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A B S T R A C T

Gradient-based attacks are a primary tool to evaluate robustness of machine-learning models. However, many
attacks tend to provide overly-optimistic evaluations as they use fixed loss functions, optimizers, step-size
schedulers, and default hyperparameters. In this work, we tackle these limitations by proposing a parametric
variation of the well-known fast minimum-norm attack algorithm, whose loss, optimizer, step-size scheduler,
and hyperparameters can be dynamically adjusted. We re-evaluate 12 robust models, showing that our attack
finds smaller adversarial perturbations without requiring any additional tuning. This also enables reporting
adversarial robustness as a function of the perturbation budget, providing a more complete evaluation than
that offered by fixed-budget attacks, while remaining efficient. We release our open-source code at https:
//github.com/pralab/HO-FMN.
1. Introduction

Machine learning (ML) models are susceptible to adversarial ex-
amples [1,2], i.e., input samples that are intentionally perturbed to
mislead the model. Such samples are optimized using gradient-based
attacks, which allow one to efficiently find adversarial perturbations
close enough to the original unperturbed samples. However, using
gradient-based attacks can only provide an empirical estimation of
adversarial robustness. In particular, if an attack fails to find an ad-
versarial example, we cannot prove that the given input is robust (i.e.
there are adversarial manipulations that make the input adversarial,
but the attack was not able to find it), similarly to what happens when
searching for bugs in software. Ideally, through an exhaustive search
or formal verification procedure, it would be possible to provide a
guaranteed robustness assessment, which is however practically infea-
sible due to the high computational requirements and dimensionality
entailing the problem [3]. This means that gradient-based attacks are
most likely to provide an overly-optimistic estimation of adversarial
robustness, and obtaining more reliable evaluations is not trivial [4].
It has been indeed shown that several defenses proposed to improve
robustness to adversarial examples were wrongly evaluated, and rather
than improving adversarial robustness they were simply obfuscating
gradients, thereby invalidating the optimization of gradient-based at-
tacks [4–7]. This problem is also exacerbated by the fact that each
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attack presents different hyperparameters which require careful tuning
to be executed correctly, i.e., to find a better optimum, along with
fixed choices for the loss function, optimizer, and step-size scheduling
algorithm. Nevertheless, in many of the reported evaluations, such
attacks are run with their default settings, even if it has been shown
that this may result in overestimating adversarial robustness [4,6,7].
Finally, many robustness evaluations are obtained by running fixed-
budget attacks that only provide the adversarial robustness estimate
at a fixed perturbation budget 𝜖, without providing any insight on
the robustness of the model when adversarial perturbations have a
different size. To summarize, the main problems hindering the diffusion
of more reliable adversarial robustness evaluations are: (i) the use of
fixed loss, optimizer, and step-size scheduler, along with default attack
hyperparameters; and (ii) the use of fixed-budget attacks, providing
only limited insights on how models withstand adversarial attacks.

In this work, we aim to overcome these limitations by improving
the current version of the Fast Minimum-Norm (FMN) attack originally
proposed in [8]. To this end, we first propose a modular reformulation
of the FMN attack that enables the use of different loss functions,
optimizers, and step-size schedulers (Section 2). This facilitates the task
of finding the strongest FMN configuration against each given model.
We then leverage Bayesian optimization to perform a hyperparameter-
optimization step that, for any given FMN configuration, automatically
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Fig. 1. Overview of our HO-FMN approach.
finds the best hyperparameters for the optimizer and the scheduler of
choice (Section 3). An overview of our method, referred to as Hyper-
parameter Optimization for Fast Minimum-Norm (HO-FMN) attacks, is
presented in Fig. 1. We extensively evaluate HO-FMN on 12 robust
models against competing baseline attacks, supporting the validity of
our method on efficiently obtaining complete robustness evaluation
curves of ML models (Section 4). With respect to our preliminary work
in [9], we extend the current approach by revisiting the FMN attack
algorithm and rethinking the hyperparameter optimization framework
with a Bayesian approach. In addition, we expand our experimental
setup to get a more accurate evaluation. We conclude by discussing re-
lated work (Section 5), along with the main contributions, limitations,
and future research directions (Section 6).

2. Revisiting fast minimum-norm attacks

We first present the FMN attack as originally proposed in [8], high-
lighting the changes applied to obtain the modular version of the attack
algorithm in which we parameterize the loss function, the optimizer,
and the step-size scheduler, along with their hyperparameters. The
proposed reformulation of the algorithm enables the selection of each
component independently, creating multiple parametric variations of
the original attack.
Notation. Our goal is to discover minimum-norm adversarial pertur-
bations that cause a model to misclassify an input. Let 𝒙 ∈  = [0, 1]𝑑
represent a 𝑑-dimensional input data point with true label 𝑦 ∈  =
{1,… , 𝑌 }. We denote the target function as 𝑓 ∶  × 𝛩 ↦  , where
𝜽 ∈ 𝛩 is its set of parameters. We will utilize 𝑓 for the label prediction
function and 𝑓𝑦 to refer to the continuous output (logit) corresponding
to each class 𝑦 ∈  ,.
Attack Formulation. Minimum-norm attacks aim to find the smallest
perturbation possible 𝜹⋆ for which a sample 𝒙 labeled as 𝑦 gets misclas-
sified by a model with parameters 𝜽, i.e. 𝑓 (𝒙 + 𝜹⋆;𝜽) = arg max𝑦∈1,…𝑌
𝑓𝑦(𝒙+ 𝜹⋆;𝜽) ≠ 𝑦. Their goal is thus to solve the following optimization
problem:

𝜹⋆ ∈ arg min
𝜹

‖𝜹‖𝑝 , (1)

s.t. 𝐿𝙻𝙻(𝒙 + 𝜹, 𝑦,𝜽) < 0 , (2)

𝒙 + 𝜹 ∈ [0, 1]𝑑 , (3)

where ‖ ⋅ ‖𝑝 indicates the chosen 𝓁𝑝 norm (𝑝 = 1, 2,∞). The constraint
in Eq. (2) is the difference-of-logits (LL) loss, defined as:

𝐿𝙻𝙻(𝒙, 𝑦,𝜽) = 𝑓𝑦(𝒙,𝜽) − max
𝑗≠𝑦

𝑓𝑗 (𝒙,𝜽) . (4)

This loss is negative when the input is misclassified. The box constraint
in Eq. (3) ensures that the sample 𝒙 + 𝜹 remains in the feasible input
space.

The Fast Minimum-Norm (FMN) attack [8] proposes a reformu-
lation of the minimization problem to find the smallest 𝜖 for which
the constraint is satisfied. The problem is reformulated as follows: as
follows:

min 𝜖 , s.t. ‖𝜹‖ ≤ 𝜖 , (5)

𝜖 ,𝜹 𝑝

2 
Algorithm 1: Fast Minimum-Norm (FMN) Attack Algorithm.
Input : 𝒙, the input sample; 𝑦, the target (true) class label; 𝛼0,

the initial 𝜹-step size; 𝐾, the total number of
iterations; 𝐿, the attack loss; 𝑠, the step size scheduler;
𝑢, the optimizer.

