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Editorial
With the new generation of synchrotrons and micro- and nano-focussed 

beamlines a great progress is achieved in the area of X-ray protein crystallography 
resulting in new protein 3D atomic structures of high interest to pharmaceutical 
industry and life science. Recently, cryo-electron microscopy in microbeam elec-
tron diffraction mode (microED) [1], X-ray nanodiffraction (nanoXRD) [2, 3] 
and serial femtosecond X-ray nanocrystallography (SFX) at X-ray free electron 
lasers (XFELs) [4] have opened a new way to diffraction data collection. How-
ever, production of the protein crystals, as well as their quality remain open prob-
lems. Since this field is rapidly evolving, the novel methods of macromolecule 
organization into the diffracting arrays (nanocrystals, 2D crystals, etc.) come to 
the forefront. At this stage, nanotechnology could offer great potential in struc-
tural, functional proteomics and medicine, aiming to ab initio construction of the 
solid protein-based materials for these studies.

The Langmuir-Blodgett (LB) nanotemplate method [5], applicable to any 
protein (including membrane proteins) allows highly ordered 2D protein nano-
films  formation on the air-water interface and their deposition onto the solid 
supports. These nanofilms can be applied as a 2D nanotemplate for triggering of 
3D protein crystals. Generally, LB protein nanotemplate approach includes the 
diffraction data collection from nanocrystal grown by LB nanotemplate, but it 
can be also applied to LB protein multilayers (MLs), aiming the protein struc-
tural data collection. 

So far, interesting phenomena of the multilayers internal re-ordering have 
been observed after heating and cooling procedures. Indeed, surface ordering of 
the multilayered nanofilms and an improvement of the correlation between the 
layers during thermal annealing have been revealed by atomic force microscopy 
and grazing-incidence small-angle X-ray scattering (GISAX) [6]. However, in-
formation on the structural changes in the bulk of nanofilms as well as limits to 
thermal stability of protein-based materials and the mechanism and size-scale 
of processes occurring at high temperatures [7, 8], require more advanced tech-
niques and sophisticated experiments now available for the scientific community.

For this reason, number of experiments have been performed on the protein 
LB MLs deposited onto Si3N4 chips or TEM grids and annealed, by means of 
emerging advanced techniques as nanoXRD, microED and SFX at XFEL.

In 2018, NanoWorld Journal has published the pioneering experiment on 
protein (phycocyanin) LB MLs study by SFX at XFEL [9]. In the following 
years, scanning X-ray nanodiffraction experiments on penicillin-G-acylase LB 
MLs deposited on Si3N4 membranes and annealed at 150 °C resulted in ob-
servation of locally globular aggregates and filamentous spherulites based on 
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nanofibrillar subunits with cross-ß amyloidic motifs [10, 11]. 
Finally, this year it was shown by microED   that amorphous 
phycocyanin LB MLs, after annealing at 150 ° C and cooling 
to room temperature, form a layered nanofibrillar lattice with 
rotational disorder. Scanning X-ray nanodiffraction suggests 
that structural transformation is not homogeneous through 
the film but limited to patches of up to about 10 μm diameter 
[12]. 

Serial femtosecond X-ray nanocrystallography experi-
ments at XFEL often require large amounts of sample, spe-
cialized experts and equipment available at only few X-ray 
light sources and complicated optimization of sample-deliv-
ery systems. However, XFEL measurements, performed at 
ambient temperature can reveal physiological conformation 
and dynamics of the molecules, and in case of fix-target MLs 
analysis, the protein amount required is very small. From the 
other hand, microED can overcome some of the obstacles en-
countered by an XFEL while maintaining many of advantages.  
The quantity of crystalline material in a MicroED experiment 
can be much smaller than in an XFEL experiment (e.g. single 
crystal of 50 nm thickness for full data collection with rela-
tively small radiation damage). The equipment needed for a 
MicroED experiment is relatively cheap and readily available, 
and one single nanocrystal is sufficient for an entire data set to 
be collected and determined by MicroED [13]. 

MicroED provides access to surface and near-surface 
structural features for a few tens of layers of protein film. 
Scanning nanoXRD was used for 5 times thicker samples, 
providing data on the homogeneity of transformation with a 
more extended SAXS range than microED  [14]. Moreover, 
the European Synchrotron Radiation Facility (ESRF) is cur-
rently being upgraded in the context of the “Extremely Bright 
Source” (EBS) project from a 3rd to a 4th generation synchro-
tron radiation source with increase in brightness by more 
than an order in magnitude [15]. This should allow scanning 
nanoXRD techniques to provide enhanced reciprocal space 
(SAXS) resolution for focal spots down to around 100 nm [2].

In conclusion, the specific properties of LB protein thin 
films (long range order, thermal stability, ability of trigger 
protein crystallization [5] can be exploited in new procedures 
both for microED, nanoXRD and SFX at XFEL. Combining 
these advanced techniques with the ability to measure struc-
tural parameters for large MLs area, the LB MLs could in 
future become a powerful tool for biophysical studies, consid-
ering the possibility of the dynamics parameters observation 
(catalytic reactions, etc.) in MLs. Remains the challenge of 
the protein structural data collection from LB MLs at crystal-
lographic resolution.
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