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Abstract
We present the theory of Dirac spinors in the formulation given by Bohm on the 
idea of de Broglie: the quantum relativistic matter field is equivalently re-written as 
a special type of classical fluid and in this formulation it is shown how a relativistic 
environment can host the non-local aspects of the above-mentioned hidden-variables 
theory. Sketches for extensions are given at last.
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1  Introduction

More than one century passed from its beginnings, and yet quantum mechanics still 
has conceptual issues which have to be addressed at a somewhat fundamental level.

One of the most important is whether wave functions are real or not. A kick in 
this direction has been recently given in the form of the so-called PBR theorem, 
pointing out problems that arise from the assumption of the wave function being just 
information about observables [1].

A real wave function, however, seems to be incompatible with the superposition 
principle. This time hints date back to the EPR argument, suggesting that a wave 
function should be completed with hidden variables [2].

The problem of hidden variables has received a push toward an unexpected direc-
tion by Bell, who proved that if hidden variables were indeed a pre-determined 
feature of the wave function then some very general assumption on the probability 
distribution would lead to inconsistencies with experiments [3]. Hence, either the 
probability of a measurement must somehow be influenced by other measurements, 
or there is no pre-determination. Or both.
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One of the first examples of re-formulations of quantum mechanics in which pre-
determined hidden variables display the type of non-local behaviour discussed by 
Bell is the Bohmian version of quantum mechanics [4]. This theory is itself a re-
discovery of an older model presented by de Broglie, and so we call it de Broglie-
Bohm theory.1

The dBB theory stems from a re-formulation of quantum mechanics in terms of 
polar fields, that is when the wave function is written as a real module times a uni-
tary phase. In such a re-formulation the Schrödinger equation is split into a Hamil-
ton-Jacobi equation for the ensemble of trajectories and a continuity equation that 
suggests how we should interpret the velocity of particles. Then a condition of quan-
tum equilibrium is assumed to recover the results of quantum mechanics at a statisti-
cal level.

In the dBB theory due to Bohm, the pre-determined hidden variables are the ini-
tial positions of particles, and the non-local behaviour can be seen in the fact that the 
motion of a particle is guided by the universal wave function itself determined by all 
other particles. When general relativistic constraints are considered, it is not difficult 
to see where a possible conflict might then arise.

A conflict of this type might be resolved by recovering Lorentz covariance 
through a foliation of space-time [5], which may be unobservable and thus not in 
conflict with relativity in any observation [6]. Nevertheless, a preferred foliation 
introduces a privileged time and so it is still incompatible with relativity even if not 
at practical levels.

A conflict such as the above could also not appear in the first place if we worked 
in a relativistic version of the dBB theory from the start. That is, instead of asking 
how the dBB theory can be made relativistic, we ask how an already relativistic 
theory can be written in dBB form.

We have briefly recalled that the first step to take in order to write the dBB for-
mulation is the polar decomposition of the wave function. And the relativistic theory 
of matter fields is the well known spinor theory. Therefore, the main aim in this 
direction should be to consider the Dirac theory and re-write it in polar form. This 
was done in [7–10], and systematically by Takabayasi in [11, 12].

The application to the dBB theory in the Schrödinger case was done in [13] and 
commented in [14]. Extensions to include spin and relativistic invariance followed 
in few works [15–18]. However, for spinors, studying relativistic cases does not sim-
ply mean allowing velocities to be close to their limit, as we will see. For the Dirac 
field, the polar form must be investigated more in detail then ever before.

In this paper we bring such a deeper analysis, preparing the Dirac theory to be 
written in dBB formulation.

1  As a matter of fact, this is an instance in which, like in many other cases, the chronological order does 
not follow the logical order: in fact the de Broglie-Bohm theory was set before the results of Bell, with 
Bell proving his theorem on the guess that the dBB non-locality could be a general feature of quantum 
mechanics.
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2 � The dBB Interpretation

2.1 � The General Theory

2.1.1 � The Dirac Fields

In order to maintain the treatment the most general, we will aim at working in a 
manifestly covariant environment and in general space-times. This means that in 
particular electrodynamics, gravity and torsion can also be included if one has the 
purpose to do so [19].

