm by only extracting some

contextual information and trying to understand if the two people we want to calculate the
LAEO for, are on the same plane also in the 3D World. Because, one of the main weaknesses
of our method is that two parallel planes, coplanar with the camera are indistinguishable and
so people not in a real LAEO interaction can be counted generating a false detection. To this
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respect, a simple check on the skeletal dimensionality may help to have at least a couple of
different planes (foreground and background) to do the computations.

The full 3D extension of the LAEO algorithm is straightforward to theorise because
instead of evaluating one angle and computing its cosine, we need to use two angles and a
3D reference system. It is less straightforward to implement, especially with computational
constraints, indeed we leave it for future work. The idea should be to have a full reconstruction
of the z-coordinate, so having a depth map for the entire image and using our computed 3D
head pose in a real 3D World. So having one LAEO algorithm working on the xy plane
(camera plane) and one working on the yz plane (a bird-view plane), and then detecting a
LAEO interaction if and only if on both planes the detection is positive and above threshold.





Chapter 5

Experiments on Head Pose estimation
and LAEO Detection

In this chapter, we report the experimental analysis we performed to assess our approach.
We first discuss in detail the implementation, the datasets and the experimental protocols
we adopted, and then provide qualitative and quantitative results. In particular, we perform
ablation studies to show the benefit of each element in the method, discuss the role of the
uncertainty and the relation with the estimated error, and evaluate the transfer capability of
the model across datasets.
It is worth observing that there are no free parameters to be tuned in our method.

5.1 Implementation Details

Unless otherwise stated, we adopt OpenPose (Z. Cao et al., 2019) as a key points extractor, as
it provides a good balance between efficiency and accuracy. Among the 25 body key points
it provides, in this work we focus on the five located on the face – left and right eye, left and
right ear, nose – thus obtaining a triplet of input vectors x1 = [x1

1, . . . ,x
5
1], x2 = [x1

2, . . . ,x
5
2]

and c = [c1, . . . ,c5].
For the initialization, the weights of each layer are randomly sampled from a normal distribu-
tion with µ = 0 and σ2 = 0.05. The network has been trained for a number of epochs that
ranges from 100 to 1000 depending on the dataset. We used Adam as an optimizer, with a
learning rate 0.001, and a batch size of 64. The weights associated with the best validation
loss have been selected as the final model1.

1Code and pre-trained weights are available at https://github.com/Malga-Vision/HHP-Net
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5.2 Datasets and Protocols

Fig. 5.1 Sample frames from the public datasets we adopted in our experimental analysis:
BIWI (top row), AFLW-2000 (middle row), and 300W-LP (bottom). For readability of the
figures, we report their greyscale version with an arrow in red which is the 2D projection of
the head direction. Being the projection of a 3D vector, it can also be a point, e.g. like in the
top-left image where the direction of view is ’outside’ the page [source (Figari Tomenotti
et al., 2024)].

We evaluate the effectiveness of our approach on three different datasets (see sample
frames in Fig. 5.1):

• BIWI (Gabriele Fanelli et al., 2011) includes ∼ 15K images of 24 people acquired in
a controlled scenario. The head pose orientation covers the range ±75o for the yaw
angle and ±60o for the pitch. The ground truth has been obtained by fitting a 3D face
model.

• AFLW-2000 (X. Yin et al., 2017) contains the first 2000 images of the in-the-wild
AFLW dataset (Martin Koestinger and Bischof, 2011), a large-scale collection of
face images with a large variety in appearance and environmental conditions. The
annotation has been obtained by fitting a 3D face model.
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• 300W-LP (Sagonas et al., 2013) is a collection of different in-the-wild datasets, grouped
and re-annotated to account for different types of variability, such as pose, expression,
illumination, background, occlusion, and image quality. A face model is fit on each
image, distorted to vary the yaw of the face.

For all the datasets, the ground truth takes the form of a triplet of angles in Euler notation
expressed with respect to a reference frontal pose
According to previous works (e.g.(T.-Y. Yang et al., 2019)), in the comparative analysis we
adopt two main protocols:

P1 Training is performed on a single dataset (300W-LP), while BIWI and AFLW-2000
are used as test.

P2 Training and test set are derived from the BIWI dataset using the split 16-9 sequences,
for training and test respectively, following the procedure proposed in (G. Fanelli et al.,
2013).

5.3 Method assessment

In this section, we present an experimental assessment to discuss the core properties of our
approach.
The output is visualized by projecting the angles on the image plane according to the Tait-
Bryan angles. The projections are computed as

xr = cosqy · cosqr +∆x (5.1)

yr = cosqp · sinqr + cosqr · sinqy · sinqp +∆y

xg =−cosqy · sinqr +∆x

yg = cosqp · cosqr− sinqy · sinqp · sinqr +∆y

xb = sinqy +∆x

yb =−cosqy · sinqp +∆y

where (xr,yr), (xg,yg) and (xb,yb) are the image coordinates of the endpoints of red, green
and blue vectors, while (∆x,∆y) is the application point they have in common.

In the following, we provide an assessment of the properties and meaningfulness of the
uncertainty measures.
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Fig. 5.2 Cumulative angular error as a function of the average uncertainty (red). And data
proportion with at least the uncertainty reported on the x-axis (blue) [source (Figari Tomenotti
et al., 2024)].



5.3 Method assessment 51

Fig. 5.3 Shows the occurrences of test data divided in bins of absolute difference between
Uncertainty (in degrees) and the Error (in degree); the zeroth bin on the x-axis is when error
and uncertainties coincide. Left: Yaw angle. Centre: Pitch angle. Right: Roll angle. [source
(Figari Tomenotti et al., 2024)].

5.3.1 Uncertainty Estimations Quality

Fig. 5.2 reports a cumulative analysis of the amount of data associated with a given uncer-
tainty, highlighting how the average error grows with the uncertainty – in agreement with
what has been reported in (Dias et al., 2020).
Given the assumptions in Section 4.4.1 of a normal distribution for the errors, the σ(xi)

2 is
the variance of this distribution and the parameter we are going to estimate for each angle
in the regression process. So, fixed one angle (e.g. yaw) it can be seen as the variance of
the retrieved angle (yaw). Under this perspective, it is straightforward to read it in degrees.
However, having implemented the algorithm and defined the uncertainty as log(σ̂(xi))

2 or
better log(σ̂(x1,x2,c))2, we retrieved the degree information as

log(σ̂(x1,x2,c))2 = si⇔ σ =
√

esi (5.2)

Hence, the interpretability of our uncertainty measure is strengthened by the fact it can be
expressed in degrees, as the estimated angles. In this way, the two outcomes of our model can
be directly compared. In Fig. 5.2 (bottom) we report the histogram of the absolute value of
the difference between the angle and corresponding uncertainty. It can be observed that it is
predominantly very low, in 71% of the cases below 3 degrees, 88% below 5 degrees and 98%
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below 10 degrees. This shows that the uncertainty measures can be adopted as an indicator
of the reliability of our estimated angles. To have an idea about how much the uncertainty
and the error coincide we plot the difference between one and the other in Fig. 5.3. The more
data fall on the small x-axis values, more uncertainty and error coincides.
Similarly to what was observed in (D. Feng et al., 2019), we also notice a strong correlation
between the uncertainty values associated with the three predicted angles. To quantify the
correlation we computed the Pearson correlation between the uncertainties of all pairs of
angles, obtaining 0.72 for (yaw, pitch), 0.78 for (yaw, roll), and 0.92 for (pitch, roll).
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Fig. 5.4 Examples of how the uncertainties (in degrees) are influenced by the instantaneous
head pose of a subject moving in front of a camera over time. We report in blue the yaw
uncertainty, in orange the pitch uncertainty and in yellow the roll uncertainty. In dotted-purple
we mark the mean uncertainty. The scale is in degrees of uncertainty. It can be observed
that the uncertainties are very close to zero for the neutral head pose (frame 1 of the first
sequence) and start to increase when the head rotates [source (Figari Tomenotti et al., 2024)].



54 Experiments

20 40 60 80 100 120 140 160 180

Epochs

5

10

15

20

Te
s
t 

v
id

e
o

Uncertanties in deg during training, on validation videos

50

100

150

200

250

Fig. 5.5 This plot shows the uncertainties (sum on the three angles) during the training. On
the x-axis, there are the epochs. On the y-axis, there are the videos (from which the validation
data is composed). The colour code shows in blue a small uncertainty and the more yellow
the higher the errors.

In the Fig. 5.5 we can appreciate how the network learns the uncertainty estimation. We
know that in each epoch, each validation video (validation data) is still the same with the
same amount of complexities and the same keypoints, but the network learns how to use the
keypoints to extract the correct angles and get more sure about its predictions. So we can
state that the rows exhibiting the more yellow components are the ones with more difficult
subjects to be estimated. The few which remain a bit more ’yellowish’ also at the end have
the subject with some ambiguous or difficult pose to be estimated.

5.3.2 Uncertainty Estimation and Model Interpretation.

We now analyse the factors that may influence the uncertainty estimation, with a focus on
the characteristics of the head pose to be predicted. In Fig. 5.4 we report the trend of the
uncertainty associated with the prediction obtained from video sequences where a subject
rotates the head offering different test poses to the method. Representative frames, providing
an intuition about the transitions between poses in the sequence, are reported below the
plot. It is easy to observe that for some poses (the ones associated with ambiguous views or
partial occlusions that hide some key points on the face) the uncertainty is higher. The lowest
uncertainty values are associated with frontal views, the ones providing the most visible and
non-ambiguous key points.
Inspired by these observations, we now evaluate the dependence of the uncertainty and the
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error on the quality and quantity of the input key points.

5.3.3 On the Number of Keypoints.

We observe the influence of the quality and quantity of input semantic features on the final
head pose estimate. In Fig. 5.6, we analyse the performance of our method in terms of
uncertainty values (bottom) and absolute angular error (top) as the number of available key
points changes. On the left, we cluster faces according to the number of key points detected
by OpenPose. When only 3 key points are available the uncertainty is rather high on average.
Increasing the number of points uncertainty is progressively reduced, with a similar trend
shown by the error. This confirms the intuition that the more input points the method has, the
higher its confidence in the prediction, which is more reliable and accurate.

Fig. 5.6 Performance of our method (top row: mean angular error in angles, bottom row:
uncertainty) with respect to the number of input points, considering the outputs of OpenPose
(left) and randomly dropping points (right). Training: 300W-LP Test: BIWI. Uncertainty
is presented in a log scale visualization for a clearer view [source (Figari Tomenotti et al.,
2024)].
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On the right, we randomly drop points from the available input to simulate an even more
challenging scenario for our method. When points are randomly dropped, we only consider
samples with more than two points. When all 5 key points are available, the uncertainty
is compactly lower (confirming what was already observed in the previous experiment) as
the method can rely on a more comprehensive representation of the input. In the interme-
diate cases – where we may have 2, 3, or 4 key points available in input – the uncertainty
progressively decreases, but we also have a higher degree of variability, as some key-point
configurations are more significant than others and thus the amount of information they
provide to the model may be unevenly reflecting the concept that the noise could be different
for each input sample. With respect to the plots in the left column of Fig. 5.6, the box plots
at right show a higher standard deviation since randomly dropping points from the input
we simulate a higher variability in the input configurations with respect to the ones usually
provided by OpenPose and from the datasets we used.

5.3.4 Plugging in Different Pose Detectors.

Fig. 5.7 Both images represent the degrees of uncertainties in the output of the network
during the training. On the x-axis, there are the epochs; on the y-axis, there are the sum of the
uncertainties on the three outputs. The blue bars are the mean with their standard deviation
represented as dashed lines and the outliers are in red. Top Openpose, Bottom Centernet.

Here we assess the robustness of our approach to different choices of 2D pose estimators.
More specifically, we employ OpenPose (Z. Cao et al., 2019), CenterNet (K. Duan et al.,
2019), and MediaPipe (Lugaresi et al., 2019) and consider all the pairs for train-test. The
results are reported in Table 5.1. If we read the table row-wise we may analyze the behaviour
of models obtained from the different pose detectors on the output of different nature. It
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shows that CenterNet and Openpose are rather interchangeable (OpenPose in particular
provides very similar results when tested on itself or Centernet), while Mediapipe is not.
The reason is that its output is rather different in terms of localization of the key points
and behaviour in the presence of occlusions (MediaPipe never provides zero confidence for
occluded key points), reducing the benefit of the Confidence Gated Unit.

Table 5.1 Training and testing HHP-Net with inputs from different 2D pose estimators on the
BIWI dataset. In the table, we report the MAE (Mean Absolute Error in degree) averaged
over the three angles and the standard deviation.

Train
Test

Centernet Mediapipe Openpose

Centernet 3.33 ±0.91 7.57 ±2.48 6.73 ±5.88
Mediapipe 13.31 ±7.96 5.99 ±1.56 14.55±7.59
Openpose 4.64 ±1.99 7.08 ±2.37 4.51±1.27

In Fig. 5.7 we show how the network learns the correct data distribution, also learning to
be more precise in its predictions with the epochs. More in-depth we can see in the top image
how Openpose converges more easily especially having less uncertainty on its predictions.
In contrast, the keypoints extracted with Centernet retain a certain value of uncertainty also
after some epochs. We can also see how the uncertainty does not decrease to zero, but due to
the data distribution, remains higher than this, indicating that the network cannot have a zero
error on all the samples.

5.4 Removing the Uncertainty: an ablation study

We perform an ablation study by removing the uncertainty from our model. To this purpose,
we consider two variations of the method (with y=yaw, p=pitch and r=roll):

MSE: we directly regress the three angles adopting a loss computed as the sum of the Mean
Squared Error (MSE) on each angle:

LMSE−MT (q, q̂) = ∑
k∈{y,p,r}

(qk− f̂k (x1,x2,c))2. (5.3)

where q = [qy,qp,qr], and
q̂ = [ f̂y(x1,x2,c), f̂p(x1,x2,c), f̂r(x1,x2,c)].

COMB: we employ an alternative loss function LCOMB proposed in (Ruiz et al., 2018)
which has been proved to be very successful on the same estimation task. The loss
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allows for jointly solving a multi-class classification (with N classes corresponding to
binned angles) and a regression task, and it can be formalized as follows :

LCOMB(q, q̂) = LCE−MT (q, q̂)+α ∗LMSE−MT (q, q̂) (5.4)

where

LCE−MT (q, q̂) = ∑
k∈{y,p,r}

[
−

N

∑
j=1

q j
k log

(
f̂ j
k (x1,x2,c)

)]
(5.5)

is the cross-entropy loss adapted to our multi-task problem, while LMSE−MT is the
multi-task square loss of Eq. (5.3). Hence, the loss combines the cross entropy,
computed between the binned angles, and the MSE loss, computed between the scalar
angles; α is a hyperparameter that controls the weight of the regression loss. According
to the original work, in the experiment, we set α = 1.

In Table 5.2 we report the angular errors we obtain with the three different losses. As can
be observed, learning the angles associated with the uncertainty provides the best average
performance, showing the benefit of the uncertainty not only in terms of the interpretability
of the model but also as a way to improve its effectiveness.

Table 5.2 Comparison among different loss functions (see text). All errors are expressed in
degrees (◦): erry= yaw error, errp=pitch error, errr= roll error, MAE = Mean Absolute Error.

Train Val Loss erry errp errr MAE
BIWI BIWI LMSE 2.90 4.80 3.34 3.70
BIWI BIWI LCOMB 3.15 4.85 3.40 3.80
BIWI BIWI LHMT 3.04 4.79 3.21 3.68

300WLP BIWI LMSE 4.75 6.65 4.45 5.28
300WLP BIWI LCOMB 4.67 8.08 4.87 5.88
300WLP BIWI LHMT 4.14 7.00 4.40 5.18
300WLP AFLW2000 LMSE 5.72 10.41 8.08 8.07
300WLP AFLW2000 LCOMB 5.55 10.39 8.18 8.04
300WLP AFLW2000 LHMT 5.26 10.12 7.73 7.70
AFLW AFLW2000 LMSE 7.60 6.43 4.76 6.26
AFLW AFLW2000 LCOMB 7.31 6.55 4.68 6.18
AFLW AFLW2000 LHMT 7.40 6.63 4.47 6.16

5.5 Comparisons With Other Approaches

We now perform a comparative analysis with state-of-the-art head pose estimators. For a fair
comparison, we consider methods that use RGB images as inputs or features extracted from
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them.

