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Abstract
The term structure of interest rates is a fundamental decision–making tool for vari-
ous economic activities. Despite the huge number of contributions in the field, the 
development of a reliable framework for both fitting and forecasting under various 
market conditions (either stable or very volatile) still remains a topical issue. Moti-
vated by this problem, this study introduces a methodology relying on optimal time–
varying parameters for three and five factor models in the Nelson–Siegel class that 
can be employed for an effective in-sample fitting and out–of–sample forecasting of 
the term structure. In detail, for the in–sample fitting we discussed a two–step esti-
mation procedure leading to optimal models parameters and evaluated the perfor-
mances of this approach in terms of flexibility and fitting accuracy gains. For what it 
concerns the forecasting, we suggest an approach overcoming the well–known issue 
between the stability of factor models’ parameters and the optimal dynamic decay 
terms. To such aim, we use either autoregressive or machine learning techniques as 
local data generating processes based on the optimal parameters time series derived 
in the in–line fitting step. The so–obtained values are then employed to get day–
ahead predictions of the yield curve. We assessed the proposed framework on daily 
spot rates of the BRICS (Brazil, Russia, India, China and South Africa) bond mar-
ket. The experimental analysis illustrated that (i) time–varying parameters ensure a 
significant boost in the models fitting power and a more faithful representation of 
the yield curves dynamics; (ii) the proposed approach provides also stable and accu-
rate predictions.
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1  Introduction

As widely known, the term structure of interest rates depicts the relationship 
between different times to maturity and the interest rate. Its graphical companion 
is the yield curve, that plots the interest rates of bonds with equal credit quality 
at different maturities: its shape and time changes are conventionally considered a 
key indicator for the economic outlook of a country (Chadha et al., 2014).

The yield curve can be used to represent either spot rates, that is the yield asso-
ciated to a zero-coupon bond from now to maturity, or forward rates, that is the 
yield of a zero–coupon bond between two future dates. Indeed, the yield curve 
plays a valuable role as alerting tool for inflation, possible recession or upturn of 
the economy (Gürkaynak & Wright, 2012); additionally it can be employed to tar-
get and manage monetary policy operations. Furthermore, the knowledge of the 
yield curve dynamics is essential also in the actuarial practice and it represents an 
important component for the implementation of International Accounting (IAS) 
and Financial Reporting (IFRS) Standards. Due to this pivotal role, the develop-
ment of proper modeling techniques suitable for both stable and turbulent periods 
is of great importance for different market players.

Over the past decades various methods have been suggested to analyze, fit 
and predict the yield curve. Actually the most popular models are those in the 
so–called Nelson–Siegel (NS) family, pioneered by Nelson and Siegel (1987) and 
since then by Bliss (1996) who discussed an extension with an additional decay 
parameter, Svensson (1994) with a four–factor model including a further curva-
ture term and De Rezende and Ferreira (2008) introducing a five–factor model 
with two slope terms instead of only one. A dynamic version of the NS model 
was then suggested by Diebold and Li (2006) who considered parameters as 
time–varying latent factors to achieve a more effective forecasting of the yield 
curve. Further attempts to increase the flexibility of NS models are described in 
Koopman et al. (2007), who examined time–varying factors loading and volatil-
ity, Christensen et al. (2007, 2009) who introduced the new class of Affine Arbi-
trage–free Dynamic Nelson–Siegel models and in Ullah (2017) who discussed 
time–varying asymmetric volatility. The fitting and forecasting abilities of NS 
models have been also studied in De Pooter et  al. (2010) and Fernandes and 
Vieira (2019) whose models also include the interaction between the yield curve 
and the economic system.

For what it concerns empirical studies, there are plenty of works deal-
ing with the use of the above parametric models both for in–sample fitting and 
out–of–sample forecasting of the yield curve: Linton et  al. (2001) analyzed the 
U.S. bond market, Chou et  al. (2009) compared the modeling performances of 
different parametric models for Taiwan Government Bonds, Hoffmaister et  al. 
(2010) examined a dynamic parametric representation of the Central and East-
ern European Countries yield curves, Kang (2012) forecasted the term structure 
of Korean Government bond yields with various types of dynamic parametric 
models, Gogas et al. (2015) investigated the abilities of parametric and machine 
learning methods to predict the U.S. GDP and Treasury Bills, Lorenčič (2016) 
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and Nagy (2020) analyzed the estimation abilities of parametric models on the 
Austrian and the Hungarian term structures with missing data, respectively. 
Finally, Luo et al. (2021) fitted and predicted U.S. Treasury yield curves using the 
Dynamic Nelson–Siegel Model with random level shift parameters, Idilbi-Bayaa 
and Qadan (2021, 2022) analyzed and predicted the dynamic linkage amidst the 
U.S. term structure and commodity prices, while Umar et al. (2022) applied NS 
models to the countries in the Group of Seven to investigate the risk transmission 
mechanism.