To recall the general features of the Dirac theory, we start by assigning the Clif-
ford matrices �a verifying

where � is the identity matrix and

defining �ab from which the matrix � is defined as

to set our convention.2
By exponentiation of the �ab we obtain � so that

is the most complete spinor transformation possible.
Any column of 4 scalars transforming as

is a spinor and a row of 4 scalars transforming as

is an adjoint spinor. The two are related by

and with them we define the bi-linear quantities as

(1){�a, �b}=2��ab

(2)
1

4
[�a, �b]=�

ab

(3)2i�ab=�abcd��
cd

(4)S=�eiq�

(5)�→S�

(6)�→�S
−1

(7)�=�†
�
0

(8)Sa=��
a
��

2  This is usually denoted as a gamma with index five, but it has no sense in the space-time and so we use 
a notation with no index.
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which are all real tensors and such that

as it is straightforward to demonstrate.
Since the spinorial transformation is point-dependent, we should expect a 

spinorial gauge connection to emerge.
Indeed one can define the spinorial covariant derivative

in terms of spin connection and gauge potential in the most general case that respects 
metric compatibility.

The commutator of spinorial covariant derivatives decomposes according to

in terms of the Riemann curvature and Maxwell strength.
Finally, in order to set the dynamical behaviour we are going to consider it to 

be determined by the Dirac spinor field equations as usual given by

in which W� is the axial-vector Hodge dual of the torsion tensor and X the torsion-
spin coupling, which has been added to be in the most general situation possible.

General definitions can be taken for instance from [19].

2.1.2 � Full Geometric Coupling

So far we have given the Dirac theory in full coupling, that is when the Dirac 
equation is written in presence of electrodynamics, gravity and torsion. Hence 
to complete the theory, we now give also the geometric equations determining 
electrodynamics, gravity and torsion sourced by the Dirac field. This will also be 
useful later on, when we will begin the study of classical approximation.

So, given the Dirac spinor matter field, it sources electrodynamics in terms of 
the Maxwell equations

(9)Ua=��
a�

(10)Θ= i���

(11)Φ=��

(12)UaS
a=0

(13)UaU
a=−SaS

a=Θ2+Φ2

(14)���=���+
1

2
Ωij��

ij�+iqA��

(15)[��,��]�=
1

2
Rij���

ij�+iqF���

(16)i�����−XW��
�
��−m�=0
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where the right-hand side can be written with the velocity and ∇�U
�=0 due to the 

validity of the Dirac equations.
The source to torsion dynamics is instead

with (�W)��=�[�W�] and M the mass of torsion and in which the right-hand side can 
be written with the spin so M2∇�W

�=2XΘm due to the Dirac equations.
The source of gravity is described by

in which R����g��=R�� and R��g��=R are the Ricci tensors and Λ the cosmological 
constant and in which the right-hand side is given according to the energy

so ∇�T
��=0 and with trace as 2R+8Λ−M2W2=−Φm both verified due to the 

validity of the Dirac equations.

2.1.3 � The Polar Form

Having recalled the general definitions of the Dirac theory, we next convert it into 
its polar form [11, 12]. Just the same, we will follow a different route as compared 
to Takabayasi. Our goal is writing the polar form of a theory displaying not only 
relativistic covariance, but also manifest covariance under general curvilinear coor-
dinates in curved space-times, as well as gauge covariance under the local Lorentz 
transformations. Readers interested in more details can find them in [20] and refer-
ences therein.

The main idea that lies behind the polar decomposition is that each component of 
the spinor be re-written as the product of a module times a unitary phase. Because 
all components mix during a spinor transformation, such a decomposition in general 
does not respect manifest covariance, unless due care is taken. When this is done, it 
is possible to find that the most general spinor field can always be written in chiral 
representation as

(17)∇�F
��=qU�

(18)∇�(�W)��+M2W�=XS�

(19)R��−
1

2
Rg��−Λg��=

1

2
T��

(20)

T��=
1

4
F2g��−F��F�

�

+
1

4
(�W)2g��−(�W)��(�W)�

�

+M2(W�W�−
1

2
W2g��)

+
i

4
(��

�
�
�
�−��

��
��

+ ��
�
�
�
�−��

��
��)

−
1

2
X(W���

�
��+W���

�
��)
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with � and � being a real scalar and a real pseudo-scalar fields known as module and 
chiral angle, and where L is a general spinor transformation. In this form we have

with

such that

are the velocity vector and spin axial-vector. This shows that module and chiral 
angle are the only true degrees of freedom whereas the spatial components of veloc-
ity and spin can always be boosted to zero or rotated to point along a given direc-
tion. In polar form the components of the spinor are re-arranged so that � and � are 
isolated from the parameters of the spinor transformation L and because these can 
always be transferred into the frame they can be recognized to be the Goldstone 
fields.3