Table 5.3 Comparison following Protocol P2: BIWI is both training and test. Our model is
the smallest (∼0.4MB) while providing only a small degradation with respect to the best
result (∼ 0.4◦). †,‡ data respectively from (T.-Y. Yang et al., 2019),(Dhingra, 2022)

Method MB Par. ×106 erry errp errr MAE
D-HeadPose (Mukherjee and Robertson, 2015) - - - 5.67 5.18 -

Drounard et al (Drouard et al., 2015) - - 4.9 5.9 4.7 5.16
DFA(J. Gu et al., 2017) 500† 138‡ 3.91 4.03 3.03 3.66

DMLIR (Lathuiliere et al., 2017) 500 - 3.12 4.68 3.07 3.62
FSA-Caps-Fusion (T.-Y. Yang et al., 2019) 5.1 1.2 2.89 4.29 3.60 3.60

FND (H. Zhang et al., 2020) 5.8 - 3.0 3.98 2.88 3.29
img2pose (Albiero et al., 2021) - - 4.57 3.55 3.24 3.79

LwPosr (Dhingra, 2022) - 0.15 3.62 4.65 3.78 4.01
QTNet (Hsu et al., 2018) - - 4.01 5.49 2.94 4.15

Ruiz (Ruiz et al., 2018) (α=2) - - 3.29 3.39 3.00 3.23
TriNet (Zhiwen Cao et al., 2021b) - 26‡ 2.44 3.04 2.93 2.80

Our approach ∼0.4 ∼0.09 3.04 4.79 3.21 3.68

Table 5.4 Comparison following Protocol P1, where 300W-LP is the training, while BIWI is
the test. Our method is still the smallest and performs better than all other approaches but
(T.-Y. Yang et al., 2019). The latter is however associated with a model significantly larger
than ours.
†,‡,††,∗ data respectively from (T.-Y. Yang et al., 2019), (Dhingra, 2022), (Y. Zhou and
Gregson, 2020), (Ruiz et al., 2018))

Method MB Par. ×106 erry errp errr MAE
Shao(K=0.5)(Shao et al., 2019) 93 24.6†† 4.59 7.25 6.15 6.00
Ruiz (Ruiz et al., 2018))(α=2) 95.9† 23.9 5.17 6.98 3.39 5.18
Ruiz (Ruiz et al., 2018))(α=1) 95.9† 23.9 4.81 6.61 3.27 4.90

LwPosr α (Dhingra, 2022) - 0.15 4.41 5.11 3.24 4.25
LwPosr (Dhingra, 2022) - 0.15 4.11 4.87 3.19 4.05

FSA-Caps-Fusion (T.-Y. Yang et al., 2019) 5.1 1.2 4.27 4.96 2.76 4.00
TriNet (Zhiwen Cao et al., 2021b) - 26‡ 3.05 4.76 4.11 3.97

FND (H. Zhang et al., 2020) 5.8 - 4.52 4.70 2.56 3.93
WHENet-V (Y. Zhou and Gregson, 2020) - 4.4 - - - 3.48

Our approach ∼0.4 ∼0.09 4.14 7.00 4.40 5.18

The analysis is reported in Table 5.3, Table 5.4, and Table 5.5, where all errors are
expressed in degrees (erry= yaw error, errp=pitch error, errr= roll error), the model size is
reported in MegaBytes (MB), and the MAE is the Mean Absolute Error.
As a first important observation, notice that our approach produces a significantly smaller
model (0.4 MB). This was the main purpose of our work and it has been clearly achieved, as
our method is about ∼12 times smaller than the closest model in the literature. According to
the protocol followed by other works – all requiring a face detector but not including its size
in their analysis – the size of our model does not include the pose estimator.
In terms of performances, Table 5.3 reports a comparison with respect to Protocol P2 (BIWI
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Table 5.5 Comparison following Protocol P1, where 300W-LP is the training and AFLW
2000 is the test (note: ✠ = Trained on AFLW - AFLW2000). The performances show a
slightly higher worsening with respect to alternative approaches, but the difference is still
very limited (always less than 3◦). †,‡,†† data respectively from (T.-Y. Yang et al., 2019),
(Dhingra, 2022), (Y. Zhou and Gregson, 2020)

Method MB Par. ×106 erry errp errr MAE
3DDFA (X. Zhu et al., 2019) - - 5.40 8.53 8.25 7.39
Ruiz(Ruiz et al., 2018))(α=1) 95.9† 23.9 6.92 6.64 5.67 6.41
Ruiz (Ruiz et al., 2018)(α=2) 95.9† 23.9 6.47 6.56 5.44 6.16

Shao(K=0.5)(Shao et al., 2019) 93 24.6†† 4.59 7.25 6.15 6.00
FSA-Caps-Fusion (T.-Y. Yang et al., 2019) 5.1 1.2 4.50 6.08 4.64 5.07

Shao(K=0.5)(Shao et al., 2019) 93 24.6 5.07 6.37 4.99 5.48
WHENet-V (Y. Zhou and Gregson, 2020) - 4.4 - - - 4.83

LwPosr (Dhingra, 2022) - 0.15 4.80 6.38 4.88 5.35
LwPosr α (Dhingra, 2022) - 0.15 4.44 6.06 4.35 4.95

TriNet (Zhiwen Cao et al., 2021b) - 26‡ 4.20 5.77 4.04 4.67
FND (H. Zhang et al., 2020) 5.8 - 3.78 5.61 3.88 4.42

Our approach ∼0.4 ∼0.09 5.26 10.12 7.73 7.70

Our approach✠ ∼0.4 ∼0.09 7.40 6.63 4.47 6.16

dataset for training and test): the results we obtain are superior to (Mukherjee and Robertson,
2015; Drouard et al., 2015; G. Fanelli et al., 2013) and slightly below (J. Gu et al., 2017;
Lathuiliere et al., 2017; T.-Y. Yang et al., 2019; H. Zhang et al., 2020) (less than 0.1 degrees
of difference for the first three, less than 0.4 for the latter).
Table 5.4 refers to Protocol P1 (training carried out on 300W-LP, BIWI for the test): the
experiment mainly evaluates the transfer potential to a different dataset with different proper-
ties. The table reports results obtained with methods relying on the estimation of 3D face
models (X. Zhu et al., 2019; Kumar et al., 2017; Kazemi and Sullivan, 2014; Bulat and
Tzimiropoulos, 2017) and methods based on analysing RGB image portions obtained by face
detectors, such as (Shao et al., 2019; Ruiz et al., 2018; T.-Y. Yang et al., 2019).
We share with the latter group the main motivation for designing simple and more efficient
procedures while keeping competitive performances. In this sense, our approach does not
require complex pre-processing steps or highly resource-demanding training, but at the same
time, it wisely leverages structural information on the face. Table 5.4 reports results that are
more accurate than all methods with the exception of FSA-Caps, although the difference is
on average only slightly above 1 degree. This small accuracy loss is counterbalanced by the
benefits in terms of a smaller size, and it may be explained by the simplicity and compactness
of our input: while nicely behaving in the majority of non-ambiguous situations, our sparse
input is more severely influenced by occlusions, and missed or noisy detections.
Finally, Table 5.5 follows again Protocol P1, on a more complex test set, AFLW2000, where
images are acquired in a less controlled environment. In this case, our methodology is
reporting slightly worse results, but with a loss always less than 3 degrees on average. We
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noticed this is due in particular to keypoint detection errors, as the synthetic data manipulation
introduced artefacts.
To further evaluate the transfer potential of our approach we also report the result we obtained
on the same test set when training the network on a related dataset (AFLW without the
AFLW2000 section): the results are in this case comparable to the previous experiments.
We conclude by mentioning that we do not include in our comparison the approach in Fanelli
et al.(G. Fanelli et al., 2013) since it uses the depth as input, and the methods Dlib (Kazemi
and Sullivan, 2014) and FAN (Bulat and Tzimiropoulos, 2017) that solve a different problem
(face alignment). Also, among the very recently proposed approaches, our analysis does not
mention EVA-GCN (Xin et al., 2021) and KEPLER (Kumar et al., 2017) as they solve a
different problem (jointly solving different tasks, one of them being head pose estimation),
and 3DDFA (X. Zhu et al., 2019) that uses a richer input (image and 3D model).

5.6 Model Size and Inference Time

We now show the robustness of our method with respect to reductions of size, which may
be needed when the available computational resources are very limited. More specifically,
we analyse how the performance changes as we reduce the size of the model. We choose

Table 5.6 Comparison among models with different sizes (Protocol P1: 300W-LP train, BIWI
test). β = neurons reduction factor (see text), MAE = Mean Absolute Error.

β MAE Parameters MB
1 5.18 94031 0.385

0.6 5.43 37206 0.158
0.2 5.54 6006 0.032

300W-LP training and BIWI test (protocol P1) for their larger training and test sets and
decrease the number of neurons in the fully connected layers so the backbone remains the
same as proposed in the paper, while its size decreases. Given a reduction factor β ∈ (0,1),
we obtain a “reduced" version of our architecture by multiplying the original number of
neurons in each layer (250, 200 and 150 in, respectively, the first, second and third layer) by
β .

By varying β in the range (0,1) we reduce the model size (the number of parameters)
and thus also the number of sum and multiplication operations. Table 5.6 compares our
baseline (β = 1) with two reduced models (overall size in MB up to 10× smaller) causing
a very limited degradation in the MAE (below 1 degree). This experiment highlights the
possibility of further reducing the size of the architecture, with a very limited performance
loss, if required by the system.
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We finally briefly mention the computational performance of our method, which is an
average of 142 fps (approximately an inference time of 7×10−3 s per frame). In the full
inference pipeline, we should also consider the cost of running the key points detection,
which depends on the specific approach. Empirical estimation of inference times can be
found in (Lugaresi et al., 2019) for Openpose and Mediapipe, and in (K. Duan et al., 2019)
for Centernet.

5.7 LAEO Experiments

Table 5.7 The performance of our method for LAEO detection on the UCO-LAEO dataset.
The reported metrics are Precision, Recall, F1 score and AP estimated as in (M. Marín-
Jiménez et al., 2020), τ = 0.93.

Method PREC REC F AP
LAEO-Net (Marin-Jimenez et al., 2019) – – – 0.80
LAEO-Net++ (M. Marín-Jiménez et al., 2020) – – – 0.87
Gaze Pattern Rec. (F. Chang et al., 2023) – – – 0.80
Baseline (Ours) 0.77 0.80 0.78 0.86
With uncertainty (Ours) 0.80 0.72 0.76 0.88
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Fig. 5.8 Examples of LAEO detections. The arrows represent the head direction estimated
by HHP-Net and projected on the image plane and are green if the corresponding person
has been found involved in a LAEO. The prediction of our method for LAEO detection is
reported in yellow and, in the case of LAEO, it specifies the identifier of the other interacting
person. The identifiers are in red close to the subjects. In the last row, we report examples
of failures, due to the ambiguities of the information on the image plane [source (Figari
Tomenotti et al., 2024)].

We evaluate our method on the UCO-LAEO dataset (Marin-Jimenez et al., 2019), which
includes sequences from four popular TV shows in the form of 129 shots of variable length.
The annotation is provided at a frame level – is there a pair of LAEO people in the frame? –
and at a pair level – i.e. each head pair is labelled as LAEO or not. The task we solve is a
binary classification task: for each frame in the sequence, we consider all pairs of people
detected in the frame and label them as LAEO or not using the method in Algorithm 1.
Finally, a threshold τ , selected on the ROC curve of the training set, is used to detect the
LAEO pairs.

We report in Fig. 5.9 examples to show how our LAEO measure smoothly changes during
the interaction event.
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We report in Table 5.7 the performance provided by our baseline method and the one in-
corporating the uncertainty on the test set. The results suggest that using the prior knowledge
derived from the uncertainty allows us to significantly reduce the number of false positives
(−6%, with a slight increase of the precision) to the price of a small reduction of true positive
(−7%, with a small reduction of the recall). Overall, the uncertainty brings improvements as
the AP increases (+0.02). As a reference, we also show in the table the results provided by
(Marin-Jimenez et al., 2019; M. Marín-Jiménez et al., 2020; F. Chang et al., 2023).
Examples of the obtained results are reported in Fig. 5.8, where we show that our method is
tolerant to the presence of more than 2 people, and to the scene variability.

5.8 Preliminary Experiments on Anticipation and HRI

(a) (b) (c) (d) (e)

Fig. 5.10 The five frames are taken from a transport action and a yellow circle is drawn on
the table where the head is pointing. It is possible to see how the yellow circle anticipates the
hand position in the whole action.

This section qualitatively mentions some works currently under development which target
the usage of the HPP-Net in two different tasks. The first one is an assessment of how much
the head orientation is informative when we want to anticipate or predict human motion or
intentions. We find this research direction very promising and we have some preliminary cues
about it thanks to our in-house dataset we collected (we describe it in Appendix B). In this
preliminary experiment, we performed an anticipation experiment. We noticed that during an
action performance, the head was turning before the hand even moved, indicating that the
head direction has a prediction power in human motions. We show only some qualitative
experiments Fig. 5.10 where we estimate where was the focus of attention (yellow circle) of
the person in the video clip, and it is interesting to see that the head points towards the final
direction of the movement before the movement even starts.

From the Fig. 5.10, it is quite evident that the head turns towards the action goal or the
object needed to reach the goal quite before the action starts to be performed.

The second direction we are exploring is the implementation of our HHP-Net algorithm
to perform both HPE and LAEO detection on the iCub Humanoid Robot (Natale et al., 2019)
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Fig. 5.9 Examples of LAEO measures over time with the corresponding frames of the video
clip. In the plots we report in blue the ground truth, and in red our LAEO measure. In green,
we mark the threshold we adopted [source (Figari Tomenotti et al., 2024)].
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at the Italian Institute of Technology to perform experiments in the Human-Robot Interface
domain. Where the robot is engaged with one person or in a a group of people and needs to
detect the attention and the focus of the action which is involved into. For this, we cannot
provide preliminary results.

5.9 Discussion

This first part presented two main contributions, HHP-Net for head pose estimation from
keypoints and the LAEO detection.
The former contribution is a lightweight and fast neural network based on convolution op-
eration to retrieve the head pose of people from the extracted keypoints. We believe that
this tool has nice potential to be integrated into human pose detectors or put in cascade with
them, also thanks to its interchangeability. Another interesting feature which is not present in
other state-of-the-art approaches is the possibility of having an uncertainty value for each
prediction thanks to the appropriate loss function. We have also shown how the uncertainty
can be translated into degrees of uncertainty around the prediction.
The network achieves state-of-the-art results proposing a novel approach and introducing
uncertainty, which also helps achieve higher accuracy. The extensive ablation study demon-
strated the robustness of the number of keypoints in inputs and their correlation with the
uncertainty.
The latter contribution is the LAEO algorithm, which is an easy but effective way of retrieving
a ’Looking at each other’ interaction on the image plane. Experimental results show how this
measure changes smoothly if a pair of subjects in the foreground are targeted, but also its
robustness when many people are present. Indeed, our methodology which estimates with
great precision the head position helps in achieving a reliable value for LAEO interactions.
This can be of course used as a proxy for more complex human interactions.
The major limitation in this regard is the fact that it works on the image plane and does not
take into account the fact that two people can be at different depths inside a frame; moreover,
the head pose estimation with keypoints suffers the presence of people completely turned
’inside’ the frame, those which are seen only from the nape of the neck, because no keypoints
are really visible. To overcome these issues, the first proposal is the usage of a very basic
proxy looking at the height of people in the frame and estimating a mutual depth difference
based on their differences in dimension (of course children can be an issue), otherwise using
a CNN or a Diffusion model to estimate the depth inside images such as (H. Fu et al., no
date; Ke et al., 2024), at a cost of having a much more heavy solution.
To overcome issues in the HHP-Net one way would be to use better and newer data for
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the training phase in order to have a broader amount of angles at disposal. Of course, one
intrinsic drawback is the fact that human pose detectors cannot (since now) characterise face
poses which are seen from behind, from the nape of the neck. Or if they do, they did not fix
any behaviour for occluded keypoints and that can lead to have random configuration.