Output: The minimum-norm adversarial example 𝒙⋆.
1 𝜖0 = ∞, 𝜹0 ← 𝟎, 𝜹⋆ ← ∞, 𝛾0 = 0.05 ⊳ initialization
2 for 𝑘 = 1,… , 𝐾 do
3 𝛾𝑘 ← 𝑠𝛾 (𝛾0, 𝑘, 𝐾) ⊳ 𝜖-step size decay
4 𝜖𝑘 = 𝑢𝜖(𝜖𝑘−1, 𝛾𝑘, ‖𝜹𝑘‖𝑝) ⊳ 𝜖-step
5 𝒈 ← ∇𝜹𝐿(𝒙 + 𝜹𝑘−1, 𝑦,𝜽) ⊳ loss gradient
6 𝛼𝑘 ← 𝑠(𝛼0, 𝑘, 𝐾) ⊳ scheduler step
7 𝜹𝑘 ← 𝑢(𝜹𝑘−1,proj(𝒈), 𝛼𝑘) ⊳ optimizer 𝜹-step
8 𝜹𝑘 ← 𝛱(𝒙, 𝜹𝑘, 𝜖𝑘) ⊳ proj. onto feasible domain
9 return 𝒙⋆ ← 𝒙 + best(𝜹0, ...𝜹𝐾 ) ⊳ return best solution

plus the constraints in Eqs. (2)–(3), where 𝜖 is an upper bound on the
perturbation size ‖𝜹‖𝑝. We now discuss the algorithm used by FMN.
FMN Attack Algorithm. We report in Algorithm 1 a revisited for-
mulation of the FMN attack, in which we emphasize our specific
contributions to make it parametric to its components. First, the attack
is initialized (line 1), where the initial perturbation is set to 𝜹 = 𝟎 and
the initial constraint is set to 𝜖0 = ∞ to encourage the initial exploration
of the loss landscape without encountering constraints in this phase.2
Then, the original FMN algorithm develops as a two-step process:
the 𝜖-step minimizes the upper bound constraint on the maximum
perturbation by reducing 𝜖 as long as the sample is adversarial, and the
𝜹-step updates the perturbation towards the adversarial region trying to
find it within the constraint defined by 𝜖. The 𝜖-step is controlled by a
parameter 𝛾𝑘 that modifies the multiplicative factor for the current 𝜖.
The parameter 𝛾𝑘, in turn, is reduced with cosine annealing decay (line
3). At each iteration, 𝜖 is reduced (increased) by a factor 1 − 𝛾𝑘 (by a
factor 1 + 𝛾𝑘) if 𝒙 + 𝜹 is (not) adversarial (line 4). Subsequently, the
𝜹-step updates the perturbation with the gradient of the loss function
𝐿(𝒙, 𝑦,𝜽) (line 5). While FMN uses the Logit Loss (LL) of Eq. (4), we
modify the algorithm to work with any differentiable loss 𝐿.

The FMN attack normalizes the gradients ∇𝑥𝐿(𝒙, 𝑦,𝜽) in the 𝓁2
norm, i.e. 𝒈′ = 𝒈∕‖𝒈‖2, and multiplies it by a step size 𝛼𝑘. In our formu-
lation, we generalize this step with a linear projection (proj) onto a
unitary-sized 𝓁𝑝-ball. The projection maximizes a linear approximation
of the gradient within a unitary 𝓁𝑝-ball, as 𝒈′ = arg max

‖𝒗‖𝑝≤1 𝒗⊤𝒈.
This is accomplished, in 𝓁∞, by taking the sign of the gradient 𝚜𝚒𝚐𝚗(𝒈),
and produces a dense update of all components of 𝜹𝑘. Without loss of
generality, the projection can be achieved in 𝓁1 and 𝓁2 by changing the
norm used in the maximization.

2 We simplify the algorithm by removing a refined estimate of 𝜖0 that
approximates the distance to the boundary using the gradient of the loss used
by FMN, as it might require computing an additional gradient when using our
general algorithm with different losses.
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In FMN, the step size is decayed with a decay schedule rule (line
6). In the original formulation, the decay was regulated with a Cosine
Annealing Learning Rate scheduler (CALR). Our algorithm makes the
scheduler 𝑠 parametric, unlocking new scheduler rules for tuning the
step size.

The perturbation is then updated with the computed 𝜹-step (line
7), where we modify the original gradient descent (GD), replacing
t with a generic optimizer 𝑢 that can use different algorithms, e.g.

momentum strategies. The perturbation is then projected onto the 𝜖-ball
and clipped to maintain the modified sample within the input domain
line 8). Finally, the best perturbation is returned (line 9).
Summary of Changes from FMN. While the overall algorithm remains
conceptually unchanged, we adjust the attack loss 𝐿, the optimizer
𝑢, and the step-size scheduler 𝑠 used in the 𝜹-step to make them
interchangeable. These elements were fixed in the original attack im-
plementation, while in our work, we make them general and allow
multiple choices for each component. The generalization of the loss 𝐿
required an additional modification to the original algorithm, where
the 𝜖-step size was computed in the initial steps by estimating the
distance to the boundary to speed up convergence. This estimation
required computing the gradient of the LL loss, thus would require an
additional backward pass for each iteration. With preliminary experi-
ments, we found that such estimation improves the query efficiency of
the initial steps, but it does not change substantially the final outcome
of the attack. In addition, we use the linear projection of the gradient
𝒈 instead of the normalization. Most significantly, our changes to the
FMN algorithm required a thorough reevaluation of its implementation.
Specifically, we enabled the choice of losses, optimizers, and schedulers
that were already available in widely-adopted deep learning frame-
works, which are commonly used (and efficiently implemented) for
training deep neural networks.
Why FMN. Contrary to fixed-budget attacks (such as PGD [10] and

A [11]), FMN finds minimum-norm adversarial examples, solving the
optimization problem in Eq. (1). It follows that, instead of having a
scalar robustness evaluation associated with a predefined perturbation
budget 𝜖 from a single run, we can obtain an entire curve, which we
denote as a robustness evaluation curve [12], plotting how the robust
accuracy of a model decreases as the perturbation budget 𝜖 is increased.
The curve can be computed efficiently from the minimum distances
‖𝜹⋆‖𝑝 returned by FMN, by computing:
1
||

∑

(𝒙,𝑦)∈
I(‖𝜹⋆‖𝑝 ≤ 𝜖 ∧ 𝑓 (𝒙 + 𝜹⋆) ≠ 𝑦) , (6)

for increasing values of 𝜖, where I is the indicator function, which
eturns 1 (0) if the argument is true (false). These curves enable a more
omplete and informative robustness evaluation than that provided for
 fixed 𝜖 value [6].