To the best of our knowledge, the first appearance of the polar form (21) in litera-
ture was in [21]. When this polar form is written with (4) we have the more explicit 
expression given with all fields as

in which �e−iq� is the single global factor we would have had in the usual case 
but now we also have a chiral phase e−i��∕2 acting on the two chiral projections in 

(21)�=�e
−

i

2
��
L
−1

⎛
⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎠

(22)Θ=2�2 sin �

(23)Φ=2�2 cos �

(24)Sa=2�2sa

(25)Ua=2�2ua

(26)uas
a=0

(27)uau
a=−sas

a=1

(28)�=� e−iq�e
−

i

2
��
�

−1

⎛
⎜⎜⎜⎝

1

0

1

0

⎞⎟⎟⎟⎠

3  Notice that such a polar decomposition is always possible so long as Θ and Φ are not identically zero 
as it generally happens. In the specific circumstance in which Θ2+Φ2

≡0 we would still have a polar 
decomposition [31]. However, in this case the fields would be pure Goldstone states [32]. Therefore, we 
are not going to consider this singular case in the following.
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opposite ways plus the complex Lorentz transformation �−1 accounting for boosts 
and rotations mixing each helicity in an independent manner. These two last ele-
ments are not usually addressed in studying spinors, and this might be the missing 
piece in the analysis of Takabayasi [11, 12].

Let us now move on to study the differential structures in polar form. With a little 
algebra that we are not going to reproduce, one can show that we can always write

for some � and �ab which are indeed the Goldstone states of the spinor field. Using 
this expression in the polar form of the spinorial covariant derivative, one can set

in terms of which

for the spinor field in the most general case. From this

in general. Before we have seen that it is always possible to have the Goldstone 
states transferred into gauge and frames, and now we can see what happens to them. 
They are absorbed by spin connection and gauge potential as the longitudinal com-
ponents of P� and Rji� which are a real vector and a tensor respectively, so that they 
have the same information of gauge potential and spin connection but they are gauge 
invariant and frame covariant.

So long as we can be aware, Jakobi and Lochak did not continue the investigation 
of the polar form at a differential level while still maintaining manifest covariance, 
so that we believe that the definitions of tensors (30–31), the proof of their frame 
and gauge covariance, as well as the form of the derivative (32), are all new results 
[22].

The Riemann curvature and Maxwell strength are then

identically. Above we have remarked that in P� and Rji� we find the same informa-
tion of gauge potential and spin connection although these are gauge invariant and 

(29)L
−1
��L= iq����+

1

2
���

ab
�ab

(30)���ij−Ωij�≡Rij�

(31)q(���−A�)≡P�

(32)���=(−
i

2
∇���+∇� ln��−iP��−

1

2
Rij��

ij)�

(33)∇�si=Rji�s
j

(34)∇�ui=Rji�u
j

(35)Ri
j��

=−(∇�R
i
j�
−∇�R

i
j�
+Ri

k�
Rk
j�
−Ri

k�
Rk
j�
)

(36)qF��=−(∇�P�−∇�P�)
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frame covariant. As Riemann curvature and Maxwell strength contain information 
about gravity and electrodynamics only, then non-zero Rji� and P� that are solutions 
of the Ri

ji�
=0 and F��=0 conditions encode the information about spin connection 

and gauge potential that is not gravitational and electrodynamic, respectively.
That Ri

ji�
=0 and F��=0 can have non-trivial solutions was proven with a direct 

example in [23].
Introducing the combined potential and its Hodge dual

it is possible to see that the Dirac equations in polar form are equivalently written 
according to

specifying all the derivatives of module and chiral angle.
Once again, to the best of our knowledge, the very first appearance of the polar form 

of the Dirac equations was in [24], although we are not aware of any work of Yvon or 
subsequent authors in which the polar form of the Dirac equations was written in a 
manifestly covariant way and for whatever potential, as it is done in equations (39, 40).

The interested readers can find more details in [20].

2.1.4 � Relativistic Quantum Potentials

So far we wrote the spinorial field in polar form. We are now going to assign to its 
most fundamental elements the corresponding interpretation that we would have in the 
relativistic version of the dBB theory. Being in the case of complete generality, some 
element will remain obscure, and so we ask the reader some patience. The immediately 
following section will treat the non-relativistic limit, and there the full correspondence 
will become obvious.