The overwhelming majority of the above studies focused on economies with 
enhanced resilience to economic downturns and relatively stable term structure 
dynamics, i.e. absence of spikes or drops in the level of interest rates. Additionally, 
such a "favourable" modeling context encouraged the development of methodologi-
cal frameworks characterized by constant decay–terms, (i.e. sub–optimal parame-
ters), for yield curve estimation and prediction. In fact this popular choice simplifies 
the models optimization process and the forecasting procedure as well. Neverthe-
less, it is a good compromise to ensure satisfying fitting performances with rela-
tively low computational efforts.

However, such an approach may lead to inconsistent results when applied to mar-
kets that show a volatile behavior, as the models would result in a lack of flexibil-
ity and ability to approximate complex shapes thus causing, as a consequence, poor 
predictions. This is especially true in the case of emerging markets since their yield 
curves are characterized by frequent trend inversions, jumps and/or falls, especially 
during market turmoil. Therefore, parametric models that exploits the benefits of 
optimal estimated parameters could ensure stable results and improve the overall 
models performance.

Our work nests in the above debate and tries to contribute to the literature by 
introducing a methodology that makes use of optimal time–varying decay factors 
and parameters for parametric factor models that can be employed for an effective 
in–sample fitting and out–of–sample forecasting of yield curves. The proposed 
framework was evaluated in the context of different emerging markets. The ration-
ale arises because various studies highlighted that those markets are more sensitive 
to both endogenous and exogenous shocks (Chiţu & Quint, 2018; Bhattarai et al., 
2021), thus representing the ideal context to assess and validate the modeling power 
of the proposed framework. In our opinion, the use of optimal decay terms and 
parameters endows these models with necessary flexibility to manage the challeng-
ing dynamics characterizing these markets.

Existing contributions related to emerging economies so far were oriented either 
to model (e.g. Zoricic and Orsag, 2013; Petousis and Barr, 2016; Chouikh et  al., 
2017; Lartey and Li, 2018; Lartey et al., 2019; Ertan et al., 2020) or to predict (e.g. 
Caldeira et al., 2016; Poghosyan and Poghosyan, 2019) the term structure of single 
countries. This approach has an evident drawback since it is not necessary true that 
the same methodology is still good for more than a country.

The scope of our research is therefore twofold: on the one hand we discuss the 
use of optimal factors and parameters for models in the Nelson–Siegel Family and 
test their capabilities outside the comfort zone of developed and stable markets; on 
the other hand we provide a comprehensive study focused on in–sample modeling at 
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first, and then on out–of–sample predictions in order to asses the overall effective-
ness of the proposed methodology.

In this respect, our paper contributes in several ways. First, within the dynamic 
framework discussed in Diebold and Li (2006), we use both the Three Factor 
Dynamic Nelson–Siegel (3F–DNS) and the Five Factor Dynamic De Rezende–Fer-
reira (5F–DRF) models and we discuss an estimation technique based on time–var-
ying decay factors that leads to significant enhancements of both models fitting 
abilities. Furthermore we focus on the forecasting issue and suggest an approach 
overcoming the well–known trade–off between the stability of factor models’ param-
eters and the optimal decay terms. In general, it has been noted that in the forecast-
ing task optimal dynamic decay terms cause high fluctuations in parameters val-
ues. To avoid this issue, we use various either auto–regressive or machine learning 
techniques as local data generating processes based on the optimal parameters time 
series derived in the in–line fitting step; the so–obtained values are then employed 
for day–ahead predictions. In this way we give greater emphasis to the information 
content of the period close to that of forecast. This approach allows also to consider-
ably reduce the volatility of predictions which may result from the use of consider-
able amounts of data given the characteristics of emerging markets. In detail, we 
focused on: the Univariate Autoregressive process AR(1), the Trigonometric Sea-
sonal Box–Cox Transformation with ARMA residuals Trend and Seasonal Compo-
nents (TBATS) and the Autoregressive Integrated Moving Average (ARIMA) that 
we combined to a Nonlinear Autoregressive Neural Network (NAR–NN). To the 
best of our knowledge, this study is the first to test the potentials of combining factor 
models to TBATS and ARIMA–NARNN models with the purpose of forecasting the 
term structure of interest rates.

Finally, we run our analysis on a pool of 5 countries, that is Brazil, Russia, India, 
China and South Africa, considering a wide time span of at least 10 years of daily 
observations thus including global shocks and the most recent financial crises. This 
offers a breeding ground for the stress-testing of the proposed framework.

The remainder of the paper is organized as follows. Section 2 describes materials 
and models and it is divided into three parts: a part presenting the data employed 
in the simulation; a part introducing the 3F–DNS and 5F–DRF models and after 
that the approach followed to estimate each models parameters. In Sect. 3 we dis-
cuss the fitting results, while Sect. 4 discusses the forecasting of the BRICS yield 
curves. Section 5 closes the paper with final remarks and outlooks to address further 
research.