3. Hyperparameter optimization for fast minimum-norm attacks

A graphical representation of our HO-FMN method is depicted
in Fig. 1. By leveraging the modular version of FMN presented in
Section 2, and selecting a pool of losses, optimizers, and step-size
chedulers, we (i) create multiple configurations of the FMN attack, (ii)

optimize the hyperparameters of each configuration through Bayesian
ptimization, and rank them based on their effectiveness against the
odel under test, and (iii) run the attack with the best configurations

ound to estimate the robustness of the model. We discuss the choice
of the configurations in Section 3.1, and, in Section 3.2, the subsequent
optimization framework to get the best hyperparameters, compactly
represented also in Algorithm 2.
 w

3 
3.1. HO-FMN: Configurations and hyperparameters

In our modular FMN re-implementation, we define the loss 𝐿, the
ptimizer 𝑢, and the step-size scheduler 𝑠 as parametric. Accordingly,
y defining a pool of losses L, optimizers U, and schedulers S, we create
iverse FMN configurations, each represented as a tuple 𝐶 = (𝐿, 𝑢, 𝑠).
e then define the hyperparameter search space by associating to

ach configuration 𝐶 the set of hyperparameters 𝒉 = 𝒉𝑢 ∪ 𝒉𝑠 of the
orresponding optimizer 𝑢 and scheduler 𝑠 composing the final attack
Section 3.2). Next, given an input model, we optimize 𝑁 configura-

tions 𝐶1, 𝐶2,… , 𝐶𝑁 ∈ C to find the best set of hyperparameters for
each (Section 3.2).
Configuration Set. We denote the set of attack configurations as

C ∶= {𝐶1, 𝐶2,… , 𝐶𝑁} , each represented as (𝐿, 𝑢, 𝑠). The total num-
er 𝑁 of possible configurations is thus obtained as the Cartesian
roduct of each set, i.e., 𝑁 = |C| = |L|× |U|× |S|. Each configuration 𝐶𝑖

corresponds to the modular version of the FMN attack using a specific
loss 𝐿 ∈ L, optimizer 𝑢 ∈ U, and scheduler 𝑠 ∈ S in its attack algorithm.
All-in-all, given a model with parameters 𝜽𝑚 ∈ 𝜣, our framework starts
by considering all 𝑁 (or less, since not every optimizer is necessarily
associated with a scheduler) configurations.
Hyperparameter Search Space. Upon defining the configurations, the
ntire set C undergoes a hyperparameter optimization routine. The goal

of this routine is to find, for a given target model, the best set of
hyperparameters 𝒉⋆𝑖 to be associated with each configuration 𝐶𝑖. Note
that the best set might change from one model to another. Thus the
hyperparameter optimization step has to be performed anew when a
different model is selected. The search space and dimensionality of 𝒉𝑖
vary depending on the configuration 𝐶𝑖, as the chosen optimizer and
scheduler may take different (and a different number of) arguments
as inputs. In this regard, given a configuration 𝐶𝑖 ∈ C, identified
by (𝐿, 𝑢, 𝑠), its set of hyperparameters is given as 𝒉𝑖 = 𝒉𝑖𝑢 ∪ 𝒉𝑖𝑠
(where 𝒉𝑖𝑢 and 𝒉𝑖𝑠 represent, respectively, the optimizer and scheduler
hyperparameters, as described above). Hence, after creating the set C,
the optimization procedure aims to find the best set 𝒉⋆𝑖 for each 𝐶𝑖.

3.2. HO-FMN: Optimization procedure

Algorithm 2: HO-FMN.
Input :  = (𝒙, 𝑦), the validation dataset; 𝐶, the configuration

with loss 𝐿, optimizer 𝑢, and scheduler 𝑠; 𝑇 , the
number of trials; 𝑃 , the number of initial samples to
fit the regressor.

Output: The set of best hyperparameters 𝒉⋆𝑖 .
1  = ∅, best_median = ∞ ⊳ observation history
2 for 𝑗 = 1,… , 𝑃 do
3 𝒉𝑗 = gen_h() ⊳ sample first hypers
4 𝒙⋆𝑗 = FMN𝐶 ,𝒉𝑗 (𝒙, 𝑦) ⊳ initial observations
5 ̃

‖𝜹𝑗‖ = med(‖𝒙 − 𝒙⋆𝑗 ‖) ⊳ compute median
6  ←  ∪ (𝒉𝑗 , ̃

‖𝜹𝑗‖) ⊳ update observations
7 for 𝑗 = 𝑃 + 1,… , 𝑇 do
8 gpr.fit() ⊳ fit GP regressor
9 𝒉𝑗 = a(gpr.mean,gpr.std) ⊳ acquire new 𝒉
10 𝒙⋆𝑗 = FMN𝐶 ,𝒉𝑗 (𝒙, 𝑦) ⊳ new observations
11 ̃

‖𝜹𝑗‖ = med(‖𝒙 − 𝒙⋆𝑗 ‖) ⊳ compute median
12  ←  ∪ (𝒉𝑗 , ̃

‖𝜹𝑗‖) ⊳ update observations
13 if ̃

‖𝜹𝑗‖ < best_median then
14 𝒉⋆𝑖 = 𝒉𝑗 ⊳ store best 𝒉
15 best_median = ̃

‖𝜹𝑗‖ ⊳ update best median

16 return 𝒉⋆ ⊳ return best solution

We show in Algorithm 2 the complete HO-FMN procedure, which
e use to find 𝒉⋆ for each 𝐶 . This amounts to finding the set 𝒉⋆ that
𝑖 𝑖
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minimizes the median perturbation ̃
‖𝜹‖ = med(‖𝒙−𝒙⋆‖), where med is

the median function and 𝒙⋆ = 𝙵𝙼𝙽𝐶 ,𝒉(𝒙, 𝑦), i.e., the output of Algorithm
1 when using configuration 𝐶 with hyperparameters 𝒉. We select the
median perturbation size as the objective to minimize for obtaining
the best hyperparameters, following [8], as it reduces the impact of
otential outliers that may substantially affect other metrics (e.g., the
ean), and as it also represents the distance for which 50% of the

amples become adversarial.
To avoid a computationally-demanding grid search on the hyper-

arameter space, Bayesian Optimization (BO) [13] can be leveraged to
uild a differentiable approximation of how the objective (i.e., the

median perturbation size, in our case) changes as a function of the input
yperparameters. Accordingly, gradient descent can be used to effi-

ciently optimize the choice of the best hyperparameters, while improv-
ing the approximation of the objective function after each evaluation.
Bayesian Optimization. In our case, BO enables estimating the median
erturbation that would be achieved at the end of the FMN algorithm,
ut without running it for all values. It requires setting a number of

trials 𝑇 , which refers to the number of times a new input will be
ampled and a new output computed. Within 𝑇 , an initial number of 𝑃
rials are used as a ‘‘preliminary’’ stage to get a first set of observations
o fit an initial model (which approximates the objective). Specifically,
e first sample a set of 𝑃 initial hyperparameters (line 3) with an
xternal pseudo-random generation process, run the FMN algorithm
ith them, and collect a set of pairs (𝒉, ̃

‖𝜹‖) (line 4–6). Then, we fit
 Gaussian Process Regression (GPR) model on the observed median
ver the collected trials (line 8). GPR is a probabilistic model in which

multiple regression functions are fitted and averaged, thus reporting,
as a function of the value of 𝒉, a mean and uncertainty value of the
metric ̃