Finally, as an additional outcome, we developed a demonstrative program which estimates
the human pose and the head pose from videos (or images), everything at real-time speed,
details are provided in Appendix A, a smaller and simpler demo with the same functionalities
is also accessible in Hugging Face Spaces at this address https://huggingface.co/spaces/
FedeFT/Head_Pose_Estimation_and_LAEO_computation.

https://huggingface.co/spaces/FedeFT/Head_Pose_Estimation_and_LAEO_computation
https://huggingface.co/spaces/FedeFT/Head_Pose_Estimation_and_LAEO_computation




Part II

Human Motion Representation &
Recognition

Part II presents two contributions, both in the action recognition
domain; the former focused purely on motion and kinematics features
and with a peculiar attention to the representation of motion itself;
and the latter centred on human-objects relationships in time, where
graph neural networks are employed to extract information from the
data.





Introduction to Part II

Action classification within the realm of computer vision is the main topic of this Part II. It
stands as a pivotal challenge, seeking to endow machines with the ability to comprehend and
categorise human activities from video data. This interdisciplinary field intersects computer
science, machine learning, and image processing, striving to bridge the gap between raw
visual information and meaningful interpretations of human actions. The significance of
action classification extends across diverse domains, from surveillance and robotics to human-
computer interaction, making it a central focus within the broader landscape of computer
vision research (Al-Faris et al., 2020; Weinland et al., 2011; Gupta et al., 2021).

The essence of action classification lies in the extraction and analysis of temporal patterns
and spatial configurations embedded within video sequences. To narrow our domain of
investigation we decided to deal with human-centric actions and human motion representation.
Moreover, the focus of the research is also at the edge of behavioural sciences from where we
took inspiration for this work. The idea is not that machines should reason likewise humans,
but we take inspiration from it, in order to replicate some successful patterns: our brain is
the inspiration for many definitions of intelligence, and for sure a benchmark to asses if
something else is intelligent.

The path we followed is to look in the cognitive science domain to see how humans
perceive and understand actions, and temporal patterns and replicate it in a computer science
- machine learning fashion. For example, humans perceive actions as the sum of shorter (in
time) movements, and activities as a sum of different actions (Zacks and Swallow, 2007;
Newtson and Engquist, 1976). So hierarchical representations are used. To help machines
have a better understanding of semantics information, we preferred explicitly inputting this
type of knowledge when possible, also to increase interpretability.

There is also a witness to meet other criteria that are becoming urgent and crucial in
the community, such as the reduction of carbon footprint and the attention to privacy issues.
Indeed, the attention in the methodology is not solely oriented towards performances but also
to the above criteria.
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Moreover, the motion alone cannot explain fully what is happening, because the same
motion pattern can indicate different things if contextualised in different environments.
Conversely, environmental cues serve to contextualise and refine the interpretation of motion,
thereby limiting the range of plausible action categories. Guided by these principles and with
a nod toward interpretable methodologies we decided that graphs-based representations have
the power of abstraction and richness to be employed in this work.



Chapter 6

Literature Review

This chapter of the literature review faces the problem of presenting recent advances in
action classification through skeleton data and the usage of graph neural networks for action
classification. It encompasses several different foundational topics for the development of
the following method.

6.1 Introduction

Part II of the thesis is dedicated to analysing human motion employing deep learning
methodologies informed by insights from cognitive sciences and human perception, while
also prioritising the explainability of these methodologies. In pursuit of explainability, we
advocate for modularity in our solutions to enable finer control over the pipeline. The test
bed of this work is its usage in an action classification task.
The second half of Part II delves into the analysis of scene understanding under compositional
assumptions using graph representations. The choice is motivated by the belief that a modular
approach can help the action representation task.
Thus, the two components of this Part II serve as foundational blocks for constructing a
comprehensive action recognition pipeline, which focuses on human motions and on their
surrounding environment, while employing distinct methodologies to represent different data
types. For the time being the two algorithms are not interconnected, but it is easy to observe
how in the future the two representation can talk to each other.

Part II is divided as follows:

• An introduction to Action Recognition in computer vision (current section)

• Literature Review of the major themes in the chapter Chapter 6
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• Proposed methodology for the two tasks Chapter 7

• Experiments for the two tasks Chapter 8

6.2 Minimal Action Classification

The following literature review is quite extensive and covers a broad range of topics and
not all are essential to understand the results and achievements of this work. This work sets
mostly in the realm of action classification from skeleton data Section 6.2.1.2

6.2.1 Action Classification

In the ever-expanding realm of computer vision and artificial intelligence, the recognition and
interpretation of human actions have emerged as a pivotal area of research with extensive im-
plications in various domains, including surveillance, human-computer interaction, robotics,
and healthcare. Human Action Classification, a subfield within computer vision, endeavours
to impart machines with the ability to discern and categorise the diverse range of actions
performed by individuals in visual data. This interdisciplinary pursuit draws upon computer
science, signal processing, machine learning, and psychology to bridge the perceptual gap
between human understanding and computational analysis of dynamic visual content.

The intricate nature of human actions, characterised by their temporal dynamics, vari-
ability, and context dependency, presents a formidable challenge for computational systems.
Unlike static object recognition, the classification of human actions necessitates an under-
standing of motion patterns, spatial configurations, and the nuanced context in which actions
unfold. Researchers in this field strive to develop algorithms and models that can not only
accurately identify and categorise human actions but also generalise across diverse datasets
and adapt to dynamic real-world scenarios.

One of the fundamental challenges in Human Action Classification lies in capturing
the temporal evolution of actions. Traditional image classification methods are ill-suited to
handle the dynamic nature of actions, prompting the development of novel approaches such
as video-based analysis, temporal modelling, and spatiotemporal feature extraction. These
techniques aim to encode the temporal dependencies inherent in actions, enabling machines
to discern subtle variations and recognise actions across different speeds and durations.

Another critical aspect of Human Action Classification is addressing the inherent vari-
ability and context sensitivity of human actions. The same action can manifest differently
based on individual style, environmental factors, or cultural nuances. Achieving robust
classification, therefore, requires models that can adapt to these variabilities and discern the
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essential features that characterise a given action. This has led to the exploration of deep
learning architectures, ensemble methods, and attention mechanisms, aiming to capture both
global and local contextual information in the visual data.

Furthermore, the practical applications of Human Action Classification are vast and
impactful. Surveillance systems facilitate the automatic monitoring of public spaces, ensuring
the rapid detection of anomalous activities and enhancing safety. In human-computer
interaction, it enables more natural and intuitive interfaces, fostering a seamless interaction
between humans and machines. Moreover, in healthcare, it holds the potential to assist in the
early diagnosis and monitoring of motor disorders, contributing to improved patient care and
rehabilitation.

As the field of Human Action Classification continues to evolve, researchers grapple with
intricate challenges, seeking innovative solutions that push the boundaries of computational
perception.

Here we decided to structure the literature review by dividing the approaches depending
on the different data modalities exploited. The literature addresses this problem with mainly
these modalities (Z. Sun et al., 2022): RGB, depth, skeletal data (2D and 3D), event stream,
point cloud and infrared. Each of these can be processed alone or combined with others, and
each one conveys a different and peculiar type of information. In the following paragraphs,
we are going to see the pros and cons of some of the mentioned modalities, enlightening also
some recent research from the literature. We are going to start with RGB data, proceeding
with skeleton data, which are the main used throughout this work. To all the others we
suggest starting from (Z. Sun et al., 2022; Kong and Y. Fu, 2022; Yi Zhu et al., 2020).

6.2.1.1 RGB data

The RGB modality is very powerful and a plethora of works based their methodology on it.
In the pre-deep learning era, handcrafted features were in use, as in (Blank et al., 2005) where
silhouettes -retrieved using space-time saliency, shape structures and orientations- are tracked
through time. On the contrary, nowadays deep learning approaches are preferred and based on
Convolutional Neural Networks (CNN). One of the first works is (Simonyan and Zisserman,
2014a) where a two-streams NN is used: one for the temporal information (motion) and
the other for the spatial information (objects/people in the scene). The temporal stream
is applied to the optical flow information retrieved as a B/W image between consecutive
frames or also as a field of motion, this makes the recognition easier because “the network
does not need to estimate motion implicitly” (Simonyan and Zisserman, 2014a). The spatial
stream can be assimilated to a feature extractor for context and people detection. Then the
information is aggregated and the networks are trained jointly with the class labels. Then



76 Literature Review

more advanced solutions were proposed using a multiscale resolution frame to have a more
robust representation (L. Wang et al., 2015). The motivation is that the RGB modality is very
rich but suffers from illumination and colour changes. So to enhance the invariance property,
some solutions have been proposed. Another drawback of these types of networks is the
computation expense of the optical flow calculation which has been tried to be mitigated
in (B. Zhang et al., 2016) computing a motion vector which is less fine-grained but carries
similar information. (B. Zhang et al., 2016) presented also a way to refine this type of
additional information and to learn to mimic some optical flow characteristics.

In this interesting work (Feichtenhofer et al., 2016) different pooling and fusion strategies
are compared for different purposes. Afterwards, the two streams’ architecture evolved to
become 3D CNNs, one of the first works presenting them is (Tran et al., 2015) where they
found that small kernels (3x3) perform better than all the other solutions and that their 3D
features were superior to any of the 2D CNN state of the art method. In tackling the challenge
of memorising long-term relationships (Diba et al., 2017; Varol et al., 2017) presented some
new approaches, at the cost of reducing the spatial resolution. And also in this context, to
enhance the capacity of the models -but retaining simplicity in the training phase- many two
streams 3D CNN were proposed such as (Carreira and Zisserman, 2017).

More recently also Transformer architectures for videos have taken the lead in the
community and different works came out proposing to model the time dependence in different
ways (we are referring only to solutions using RGB as inputs). In fact, in this paper (Bertasius
et al., 2021) the research question is indeed if Action recognition can spare CNNs, in favour
of Transformers. They created an architecture modelling attention in space and in time that
achieves excellent results also in video longer than a minute, fully demonstrating their thesis.

A very new work (Shen Yan et al., 2022) is based on extracting tokens from the input
video over multiple temporal durations. They use use transformer encoders of varying sizes
to process each view, and they found that “it is better (in terms of accuracy/computation
trade-offs) to use a smaller encoder (e.g. smaller hidden sizes and fewer layers) to represent
the broader view of the video while an encoder with larger capacity is used to capture
the details”. However, Transformers are ubiquitous nowadays so to examine in depth the
argument we suggest (Shabaninia et al., 2022; Ulhaq et al., 2022). Many other approaches
focused on reducing the computation burden of the methods or enhancing the robustness
against viewpoint variations and background clutters. Some others focused on extracting
informative features from RGB frames, such as (Feichtenhofer et al., 2019) where a two-
stream network is used to enrich the representation: one uses high-quality images as input
but at a slow frame rate (2fps) and the other is instead focused on motion and injects in a
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3D CNN 15fps but of low-quality images; then a late fusion approach is used and a fully
connected classifier performs the classification stage.

6.2.1.2 Skeleton Data

Furthermore, a solution to overcome some of the challenges of RGB data is the usage of
skeleton data. The skeleton modality is based on the usage of skeletal joints extracted by
a Human Pose Estimator (see Section 2.6) on RGB data or acquired with motion capture
systems. The former are nowadays ubiquitous and mobile versions running on smartphones
are also available, however, they are viewpoints dependent. The latter, instead, produce really
precise skeleton data and are illumination/view independent but are more difficult to acquire.

The advantages of skeletal data are multi-facets: the representation is scale-invariant
(a skeleton has always the same topology despite the camera distance from the scene), it
is simple and compact, it is robust against clothing and appearance in images and it is
intrinsically privacy oriented. Early works on skeletal data for Human Action Recognition
focus on their data structures as time series and use LSTM and Recurrent Network in general
for their analysis (Du et al., 2015; J. Liu et al., 2017). Some works tried also to leverage the
complexity using CNNs such as (Lea et al., 2017) where an encoder-decoder network has
been explored, and even efficient solutions have been proposed (F. Yang et al., 2019) which
run much more than real-time. In this domain, huge interest emerged from the usage of
Graph Neural Networks (GNN) (X. Zhang et al., 2019). GNNs have been used extensively to
study the problem, and because of the nature of skeleton data, this type of neural networks is
very much suitable. Starting from (Sijie Yan et al., 2018) where a convolution over graphs is
proposed and applied to neighbouring nodes till having a global representation of a skeleton.
In this work also different types of partitioning are proposed in order to perform convolutions
(e.g. partition by semantic neighbours of a node or by distance in the image plane from a
chosen root node). Some other solutions based on GNN emerged where basically the network
develops a spatial reasoning mechanism which passes information between neighbouring
nodes to retrieve discriminative features (Si et al., 2018). Another example is (M. Li et
al., 2019) where an encoder-decoder architecture processes skeleton data presented in two
streams: one with structural links between joints (using a graph which uses the connection as
the the natural body) and the other which connects correlated joints during some motions
(e.g. feet and hands are correlated during walking). The newest approaches of a similar
kind, having two branches, one to intercept temporal activity and the other for the body
semantics have been implemented using transformers and attention methods. This recent
work (Plizzari et al., 2021) proposes the usage of two different blocks of self-attention inside
a Transformer, the former called Spatial Self-Attention which applies self-attention inside
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each frame, and the latter Temporal Self-Attention which applies the self-attention between
consecutive frames. Another work (Jiaxu Zhang et al., 2023) uses three types of attention
to model the data and aggregate them with a transformer, the focus is on the representation
part which is also highlighted by the attention matrices exposed and commented. Before
the Transformer ubiquitous deployment, an interesting paper investigated different types
and usages of attention layers (S. Cho et al., 2020), enlightening also some relationships of
attention between joints and actions. Other works also focused on a slightly different task,
focusing on some representation and high-level feature retrieval pipelines (Y. Chen et al.,
2022). The skeleton data are of uttermost importance when the action is body-centred, but it
does not provide enough information when some small object is involved, or the environment
plays a pivotal role in recognising the action. Moreover, the data source may be noisy and it
is by definition sparse. However, a very relevant aspect of skeleton data is its intrinsically
privacy-oriented format which enables its usage in privacy-driven studies (like (Golda et al.,
2022)), where the anonymity of the people should be preserved. This key feature will become
crucial in the near future when this technology will be ubiquitous.

6.2.1.3 Benchmark Datasets

In the community, benchmark datasets play a crucial role in evaluating the performance of
action classification algorithms. These datasets serve as standardised platforms, providing a
diverse array of video clips capturing a multitude of human activities in various settings.

Prominent as one of the first big among these benchmark datasets is the UCF101 (Soomro
et al., 2012) dataset, encompassing 101 action categories and over 13,000 video clips. It is
composed of YouTube videos, and for contemporary standards the video resolution is low
quality.

Similarly, the HMDB51 (Human Motion Database with 51 action classes) (Kuehne
et al., 2011) dataset offers a comprehensive collection of realistic videos spanning 51 action
categories. The inclusion of diverse actions such as sports, household activities, and inter-
actions contributes to the dataset’s richness and complexity. Both UCF101 and HMDB51
have become standard benchmarks, fostering the development and assessment of action
classification methodologies.

The evolution of benchmark datasets has paralleled the advancements in action classi-
fication research, with newer datasets addressing the limitations and challenges posed by
real-world scenarios. The Kinetics dataset, with its large-scale collection of high-quality
videos, has emerged as a prominent benchmark, featuring over 400,000 video clips dis-
tributed across 600 action categories. The diversity and complexity of actions portrayed
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in the Kinetics dataset mirror the intricacies of human behaviour, presenting a formidable
challenge for contemporary action classification algorithms.

More recently also NTU RGB+D (Shahroudy et al., 2016; J. Liu et al., 2019) was released,
and it has RGB and depth so it is possible to use for 3D human action recognition and it has
two different sets: one with 60 action categories and another one, which is a superset f the
previous, with 120 action categories. It has also multiple views: front view plus two other
angles. The bigger version has 106 subject performing 120 different actions for a total of
114’000 videos; also 3D skeletal data has been released.