So, to summarize the results obtained in the previous sub-section, in the scheme of 
the dBB interpretation, we can say that, once the Dirac equations are assigned, and the 
polar form used, we can write them, after defining a pair of dual potentials (37–38), 
according to (39–40). Yet, we could alternatively define also the following potentials

in which P� has been left out so that

(37)Σij�=Rij�−2P�u
asb�ijab

(38)Mab
�
=
1

2
Rij��

ijab+2P�u
[asb]

(39)∇��−2XW�+M�+2ms� cos �=0

(40)∇� ln�
2+Σ�+2ms� sin �=0

(41)2Y�=∇��−2XW�+
1

2
�����R

���

(42)− 2Z�=∇� ln�
2+R�

��
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and these have to be recognized as the Hamilton-Jacobi equations of the dBB inter-
pretation. In fact, (41–42) are objects containing the derivatives of the degrees of 
freedom, and as such they are the quantum potentials in the relativistic case with 
spin (they contain only one derivative as clear from relativistic covariance and they 
are two because of the presence of two chiral fields). They do not contain the object 
P� which can then be found only in (43–44), and if P� could be identified with the 
momentum then (43–44) would be equations yielding the structure of the momen-
tum, in terms of the quantum potentials, and as a consequence of this fact they 
would result to be the Hamilton-Jacobi equations, by their very definition.

To see whether P� can be identified with the momentum, we combine (43–44) 
and manipulate them so to get

which gives its explicit expression. We see that P� equals the kinematic momentum 
mu� up to a multiplicative factor of the chiral angle cos � and plus corrections pro-
portional the product of the spin and the potentials.

It is important to remark that here the interpretation of the relativistic probability 
amplitude as given by 2�2 seems to arise quite naturally. It clearly could neither be 
the temporal component of Ua (which is not covariant) nor Φ (which is not positive 
defined). However, because in relativistic spinning cases we have a second scalar Θ 
it is possible to write the scalar 

√
Φ2+Θ2 which is positive defined. But this is sim-

ply 2�2 as we argued above.
Notice that the above quantum potentials are a relativistic spinning version 

of what Bohm would call quantum potentials. The fact that they are relativistic is 
evident in their being first-order differential (because Dirac is at first-order deriva-
tive while Schrödinger is at second-order derivative) and that they describe spin-
ning systems is clear from the existence of two of them (since solutions of the Dirac 
equations are characterized by two degrees of freedom whereas solutions of the 
Schrödinger equation are characterized by one degree of freedom).

2.2 � Two Special Limiting Cases

2.2.1 � Non‑relativistic Chiral Limit

The polar decomposition of spinors is very much linked to the dimension of the 
space that contains them. So the polar form (21) can only be valid in the (1+3)
-dimensional space-times. In other dimensions or signatures we would have a dif-
ferent polar decomposition [25]. In particular, for the 3-dimensional space we would 
have a polar form given according to the following structure

(43)P�u[�s�]−Y�−ms� cos �=0

(44)P�u�s������+Z�−ms� sin �=0

(45)P�=mu� cos �+
(
Y �u�g

��−Y�u�+Z�u��
����

)
s�
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where � is the module, and R is a general complex rotation. In this form we would 
have that

with

such that

as a constraint on the spin vector.4
The full expression in presence of a phase is given by

but we notice that even now we cannot accommodate the unitary chiral phase as 
well as the boosts.

The non-relativistic limit is implemented by requiring that boosts be disallowed 
and that time be excluded as a dimension, so that we are essentially asking that 
spinors in (1+3)-dimensional space-times be reduced to spinors in 3-dimensional 
spaces. Hence (21) must somehow reduce to (46). Writing (21) in standard represen-
tation makes us see that it does reduce to (46) whenever we have

as is discussed in [20]. The passage from relativistic cases to non-relativistic cases 
is not only u⃗→0 when considering spinors because for them also �→0 has to be 
imposed for consistency. Lack of doing so will not ensure, even in the rest frame, the 
non-relativistic limit. Henceforth, we may think at � as what contains the informa-
tion on the internal dynamics of spinors. Notice however that these two conditions 
(51–52) are together equivalent to asking that when written in standard representa-
tion the spinor lose its small components [20]. This last is precisely the definition of 
non-relativistic limit that is commonly used in mathematical physics. Notice that the 
non-relativistic limit has been treated without involving the momentum.