‖𝜹‖. When fitted, the GPR model predicts ̃
‖𝜹‖ from a set of

yperparameters 𝒉.
For the remaining 𝑇 - 𝑃 trials, the BO process involves the definition

f an acquisition function 𝑎(), which defines the exploration strategy for
avigating the possible hyperparameters. This function will produce
ew samplings of 𝒉 to improve the approximation provided by the
PR model (line 9). Accordingly, the new values of the hyperpa-

rameters are chosen where the acquisition function is maximized. As
he acquisition function, we use Noisy Expected Improvement (NEI),
hich aims to balance exploration (i.e. testing new unexplored values
f the hyperparameter space) and exploitation (i.e. refining solutions
loser to already seen values) in the search space. NEI extends the
xpected Improvement (EI) criterion. The EI criterion is defined as the
xpectation on a candidate of its improvement over the function being

estimated:

EI(𝒙) = E[(𝑓 (𝒙) − 𝑓min) ⋅ I(𝑓 (𝒙) > 𝑓min)] , (7)

where 𝑓 (𝒙) is the objective function to be optimized, 𝑓min is the current
est observed value, and I(⋅) is the indicator function. In the presence

of noise, directly evaluating 𝑓 (𝐱) can be unreliable. Therefore, NEI
incorporates this uncertainty by modeling the noise in the objective
function [14].

As new hyperparameters are evaluated, new (𝒉, ̃
‖𝜹‖) pairs are col-

lected, thus the GPR model is updated for an improved estimate (line
10–12).

At each iteration, the algorithm tracks the best median found (and
he corresponding hyperparameters) in order to return the best solution

(line 14).
The process is repeated over each of the 𝑁 configurations to itera-

tively improve the approximation and find the best set of hyperparam-
eters (𝒉⋆1 ,… ,𝒉⋆𝑁 ), which are returned at the end of the algorithm (line
16).

As an example of the BO process, we show in Fig. 2 a GP regressor,
solated on the learning rate (𝛾) and momentum (𝜇) hyperparameters of
GD optimizer.3 The plot shows the mean (left) and standard deviation

3 Although the sampling of hyperparameters involves an entire set, we
solate it to create a 2-D visualization.
4 
(right) of the estimated ̃
‖𝜹‖ for each pair of hyperparameters, obtained

ith 𝑇 = 32 trials. Based on the uncertainty estimate, we notice how the
cquisition function has focused on exploitation when sampling small,

close-to-each-other learning rates, as the uncertainty grows for growing
earning rates (indicating sporadic sampling of higher values).

4. Experimental analysis

In this section, we present the experimental details and results
f our proposed optimization framework. HO-FMN, given a set of
onfigurations C and a model 𝑀𝑚 parameterized by 𝜽𝑚, finds the
est configuration 𝐶 (Section 3.1) for which it identifies the best

set of hyperparameters ℎ⋆ (Section 3.2) on which to run the attack.
Therefore, we first detail the general experimental setting details (Sec-
tion 4.1). Then, we describe the creation of the configurations, the
yperparameters associated with each configuration, and the results
Section 4.2). To validate the benefits of our approach, after finding
he best hyperparameters for each configuration-model pair, we run

the FMN attacks and compare them with other competing attacks, as
well as with the FMN baseline (Section 4.3). Additionally, we con-
uct a study on the computational overhead of our attack, showing
hat our proposed method is the best trade-off between runtime and
ompleteness of the evaluation.

4.1. Experimental settings

We list here the main experimental details employed throughout
oth hyperparameter optimization and attack runs. We implement HO-

FMN in PyTorch, and we run all experiments in a workstation equipped
ith an NVIDIA RTX A6000 GPU 48 GB. We implement our Bayesian
ptimization (BO) search with the Ax framework.4

Datasets. We take a subset of 4096 samples (32 batches of 128 samples
ach) from the CIFAR-10 test set. Instead, for the ImageNet dataset,
e selected 1000 samples to show how the framework can be extended
nd scaled. These samples serve to optimize HO-FMN, thus it can be
een as a training set. Then, for testing the capabilities of the optimized
O-FMN attack, we run the attacks with the best configurations on a

eparate set of 1000 samples for both the CIFAR-10 and ImageNet test
et.
Perturbation Model. We restrict our analysis to the 𝓁∞-norm per-
turbation model, as it is widely used in SoA evasion attacks and
benchmarks [15]. We also point out that, in the original paper, the 𝓁∞
erturbation model is observed to be the most challenging for FMN [8].
Models.We consider 12 state-of-the-art robust models from the Robust-
Bench repository [15], denoted as 𝑀1-𝑀12. We aim to verify the effec-
tiveness of our method, with a wide range of robust models. The first
 models are trained for robustness on the CIFAR-10 dataset on a per-
urbation budget of 𝜖 = 8∕255; the remaining 3 models are trained for
obustness on ImageNet, within a perturbation budget of 𝜖 = 4∕255. 𝑀1,
2 [16], a WideResNet-70-16 and a WideResNet-28-10 respectively,

leverage an improved denoising diffusion probabilistic model (DDPM)
to enhance adversarial training. 𝑀3, 𝑀5, 𝑀9 [17], a WideResNet-
70-16, a WideResNet-28-10 and a ResNet-18, use generative models
to synthetically expand the original dataset and improve model re-
silience against 𝓁𝑝 norm attacks. 𝑀4 [18], a WideResNet-106-16, use a
combination of heuristics-based data augmentations and model weight
averaging to improve the model’s robustness. 𝑀6, 𝑀8 [19], respectively
a WideResNet-70-16 and a WideResNet-28-10, use a self-consistent
robust error measure to balance robustness and accuracy. 𝑀7 [20], a
ResNet-152, uses proxy distributions from diffusion models to enhance
dversarial training. Finally, 𝑀10, 𝑀11, and 𝑀12, are transformer ar-

chitectures adversarially trained using 𝓁∞ norm perturbation bounded

4 https://ax.dev//versions/0.1.2/index.html.

https://ax.dev//versions/0.1.2/index.html
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Fig. 2. Mean and standard deviation of the median perturbation size ‖𝜹̃‖ estimated by the GPR model, for a specific test configuration, as a function of the learning rate (𝛾) and
momentum (𝜇) hyperparameters. The pairs (𝛾, 𝜇) sampled during the process to iteratively refine the GPR model are shown as red points.
Table 1
Loss functions used in this work. We use 𝑧𝑦(𝒙;𝜽) to denote the softmax-scaled outputs
of the model, and the indices 𝜋1 ,… , 𝜋𝑌 to sort the logits as 𝑓𝜋1 ≥ ⋯ ≥ 𝑓𝜋𝐽 .