The final dataset under discussion, BABEL, merits attention despite being less famous and
adopted than the others. BABEL comprises 3D skeletal data designed for action recognition,
with a version featuring 120 classes to align somewhat with NTU. However, this version
exhibits a significant class imbalance issue, as detailed in Chapter 8. The underrepresentation
of BABEL in scholarly works may stem from its novelty compared to other datasets and
its lack of RGB video coordinate sets. Consequently, BABEL is exclusively compatible
with monomodal pipelines utilizing skeletal data. Furthermore, its pronounced imbalance,
coupled with instances that may be associated with multiple labels, presents a formidable
obstacle to its widespread adoption.

As we navigate through this comprehensive exploration of action classification in com-
puter vision using video data, the subsequent sections will delve into the methodologies,
techniques, and recent advancements that propel this dynamic field forward. The major focus
of the following section will be on Action Classification starting from RGB and skeleton
data; then we will explore the literature encompassing action classification through primitives
of motion.

6.2.2 Primitives of Motion Decomposition

Deep learning has revolutionised the landscape of action recognition, providing powerful
tools for understanding and replicating complex human activities. As we strive to enhance
the capabilities of artificial intelligence in interpreting human actions, the need for a nuanced
understanding of event segmentation and the utilisation of primitives becomes paramount to
overcome some of the open problems, such as long-term dependencies, and multi-granularity
recognition.

Within the broader landscape of action recognition, specific investigations have probed
into hand-actions, unveiling the intricate reasoning processes that underscore how humans
predict actions through a grammar structure. In light of these advancements, this section
unravels the symbiotic relationship between deep learning, event segmentation, and the
utilisation of primitives, offering insights that are crucial for advancing our understanding
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and implementation of artificial intelligence in the realm of human action recognition (Lan
et al., 2015) within long-term activities, retrieval (Ikizler and Forsyth, 2008) and generation.

This branch studies the intricate process of human action recognition (Lillo et al., 2014),
focusing on the integration of behavioural sciences, cognitive sciences, and event segmen-
tation. Event boundaries, identified as hierarchically structured in space and time, play a
pivotal role in understanding and replicating complex actions (Zacks and Swallow, 2007).
The study presented in (Newtson and Engquist, 1976) involved participants watching a movie
and segmenting meaningful events, revealing the reliability of judgements across viewers
and within viewers over time (Newtson and Engquist, 1976; Speer et al., 2003). Successful
segmentation extends beyond identifying event boundaries; it necessitates tracking how
fine-grained events group into larger meaningful units (Hard et al., 2006; Lozano et al., 2006).
Recent research underscores the significance of this grouping for learning new activities and
retaining details of recent experiences, “those individuals who are better able to segment an
activity into events are better able to remember it later”(Hard et al., 2006).

The automatic nature of segmentation in the human brain is emphasised, where sensory
features are segmented bottom-up, while conceptual features, such as goal-oriented actions,
are segmented top-down (Zacks et al., 2001). Examining the cognitive aspects, the text
delves into the understanding, recognition, and replication of complex actions. Interestingly,
brain regions traditionally associated with language production, like Broca’s Area, are
identified as crucial for action planning (Fogassi et al., 2005). In (Summers-Stay et al., 2012),
it is suggested that a fundamental, innate representation is central to both language and
activity understanding, requiring a generative grammar for learning actions by example. The
minimalist program, as proposed by Chomsky, aims to uncover such a universal generative
grammar with broader cognitive implications.

Examining in depth (Summers-Stay et al., 2012) we find that the core importance of action
segmentation is highlighted by defining an action’s initiation when a hand establishes contact
with an object and concluding when the contact ceases. The recognition process of this work
involves constructing a tree, where each leaf corresponds to a contact event with the root node.
Recognition relies on measuring similarity using the Edit distance. The text introduces a
novel dataset featuring five complex manipulation activities, each decomposable into simpler
actions, incorporating RGB and depth data from two different sensors. Noteworthy works in
the field have focused on specific action types, such as hand-actions, revealing how humans
predict actions through reasoning with a grammar structure (Wörgötter et al., 2020b).

Moving now towards a more vision-centred scenario, we can find (Nair et al., 2020).
The challenge tackled by this work is double-faced, on one hand, they investigated how a
machine can see the similarity in actions described only by keypoints motions. And, on the
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other hand, they compared the reliability of the machine and humans in solving this task.
In this context, action primitives are conceived as kinematics descriptors (such as velocity
and its derivatives), and they are learnt automatically using dictionary learning techniques.
The actions used in the study are all hand actions, like squeezing a lemon, cleaning the
table, cutting bread etc. An interesting approach using Hidden Markov Models for primitives
detection and learning is proposed in (Kulić et al., 2012). Motion Capture movements are
acquired and an online algorithm for segmentation is used (Kulic and Nakamura, 2008). In
cascade, a Hidden Markov Model models the transition probabilities between each primitive
of motion. Their solution can be used for action recognition but also generation. As we
have seen since now, in the literature there is no unitary definition of motion primitive:
some works interpret them as a semantic concept (Wörgötter et al., 2020b), others more
as a kinematic structure of the motion. So, primitives are hierarchical entities which are
context-dependent in the literature. With the advent of modern deep learning techniques,
works focused on automatically learning them in an unsupervised or self-supervised fashion.
Quite novel research (Saunders et al., 2021) relies on a mixture of experts (Jacobs et al.,
1991) made of transformer encoders which learn different motion patterns and weights to
achieve a translation goal in a bigger network (from text to sign language representation). In
this case, primitives can be seen as a subset of cheremes (the basic units of sign language)
and by combining them it is possible to obtain a single chereme or sentences.

In conclusion, we can say that the exploitation of Primitives of motion has been deeply
explored in the Robotics research domain under a motor control perspective (Dessalene
et al., 2023; Schaal, 2006) but under a perception perspective there are still many unexplored
avenues to investigate.

6.3 Graph Neural Networks

Graphs are a broad matter of study in machine learning in several domains of application;
there exist many theoretical papers studying how to extend usual deep learning networks
to graph-structured data; for example (Defferrard et al., 2016) proposes a convolution on
graphs focused on having a constant complexity regardless of the input graph structure.
Other works developed Graph Convolution from a spectral viewpoint (Bruna et al., 2013)
and others starting from a spatial viewpoint (Kipf and Welling, 2016). In more recent
studies, encouraged by Transformer architecture for NLP and images, in (X. Fan et al., 2020)
they develop an attention layer for graphs, showing its usefulness in a graph classification
task. Despite many methods focusing on graph classification (chemical graphs, etc) or node
feature predictions, in this section, we will focus on graphs in computer vision applications
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Fig. 6.1 Example of a general pipeline of Scene Graph Generation [source (G. Zhu et al.,
2022)].

and restrict also to our domain of application: action recognition and scene understanding.
Scene graph generation is the task of starting from an RGB image and transforming it
into an abstract representation having bounding boxes representing objects of interest and
connecting them with relationships. Then this becomes a graph structure. “From the point
of view of graph theory, a scene graph is a directed graph with three types of nodes: object,
attribute, and relation. However, for the convenience of semantic expression, a node of a
scene graph is seen as an object with all its attributes, while the relation is called an edge”
(G. Zhu et al., 2022). There are two approaches to scene graph generation. The former
is a two-stage method (general example in Fig. 6.1), e.g.(T. Chen et al., 2019), where one
network such as a Fast RCNN (Girshick, 2015) extracts object bounding boxes and labels,
and a second one regresses the relationships between them. The latter approach is a one-shot
method, where one neural network does all in one step, regressing objects and relationships
as well as positions, two examples are (Cong et al., 2023; Hengyue Liu et al., 2021). The
two-stage methods rely on different characteristics and use several mechanisms: multimodal
feature aggregations to ensemble the descriptions of different objects from the object detector.
In fact, features may be spatial, semantic and context; in this respect (Yaohui Zhu et al.,
2017) the authors investigate how spatial features and different positions of objects can
aid the relationship reconstruction. To understand this we should highlight that the spatial
distribution of objects in the scene not only reflects their positions but also their structural
information. Another approach (Ji Zhang et al., 2018) investigated how to combine visual,
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spatial and semantic features and show explicitly how each feature contributes to the final
prediction. Other methods, such as (G. Yin et al., 2018), stated that using also context around
objects or ensembling multi-object features helps to have better representations and extracting
more precise relationships. On this problem, even extending dataset dimensionality does
not give a huge boost to some of the categories involved, because of the natural long-tailed
distributions of the relationship occurrences (R. Yu et al., 2017). So (Zellers et al., 2018) tried
to look for statistical features able to disambiguate and regularise the recognition task. But
other ideas come from language priors, so here (Liao et al., 2017) thinking that linked objects
should find sense in the semantic world and not just be similar or near in the embedding space.
Other works tried to extend this to the open-set vocabulary setting, such as (Y. Zhang et al.,
2023). One of the biggest datasets in terms of variety of relationships is the Visual Genome
dataset (Krishna et al., 2017), but many others are present. However, some are composed
of single images (Kuznetsova et al., 2020) and others of videos(Krishna et al., 2017), so
having or lacking a temporal component linking the data. To go deeper into the topic and
find related material we suggest looking at these two comprehensive works (X. Chang et al.,
2021) (G. Zhu et al., 2022).

Concerning the action recognition from graphs, there exists one main way: using the
human keypoints and bones to define a graph and applying a Graph Convolutional Network
(GCN) on this representation in space and over time, but we have already seen the major
works on this specific topic in Section 6.2.1.2. Very few other works focus on recognising
actions from graph descriptions taken from scene graphs. (Arnab et al., 2021) proposes the
use of a GCN with a message-passing behaviour which takes in input features from a 3D
CNN. It uses an explicit representation of objects when available and implicit otherwise.
They test their pipeline on spatio-temporal action detection on the AVA dataset (C. Gu
et al., 2018) and on video scene-graph classification on the Genome dataset. Another work
developing a similar technique in a different setting is (Materzynska et al., 2020), where the
focus is on modelling the evolution in time between subjects and objects and their geometric
relations. The task they face is the recognition of manipulatory actions.





Chapter 7

Proposed Methodology

The methodology chapter is two-folded: the first half presents the work about human motion
representation from primitives of motion; the second half presents the action recognition
pipeline focused on human-object interactions modelled as scene graphs and processed using
graph neural networks.

7.1 MOSAIC: Minimal Action Classification

7.1.1 Introduction

In this chapter, we present a core contribution of the thesis which is about action represen-
tation and classification. The idea comes from behavioural sciences, cognitive science and
computer science literature and aims to demonstrate how using human-like structures of data
can be beneficial to machine intelligence. The goal is to perform action classification using a
new feature space where primitives of motion are emphasised and used as building blocks
for action representation. In comparison to the literature exposed in Chapter 6 our method
provides some advantages because it completely relies on automatic feature extraction with
few hyper-parameters for the primitives extraction. This task is based on two assumptions:
actions can be decomposed in primitives either in a kinetics sense (Nair et al., 2020) or
in a grammar structure fashion(Wörgötter et al., 2020a)); and, every action has a unique
signature if described with primitives. These assumptions are encoded in our problem in
the data manipulation part: the primitives’ decomposition is obtained by dividing (along the
temporal axis) data into several smaller clips and encoding them to find similar movements.
Furthermore, the fact that each action has a unique signature in our representation means
that we can perform action recognition in this new space we created. But why do we need to
encode them or map them in a new and different space? Because with the skeleton data (see
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an example in Fig. 7.1) temporally divided, we need to make a ’dictionary’ of primitives; in
other words, we would like to find a space where similar parts of the movements are encoded
nearby in the space and dissimilar encoded far-apart. Indeed, we use a neural network that
maps similar data close to one another in the new feature space.

One fundamental aspect we need to focus is the amount of temporal information we need
to encode in a primitive. Modern architectures are very likely to focus on the wrong and
uninteresting parts of images or videos for classification purposes, however, feeding them
with already structured and meaningful information may help to improve performance in
different tasks. In this way, the network concentrates only on high level task and not more on
pixel-level feature retrieval. In some sense it is a way to use ‘deeper’ architecture but with
the agility of modularity. First attempts may deal with using the same architecture of this
paper and change input modality and for example, exploits: optical flow, pose estimated via
keypoints, context elements such objects.

Fig. 7.1 Example of a skeleton sequence from an upper-body action from the dataset in
Appendix B. Each skeleton represents a different frame.

Our methodology is focused on the classification of actions as a test bed for our represen-
tation. The pipeline can be divided into two consecutive parts. The first one is the Primitives
extraction where the data are pre-processed and divided into windows and finally passed
through a representation model which is an autoencoder. In the second half the representation
of each window is extracted in the latent representation of the autoencoder and used as
the input token of a Transformer network. The pipeline is not end-to-end because it needs
the representation learning part to be performed offline. However, if the representation is
powerful enough, the network trained on some data can easily be extended towards new
unseen data. Moreover, the representation retrieved in this way can also lead to experiments
of motion generation, but they are out of the scope of this dissertation.
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Fig. 7.2 Illustration of the 25 joints of the NTU format. Configuration of 25 body joints.
The labels of the joints are: 1-base of the spine 2-middle of the spine 3-neck 4-head 5-left
shoulder 6-left elbow 7-left wrist 8- left hand 9-right shoulder 10-right elbow 11-right wrist
12- right-hand 13-left hip 14-left knee 15-left ankle 16-left foot 17- right hip 18-right knee
19-right ankle 20-right foot 21-spine 22- tip of the left-hand 23-left thumb 24-tip of the right
hand 25- right thumb [source (Shahroudy et al., 2016)].

7.1.2 Problem Formulation

The aim is to recognise the action category starting from 3D (or 2D) skeleton data. In the
following, we will call video or sequence the entire sequence of skeleton data composing
one action, i.e. coupled with one label.

More formally, we start from a set of N skeleton streams associated with an action label,
{(vi,yi)}N

i=1, with yi ∈ {1, ...,C}, C is the number of classes. For each i, vi ∈ RT×J×d with
T the video length in frames, J the number of skeleton joints (e.g. 25 if employing the
NTU format (Shahroudy et al., 2016), see Fig. 7.2), living in a space of dimensionality d.
According to (Shahroudy et al., 2016) we transform the joint’s location to a new reference
system with origin in the middle of the spine joint.

The pre-processing of the joint has been carried on according to the NTU process, so the
joints from the camera coordinate system have been translated to the body coordinate system
with its origin on the “middle of the spine” joint. The labels we work with are at the sequence
level and are assumed as ground truth, except stated differently. The first step of the pipeline
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is to divide the input into temporal segments and represent them thanks to an autoncoder
compression, and then classify them thanks to a Transformer, as described in the following.

7.1.3 Primitives of Motions

The theoretical idea behind this approach is well expressed in some of the works cited in
Section 6.2.2, for example in (Nair et al., 2020; Kulić et al., 2012; Kulic and Nakamura,
2008) where motion primitives are established as kinematics primitives of the human body.
In this sense, we define what should be a primitive for us, in a general sense, and we
would investigate if it can demonstrate the actual utility of them in computer vision systems.
Undergoing this operation we selected human action recognition as a downstream task to
asses our representation. The assumption is that if the representation is as rich and complete
as possible, it can be an advantage to a human recognition system.

Definition 7.1.1 (Primitives of motion). A primitive of motion is defined as a short piece of
motion such that putting many primitives in sequence defines an action.

In this respect, we are really close to (Zacks et al., 2001), because kinetics primitives
can be seen as a type of sensory feature. The kinematics can be described using positions
and all its derivatives. In our work, we chose to start from the velocity because it is position
invariant and gives enough information to be used. The final point would be to use primitives
of adaptive length, but let us start with a fixed-length algorithm. For now let us assume to
have a fixed time window of duration τ < T , where T is the video duration. We divide our
sequence of skeleton frames in T/τ =W , W is the number of windows or clips in each video.
To express mathematically what we do:

vi = {{c j,i}Wj=1}N
i=1

N is the total sample number, W is the number of windows, each spanning τ frames. The
choice of the window size W depends also on the sampling frequency of our data; usually,
selecting a window of length 1 second is a good compromise between informative content
and size; moreover, at the level of common knowledge, human movements have a speed
which permits an action evolution from fractions of a second to few seconds(Cieślik and
Łopatka, 2022; Gaveau and Papaxanthis, 2011; Allingham et al., 2021).