(46)�=�R
−1

(
1

0

)

(47)Φ=�†�=�2

(48)S⃗=𝜓†
�⃗𝜓=𝜙2s⃗

(49)s⃗⋅s⃗=1

(50)�=�e−iq�R−1

(
1

0

)

(51)�→0

(52)u⃗→0

4  We assume the reader familiar with the Pauli matrices �⃗ above.
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2.2.2 � Non‑quantum Helicity Limit

Let us now consider the expression of the energy (20) written in polar form, and 
with the momentum (45) substituted in it, which then becomes

where we have introduced

for compactness. By taking its divergence we have

and this will be recognized as the Newton law.
To see this, we consider that the non-quantum limit is implemented by the condi-

tion of spinlessness

and as ∇S=2mΘ we have �→0 in the same limit.5
In this classical approximation (55) reduces to

since P�=mu� in the same regime.
Simplifying the module would give

which can finally be seen as the Newton law of motion.

(53)

T��=
1

4
F2g��−F��F�

�

+
1

4
(�W)2g��−(�W)��(�W)�

�

+ M2(W�W�−
1

2
W2g��)

+ 2�2m cos �u�u�+E���s�

(54)

E���=�2[g��Y�+g��Y�−2Y�u�u�+

+ Y �u�u
�g��+Y �u�u

�g��+

+ Z�u�u
������+Z�u�u

������−

−
1

4
(R�

��
�����+R�

��
�����+

+ �����g��R���+�
����g��R���)]

(55)
2�2u�∇�(m cos �u�)+(∇�E

���+E���R�

��
)s�

= 2�2[qF��u�+X(�W)��s�−2Xm sin �W�]

(56)si→0

(57)2�2u�∇�P
�=2�2qF��u�

(58)u�∇�P
�=qF��u�

5  The non-quantum limit would be implemented by ℏ→0 which is hidden in our presentation with natu-
ral units. If we were not to assume them, ℏ→0 would clearly give the spinless condition.
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In its derivation, we never assumed constraints on the matter distribution. In 
spinless situations, all points follow the classical motion, not only the peak of a 
localized matter distribution. We regard this as an improvement in comparison 
with Ehrenfest theorem, where the material distribution is localized and only its 
peak follows classical trajectories. We now move to the dBB interpretation.

2.3 � Recovery of the dBB Model

2.3.1 � Second‑Order Differential Field Equations

Let us next consider the Dirac equations in polar form as given by (39–40), and 
let us apply them onto each other, so to eliminate the presence of velocity and 
spin.

The second-order differential equations are hence

and

in terms of the external potentials of torsion, gravity and electrodynamics. In the fol-
lowing we will work in the case of the �→0 limit and focus on the second of them.

As a start, we see that when torsion is in its effective approximation, the tor-
sion field equations reduce to

which can then be substituted into the above (60) to get

which is remarkably non-linear. Notice that if M𝜈s𝜈 >0 the effective self-interaction 
remains attractive at smaller densities and if ∇𝜈Σ

𝜈∕2−Σ𝜈Σ𝜈∕4+M
𝜈M𝜈∕4+m

2>0 
the effective mass term remains positive. If both conditions are verified the above 
equation acquires a structure that can allow solitonic solutions. It is tempting to sug-
gest an interpretation for which this localized distribution could represent the parti-
cle, instead of postulating it ad hoc.

Far from the peak, the non-linear terms tend to vanish rapidly, so more simplifi-
cations occur. For the additional assumption Rij�≈0 (62) can be written like

(59)
∇�(�2∇��)−(8X

2
M

−2�2
m sin �

− 2XW�Σ�−∇�M
�+M�Σ�)�

2=0

(60)
|∇�∕2|2−m2−�−1∇2�+

1

4
(−2∇�Σ

�

+ Σ�Σ�−M
�M�+4XW�M

�−4X2W�W
�)=0

(61)M2W�≈XS�

(62)
∇2�−4X4M−4�5−2X2M−2M�s��

3

+
1

4
(2∇�Σ

�−Σ�Σ�+M
�M�+4m

2)�=0



1 3

Foundations of Physics (2022) 52:116	 Page 13 of 20  116

which is the equation that constitutes the balance of energy with an external poten-
tial given in terms of the electrodynamic coupling plus the quantum potential 
�−1∇2� in the form known from the standard dBB interpretation.