Loss function Symbol Equation

Cross-entropy CE 𝐿𝙲𝙴(𝒙, 𝑦;𝜽) = log(𝑧𝑦(𝒙;𝜽))
Logits difference LL 𝐿𝙻𝙻(𝒙, 𝑦;𝜽) = 𝑓𝑦(𝒙;𝜽) − max𝑦≠𝑦 𝑓𝑦(𝒙;𝜽)
Difference of logit ratio DLR 𝐿𝙳𝙻𝚁(𝒙, 𝑦;𝜽) = 𝑓𝑦 (𝒙;𝜽)−max𝑦≠𝑐 𝑓𝑦 (𝒙;𝜽)

𝑓𝜋1 (𝒙;𝜽)−𝑓𝜋3 (𝒙;𝜽)

at 𝜖 = 4∕255. The models 𝑀10, 𝑀11 are two Swin-L and ConvNeXt-L
models [21], while 𝑀12 is a ConvNeXt-L + ConvStem [22].
Performance Metrics. Within the optimization framework, we employ
the smallest median perturbation ̃

‖𝜹‖ as a criterion to find, for each
configuration 𝐶1,…𝐶𝑁 ∈ C, the best set of hyperparameters 𝒉⋆. The
choice of the median follows the approach employed in the original
FMN paper [8].

We then rank, based on the resulting ̃
‖𝜹‖, the configurations

𝐶1,…𝐶𝑁 ∈ C. We take the top-3 configurations, that we name
𝐶1, 𝐶2, and 𝐶3 (ordered in terms of performance, lowest median first)
to evaluate the robust accuracy at 𝜖 (RA𝜖) of the models at 𝜖 =
8∕255 for CIFAR-10, and at 𝜖 = 4∕255 for ImageNet (we denote it
directly as RA in the rest of the section), following the RobustBench
benchmark [15]. Moreover, as explained in Section 2, the benefit of
FMN is that we can obtain RA by counting the successful attack samples
that achieve misclassification with a perturbation size ‖𝜹‖∞ ≤ 𝜖, but we
also get, with the same computational cost, the robustness evaluation
curve [12].
Search Space for the Configurations. We first present the experi-
mental settings for the hyperparameter optimization step. We list the
configurations created from each loss 𝐿, optimizer 𝑢, and scheduler 𝑠,
detailing the sets L, U, and S respectively. As introduced in Section 3,
we generalize the algorithm to use a selection of: (i) the loss function
𝐿, selecting between the logit loss (LL) [5], the cross-entropy loss
(CE), and the difference of logits ratio (DLR) [11]; (ii) the optimizer 𝑢,
selecting between Gradient Descent (GD), Adam (Adam), and AdaMax
(AdaMax); and (iii) the step-size scheduler, selecting among Cosine
Annealing (CALR) and Reduced On Plateau (RLRoP). We report the
details of the loss used in Table 1.

As explained in Section 2, our reformulation of the FMN algorithm
enables the use of components already implemented in existing li-
braries. Accordingly, we leverage the existing implementations of the
aforementioned losses, optimizers, and schedulers as implemented in
the PyTorch library, with a few exceptions. First, the LL and DLR
losses are not implemented in PyTorch. Thus we took the implemen-
tations from the original FMN algorithm (LL) and from the AutoAttack
repository (DLR).5 In addition, despite being the modular FMN version

5 https://github.com/fra31/auto-attack.
5 
adaptable to each kind of third-party scheduler compatible with the op-
timizers, we opt for a modified RLRoP implementation, as the original
one adjusts a single learning rate (𝛾) for the entire batch. Namely, the
original implementation of RLRoP decreases 𝛾 when there is no im-
provement (i.e., on plateau) on the average loss for a batch. However,
we are interested in having a specific adaptation of the learning rate for
each sample separately (as for each sample we are in a different region
of the loss landscape, and we consider these optimization processes as
independent from each other), thus we require a sample-wise RLRoP
algorithm that tracks the improvement over the value of the loss on
each sample rather than on the average loss of the batch. Therefore,
we re-implemented the scheduler to have sample-wise control over
the learning rates. Specifically, for a batch, we are seeking a vector
of learning rates 𝜸 with one value for each sample in the batch. We
configure a weighting vector initialized as 𝒘 = 𝟏 containing one weight
for each sample of the batch, and we obtain the learning rate by
multiplying the weighting vector 𝒘 for the initial learning rate 𝛾0, i.e.,
𝜸 = 𝒘𝛾0. Subsequently, we track the individual loss for each sample,
and we multiply by a reducing factor (< 1) the weight of the weighting
vector 𝑤𝑖 if the metric stops improving for sample 𝑖 of the batch over
a given number of iterations (as the patience parameter of RLRoP).

While GD is associated with a scheduler, Adam and AdaMax present
an inner scheduling procedure, so we fix the scheduler to Fixed, i.e.
no scheduler, in this case. Therefore, for each model, instead of having
|L| = 3, |U| = 3, and |S| = 2, for a total of 𝑁 = 18 configurations, we
reduce to 𝑁 = 12 configurations.
Hyperparameters. We now list the set of hyperparameters H associ-
ated to each configuration. As explained in Section 3.2, this induces a
second level on the search space that is different for each 𝐶. Specif-
ically, each optimizer 𝑢 and each scheduler 𝑠 comes with their own
hyperparameters (respectively, 𝒉𝑢 and 𝒉𝑠). To reduce the search space,
we fix some of the hyperparameters that we denote as ‘‘fixed’’. For the
others, we define either the search ranges (Range) and, when different
than linear, the scale used for the uniform sampling, or the possible
choices (Choice). We list the hyperparameters search space H, along
with their sampling options, in Table 2.
Ax Framework Configuration. The Ax framework works by instan-
tiating multiple trials sequentially. Specifically, we employed 𝑇 = 32
trials, of which the first initialization set, i.e. 𝑃 = 8, are quasi-randomly
generated (using the SOBOL [23] approach), and the remaining 24 are
sampled from the regression models, as implemented by the BOTORCH
algorithm [24].

4.2. Hyperparameter optimization results

In this section, we present the results of the hyperparameter opti-
mization. We first considered each pair of configurations and models
(𝐶 , 𝑀 ). Then, we tuned each configuration, finding the set of best
𝑖 𝑚

https://github.com/fra31/auto-attack
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Table 2
List of the chosen hyperparameters for each Optimizer and Scheduler selected for HO-
FMN. As Optimizers, we chose GD, the one from the original FMN implementation,
and Adam/AdaMax; the first requires a Scheduler while the others have an auto-
scheduling mechanism. As Schedulers, we selected CALR and RLRoP (our sample-wise
implementation). The hyperparameters can be range, choice, or fixed; the
sampling distribution can be uniform (default) or logarithmic for better exploring
higher ranges. The Optimizers have the most configurable setting, resulting in a larger
search space.