7.1.4 Encoding

The following step of the pipeline is the usage of a variational autoencoder which enables
us to project our clips in a feature space where the similarities between windows should be
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highlighted. The VAE consists of six 1D convolutional layers, each strategically configured
with channel dimensions of 128, 128, 256, 512, 256, and 256 respectively. This configuration
shrinks the input data into a latent space of 128 dimensions, facilitating effective feature rep-
resentation. Following the convolutional layers, the encoder structure integrates a reshaping
function to prepare the data for a fully connected layer, subsequently feeding into µ and σ

layers implemented as linear layers. The architectural decisions are meticulously crafted to
enhance information extraction across temporal dimensions, employing a uniform kernel
size of dimension 3 for all layers. Our VAE model encompasses approximately 14 million
parameters.

The exact procedure (see Fig. 7.3) is the encoding of a single clip, to build a hidden space
built around a limited temporal part of the motion and not representing an entire action. In
this regard, it is not easy to look at the feature space and its clusters, because it does not
cluster ’following’ action labels. Indeed, each action should be composed of a series of these
embeddings. To use an example, we are building a sort of dictionary where each embedding
is a word we will later use to build a sentence: our motion sequence. Writing this passage
explicitly we can state that each clip is encoded in the latent space

e j,i = f (c j,i) (7.1)

recalling that f (·) and g(·) are respectively the encoder and decoder functions, and with
a slight abuse of notation we can write the loss as.

Loss = MSE(c j,i,g( f (c j,i)))+β ·KL(N(µ,σ)||N(0,1)) (7.2)

where MSE is the reconstruction parameter and it stands for Mean Squared Error ∑(ĉ j,i− c j,i)
2

and KL is the Kullback–Leibler divergence (see Section 2.2.2. The β is a hyper-parameter
which varies across the epochs and helps to focus on the reconstruction at the beginning of
training (β = 0) and then linearly approaches 1, weighting equally the two loss contributions.

7.1.5 The Transformer

The transformer architecture has been chosen because of its nice properties in dealing with
temporal data. Let us start the section by recalling one of the main points and strengths of
the method which is the hierarchical approach and its compositional structure. So, likewise
human language –where Transformers have their top performances (Gasparetto et al., 2022)
and usages– we would like to think of human actions in a similar way. Our primitives can be
seen as words, and their temporal concatenation as sentences. This is a metaphor we will
use also in the following to explain some passages, just to make them clearer for the reader.
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In our setting, see Fig. 7.4, we use only a Transformer Encoder with a classification head
working on a CLS token. So, the clips embedding are taken and a CLS token is appended at
the beginning of the sequence, afterwards, everything passes through the positional encoding
and it is finally processed by 3 encoder layers, each one with 16 heads of attention. The
dimensionality of each token is the same as the latent space of the VAE network. At the
end of the Transformer, a fully connected network with 64 neurons and ReLu -as activation-
classifies the entire sequence taking in input only the CLS token.
Formally, [zi,1, · · · ,zi,nk ] are given in input of the Transformer, pre-appending a CLS token
and using the positional encoding. We tested several loss functions and reported results for
each of them in the following. The first is a standard cross-entropy loss:

CE =−
C

∑
i=0

pilog( f (v)i) =−log( f (v)i) (7.3)

The first part is the cross entropy for a retrieved distribution f (v) versus the real one pi; the
second part we assume to have the labels encoded in one hot fashion, so only one element
each time is different from zero.

The second is a balanced cross-entropy, where each class is weighted by its presence in
the training set.

((1−β )/(1−β
n)) ·CE (7.4)

where beta is a hyper-parameter, and n is the number of samples per class. This loss is useful
when training with imbalanced datasets.

Last we tried the focal loss, introduced here (Lin et al., 2017a).

Focalloss =−αt · (1− pt)
γ · log(pt) (7.5)

where pt is the probability of being classified to the true class; pt = p (if true class), otherwise
pt = 1− p. When γ = 0 the focal loss reduces to the CE loss. This loss, similar to the balanced
one, reduces the loss contribution from easy examples (by the factor 1− pγ

t ) and increases
the importance of correcting misclassified examples.

Concluding on the architecture, in training mode, the VAE is a full Encoder-Decoder
structure, and in inference, we use only the Encoder part, as shown in Fig. 7.4. Here, the
structure of the Transformer is more detailed with respect to Fig. 7.3.
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Fig. 7.3 Overview of the full pipeline composing MOSAIC. From left to write, kinematics
primitives are extracted from skeletons and a VAE encodes the representations in its latent
space. Then, we sample the space to ’rebuild’ an entire sequence representing an action and
it is passed to the Transformer for the classification.

Fig. 7.4 MOSAIC pipeline in Inference mode, VAE encoder is frozen. From left to right: the
data are divided in windows and input to the encoder one by one. Then the VAE representation
is sampled and the entire action is ’rebuilt’ in the form of a sequence of embeddings and
ingested in the Transformer encoder and lastly classified.
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7.1.6 Kinematics Features

One of the most challenging parts is the data shape and the features chosen to be the input of
our pipeline. Because, for the validation part of this methodology, one of the main point is
the assessment of the usage of different kinematics features as descriptors, as we will see in
the experimental section. We formally stated this data shaping part as the application of Φ(·)
on our input data. It is a pre-processing function that can map a clip c j,i or a video vi into
different kinematic spaces. So the input of our VAE can be represented as Φ(vi)}N

i=1 and then
divided into clips. When Φ is the identity function, the embedded primitive representations
are learned from sequences of joint position. Alternatively, one can use the sequence of
the instantaneous velocities of each joint, either considering their different components or
magnitude.

We started using as input sample the magnitude of each keypoint in time, this is the
matrix V : 

v1
1 v2

1 . . . vT
1

v1
2 v2

2 ... vT
2

... . . .

v1
K v2

K ... vT
K

 (7.6)

where v =
√

x2 + y2 + z2, and k ∈ [1,25] are the keypoints, and t ∈ [0,T ] indicates the frames:
so each action is represented as a matrix of 25 time-series (one each joint).
Then we define the data matrix V -where each v is a column vector v = [x,y,z]T - as

v1
1 v2

1 . . . vT
1

v1
2 v2

2 ... vT
2

... . . .

v1
K v2

K ... vT
K

 (7.7)

so, expanding this notation v = [x,y,z]T the previous matrix V becomes:

x1
1 x2

1 . . . xT
1

y1
1 y2

1 . . . yT
1

z1
1 z2

1 . . . zT
1

... . . .

z1
K z2

K ... zT
K


(7.8)
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We define this data matrix as P The same can be done by combining the modulus of the
velocity with the positions by axis: 

v1
1 v2

1 . . . vT
1

x1
1 x2

1 . . . xT
1

y1
1 y2

1 . . . yT
1

z1
1 z2

1 . . . zT
1

... . . .

z1
K z2

K ... zT
K


(7.9)

Using the notation for block matrices we define this matrix as [V|P], which stands for velocity
and positions. Of course, it is also possible to do the same using the speeds instead of the
positions for the three axes, so substituting the derivatives for each axis, in this case doing
this substitution x→ ẋ we can also define two new matrices Vxyz and [VV]. The former
is composed of the derivatives along each axis, and the latter is similar to [V|P] where the
velocity components have replaced the positions.
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7.2 ACROSS: Action Classification via Human-Context
Information

This section 1 marks the beginning of an exploratory endeavour aimed at enhancing Action
Classification pipelines through the integration of graph representations. The objective is
to harness environmental information and the interrelations among objects and people to
augment the action classification process. Up to this point, our focus has been primarily on
recognising actions solely based on motion features. However, a significant limitation arises
from the inherent ambiguity concerning the location and context of action execution. Thus,
this segment of the thesis complements the Minimal Action Classification sections, mutually
enriching each other’s insights, albeit lacking direct intercommunication at present.

7.2.1 Problem Formulation

We defined this task as an Action or Activity Classification problem, having as input features
and as output an action label, however, we decided to start from an underused (or not used
at all) data format: scene graphs evolving in time. In the following, we will use the term
Actions and Activity interchangeably because what differentiates one from the other is the
temporal duration of the two, and it strictly depends on the data used. Because our approach
is independent to the temporal extent both names can be used. We found a dataset built for
Image Scene Understanding and graph generation but annotated also with action categories
and we tailored it to our needs.

The dataset is the Homage Dataset (Rai et al., 2021) which is a large-scale multi-view
video database of indoor daily activities. The annotations in this dataset are dual-faceted:
object-human relationships and action labels at two different granularities. The relationship
annotation encompasses a human and the objects around him as bounding boxes and rela-
tionships between the human and objects. This annotation can be described as triplets such
as person, object, verb, e.g. person, chair, sitting on. The action annotations instead have a
video-level action or task performed during that clip and more fine-grained action (e.g. take
the iron, take the iron board etc). For our task, we used the bounding boxes and relationships
as data to build our scheme graph for each frame and then we passed the graph inside our
GCN training to predict the action label, at the video level. Describing our framework more
in-depth, individual subjects and objects, persistently tracked over time, serve as nodes,
while the associations between them are encoded as relational links. However, to effectively
integrate temporal information into our graph representation, we deemed it necessary to

1undertaken in collaboration with Clara Mouawad during her Master’s Thesis internship
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Fig. 7.5 Overview of the ACROSS method. On the left there is the input graph, then the graph
convolutional layers are drawn and finally, two fully connected layers for the classification
are stacked together.

incorporate temporal links alongside relational links. Temporal links are inter-frame links
connecting the same instance/object with itself during the evolution of the scene in time,
whereas relational links are only intra-frame connections. Consequently, each video segment
(equivalent for each action) is encoded in a big graph, where temporal links are the way to
distinguish between frames.

The fundamental objective is to develop a model capable of accurately identifying and
categorising diverse actions performed within the video sequences, leveraging the inherent
spatial and temporal dependencies encoded within the graph representation. This task
necessitates the exploration of Graph Convolutional Networks (GCN) architectures tailored
to effectively capture and propagate information across the graph nodes and edges, thereby
enabling robust action recognition performance in this complex and dynamic visual domain.

7.2.2 Proposed Methods

We decided to use some pre-defined layers in the PyTorch Geometric library for our network
creation. Given the spatio-temporal nature of the graphs, the incorporation of edge attributes
during model training emerges as pivotal, alongside the intention to use Convolution layers
in our pipeline. After some preliminary search with trial and error followed by preliminary
evaluation of some of them, we decided to use the GENConv (G. Li et al., 2020) Layer which
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is quite flexible and formally can be presented as:

x′i = MLP
(
xi +AGG

({
ReLU

(
x j + eji

)
+ ε : j ∈N (i)

}))
(7.10)

where AGG is an aggregation function (e.g. softmax, mean etc), and N is the set of
neighbouring nodes, ε is a small constant equal to 10−7, x′i is the updated version of xi when
x j are its neighbours.

The model’s input comprises scene graphs, delineated as x, edge_index, and edge_attr,
while the output corresponds to the activity class. The network is composed of several
GenConv layers stacked and after that a Flattening layer and two fully connected layers,
as in the scheme in Fig. 7.5. The number of GenConv layers used is equal to three, with
respectively [input, 64, 128] channels. And then two dense layers of 128 and 64 channels
each. The novelty of this preliminary work is the new usage of this dataset and this type of
data to show how it is possible to enrich action recognition using environmental cues and
information between the subject and its context. In the experimental section, we describe
how we achieved it, giving more details about the implementation.



Chapter 8

Experiments: Dataset and results

This chapter encompasses all the experiments to validate the presented methodology and it
has been structured as the Chapter 7 in two main parts, the first for the MOSAIC algorithm
and the other devoted to the one based on the scene graph data.

8.1 MOSAIC: Minimal Action Classification

8.1.1 Preliminary observations

Before presenting the conclusive outcome attained through the proposed approach, we deem
it pertinent to outline a preliminary method upon which our efforts were initially concentrated.
This preliminary method eventually drew us to the final version described above. The data,
used only in this section, come from a small dataset of 10 upper-body actions we acquired
in our laboratory with a zed-camera. The full details about it are reported in Appendix B.
As a preliminary experiment, we tried to input our data divided into primitives of motion
for one or two hands(using only the velocity profiles, or modulus of the velocity) into an
LSTM network composed of a few layers. The input data of our network resembles the one
in Fig. 8.1, where a time series represents one action.

As a classifier, a Fully Connected head was attached to the LSTM. The classification has
been done for 10 different classes. We decided to plot the representation after the LSTM
network and before the classifier to see how the classes were represented Fig. 8.2. However,
Fig. 8.2 represent the same embeddings but the colour code for the left and right-hand sides
are different. On the left, we grouped the classes by action categories: blue are eating
actions with the hand going from the table to the mouth repetitively, green are two-hand
actions, red are touch actions, and pink represents transport actions. We can clearly see a
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Fig. 8.1 Velocity for the right wrist while performing a Touch Action. We can see the x
dimension clearly indicating a ’go’ (positive bell) and then a ’come back’ motion (negative
bell).

clustering between them, which is in no way guided by a supervised classification because
the labels were the ones reported in the legend (not the categories just mentioned) and this
representation is taken before the classifier layers. The right-hand side of Fig. 8.2 shows
the same embeddings but with a colour code indicating the classes. This experiment has
been a preliminary step to assess the possibility of doing action classification only using
kinematics primitives extracted from keypoints deriving from a pose estimator. The usage of
only kinematics primitives is tough because it is a very bare representation, so it is interesting
in itself to see how powerful they are. The fact that the representations clusters also per
category of actions is a small proof that it is possible to appreciate differences between these
categories thanks to kinematics, and probably in the number of primitives to do an action.

8.1.2 Datasets

The BABEL dataset (Punnakkal et al., 2021) is a large-scale dataset providing very precise 3D
key points – acquired with motion capture data. Unlike other benchmarks, like (J. Liu et al.,
2019), BABEL more closely resembles real-world conditions providing a very challenging
test-bed for our approach.
It is derived from the AMASS dataset (Mahmood et al., 2019), a collection of different
marker-based mocap datasets that have been represented using a common parametrization to
convert the data into realistic 3D human meshes. The AMASS dataset was mainly designed
for animation, visualization, and data generation purposes. In BABEL, the sequences have
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Fig. 8.2 Embeddings where each dot is the representation of an entire action taken from a
bigger latent space to a space of dimensionality 2 thanks to a transformation performed with
the t-distributed stochastic neighbour embedding (t-SNE) algorithm.

been annotated at a global level (an action label for each sequence) and at a frame level (an
atomic part of the action that can be short in time or instantaneous).
However, AMASS is a motion capture dataset and BABEL a keypoint one; to pass from one
representation to the other the enabling piece of engineering is SMLP(Loper et al., 2015).
SMLP is a software able to render human meshes from a sparse mocap representation; it has
the feature of building up a rendered human from two sets of data: human parameters (gender,
height, and many others) and motion parameters. This particular mesh has the possibility to
sample different sets of keypoints on the human body.
There exist two versions of the BABEL dataset for action recognition: 120-actions and 60-
actions, following the NTU(J. Liu et al., 2019) dataset scheme. Both of them are imbalanced
and have long-tailed distributions but have different numbers of classes. In the following,
where not explicitly stated the 120-classes version is used.

For our task, we considered the sequence-level annotation and the two versions of the
dataset, 60-actions and 120-actions. The actions included in the dataset show high variability
and complexity, in terms of the granularity of the actions but also of the number of samples. A
data split is available and concerning the 60-actions dataset it encompasses 45473, 17067 and
15647 sequences for training, validation and testing respectively; while for the larger dataset,
the split is 48978, 18363, and 16839, all these numbers are resumed in Table 8.1. Notice that
while doubling the number of classes the total number of samples remains stable, showing
the gap in complexity between the two versions of the dataset. The splits are pre-defined in
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the dataset itself and we suppose they are built using a cross-person procedure.
The action classes are divided into 8 semantic categories of uneven complexity: simple
dynamic actions, static actions, object interaction, body part interactions, body part, type of
movement, activity, and abstract actions.
Despite its precision, BABEL presents different challenges. First, the classes are highly
imbalanced, with actions having just 19 samples, while for others there are 6260 samples
available (some details are reported in Table 8.2, see also Fig. 8.3 and Fig. 8.4). The
complexity of the actions and their variability is very wide. For all these reasons, we consider
the dataset an ideal test-bed to assess MOSAIC.

Table 8.1 Babel dataset number of samples per split.

dataset version training set validation set test set

60-actions 45’473 17’067 15’647
120-actions 48’978 18’363 16’839

Table 8.2 From left, minimum, maximum, average and median number of samples per class
in the BABEL dataset. The dataset is very challenging due to the presence of classes highly
under-represented.