In non-relativistic limit and setting P0−m=H we have

as the Hamiltonian with FIJ=−�IJKB
K and giving and quantum potentials precisely 

as in the dBB formulation.
The non-relativistic limit is gotten from the guidance equation (45) which under 

the above hypotheses is

therefore giving that P0
→m as is discussed above as well as P⃗= s⃗×∇⃗ ln𝜙 if we 

neglect the time dependence of the module. Notice that for a module of gaussian 
distribution �=K exp (−kr2∕8) we have ∇⃗×P⃗=ks⃗∕2 showing that a matter distribu-
tion of this type converges only if the curl of its momentum is directed along its spin 
axial-vector.

Notice finally that in the same limit we also have that 2�2
≡

√
Φ2+Θ2

→ �Φ� 
which is the probability amplitude of non-relativistic quantum mechanics, as known.

3 � Free Will

3.1 � Physical Contextuality

As we had the opportunity to mention above, the dBB model is one of the first in 
which an explicitly non-local behaviour was found. And in fact, it was the proto-
typical model that had led Bell to ask whether this property was a general feature 
of quantum mechanics. In detail, Bell’s argument relies on the definition of a form 
of non-locality, known as Bell non-locality, which can be used to deduce specific 
constraints, called Bell inequalities [3]. All along the years many forms of Bell-like 
inequalities have been proposed. A very general one is what is known as CHSH 
inequality [26]. Generally, the specific type of inequality is irrelevant, as they all 
have in common the idea that a Bell inequality is the manifestation of the pre-deter-
mined hidden variables. If a theory has pre-determined hidden variables then, by its 
structure, it must imply some form of pattern in measurements, and this pattern is 
reflected as inequalities between the results of observations.

Because quantum mechanics does not verify these inequalities, then either there 
are no pre-determined hidden variables or if they do exist then they cannot be local.
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In time, various generalizations of this statement have been proposed. The first 
one is due to Bell himself [27].6

As compared to [3], in [27] the accent is shifted, from the concept of non-locality, 
to that of contextuality. That is, the fact that the wave function of one particle has 
to include variables pertaining to other particles, even with space-like separation, 
is seen as a more general statement about the fact that the result of a measurement 
depends on which other measurement is chosen to be made within the settings of the 
experimental apparatus [28, 29].

The general statement however is similar, and so either there are no pre-deter-
mined hidden variables or the result of a measurement must depend on other 
measurements.

Frequently [27, 28] are seen as two parallel versions of the same theorem, while 
[29] has more of an independent formulation in its involving a definition of free will.

Free will, in [29], is defined as the lack of determinism in the sense of leisure of 
choosing the experimental setting at the convenience of observers. In what follows, 
we wish to provide a less (experimentally) practical though more (theoretically) pre-
cise definition of the in-determinism of physical processes. Because some physical 
effects are determined, it is unwise to talk about in-determinism, and we will con-
sider the more sober term under-determinism.

So a mathematically finer under-determinism might be defined as the fact that in 
physics there exist effects that are not dynamically determined as solutions of differ-
ential field equations with an external source term. Notice that this definition is com-
patible with our idea that when, on the contrary, an effect can be seen as described 
by the solution of a field equations with a source then there is no freedom of choice 
once the source is assigned. Remark however that to be more precise this definition 
does not account for the freedom of choosing boundary conditions, although there is 
no physical theory that does specify a choice of boundary conditions, so that we will 
not discuss this circumstance in the following of the presentation.

3.2 � Dynamical Under‑Determination

In the first section we have demonstrated how we can have the spinor field written in 
polar decomposition, with which it becomes possible to infer the dBB interpretation.

Now we would like to consider the same theory without the assumptions that led 
to the dBB interpretation, and that is keeping � , W� as well as Rij� non-zero. The 
most important of these objects for our purposes are the Rij� tensors, as they are still 
not well understood. The present section is devoted to study them more in detail and 
find a link with the definition of under-determination above.