Optimizer Hyperparameter Search space

GD

Learning rate (𝛾) range: [8∕255, 10] logarithmic
Momentum (𝜇) range: [0.0, 0.9]
Weight decay (𝜆) range: [0.01, 1.0]
Dampening (𝜏) range: [0.0, 0.2]

Adam/AdaMax

Learning rate (𝛾) range: [8∕255, 10 ] logarithmic
Weight decay (𝜆) range: [0.01, 1.0]
eps fixed: 1𝑒−8
betas (𝛽1, 𝛽2) range: [0.0, 0.999]

Scheduler Hyperparameter Search space

CALR
T_max fixed: 𝐾
eta_min fixed: 0
last_epoch fixed: −1

RLRoP

Batch size fixed: −a

Factor range: [0.1, 0.5]
Patience choice: [2, 5, 10]
Threshold fixed: 1𝑒−4
eps fixed: 1𝑒−8

a The RLRoP scheduler implements our sample-wise version, so the batch size
parameter is removed.

hyperparameters 𝒉⋆ that achieve the smallest median perturbation. We
anked the configurations by ̃

‖𝜹‖, and we selected the top-3 for each
odel.

Tuning Results. In Table 3, we show the resulting top-3 configu-
rations that achieve the smallest ̃

‖𝜹‖ for each model on CIFAR-10,
and in Table 4, we present the corresponding top-3 configurations for
mageNet. We highlight how the DLR loss consistently finds better

perturbations than CE and LL. In addition, we found that the GD-CALR-
DLR configuration, ranked in the top-3 for each model, is also the best
one in 6 over 9 models. It is worth noting that this configuration is also
very close to the one used by the original FMN, though changing the
loss from LL to DLR and having an optimized set of ℎ. This loss works
well across models as the normalization at the denominator makes
the loss (and gradient) more scale invariant (compared to LL that can
change of orders of magnitude from one model to the other), easing the
tuning of the step size and of the other parameters for the optimization.

4.3. Best attacks

Given the top-3 configurations for each model, on the CIFAR-10
est set Table 3 and on the ImageNet test set Table 4, we run the

final attack evaluation on our test sets, respectively 1000 samples from
IFAR-10/ImageNet, and compare with the baseline FMN version [8]
o clearly show the benefits of HO-FMN. In addition, to rigorously
alidate with SoA, parameter-free approaches, we compare our attack
onfigurations achieved through HO-FMN with the APGD attack in its
E and DLR loss versions [11]. We specify that comparing head-to-

head the entire AA ensemble against a single attack from HO-FMN,
would result in a four-versus-one evaluation, ultimately indicating a
isproportionate analysis. Finally, to let the comparison be as fair as
ossible, we ensure that all algorithms are initialized in the same
ay. Specifically, we ensure that APGD does not perform Expectation
ver Transformations (EoT) steps, i.e., the computation of a smoothed
radient before the actual attack loop and the restarts. We removed this
tep as we want to avoid the variability given by the randomness in the
oT procedure. Thus, by avoiding this particular initialization, we can
nsure that all attacks start from the same 𝒙 and have no advantage
6 
(or disadvantage) given by random initializations of 𝜹0. We remark that
he same method is not computed in the default configuration of APGD.
dditionally, this initial EoT can also be seamlessly added later to FMN
nd HO-FMN.
Attack Results. We show the resulting robustness evaluation curves
in Fig. 3 for the CIFAR-10 experiments; while in Fig. 4 we report
the curves for the attacks against ImageNet models. We compare the
curves of the baseline FMN attack against HO-FMN. The FMN baseline
is defined as the original formulation in [8], thus configured with GD-
ALR LL, and optimizer with 𝛾 = 1.0 and 𝜇 = 0.0. In addition, we

highlight, for the single perturbation norm of ‖𝜹‖ = 8∕255 (CIFAR-
10) and ‖𝜹‖ = 4∕255 (ImageNet), the Robust Accuracy (RA) found by
APGD𝙲𝙴∕𝙳𝙻𝚁. We selected the attack that performed better, in terms of
RA, between the two versions of APGD. We show the empirical results
in Table 5 for CIFAR-10 and in Table 6 for ImageNet. In the first case,
except for 2∕9 models, HO-FMN outperforms the APGD attack (i.e., the
blue line lies below the red cross). In the second case, we are able to
beat all the 3 selected models with our HO-FMN version. Furthermore,
our attack computes the robustness evaluation curve with one single
run. Achieving the same result with APGD is only possible by executing
APGD multiple times, as we discuss in the next paragraph.
Computational Overhead. We perform a set of additional experiments
to have a clear understanding of the overhead added by running
hyperparameter optimization. The total time of the HO process is
mainly dictated by the time required for a single attack multiplied by
the number of trials. Our tuning setting, as described in Section 4.1,
consists of running 32 trials of HO, each running FMN on a batch of 128
samples over 200 steps. To analyze the HO overhead added to FMN,
we measure the average execution time of a single FMN attack on the
ame setup and relate it to the number of trials. We refer to this time as
𝐹 𝑀 𝑁 , for which we find 𝑇𝐹 𝑀 𝑁 = 7.479 seconds. We then compute an
stimate 𝑇̃𝐻 𝑂 of the HO process, thus ignoring the Gaussian Processes
GP) overhead, as 𝑇̃𝐻 𝑂 = 𝑇𝐹 𝑀 𝑁 ⋅32 = 239.328 seconds. Then, we run the
ctual HO-FMN under the same setup and measure the total execution

time. On average, we find 𝑇𝐻 𝑂 = 262.612 seconds, which indicates
hat the difference between our estimate and the measured time equals
𝐻 𝑂 = 𝑇̃𝐻 𝑂 − 𝑇𝐻 𝑂 = 23.284 seconds. Therefore, for a single trial, the
equired time amounts to 𝛥𝐻 𝑂∕32 = 0.727. Compared to 𝑇𝐹 𝑀 𝑁 , we
an assert that the overhead added by the optimization is acceptable in
ractice.
Comparing FMN against APGD. In Section 2, we show how FMN
allows us to compute the robustness evaluation curves [12], which is
instead practically unfeasible for fixed-budget attacks, such as APGD
[11]. Being one of the main advantages of our HO-FMN approach the
ossibility to create robustness evaluation curves, we conduct addi-
ional experiments, summarized in Table 7, where we measure the
equired time for HO-FMN (GD-CALR-DLR/CE averaged) to compute

the curves compared to APGD. In fact, through APGD, it is possible
to have only a scalar robustness evaluation: for a given value of
𝜖 (i.e., the maximum perturbation that constrains the attack) APGD
provides a scalar robust accuracy value associated to the given value
𝜖. Therefore, to be compared with HO-FMN, we adapted APGD to find
a minimum-norm solution using a binary search approach, that we ap-
plied sample-wise. Within this approach, we define a number of search
steps that we set to 5, in addition to the search interval [𝜖low, 𝜖high].
In particular, 𝜖low is the lowest value the perturbation budget can
take, while 𝜖high is the highest. The binary search algorithm works by
selecting a value for the perturbation budget which is always set as
(𝜖high−𝜖low)∕2 (in the middle of the interval), and the interval is updated
according to the successfulness of the attack. Hence, in the initialization
phase, the search interval is set as [𝜖low, 𝜖high] = [0, 32∕255], and at each
step, APGD is run with a perturbation budget of 𝜖𝑖 = (𝜖high − 𝜖low)∕2 (𝜖0
= 16/255). If the attack finds a successful adversarial perturbation, we
narrow the search to the lower half of the interval (i.e., 𝜖high = 𝜖𝑖);
otherwise, we search on the upper half (i.e., 𝜖low = 𝜖𝑖). This process
is repeated within the selected half-interval, progressively refining the
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Table 3
Top-3 configurations after the hyperparameter optimization on each model (𝑀1-𝑀9), along with the resulting median perturbation, i.e. ̃

‖𝜹‖, on samples from the CIFAR-10 dataset.
Then, in order, we show the learning rate (𝛾) and weight decay (𝜆), the beta coefficients (𝛽1,2) for Adam/AdaMax, and the momentum (𝜇) and dampening (𝜏) for GD. Finally, the
last columns indicate the factor (fact.) and patience (pat.) for RLRoP.