BABEL split Min. Max. Avg. Med.

120 actions train 19 6260 408 133
120 actions val 1 2203 153 51
60 actions train 122 6260 758 418
60 actions val 37 2203 284 151

The data in BABEL are already pre-processed with the standard NTU procedure: padding
the empty frames (if any) with the previous frame, parametrise the data to express all the
skeletons with respect to the spine joint (joint 1), parallel the hip (joint 0) and spine joint
with the z-axis and then parallel the bone between the right and left shoulder (joints 8 and 4
respectively) to the x-axis.

8.1.3 Experiments

The majority of experiments presented are conducted on the BABEL dataset because it is
big and diversified and there are few chances to overfit (or customise) a model onto the data.
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Fig. 8.3 Class Distribution on the training set and on the validation set of the 60-classes Babel
dataset
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Fig. 8.4 Class Distribution on the training set and on the validation set of the 120-classes
Babel dataset

Indeed, the strong unbalance of the classes and the large number of them, make it a tough
test bed to test an architecture.

The metrics used to assess the Action Classification task are taken from the literature,
especially from (Punnakkal et al., 2021), and are common choices for the action classification
domain.

• Top1 accuracy: the action class predicted is in accordance with the label. This metric
states how many correct classifications the model does. It is the conventional accuracy.

• Top5 accuracy: the metric takes as correct the samples where the label is in the top 5
predictions of the model. So, it takes into consideration noise in the annotation labels
or -in the case of the Babel dataset- the fact that sometimes more than one label can be
present inside a sample.
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• Top1 norm: it is the mean top1 accuracy across categories. It is the mean of the
per-class accuracy, over all the classes.

In this respect, the difference between the top1 and top1 norm accuracy can be seen as a
measure of unbalance in the model predictions (in this case due to the nature of the data used).
In fact, top1 expresses the accuracy divided by the total number of samples, respectively of
the classes, whereas the top1 norm takes the class accuracy and then averages them.

Furthermore, let us write down a reference configuration, where the more influential
parameters are reported Table 8.3. To assess the benefit of them in the pipeline, all of them
have incurred in the process of experimental validation through many trials.

Table 8.3 Standard configuration of the MOSAIC architecture.

classes latent_dims lr label smooth loss scheduler classifier feedforward heads encoders dropout

balanced
cross

entropy
120 128 0.002 0.25 cosine 64 256 16 3 0.01

The standard configuration Table 8.3 presents -from left to right-: the number of classes of
the dataset; the dimensionality of the representation (latent space in VAE/feature dimension
of each token); the learning rate; the percentage of label smoothing in the loss calculation;
the loss chosen; the scheduler controlling the decay of the learning rate of the optimiser; the
number of neurons in the fully connected head performing classification; the dimensionality
of the feedforward of the transformer; the number of transformer’s heads of attention and
the number of encoder layers; and finally the dropout percentage in the transformer and in
the classifier. Regarding the data used for training and testing, we would acknowledge the
following. For the training procedure of the autoencoder we used the babel-training set split
as training and validation data and we tested on the babel-validation set (in order not to
corrupt the downstream task evaluation). For the Transformer and the Classifier, we used
the babel-training as the train set, and the babel-validation as the validation set. The test set
labels are private, so the results in Table 8.14 have been evaluated on the evaluation server
provided by the Babel dataset creators. All the other tables are fed with results calculated on
the babel-validation set.

The Fig. 8.5 shows the different schedulers used in the experimental pipeline.
There are many other hyperparameters chosen in the architecture (for more details see

Appendix C, which can be seen in the code available on GitHub, or if important, they will be
mentioned in the following.
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Fig. 8.5 Two different schedulers used: Linear, Cosine. They decay the learning rates as
function of the epochs elapsed as illustrated in the figures. In this graph, the Linear is
instantiated for a training of 50 epochs, whereas the Cosine for 75 epochs(only for drawing
purposes).

8.1.3.1 Experiments on the VAE

VAE losses
Before choosing the latent dimensionality on the basis of the downstream task, i.e. action

recognition, we made sure to have our VAE in the correct operation setting. We picked several
latent representation dimensions and we assessed the reconstructions and the losses. As we
can state from Fig. 8.6, all the VAEs with a latent dimensionality bigger than 16 achieve
the same amount of loss: capacity of reconstruction and KL-divergence. The total loss used
for the training is the sum (and not the mean) per batch of all the errors in reconstruction,
which is not very informative but -numerically- high enough to balance the contribution of
the KL loss without using any adjustment weights (as used sometimes in literature (Asperti
and Trentin, 2020)).
The losses are also measured in a mean-per-clip fashion to understand how capable each
network was of reconstructing every single word (or clip). However, rather than the sum
loss, the per-clip-mean is a real measure and a way to assess if a word’s length is better than
others. But, here, the main message we wanted to convey is that in each experiment the VAE
was trained till full convergence and till a satisfactory reconstruction error.

One idea we found to work quite well and improves our results in reconstruction is the
usage of a weight between the reconstruction loss and the KL-divergence loss. The Beta β
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(a) Training & Validation Losses (b) Reconstruction Loss

Fig. 8.6 Losses for different dimensions of the latent dimensionality.

parameter we are going to introduce is the weight multiplied by the KL-loss. We decided
to start training the architecture with one epoch where the two losses weigh the same, then
varying β as observed in the Fig. 8.7. The β definition is as follows for a 120 epochs training
and considering x the epoch steps:

β =


0 x = 0
1

25x− 1
25 1≤ x≤ 26

1
25x− 27

25 27≤ x≤ 30

1 31≤ x≤ 120

(8.1)

Pooling vs no Pooling
The Autoencoder dimensionality has been proved using different latent space and kernel
sizes, keeping in mind that a small and fixed kernel is often the choice. The motivation is
that the small kernel can ’see’ the small variations in the data series, and with the increase of
the depth of the model it can appreciate also big patterns (due to the convolution mode of
operation). However, to validate also this type of choice we tried to use pooling layers across
the intra-word time dimensionality. So shrinking the word length layer by layer, to achieve a
more complete representation in the latent space. However, not every word length fits inside
the pooled version, only words longer than a threshold which allows them not to collapse
in a zero-dimensional vector. The results between using pooling and not using it are very
similar, so we decided to use the simplest and more explainable approach. Another variation,
which may be found in the literature in a very similar setting can be the pooling of the feature
dimensions i.e. the number of keypoints represented. Indeed, in the (Cardoso et al., 2022)
they start with a skeleton dimensionality of 25 nodes and then they end having only one node
as representation. However, we did not follow this path, leaving it still open for explorations.
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Fig. 8.7 Beta value of the VAE for a configuration of 120 epochs with two cycles of 25 epochs
each. (It is the parameter controlling the learning of the reconstruction and the statistical
distribution of the embeddings.)

Table 8.4 Classification metrics with different input data for Babel with 60 Classes.

model dataset version VAE VAE train top1 (%) top1_norm (%) top5 (%)

ours V P VAE 120 40.31 25.47 70.30
ours V P VAE POOL 120 - - -
ours V P VAE 60 38.79 23.04 68.52
ours V P VAE POOL 60 39.06 21.77 68.73

8.1.3.2 Experiment on the Word length

We start with an assessment of our method under different conditions, one of which is the
word length or clip length dimensionality. What we performed is a change in the value of τ ,
i.e. the length of the time window used to split the sequence in clips (see Section 7.1.3). The
results are shown in Fig. 8.8, the input for this experiment is a sequence of joints velocities
(the most challenging input). Here we may observe that some values perform significantly
better than others, and it can be appreciated as a trend. However, it is not obvious to conclude
that similar scores mean similar output, indeed the top-1norm does not decrease as much
as the others for τ = 75. This may lead to the conclusion that different window size may
contribute to the classification of different classes. Furthermore, we may hypothesize this is
because there is not a single appropriate time window for all the action classes. We tried to
investigate how differences are present in the per-class accuracy, as we reported in Fig. 8.9b,
Fig. 8.9c and Fig. 8.9d. In this regard, we can say that thanks to the balanced loss, also
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Table 8.5 Classification metrics with different input data for Babel with 120 Classes.

model dataset version VAE VAE train set top1 (%) top1_norm (%) top5 (%)

ours V P VAE 120 37.43 20.20 65.88
ours V P VAE POOL 120 37.15 19.78 65.50

on poorly represented classes the model exhibits an acceptable amount on learning. Also,
it is worth taking into account the fact that in the validation dataset, all the classes after
the 60th, have less than 50 samples each, and after the 85th they have an average of 20 or
fewer samples per class. The different time scales used grasp different types of actions,
for example, one of the three peaks in Fig. 8.9b is the action label ’stumble’ which is an
instantaneous action. In this regard, probably, having more time windows (so shorter ones)
does not help, because they are all ’empty’, or probably misinterpreted as walking, and the
only one in which someone stumbles, has not enough weight to make the model converge for
that decision.

Table 8.6 Classification metrics for different clip lengths for Babel 120.

dataset clip length top5(%) top1(%) top1 norm(%)

120 149 61.93 34.80 15.14
75 65.48 37.01 19.96
25 67.92 38.61 19.11
10 68.28 39.01 19.83
5 45.79 19.75 5.07

8.1.3.3 Experiment on the Transformer’s hyperparameters

Token size
In Table 8.7 we analyse the effect of choosing different token sizes (we remind that the token
is essentially the word in the action sentence, hence its length is the size of the VAE latent
space). Changing the size of the latent space has only a minor effect on the performance,
slightly more significant in the case of the top-1 norm. This suggests that the choice of the
size of the latent space is not extremely critical in our method.

Losses
Furthermore, we investigate the use of two different loss functions, as done also in (Pun-
nakkal et al., 2021). The first one is the standard cross-entropy loss, possibly weighting the
contributions of different classes to deal with data imbalance. The second one is the focal
loss (Lin et al., 2017b), an extension of the previous one that helps the model to pay particular
attention to hard misclassified examples which are usually the poorly represented classes.
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Fig. 8.8 Classification metrics with respect W (the clip length chosen) on the x axis.

Table 8.7 Classification metrics for different token dimensionality (VAE latent space dimen-
sionality) on Babel 120.

token dim. encoder layers heads feedforward top5(%) top1(%) top1 norm(%)

256 3 16 256 58.60 29.74 10.53
128 3 16 256 59.53 30.52 11.75
64 3 16 256 59.82 30.76 12.81
32 3 16 256 59.95 30.78 11.71

The results are reported in Table 8.8, and it is evident how the balanced loss is well-suited
for the problem, and the focal loss alone does not achieve comparable results to its balanced
version.

Fixing all the other hyperparameters and configurations, as the representation and using
always the same VAE for the representation The Table 8.9 reports preliminary results on
the effects of some hyperparameters of the Transformer architecture. As we can appreciate,
almost any configuration works the same, suggesting that the representation is rich enough
for them. On the other hand, the table suggests that to improve the overall performance some
changes on the classifier head, or on the data and on the VAE encoder are probably needed.

Following the considerations above we continued testing, starting from the representation
power of the VAE. In this regard, the first hyperparameter to be tuned on the VAE is the
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Fig. 8.9 Fig. 8.9a Sample distribution per class in train and validation for the Babel-120.
Fig. 8.9b Top1 vs Classes for τ=10 and τ=25.Fig. 8.9c Top1 vs Classes for τ=10 and
τ=75.Fig. 8.9d Top1 vs Classes for τ=10 and τ=149.

latent space dimensionality, which directly translates into the token feature dimensionality in
the Transformer.

In parallel we performed also some other experiments on learning rates for the Trans-
former architecture, to find the best one; which turned out to be about 0.001 and 0.002.

However, cosine decay can be tricky if you do not arrive at the end of the fixed epochs
because it is indeed more similar to a linear decay if it does not reach zero (or very small
values). As a pair with Table 8.11 there is Fig. 8.10 where the different losses expose a
different learning speed across the steps. As we can see in Fig. 8.10 the architecture is quite
robust on a certain range of learning rates. To be highlighted is the overfitting of all of them
apart from the smallest one, which at the end it is still in the learning phase.

8.1.3.4 Experiments on the Multi-Resolution

Driven by the curiosity of investigating the exploitation of different resolutions and a possible
gain in performance thanks to the information gained from different data granularities at the
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Table 8.8 Classification metrics for different loss functions on Babel 120.

dataset loss top5(%) top1(%) top1 norm(%)

120 balanced-CE 68.46 39.19 22.97
CE 31.24 31.76 11.72
balanced-focal 68.84 38.76 17.03
focal 66.64 38.34 11.27

Table 8.9 Classification metrics for different hyperparameters of the Transformer, Token
dimensionality 128, on Babel 120.

encoder layers heads dim. feedforward batch first top5 (%) top1 (%) top1 norm (%)

4 16 256 ✓ 59.52 30.72 12.55
2 16 256 ✓ 59.43 30.90 12.30
1 16 256 ✓ 59.40 30.60 11.57

3 32 256 ✓ 59.76 30.92 12.08
3 16 256 ✓ 59.34 30.49 10.43
3 8 256 ✓ 59.62 30.78 11.92
3 4 256 ✓ 59.14 30.72 12.18
3 2 256 ✓ 59.29 31.23 12.73

3 16 1024 ✓ 59.64 30.62 11.76
3 16 512 ✓ 59.70 30.76 12.18
3 16 256 ✓ 60.07 31.07 12.50
3 16 128 ✓ 59.53 30.52 11.75

same time we tried the following approach. We use the same VAE+Transformer pipeline but
using a couple of VAE and Transformers in parallel and perform a late fusion approach on the
Transformers outputs. The classifier used here has the same characteristics as the previous
one but with a bigger hidden layer of 256 neurons. With the experiment in Table 8.12 we test
the use of a temporal multi-scale approach with late-fusion, which does not influence the
accuracies (with respect to the single-scale case) but for the top-1 norm, that improves when
employing the 25+10 combination of time windows. We might observe that short-time win-
dows perform, on average, better than longer ones, probably because of the richer sequence
provided to the Transformer when the clips are shorter in time (hence in a higher amount),
but also because subtle differences are easier to be encoded in the latent representation.

8.1.3.5 Experiments On the Kinematics Features

As a final experiment for this section, we consider the one in Table 8.13 where we compare
different combinations of kinematic features in input, as explained in Section 7.1.6: the
speed V = [Vx,Vy,Vz], its magnitude V , the position P = [X ,Y,Z], and the combination posi-
tion+magnitude of velocity, i.e. P+V. We observe -in Table 8.13- that the latter combination
is the best-performing one. We may hypothesize that while the positions are already very
informative, the use of additional dynamic features helps to disambiguate challenging action
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Table 8.10 Classification metrics for different token dimensionality (VAE latent space dimen-
sionality) on Babel 120.

token feature dim. encoder_layers heads dim. feedforward top5 (%) top1 (%) top1 norm (%)

256 3 16 256 58.60 29.74 10.53
128 3 16 256 59.53 30.52 11.75
64 3 16 256 59.82 30.76 12.81
32 3 16 256 59.95 30.78 11.71

Table 8.11 Classification metrics for different learning rates, fixing the scheduler as a cosine
decay, for Babel 120.

learning rate latent dims loss name scheduler top1 (%) top1_norm (%) top5 (%)

0.003 128 balanced-ce cosine 60.17 30.68 10.86
0.002 128 balanced-ce cosine 60.71 31.72 14.15
0.001 128 balanced-ce cosine 60.79 32.22 13.77
0.0005 128 balanced-ce cosine 60.41 31.55 13.25
0.0001 128 balanced-ce cosine 57.39 29.01 6.78

samples. This is the configuration of our method we consider in the comparisons with
existing approaches in the next session.