We start by investigating the general structure of the spinor field. As we said above, 
the polar form (21) allows to keep the degrees of freedom � and � isolated from the 
Goldstone states of the system contained in L and which can therefore be transferred 
into gauge and frame. This field describing the Goldstone states is actually given by 

6  In fact, [27] even pre-dates [3].
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its derivative L−1
��L as this is the field that will combine with the gauge potential and 

spin connection to yield the P� and Rij� tensors. Notice that as Goldstone states, L , and 
therefore L−1

��L , contains information about gauge and frames. And it is of course not 
covariant. Because its curvature tensor is given by

then they contain no information about electrodynamics and gravity. On the other 
hand, the gauge potentials and spin connection contain information both on gauge 
and frames and on electrodynamics and gravity. To split them one considers the cur-
vatures. Thus A� such that F��=0 contains information about gauge but not electro-
dynamics whereas Ωij� such that Rij��=0 contains information about frames but not 
gravity. Once again, A� and Ωij� are non-covariant objects. Notice nevertheless that 
their information about electrodynamics and gravity is also in the Maxwell strength 
and Riemann curvature. And these two tensors are of course covariant. When the 
Goldstone fields combine with spin connection and gauge potentials as in (30–31) 
all non-covariant properties cancel off. To see it, consider that for spinor transforma-
tions, nothing within the spinor in polar form can transforms except

as it might have been expected. The transformation law of the spinor connection is

as also well known. Consequently

showing that the object ��L
−1
L+�� transforms as one spinorial matrix. Writing it 

as ��−L
−1
��L using (29) and the known decomposition of the spinorial connection
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we arrive at (31–30), which are therefore demonstrated to be real tensors. The P� 
and Rij� still contain information about gauge and frames. Hence P� such that F��=0 
is what contains the information about gauge only whereas Rij� such that Rij��=0 is 
what contains the information about frames only. Then electrodynamics and grav-
ity are encoded within Maxwell strength and Riemann curvature (36–35). All these 
objects and conditions are covariant as proven above and well known. As mentioned 
above, one can find non-zero P� and Rij� solutions of the conditions F��=0 and 
Rij��=0 respectively. An example is found in reference [20]. What this means is that 
we can have a case of non-trivial background ( P�≠0 and Rij�≠0 ) even in absence of 
any external force ( F��=0 and Rij��=0).

This situation seems to suggest the existence of physical effects that are non-trivial 
albeit described by objects that cannot be determined by changes imposed through field 
equations with a source. To see that this is in fact the case, let us ask what could be a 
possible form for one candidate field equation with a source. Or within a more general 
approach, what is the form of one candidate field equation (for the moment regardless 
of the source).

In order to find in what way the Goldstone fields could be dynamically determined, 
we look for second-order differential field equations. Since the Rij� tensor is already 
first-order derivative, we only need to look for first-order derivatives of the Rij� tensor. 
Because we are considering field equations for Rij� with Rij��=0 we are considering 
field equations that are not the Einstein equations. What we can do to simplify the issue 
is writing Rij� split as

where

is the trace and

the dual of its completely antisymmetric part and with Πijk such that Πa
ia
=0 and 

Πijk�
ijka=0 hold. In order to find the field equations for Rij� such that Rij��=0 now 

we will have to look for field equations for each irreducible part and subject to the 
Rij��=0 constraint. As a start, we consider the last irreducible part Πijk for which 
we can immediately see that this component does not appear in the dynamics of 
the spinor field at all. As for the others, we must check the consistency of the field 
equations that have ∇aB

a and ∇aR
a as leading terms. Because we have to enforce the 

constraint given by Rij��=0 then

and
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which respectively give

and

showing that either derivative term is reduced to an algebraic constraint, and hence 
the dynamical behaviour is left not determined. For Pa a very similar argument may 
be used. In general, therefore, one cannot find for any of the components of the 
Rij� and P� tensors a differential field equation (at least, for any of the commonly-
accepted definitions we have for the fundamental field equations).

This suggests that there might always be some form of dynamical under-determi-
nation for a Goldstone field like the one pertaining to the polar form of spinor fields.

This under-determination common to both Goldstone fields and hidden variables 
seems to point toward a link between them. Goldstone fields as hidden variables 
have already been used in [30] as a way to describe correlations between a pair of 
opposite-spin spinorial fields.

4 � Observers

The analysis we have done up to this point has served two purposes. One was to 
demonstrate that the dBB interpretation can indeed be obtained, once the polar form 
is used, also in the case of relativistic spinning fields, like the Dirac spinor. This led 
us to see that hidden variables can in fact be contextual even within a manifestly 
covariant environment, since non-local characters might appear without violating 
causal restrictions. The other purpose was to show that among all physical effects 
there may be some that are not determined by field equations. Hence, not all fields 
are local since not all fields are solutions of field equations, although causality has to 
be a property of all solutions of field equations. This leave us with some doubt about 
the fact that, if some fields are not solutions and some fields are solutions of field 
equations, then how do we fix fields that are not solutions of field equations?