Model 𝐶 𝑢 + 𝑠 𝐿 ̃
‖𝜹‖ OPTIM. (𝒉𝑢) SCHED. (𝒉𝑠)

𝛾 𝜆 𝛽1, 𝛽2 𝜇, 𝜏 fac./pat.

𝑀1

𝐶1 GD + RLRoP DLR 0.048066 3.1373e−02 0.374 – (0.5842, 0.148) (0.345, 2)
𝐶2 AdaMax DLR 0.048176 3.3608e−02 0.113 (0.491,0.868) – –
𝐶3 GD + CALR DLR 0.048403 7.3636e−02 0.667 – (0.3720,0.029) –

𝑀2

𝐶1 GD + CALR DLR 0.048021 8.1149e−02 0.683 – (0.0744,0.045) –
𝐶2 Adam DLR 0.048787 6.6351e−02 0.433 (0.412,0.000) – –
𝐶3 GD + RLRoP DLR 0.048801 4.2894e−02 0.111 – (0.2158,0.100) (0.160,2)

𝑀3

𝐶1 Adam DLR 0.050735 8.8306e−02 0.577 (0.688,0.713) – –
𝐶2 GD + CALR DLR 0.050961 1.9881e−01 0.170 – (0.1298, 0.173) –
𝐶3 AdaMax DLR 0.052110 3.1373e−02 0.982 (0.362,0.751) – –

𝑀4

𝐶1 Adam DLR 0.051502 3.1373e−02 0.435 (0.221,0.816) – –
𝐶2 GD + CALR LL 0.051720 6.2728e−02 0.676 – (0.4512,0.149) –
𝐶3 GD + CALR DLR 0.051725 3.1373e−02 0.924 – (0.4195,0.130) –

𝑀5

𝐶1 GD + CALR DLR 0.051760 2.9909e−01 0.010 – (0.2493,0.105) –
𝐶2 GD + CALR CE 0.051958 3.8703e−02 0.511 – (0.3857,0.074) –
𝐶3 Adam DLR 0.052237 3.1373e−02 0.697 (0.275,0.137) – –

𝑀6

𝐶1 GD + CALR DLR 0.047542 7.6798e−02 0.747 – (0.4471,0.091) –
𝐶2 Adam DLR 0.047696 9.2127e−02 0.596 (0.687,0.286) – –
𝐶3 AdaMax DLR 0.047820 8.8301e−02 0.279 (0.264,0.999) – –

𝑀7

𝐶1 GD + CALR DLR 0.049981 6.1492e−02 0.061 – (0.3780,0.041) –
𝐶2 GD + CALR LL 0.050134 6.8632e−02 1.000 – (0.1610,0.200) –
𝐶3 Adam DLR 0.050165 4.9743e−02 0.818 (0.622,0.255) – –

𝑀8

𝐶1 GD + CALR DLR 0.045454 2.9001e−01 0.010 – (0.3191,0.097) –
𝐶2 AdaMax DLR 0.046265 5.4455e−02 0.248 (0.446,0.568) – –
𝐶3 GD + RLRoP DLR 0.046554 5.1549e−02 0.775 – (0.8750,0.078) (0.324,5)

𝑀9

𝐶1 GD + CALR DLR 0.043584 5.3307e−02 0.613 – (0.7285,0.165) –
𝐶2 GD + CALR LL 0.043850 1.8606e−01 1.000 – (0.0,0.200) –
𝐶3 Adam CE 0.044207 4.5904e−02 0.456 (0.104,0.496) – –
Table 4
Top-3 configurations for 𝑀10-𝑀12, along with the resulting median perturbation, on samples from the ImageNet dataset. For further details please refer to Table 3.

Model 𝐶 𝑢 + 𝑠 𝐿 ̃
‖𝜹‖ OPTIM. (𝒉𝑢) SCHED. (𝒉𝑠)

𝛾 𝜆 𝛽1, 𝛽2 𝜇, 𝜏 fac./pat.

𝑀10

𝐶1 GD + CALR LL 0.016130 8.2874e−02 0.266 (0.4962, 0.037) – –
𝐶2 AdaMax DLR 0.017020 8.1110e−01 0.404 (0.566,0.098) – –
𝐶3 GD + CALR DLR 0.017138 3.1036e−01 0.755 – (0.8011,0.055) –

𝑀11

𝐶1 AdaMax DLR 0.012425 1.9174e−01 0.304 (0.387,0.367) – –
𝐶2 Adam DLR 0.013496 9.4361e−02 0.244 (0.354,0.231) – –
𝐶3 GD + RLRoP DLR 0.015658 2.1192e−02 0.109 – (0.1497, 0.155) (0.207,5)

𝑀12

𝐶1 GD + CALR LL 0.014309 1.0000e+01 0.582 (0.9000,0.200) – –
𝐶2 AdaMax DLR 0.014430 5.8146e−01 0.401 – (0.256,0.332) –
𝐶3 Adam DLR 0.014899 8.0030e+00 0.568 – (0.806,0.222) –
d
a

search until the maximum number of search steps is reached. As shown
n Table 7, the first column is the total average time (in seconds) the

attack took to complete. We show that our HO-FMN finds the best
inimum-norm solution in a single run (first row). The next rows,

ndicated by APGD (i), represent the binary search step i performed
y the two APGD versions. Table 7 shows that the best solution for
PGD is found at step 4 (APGD (4)), while the binary search continues

to step 5 with no improvement. Our FMN version, finds its best solution
in approximately 5 s, while it takes about 20 s for each APGD version
to complete the binary search, therefore showing the efficacy of our
FMN approach in finding the robustness evaluation curve compared to
APGD.