As suggested by results in Table 8.9 another possible way of achieving better results was
to work on the upstream data representation part. In Fig. 8.11 we report results fixing VAE
and Transformer and changing only the data input shapes and preprocessing as explained in
Section 7.1.6

In accordance with the Fig. 8.11 we also show the Table 8.13 with the accuracy metrics
reported for these experiments. As we can see from Fig. 8.11 which represents the top-1
accuracy during training, one run of the experiment did not even finish a proper training
(stopped by the early-stopping criterion) because the information encoded in the tokens where
probably not enough to learn something. The others, in different ways, learn to discriminate
between actions. One fundamental observation is that the amount of input data is different
for the different runs; e.g. one time instant in the yellow Modulus of Velocity is encoded
with a feature depth of 25, instead, the blue one has 100 features per time instant. However,
the most interesting observation is that the yellow curve in Fig. 8.11 (the modulus of velocity
alone) has better performance with respect to the red curve, which encodes the modulus plus
the speeds on the three-axis. Instead, adding to the modulus the positions of the keypoints,
helps the classification task, because it is a way of giving spatial information and proximity
information between the joints. In these experiments, where we observe the learning curves
of the classifier, we used one VAE architecture, of course training it with different data each
time, ending up with as many trained VAE models as classifiers trained.
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Fig. 8.10 Different Training-Validation losses with different learning rates indicated in the
legend, on Babel 120. (1 epoch is approximately 10 steps on the plots.

Table 8.12 Classification metrics with multi-resolution model on Babel 120, also one result
evaluated on the test server is reported.

dataset W1 W2 top5(%) top1(%) top1 norm(%)

120 149 10 62.52 35.61 15.52
75 10 64.24 37.72 18.02
25 10 67.29 38.58 21.52

test 25 10 66.39∗ 37.08∗ 18.48∗

8.1.4 Comparison with the State of the Art

We now discuss our results in comparison with the state-of-the-art of the dataset. We report
this evaluation in Table 8.14, our reported results are evaluated on the private test set (on
the BABEL page server). The performance of our method is only slightly below the best
in the literature. In this respect, it is worth noticing that different methods in the table (e.g.
2s-AGCN or MST-GCN) are based on two-stream approaches. In this sense, we highlight
the potential of the modular solution we are investigating. Indeed with a simple, "linear"
structure and only relying on kinematic features the classification performance is very close
to top-performing methods. Those methods take advantage of the usage of connectivity
between keypoints (or bones), so we can observe that this piece of information is beneficial
for the task. Our architecture, having made the necessary distinctions, uses only one of the
two data streams of information of the 2sAGCN which is the leading architecture for the
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Fig. 8.11 Top 1 Validation Accuracy for all the different data shapes tested. The curves are
the mean across many different configuration experiments (where present) and the shadows
are the standard deviation among them.

Table 8.13 Classification metrics for different data shapes and W=25. (V=3D velocity,
V=magnitude of speed, P=3D position)

dataset data shape top5(%) top1(%) top1 norm(%)

120 V 37.18 11.92 2.69
V 59.21 29.74 10.53
P 65.65 37.15 19.78
P+V 67.92 38.61 19.11

task. Indeed, to make a comparison only the stream of the node features is used, instead,
the connections (or the bones) are not exploited in our method. What we can state is that
this type of missing information can be relevant to the task because it makes it easier for the
network to understand proximity and causalities between keypoints, due to their connections;
however, our goal was multifaceted and was more centred towards the representation than on
the final output classification results. However, we consider exploring the role of connectivity
between joints in future works.

Looking at the numerical results, and in particular at the difference between our Top-1
and Top-5 we can state that our method is almost as good as the top-performing one for the
Top-1 metric, but on the Top-5 it stays behind. This suggests that it is easy enough (in line
with others) to get the first class correct, but it is less easy to disambiguate between the others.
This is probably due to two factors. The former is our representation where the absence of
bone connectivity can lead to ambiguities, but it is still to be proved. The latter is the fact
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that there are some actions in the dataset that are ambiguous, or very similar to one another;
this lead the model not to disambiguate between them correctly. Another point is the fact
that all the architecture underperforms in the Top-1-norm with respect to the Top-1 and this
highlights the lack of capability of learning from few samples (remember that the dataset
is strongly imbalanced). We should also point the reader to Fig. 8.9b where the per-class
accuracy is reported in detail, and it is clear that very few classes reach 50% accuracy, even
the more represented one. But it is also very evident that classes above the 80th are not
learned at all apart from a few exceptions.

Since we could not test (on the private test set through the BABEL page server) every
setup due to the lack of test labels, we examined some of them to highlight their similarities,
see Table 8.15. This helps us to show that the results from the validation dataset closely
match those from the test set (there is always a difference of 1%-2%), validating the fact of
showing the other results only on the validation dataset. Another interesting comment which
arises from Table 8.15 is the difference in performances for what it concerns the Top-1-norm
metric from validation and test which is unexpectedly high for the 60-classes dataset and
lower for the other. We would have expected the opposite due to the huge imbalance in the
120-class set.

Table 8.14 Results for BABEL60 and BABEL120 on the test set (evaluated through the server).
With MOSAIC we refer to our action classification method using the embeddings obtained
from the VAE trained on BABEL60, while MOSAIC∗ refers to the action classification
model employing the embeddings from the VAE trained on BABEL120.

Actions Method Top-5 (%) Top-1 (%) Top-1-norm (%)

60 2s-AGCN (from (Punnakkal et al., 2021)) 73.18 41.14 24.46
ST-GCN (from (Cardoso et al., 2022)) 44.20 24.20 14.40
2s-AGCN (from (Cardoso et al., 2022)) 67.80 33.80 30.40
MST-GCN (from (Cardoso et al., 2022)) 70.30 36.30 35.40
Cartdoso et al. (Cardoso et al., 2022) 70.40 36.40 30.30
2s DG-STGCN )(H. Duan et al., 2022) - 40.00 -
MOSAIC (our) 67.50 37.31 20.24
MOSAIC∗ (our) 69.77 39.27 20.95

120 2s-AGCN (from (Punnakkal et al., 2021)) 70.49 38.41 17.56
ST-GCN (from (Cardoso et al., 2022)) 28.60 20.50 5.50
2s-AGCN (from (Cardoso et al., 2022)) 58.00 27.90 26.60
MST-GCN (from (Cardoso et al., 2022)) 60.10 29.90 29.80
Cartdoso et al. (Cardoso et al., 2022) 65.40 31.40 28.40
2s DG-STGCN (H. Duan et al., 2022) - 32.80 -
MOSAIC∗ (our) 66.26 37.29 18.80
MOSAIC∗ multi-resolution 66.39 37.08 18.48
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Table 8.15 Results for BABEL 60 & 120. Our results comparison between validation and
test accuracies.

Actions Method Top-5(%) (val) Top-1(%) (val) Top-1-norm(%) (val)

60 MOSAIC 67.50 (69.54) 37.31 (38.79) 20.24 (23.04)
MOSAIC∗ 69.77 (71.11) 39.27 (40.11) 20.95 (24.96)

120 MOSAIC∗ 66.26 (67.82) 37.29 (38.82) 18.80 (19.07)

8.1.5 Discussion

All the previous experiments assessed the best parameter to achieve the result in Table 8.14.
The best data to achieve this result is the concatenation of the 3D position and the magnitude
of the velocity in the 3D space. This suggests that normalising the skeleton structure and its
reference (forcing the hip to be in the centre and aligned with an axis) makes the positions
informative. Indeed, the magnitude of the velocity of each keypoint helps the disambiguation
of similar motion patterns which can be similar but performed with a different velocity. For
example, walking and running, or walking and backwards-moving are probably done with
different velocity magnitudes.
Another interesting finding which seems counterintuitive is that using multi-resolution
approaches with this architecture does not pay. But what pays back is the usage of some
training strategies as explained before, such as using a handcrafted learning rate for the VAE,
in order to force it to work harder on the reconstruction side, and after it on the correct
gaussianity of the retrieved representation.
One important point that we are still missing is the fact of representing the embeddings and
showing their power. The motivation is that we are embedding part of movements that we
want to be similar across different actions, so we want them to be superimposed: because we
want to retrieve common primitives across different actions. However, we lack annotation for
this fine-grained information so the visualisation could only follow a color-coding associated
with their respective classes, which is not informative for our purpose. What we are trying
to say is that two different actions can be made of the same primitive A (which can be ’rise
arm’) and a second which is B (’move right leg’) but these two primitives can be present
at a different time during an action and can be common of many of them, and not having
annotation means that we cannot assign primitives to name (apart from doing it manually).
So the plot of the primitive sequence in the embedding space does not make a lot of sense,
because we are not able to name what we are seeing.
The key contribution of this part is a new deep-learning architecture that starts its reasoning
from kinematics primitives of motion and tries to encode them in an unsupervised way. This
is one of the first times in the computer vision literature where deep-learning is used for
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action classification via kinematics motion primitives, only (Saunders et al., 2021) introduced
a similar concept for a different problem. Another yet understudied contribution is the usage
of a Transformer to encode non-cyclical time series (human motion as a set of keypoint
velocities), which we could not find much reference on this topic. Indeed, the time series
usually studied are cyclical with some periodicity such as temperature over the days or
seasons.
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8.2 ACROSS: Activity Classification via Human-Context
Information

8.2.1 Dataset

The dataset used in this work is a subset of the Home Action Genome dataset (Homage) (Rai
et al., 2021). The original dataset has 30 hours of videos, 70 classes of daily activities and
453 atomic actions. There are 86 object classes (excluding “person”) and 29 relationship
classes in the dataset. The Homage dataset has an ego-view and 3rd-view for each video.
Each video represents one activity and each activity is made of multiple atomic actions.
Ground truth scene graph annotation files are present for all videos representing objects,
persons and relationships between them in each frame. A representation of the structure of
the Home Action Genome is represented in Fig. 8.12

Fig. 8.12 Home Action Genome Dataset image [source (Rai et al., 2021)]
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The HOMAGE dataset encompasses three distinct categories of spatial relationships:
those pertaining to the subject attention, relative positioning between subjects and objects,
and contact between subjects and objects. The delineation of these diverse relationship types
is provided in Table 8.16.

Table 8.16 Relationship types in HOMAGE dataset.

Subject Attention Relative Positioning Contact
looking at in front of carrying covered by
not looking at behind drinking from eating
unsure on the side of have it on the back holding

above leaning on lying on
beneath not contacting sitting on
in standing on touching

twisting wearing
wiping writing on

The subset of the dataset utilised in this study comprises 2617 videos depicting 69 distinct
daily activities. These videos encompass 85 object classes, excluding the class "person,"
thereby totalling 86 when including "person" as a class. Furthermore, the dataset includes 25
relationship classes. Each frame within the videos features a singular subject (person) and
one or multiple objects; furthermore, each frame adds the relationships established between
the subject and the objects. Multiple relationships may exist between the subject and a single
object, as well as between the subject and multiple objects within a frame. Notably, each
video portrays a complete activity sequence from inception to conclusion.

The distribution of these videos across the 69 activities is illustrated in Fig. 8.13. The
label distribution exhibits a satisfactory balance among the activity classes, with the majority
containing a count ranging from 25 to 45 instances.

8.2.2 Experiments

8.2.2.1 Activity Recognition

Let us start to show a preliminary evaluation of the GCN layers by trying the 5 different
types of layers as the Convolutional operator in our network. The general network layout is
the one shown in Fig. 7.5, where we have four convolutional layers with ReLU activation
then global mean pooling and dropout, then two dense layers and finally a softmax layer.

The Conv layers that we are evaluating are the following: TransformerConv, GENConv,
GeneralConv, GATConv, GATv2Conv. The forward method of these layers takes the x,
edge_index and edge_attribute.

Using the test network of Fig. 7.5 with the different Conv layers and with dropout =
0.2, number of epochs = 200, learning rate = 0.008, batch size = 200 and the Softmax as
aggregation are shown in Table 8.17.
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Fig. 8.13 Data Distribution between classes in the Homage dataset.

Table 8.17 Results of using the test network on the different Conv Layers with dropout = 0.2,
number of epochs = 200, learning rate = 0.008 and batch size = 200

Conv Layer Test Accuracy

GENConv 0.67
GATConv 0.44
GeneralConv 0.42
TransformerConv 0.29
GATv2Conv 0.18
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Thanks to other experiments aimed at finding the correct network size and fixing all
hyperparameters, we can say that the best model is composed of 3 Convolutional (GENConv)
Layers and 2 Fully Connected layers as classifier of the flattened feature vector.

For the model optimisation task, and finding optimal hyperparameters we fix the number
of epochs to a reasonable number equal to 250, the dropout to 0.2 and the batch size to
200. We also fixed the network to GENConv(5,64), GENConv(64,64), GENConv(64,64),
GENConv(64,64), dense(64,64), dense(64,69). The Learning rate follows Table 8.18 The
results of the experiments for finding the optimal model are shown in Table 8.18

Table 8.18 Train and Test Accuracy on different models and configurations, to find the
optimal hyperparameters.

Learning Rate Training Acc Test Acc

0.01 0.87 0.67
0.008 0.92 0.71
0.005 0.94 0.68

The model exhibits overfitting, which we will mitigate in future experiments, for example
using early stopping or data augmentation. We present the best of our preliminary attempt to
solve this task, there can be many adjustments to be done on the way, but it seems a pretty
good start.

Table 8.19 Best accuracy reached with optimal configuration.

model test accuracy

best 0.75

8.2.2.2 Activity Anticipation

This subsection reports some preliminary experiments regarding the activity anticipation task
using the same approach as the recognition task, only anticipating the classification before
the completion of an activity.

As an experimental approach, we decided to use and remove a percentage of frames from
the end of each video. Because some videos could have become too short, we set a minimal
threshold for the minimal allowed number of frames per video. From now on, only videos
with more than 10 frames are taken into consideration.

After eliminating these videos, the total number of videos goes from 2617 to 2432 (22%
on test). We then create the scene graphs for these videos without considering the last P%
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amount of frames. So for example if a video has 10 frames, and the percentage P is 10%
we create the scene graph with just the first 18 frames removing only 2 frames; while if a
video has 200 frames and the percentage is 10%, the scene graph is created with the first 180
frames and thus removing 20 frames from the video.

We run this experiment for P= p, p∈ 10,20,30,40,50,60,70,80,90 to see the difference
in results and how far we can anticipate the decision while keeping a good accuracy. The
results of this experiment are shown in Table 8.20, and visualised in Fig. 8.14.

Table 8.20 Accuracy on the prediction task using only a percentage of frames per video. The
percentage used is reported in the first column.

Percentage of frames Validation Accuracy Test Accuracy

0 0.95 0.79
10 0.96 0.79
20 0.96 0.76
30 0.93 0.73
40 0.96 0.71
50 0.93 0.70
60 0.91 0.67
70 0.94 0.61
80 0.90 0.57
90 0.88 0.54

There is a few things to note from the results shown in Table 8.20 and Fig. 8.14. First,
the test accuracy without anticipation has increased from the previously best test accuracy of
0.75 to 0.79. The only thing that changed is the elimination of the 185 videos with less than
10 frames. This indicates that the model struggles to recognise patterns in videos with few
numbers of frames and thus struggles to classify them. Whereas, using videos with more
frames improves the results.

Next, we can notice that the test accuracy for anticipation with 10% is the very same as
the test accuracy without anticipation. This means that by 90% of the video, the model is
able to give the same predictions it would have given with the full 100% video.

From 20% on the test accuracy starts to decrease, which is expected considering the
model is processing less and less information each time.

At 50% the test accuracy is still higher than 0.7, meaning that the model only needs half
of the video to be able to accurately predict 70% of the activities correctly. At 90% – now the
model has access to only the first 10% of the video – it is still able to predict more than half
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Fig. 8.14 Accuracy of the anticipation task by anticipating the decision at the given percentage.
The left part is where the all video is considered, the right where only 10% of the video is
observed and the decision taken.

of the classes correctly. Considering that we have 69 classes, this is well above the chance
level.

Since the reduced dataset (eliminating the videos with less than 10 frames) leads to better
performances with respect to the entire set, we report here some results on the reduced set
but using 100% of each video.

The Recall of each class is illustrated in Fig. 8.15a. We can see that 20 classes have a
recall of 100% and 1 has 0% while the rest are mostly between 50 and 90%. The median is
83%, while the average is 78.3%, suggesting that on the majority of the classes, our solution
performs quite well while in a few of them performs very poorly.

The Precision of each class is illustrated in Fig. 8.15b. We can see that 17 classes have a
precision of 100% and 1 has 0%. The median of the precision of all classes is 83%, while the
average is 77.8%.

The mean Average Precision (mAP) is then calculated from the precision-recall curve,
where each AP is the area under the curve and the mAP is the mean of all APs. We obtain a
mAP = 63.1%.