In [30], we presented a toy model of entangled spins, in which a pair of opposite-
helicity spinors in uniform spin flip could be made to collapse simultaneously for 
the two fields without involving acausal processes. In short, that analysis showed 
that if one spinor is locked to one given helicity then the other spinor is immediately 
locked to the opposite helicity. However, we did not discuss in any way how the 
locking of the first spinor occurs. With reference to the notation of [30], the above 
statement could be re-phrased by saying that we did not discuss at all in what way 
the �→0 condition might have possibly arisen.
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This problem is not new. It is in fact easy to see that it can be re-stated by ask-
ing what is the role of observers in quantum mechanics. The problem is still one of 
the most important and we are not going to give a solution in the following. Yet, we 
trust that in the toy model presented in [30] and re-discussed above, such a problem 
may have a somewhat clearer mathematical formulation.

5 � Conclusion

In this work, the Dirac spinor field theory was written, taking advantage of the polar 
decomposition in its manifestly covariant form, in what can then be defined as the 
de Broglie-Bohm formulation in relativistic version with spin. We have discussed its 
non-relativistic and spinless limits. And we have proven that the dBB formulation is 
in fact contained in it. We have then discussed the roles of contextuality and under-
determination. And we have shown that the theory does provide us with objects that 
can be seen as hidden variables in full compatibility with causal restrictions. We 
have commented on observers.

Comparison between the most general relativistic version and the non-relativistic 
version of the dBB formulation shows that the general form is much richer, not only 
for the appearance of the velocity contributions. The single most important new ele-
ment is the chiral angle, that is the phase difference between the two irreducible 
chiral projections, which encodes a form of internal dynamics that is responsible 
for the failure of non-relativistic limit even in the spinor rest frame. Nevertheless, 
for our purpose, the most illuminating feature of the general form is that the spinor 
field is expressed as (21). Here it is clear that the relativistic form has the global 
�e−iq� we would have in the non-relativistic form times the chiral phase e−i��∕2 and 
times a complex Lorentz transformation � which is recognized to be parametrized 
in terms of the well known Goldstone fields. We have argued that � may well be 
the missing element needed by Takabayasi when he attempted to find the relativis-
tic form of the dBB formulation [11, 12]. In fact, after that �−1

��� combines with 
the spin connection, the Goldstone fields become the longitudinal component of the 
Rij� tensor, as is clear from (30). This expression is fundamental to ensure the full 
manifest covariance for the polar form of the Dirac equations (39–40) and these are 
exactly what Takabayasi would have needed to attain a relativistic version of the 
dBB model [13]. The manifestly-covariant polar form of the Dirac equations can be 
written as in (43–44), which are equations giving the momentum P� by means of 
the quantum potentials in (41–42) and as such, they are the Hamilton-Jacobi equa-
tion for the ensemble of trajectories by construction. The expression (45) is thus 
the guidance equation. The full mathematical setting of the dBB form of the Dirac 
theory is then recovered. As for the ontology, we have to assign a status to the par-
ticle. We discussed how for the Dirac theory, the spin-torsion coupling gives, if tor-
sion is in effective approximation, a non-linear character to the field equations which 
then may allow solitonic solutions. These localized matter field distributions may 
be seen as the depiction of the particle, as de Broglie first conceived it. In this case, 
the hidden variables would not be the initial positions only, but also the spin ori-
entation, and more generally all the boundary conditions entering in the structure 
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of Goldstone fields. In [30] we discussed how Goldstone fields may be non-local, 
and more in general contextual. And here we have shown that they also obey no 
differential field equation. Therefore, the hidden variables result to be characterized 
by a form of dynamical under-determination. This feature is directly linked to the 
presence of Goldstone fields in � and as such it is present only in the general for-
mulation. In this sense we say that the relativistic form contains more than just the 
velocity when compared to the non-relativistic form.

The next natural step to follow is to enlarge this theory as to include multi-parti-
cle states. We are not even going to tackle this problem. Nevertheless, we are of the 
opinion that with the formulation presented in this paper further developments in 
this direction will be easier.
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