5. Related work

Adversarial attacks are recognized as an important tool to em-
pirically evaluate the robustness of ML models. Many gradient-based
attacks have been proposed as an effective tool to assess the models’
robustness, and have evolved over time seeking for better efficiency.

mong the most used attacks, the Projected Gradient Descent (PGD)
7 
attack [10] has been extensively used as a bare essential evaluation
tool. However, attacks like PGD, which solve an optimization problem,
require a proper hyperparameter configuration (e.g., learning rate, step
ecay etc.) to avoid suboptimal solutions and, consequently, providing
n overestimated adversarial robutness evaluation [6]. To mitigate this

issue, parameter-free approaches that combine multiple attacks [11]
have also been proposed.
AutoAttack (AA). This attack consists of ensembling 4 parameter-
free attacks, including Auto-PGD (APGD), i.e., an attack that directly
improves the basic PGD optimization by dynamically updating the
step size. Together with APGD with both CE and DLR losses, AA also
uses a gradient-based (Fast Adaptive Boundary [25] and a black-box
(SquareAttack [26]) attack, and ensembles them by retaining the first
useful result found by any of them (within the fixed budget), in a
sample-wise manner.
Adaptive Auto-Attack (AAA). This attack [27] provides a further
evolved approach by conceiving the attacks as building blocks, thus
having multiple interchangeable parts, and performing an extensive
search, virtually constructing a huge ensemble of attacks. However,
the implemented algorithm does not efficiently filter the searched
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Fig. 3. Robustness evaluation curves for 𝑀1-𝑀9. The dashed-gray and solid-blue lines represent FMN and HO-FMN. The robust accuracy (RA) value at 𝜖 = 8∕255 computed with
APGD𝙲𝙴∕𝙳𝙻𝚁 (the best value between the two) is also shown as a red cross.
Fig. 4. Robustness evaluation curves for 𝑀10-𝑀12, and APGD robust accuracy at 𝜖 = 4∕255. Please refer to Fig. 3 for further details.
trials, thus potentially wasting computing resources, and does not
optimize the hyperparameters of these attacks, potentially disrupting
the evaluation results.
Limitations of Existing Methods. Just like standard fixed-epsilon
attacks, the robustness evaluation for both AA and AAA are constrained
to a single perturbation budget (e.g., 𝜖 = 8∕255), resulting in a scalar
robustness estimate. Such characteristic of both AA and AAA inhibits
them from constructing a full-scale robustness evaluation curve on
multiple perturbation values, which would inevitably require multiple
attack runs. As also noted in our work, constructing the full curve with
these attacks requires running them multiple times to find the smallest
𝜖 that satisfies the attack’s success.

In this direction, our proposed HO-FMN approach collectively takes
advantage of the reliability of the parameter-free paradigm, as well
as enabling a thorough robustness evaluation, contrary to the com-
peting parameter-free approaches. Our results show the efficacy of the
proposed hyperparameter optimization strategy when compared to the
baseline FMN attack.
8 
6. Conclusions and future work

In this work, we investigated the use of hyperparameter optimiza-
tion to improve the performance of the FMN attack. Specifically, we
reimplemented the FMN attack into a modular version that enables
changing the loss, the optimizer, and the step-size scheduler to create
multiple configurations of the same attack. We used Bayesian optimiza-
tion to find the best attack hyperparameters for each configuration
selected. Our findings highlight that hyperparameter optimization can
improve FMN to reach competitive performance with existing attacks
while providing a more thorough adversarial robustness evaluation
(i.e., computing the whole robustness evaluation curve).

We argue that the same approach can be combined with other
attacks and perturbation models. To this end, we plan to extend our
analysis beyond the 𝓁∞-norm FMN attack, considering 𝓁0, 𝓁1, and 𝓁2
norms. We remark that adding more hyperparameters to tune would
make the search space bigger, resulting in a longer optimization time.



R. Mura et al.

m

D

M
b

w
S
C
a
b

Neurocomputing 616 (2025) 128918 
Table 5
Robust Accuracy (RA) with fixed perturbation 𝜖 = 8/255 computed for each model
𝑀1 − 𝑀9 with, respectively, the Baseline FMN attack, the two APGDCE/DLR versions
and the top-3 HO-FMN configurations of each model (𝐶1, 𝐶2, 𝐶3). Except for two

odels, we beat both baseline and APGD attacks.
Model Attack RA Model Attack RA Model Attack RA

𝑀1

Baseline 0.744

𝑀2

Baseline 0.716

𝑀3

Baseline 0.704
APGDDLR 0.718 APGDDLR 0.687 APGDDLR 0.684
APGDCE 0.741 APGDCE 0.716 APGDCE 0.687
𝐶1 0.724 𝐶1 0.688 𝐶1 0.683
𝐶2 0.718 𝐶2 0.683 𝐶2 0.678
𝐶3 0.717 𝐶3 0.693 𝐶3 0.681

𝑀4

Baseline 0.680

𝑀5

Baseline 0.679

𝑀6

Baseline 0.664
APGDDLR 0.661 APGDDLR 0.659 APGDDLR 0.631
APGDCE 0.678 APGDCE 0.656 APGDCE 0.658
𝐶1 0.661 𝐶1 0.652 𝐶1 0.633
𝐶2 0.661 𝐶2 0.658 𝐶2 0.637
𝐶3 0.657 𝐶3 0.652 𝐶3 0.638

𝑀7

Baseline 0.672

𝑀8

Baseline 0.639

𝑀9

Baseline 0.635
APGDDLR 0.647 APGDDLR 0.616 APGDDLR 0.616
APGDCE 0.654 APGDCE 0.651 APGDCE 0.610
𝐶1 0.638 𝐶1 0.618 𝐶1 0.596
𝐶2 0.641 𝐶2 0.621 𝐶2 0.609
𝐶3 0.638 𝐶3 0.624 𝐶3 0.616

Table 6
Robust Accuracy (RA) with fixed perturbation 𝜖 = 4/255 computed for each model
𝑀10 −𝑀12 on the ImageNet dataset. We report the numerical results for, respectively,
the Baseline FMN attack, the two APGDCE/DLR versions and the top-1 HO-FMN
configuration 𝐶1 of each model. For all the models, we beat both baseline and APGD
attacks.

Model Attack RA Model Attack RA Model Attack RA

𝑀10

Baseline 0.619

𝑀11

Baseline 0.619

𝑀12

Baseline 0.614
APGDDLR 0.611 APGDDLR 0.614 APGDDLR 0.609
APGDCE 0.608 APGDCE 0.605 APGDCE 0.594
𝐶1 0.597 𝐶1 0.600 𝐶1 0.588

Table 7
Runtime comparison between HO-FMN (GD-CALR-DLR/CE) and APGDCE/DLR adapted
to find a minimum-norm solution (each row represents a binary search iteration). We
show the total time and best median ̃

‖𝜹‖ found by the attack on a batch of 128 samples
from CIFAR-10 on model 𝑀9.

Total (avg) time [s] Best (median) ̃
‖𝜹‖

HO-FMNCE (DLR) 4.753 (5.257) 0.053 (0.053)
APGDCE (DLR) 1 3.635 (4.064) 0.062 (0.062)
APGDCE (DLR) 2 7.241 (8.078) 0.062 (0.062)
APGDCE (DLR) 3 10.856 (12.094) 0.062 (0.062)
APGDCE (DLR) 4 14.508 (16.105) 0.054 (0.054)
APGDCE (DLR) 5 18.170 (20.141) 0.054 (0.054)

To this end, we will also develop sound heuristics to filter the subop-
timal configurations without running the full attacks, making hyper-
parameter tuning more efficient. Additionally, we will design faster
exploration phases in the initial steps of the FMN optimization process
to enable further exploration of the loss landscape.
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