The Confusion Matrix is plotted in Fig. 8.16, showing the percentage of the predicted
classes against the actual classes. We can note that the predictions are mostly along the
diagonal which means that most of the predictions are correct.
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(a) Recall percentage per class. (b) Precision percentage per class.

Fig. 8.15 Precision and Recall per class, each class is on the x-axis and the y-values are the
metric values.

A few examples where classes are confused are listed below:

• class 1: "unpack from a suitcase" was confused 71% of the time with class 29: "pack a
suitcase".

• class 29: "Pack a suitcase" was confused 62% of the time with class 1: "unpack a
suitcase".

• class 46: "listen to music" was confused 60% of the time with class 57: "use a laptop".

• class 26: "serve dinner" was confused 44% of the time with class 10: "eat dinner" and
33% of the time with class 19: "set table"

• class 25: "load and run dryer" was confused 40% of the time with class 32: "unload
drying machine".

• class 13: "work at the table" was confused 25% of the time with class 60: "organize
office supplies".

From the examples above, we can clearly see what our algorithm is missing: an oriented
temporal component; so not only the temporal connection between frames is important but
also its directionality.

8.2.3 Discussion

In this chapter we tackled a well-known problem in computer vision: activity understanding,
which is a similar task concerning action classification but refers to longer video sequences
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Fig. 8.16 Confusion Matrix highlighting the diagonal except for a few points scattered around
which are the misclassified classes. On the rows there are the true values, on the column the
predicted, the values are normalised along the raws; so on the diagonal, the accuracy per
class is reported.



124 Experiments: Dataset and results

composed of an ensemble of actions. Our approach in the field is new because people usually
tackle this problem directly using deep CNN, or using Deep CNN features like in (Arnab
et al., 2021) but new tried to use already pre-extracted bounding boxes and so only semantics
of the scene to solve the problem. Our approach is more similar to the one in (Materzynska
et al., 2020) where they use a fully connected network to take a global feature for each frame
and then aggregate the frames over time with another network. However, their approach fixes
the maximum number of objects per frame and the number of frames whereas our graph
approach can handle a varying number of objects and frames being much more flexible. We
have not compared with them because they faced a different type of problem like ego-vision
manipulation and you need to use an ad-hoc detector to recognise only hands. So, our
approach has some degree of novelty and achieves promising accuracy, of course, the next
step is to build a complete pipeline from RGB frames to activity classification-prediction.
Two current drawbacks are the lack of time directionality and the overfitting which is evident
from results in Table 8.19 and Table 8.20. The way we think to mitigate the time issue is by
inserting a frame number as an edge feature. For the overfitting, we can use early stopping
and try a different number of parameters in the network.



Chapter 9

Conclusion

In this thesis we present four different solutions which put the human at the core of analysis,
examining cues of social interactions thanks to the HHP-Net algorithm and action recognition
through two different perspectives: one relying solely on motion and the other solely on
relationships between the human and the environment. Our research places itself in the
realm of computer vision and at the intersection of cognitive science and machine learning.
Especially in the MOSAIC architecture the inspiration for the chosen approach is clear and
tries to replicate some of the human mechanisms.
Recalling the introductory image Fig. 1.1 it is possible to see how this journey touched all
four problems and in each of them the keywords of computational aspects or interpretabil-
ity are somehow present. In the HHP-Net both interpretability -thanks to the embedded
uncertainty- and the lightness in computations are of uttermost importance and explicitly
stated and proved. Furthermore, the LAEO algorithm is completely designed to be as fast
and light as possible with no usage of neural networks that might improve the performances
in extreme or degenerated cases. We believe that these two first contributions can be of help
in many application scenarios; for example, in a Human-Robot Interaction case they can be
used to understand if people in the scene are engaged in some interactions between them or
are leaving the stage to the robot to speak/move/do something; furthermore, they can help in
predicting the motion of a person inside the robot’s area of operation, and maybe prevent
harmful behaviours. The second part is focused on human motion from a full-body repre-
sentation and on activity recognition considering the human in the environment. Whereas
the MOSAIC pipeline tries to represent motion as a composition of kinetics primitives to
resemble cognitive science principles, the ACCROSS is more focused on the usage of scene
graphs as a means to do activity recognition in an interpretable way. The MOSAIC is our
first attempt to build a foundation model for human motion understanding based on composi-
tionality of primitives. Natural improvements in this sense are to start from single poses and
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then include time, and this is the idea we are going to pursue in the near future. We strongly
believe in this approach and we demonstrated that can be accurate as much as state-of-the-art
models not relying on compositionality. For the ACCROSS methodology, we believe that the
interpretability is embedded in the method itself because it is founded on semantics and in
this way it is easily accessible for checking what the network is learning, or looking at when
performing predictions. Indeed the method proposes, fuses the features of adjacent nodes
and does not use image features (for example extracted from CCNs); according to us, this
makes the model easier to inspect. Finally, the test bed scenario in which we performed early
activity classification is a promising path to follow for new works. The applications in which
these two new pipelines can be applied are numerous: CCTVs, Human Robot Interactions,
medical applications for rehabilitation etc.

In the following, we propose a summary of the main technical contributions of each part
of the thesis:

• The HHP-Net achieves state-of-the-art results being much smaller than competitors and
relying on pre-computed keypoints (the gold standard for human-recognition pipelines,
so very often already present). The network is also interchangeable with different pose
detectors, as demonstrated by experiments, and it is able to give confidence about its
own output.

• Our LAEO algorithm uses very simple geometric concepts to achieve state-of-the-art
results on a complex task, thanks to the previous stages which gave as output a very
reliable data representation.

• Our MOSAIC architecture tried to privilege the representation of the keypoints of
information and took inspiration from cognitive science to be developed. It reached
very good performances on the chosen downstream task; however, we glimpse some
improvements, especially in the study of the embedding space. Nevertheless, it is an
important step towards a full recognition of movements thanks to motion primitives,
and to the usage of this new and reach representation.

• The last exploratory part of the thesis had outstanding results on a very promising task
which has not been explored in depth in the literature. The major contributions here
are the algorithm development and the usage of this dataset to solve this task. We
demonstrated it feasible, nevertheless, we foresee new improvements in this regard,
especially in the network pipeline, integrating temporal directionally and object features
(from a detector) to enhance the performances.
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9.1 Limitations and Future works

As we are aware that research is a never-ending journey, we analysed some of the limitations
of our works in each of the experimental chapters but we can recall the main points here, to
also highlight methodologies or ideas to overcome them in the future. The HHP-Net is very
light and efficient and the only future step to strengthen it is the usage of more data, with
more variability and many more angle views; or, furthermore, the possibility of relying on
the pose estimator to state when a person is seen from behind, enabling the possibility of
predicting angles also for these cases.
When regarding the LAEO method, many improvements can be made disregarding the effi-
ciency of the method, for example, the usage of a network doing depth estimation from 2D
images. On the contrary, to preserve efficiency, the usage of some heuristics to estimate the
depth of people inside the image can be used: e.g. computing their skeleton dimension and
assigning to each of them a position in foreground and background, and avoiding detecting
interactions between these two sets.
The MOSAIC architecture, as it is, lacks bone connectivity information, which we realised
can be beneficial both for the downstream task and for a representation viewpoint. Fur-
thermore, the dataset chosen has a huge variety of classes but some of them have huge
semantic overlap which made us interrogate its usage and also the real differences of the
data, also in terms of representations. So a natural evolution is the usage of Graphs over
humans, as the majority of the literature does, but for the representation part; so encoding
the primitives thanks to a graph network and then re-using the same transformer to do the
classification. Another direction of improvement we wanted to mention is a training pipeline
involving the reconstruction process thanks to a transformer decoder, which we think can
be really beneficial from a representation viewpoint. Moreover, some help can also come
from the emerging field of disentangled representations, which tries to work with very small
representation vectors where each component can be traced back to one of the input parts, for
example, a hand, a leg or the head; one implicit assumption is that each part is uncorrelated
or very small correlated with others (which does not fully hold for a human body).
Regarding the last exploratory part of the thesis, we have already highlighted one of the main
weaknesses which comes out from the results: the lack of temporal directionality. Another
improvement is the usage of some deep learning features to be embedded in our graph,
for example, some compressed representation extracted from the bounding boxes can be
beneficial to give more information in the message passing part.

In conclusion, the thesis proposed an in-depth explanation of four novel methods to study
human-centric solutions based on computer vision and deep learning methods. Many exper-
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iments support the methodological parts and hopefully, clear explanations and discussion
about their strengths and limitations are reported.
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Appendix A

LAEO demo

In this chapter, we illustrate a demo implemented using the Head Pose Estimation method
developed in Chapter 4. The implementation has been developed for the RAISE project and
it is available on our GitHub page, here. An example –only working on single images– can
be found on our Hugging Face repository.

A.1 Real Time LAEO demo

The real-time demo has been developed in Python using a pre-trained Centernet network,
precisely this one. And on top of it, we used our HHP-Net and weights can be found here.

The implementation is straightforward and it is a stack of the two network with some
utilities to show the input of the webcam and the head direction in the form of arrows
projected on the image plane.

Algorithm 2 LAEO demo
I← ImageRead← webcam
Keypoints← I
HeadPose← keypoints
HeadPose2d ← ProjectTo2d(HeadPose)
I∗← PlotOnImage(HeadPose2d)
I∗← PlotOnImage(keypoints)
return I∗

The performances are of course machine dependent and with no GPU available but only a
CPU the speed is at approximately 1 fps, taking into account that no real efficient mechanism
has been implemented (e.g. TensorFlow rebuild for some additional Intel operation set,
customised on the hardware, OpenCV build, etc.). On a device with a GPU using 3Gb of

https://www.raiseliguria.it/
https://github.com/Malga-Vision/LAEO_demo
https://huggingface.co/spaces/FedeFT/Head_Pose_Estimation_and_LAEO_computation
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz
https://drive.google.com/drive/folders/1nQ1Cb_tBEhWxy183t-mIcVH7AhAfa6NO?usp=drive_link
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memory, it shows the results at 7 fps. Also here no procedures to gain some speed has been
employed because it is a demo or proof-of-concept and not a market application. However,
to gain some speed and have lighter computations, it is possible to adopt a lighter Centernet
version (e.g. MobileNet), prune out HHP-Net with small degradation in performance; on
top of it, using multiprocessing, like acquiring frames almost in parallel and not sequentially
with the network inference may be of great help.

Zedcam implementation

We also implemented a demo version which uses the ZED Camera (developed by StereoLabs)
which is a stereo camera enabled with depth estimation. This make possible to extend the
LAEO algorithm in 3D thanks to the depth estimation and the application of a 3D object
detector. We have not developed it, because the LAEO algorithm working on the image plane
satisfied the requirements for our project, but we started experimenting with some depth
hints. In this case, if 3D depth estimation is needed, the computational burden increases quite
dramatically.

2D projection of 3D directions

The projection of the Head Pose from 2D to 3D and its representation need to be explained.
The projection from 3D to 2D is performed in the following way:

x = sin(yaw)

y =−cos(yaw) · sin(pitch)
(A.1)

where x,y are the pixel coordinates, the yaw, pitch, roll representation has a fixed reference
system which is identified by the unit vector ẑ exiting perpendicular from the frame; so the xy
plane is identified by ẑ. The equation set is a known transformation 1. Another methodologies
of projection tries to maintain some 3D information, projecting the 3 vectors identifying the

1Theory and Application of Kane’s Method, by Roithmayr, Carlos M.; Hodges, Dewey H
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Fig. A.1 Example of multi-person environment, where red arrows are people not involved in
LAEO interaction, whereas green is over thresholds. The bigger match is highlighted with
a red line connecting the LAEO couple. This frame was taken in a 3D scenario and it is
possible to see how the depth usage can boost the performance of the algorithm.

3 directions on the image plane, each vector is integral with one head axis:

x1 = cos(yaw) · cos(roll)

x2 = cos(pitch) · sin(roll)+ cos(roll) · sin(pitch) · sin(yaw)

y1 =−cos(yaw) · sin(roll)

y2 = cos(pitch) · cos(roll)− sin(pitch) · sin(yaw) · sin(roll)

z1 = sin(yaw)

z2 =−cos(yaw) · sin(pitch)

(A.2)

x,y are the same axis a portrait would have if taken perfectly in front, and the z axis point
outwards of the portrait. Each vector is identified by two coordinates, and the starting point
is taken at the centroid of the head, so every above vector is defined up to a scale parameter.
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Fig. A.2 Output examples: Green arrow LAEO, red arrow not-LAEO. In the first row two
interactions with a mutual gaze are shown: LAEO. In the second row, the same frame with
two different representations of the head pose, on the left, the three-axis projected in 2D,
and on the right the usual vector. The third row presents a misclassified example, where
the guy looks towards the camera but the 2D projections and incorrect thresholds lead to a
misclassification; on the right, a correct non-LAEO interaction.



Appendix B

Dataset: Upper-Body Human Motion

During our research, we acquired a small dataset of 320 videos of upper-body actions (person
seated at a table moving objects) with a stereo camera and a second low-resolution camera.
The dataset encompasses 10 different actions performed twice by 16 participants.

B.1 Dataset design

The dataset design started thinking of some simple actions were primitives of motions could
have been easily recognised and with some actions sharing some of the same primitives.
Moreover, we decided to have only actions involving the hands and the upper body, to not
consider other body motions in our analysis. The actions chosen are:

1. drinking: the subject was asked to reach, grasp a glass and drink and return to its rest
position.

2. eat crisps: the subject was asked to reach a crisp in front of him and eat it, and return
to its resting position.

3. open close bottle: the subject was asked to reach a bottle, unscrew the cap, screw it
back and return to its resting position.

4. play with Rubik’s cube: the subject was asked to reach a the Rubik’s cube, grasp it
and do some moves and return to its resting position.

5. sanitise hands: the subject was asked to pretend to sanitise their hands with gel, and
return to its resting position.

6. touch bottle: the subject was asked to reach a bottle in front of him, touch it (with no
instructions about how to touch it) and return to its resting position.
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7. touch Rubik’s cube: the subject was asked to reach the Rubik’s cube on the table,
touch it (with no instructions about how to touch it) and return to its resting position.

8. transport bottle: the subject was asked to move the bottle in front of him to a new
fixed position and return to its resting position.

9. transport pen: the subject was asked to move the pen on the table to a new fixed
position and return to its resting position.

10. transport Rubik’s cube: the subject was asked to move the Rubik’s cube on the table
to a new fixed position and return to its resting position.

The actions can be divided in: 1,2 are eating, 3,4,5 are actions performed with two hands,
6,7 are touch actions and 8,9,10 are transport actions. The protocol of acquisition consists
of defining the positions of objects on the tables but also standardising what to say to the
participants. This led also to some different behaviours between people, for example in the
performance of touch actions. Some performed it approaching the object with the tip of their
fingers, others performed a grasp-and-release action without actually holding the object. It is
possible to see that some actions should be simple, with fewer primitives, such as touch, and
others instead can have multiple: reach object, grasp, move object, release and return to rest
pose.

B.2 Dataset acquisition

The dataset has been acquired with a ZED camera, at 25fps, and with another simple webcam
with a lateral view. From the ZED data we extracted the RGB streams, from which we
acquired the human pose keypoints in 2D and we use the depth information extracted from
the stereo vision to give the 3rd dimensionality to the keypoints. So we obtained a dataset
with RGB, depth, 2D and 3D keypoints. For the acquisition, the camera was placed in front
of the performer, which was instead seated behind a table. The setting and one example is
shown in Section B.2

B.3 Dataset annotations

The annotation in the dataset is only at a level of classes, and each video has one label. We
used the dataset (action classification task) splitting in train-validation doing a Leave One
Out across subjects and averaging over the splits, and this is the suggested procedure with
such a limited amount of data and limited subject availability.
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(a) (b) (c)

Fig. B.1 Three frames from a transport video. The object disposal can be appreciated from
these frames.

(a) (b) (c)

Fig. B.2 Three frames of keypoints from the transport video above.





Appendix C

Network Models

The following models are related to MOSAIC Chapter 7, and are a detailed list of layers and
trainable parameters used in some of the experiments. The VAE is composed as:

Whereas the Transformer, in the default case is:
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The smaller Transformer used is made of 1 encoder layer with 8 attention heads:
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