2 � Materials and Models

2.1 � Data

The data set in use consists of daily spot rates for the government zero–coupon 
bonds (ZCB) of Brazil, Russia, India, China and South Africa, i.e. the so–called 
BRICS. We examined maturities in the range from 3 months (i.e. 0.25 of the year) to 
30 years. The data were collected from Thomson Reuters Datastream (TRD) and the 
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Central Bank of the Russian Federation (CBR). The observation period is not homo-
geneous for the examined countries; starting points are 09/2011 for Brazil, 01/2003 
for Russia, 02/2012 for India, 01/2005 for China and 02/2011 for South Africa; on 
the contrary, the ending period, 09/2022, is common to all markets. As a conse-
quence, the sample period ranges between a minimum of 10 and a maximum of 19 
years, depending on the examined market, for an overall amount of 2557 observa-
tions for Brazil, 4995 for Russia, 2631 for India, 4234 for China and 2908 for South 
Africa. We examined daily data to ensure richer market information, which can be 
beneficial for predicting short/medium–term bonds and provide market players with 
valuable insights for bond trading strategies or portfolio risk management. Moreo-
ver, focusing on daily rates provides a more detailed idea of the term structure trends 
and dynamics, which could be helpful for an extensive market analysis from a his-
torical–economic perspective.

In Tables 7, 8, 9, 10 and 11 in Appendix A, we present the main descriptive sta-
tistics of each markets dataset. For each maturity the tables report the Mean, the 
Standard Deviation (SD), the Minimum (Min), the Maximum (Max) the Skewness, 
the Kurtosis and Autocorrelation coefficients values. The results indicate the pres-
ence of some common stylized facts in all the considered markets: the average yield 
curves have an upward sloping trend, long rates are less volatile than shorter ones, 
and strong persistence is observed across short, medium and long–term rates. Addi-
tionally, the data show that kurtosis of long–term rates is higher than that of short 
rates indicating a higher probability of outliers.

The time span was chosen to include critical situations such as global shocks and 
events like the Subprime Mortgage crisis of 2007–2009 and the consequent Great 
Recession, the 2015–2016 Chinese stock market crisis as well as the oil and pan-
demic turmoil of 2020 and the more recent geopolitical crisis of 2022 induced by 
the conflict in Ukraine. Those events had a significant impact on BRICS securities 
market and caused extreme dynamics in the yield curve behavior as it is evident 
from Fig. 1 where we plot the term structures 3D surface for each market obtained 
varying both the time (on x–axis) and the maturity (on the y–axis). The Euro Zone 
(EU) term structure surface is also shown for benchmarking purposes. Given the 
same historical time frame and market events, it can be noted that the EU surface is 
overall flatter and less volatile.

Furthermore, the 3D surface plot makes possible to highlight all the yield curve 
shapes occurring in the period, that is almost all typical patterns: the normal trend, 
upward sloping and concave, indicating a quite stable economic outlook; the flat 
behavior, with short–term rates similar to medium and long–term ones, indicating 
a possible slowdown of the economic system; the inverted curve, with short–term 
rates higher than long–term ones, usually interpreted as a signal for recession; and 
the S–shaped curve characterized by sudden and marked multiple changes in the 
level, slope and curvature, indicating markets’ uncertainty about economic condi-
tions, inflation, or monetary policy.

Examining, for instance, the Russian bond market shown in Fig.  1, it is possi-
ble to observe the absence of structural changes and shocks from mid–2003 up to 
early 2008, as well as from 2010 to 2014 and, more recently, from 2016 till 2020, 
with average yield values at different maturities in the range 4.88–8.44% and curve 
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shapes mostly upward or flat. However, these conditions are broken by unstable 
periods characterized by greater volatility and the presence of relevant jumps for all 
maturities, as it can be also seen in Fig. 2a.

The plot shows three slices of the Russian yield surface of Fig. 1, i.e. three time 
series extracted at the maturities 1, 3 and 10 years. In all the three cases it is possible 
to highlight instability patterns that can be indicative of the presence of structural 
breaks. To statistically validate the presence of these breaks and determine their 
number as well as the most probable time the break points occurred, we run the 
sequential Bai and Perron (2003) Test for multiple structural breaks summarizing 
the obtained results in Table 1. In Panel A of Table 1 we reported the supremum F 

Fig. 1   From top to bottom in clockwise sense, the yield curve surface for Brazil, Russia, India, China, 
South Africa and Euro Zone. Time is represented on the x–axis, while the tenor (expressed in fractions 
or multiples of the year) is on the y–axis and the yield on the z–axis
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Statistic (supF) results of the performed sequential testing of H
0
∶ b breaks versus 

H
1
∶ b + 1 breaks applying the approach outlined by Bai (1997) and Bai and Per-

ron (1998, 2003). In Panel B we provided the number of break points, dates and the 
associated confidence intervals.

The test identified four break dates at the 95% significance level. For the purpose 
of our analysis we considered the three most relevant dates, i.e. the 1st, the 3rd and 
the 4th, as the ones associated to the most volatile periods. The first break point 
is estimated to the end of July 2008 and it roughly coincides to the events of the 
period August 2008–May 2010 which are a kind of follow–up of the recession due 
to the Subprime crisis, where a growth of approximately 11% on short–term rates 
and 7–9% for longer maturities took place.

The other two breaks we examined relate to two unstable situations occurred in 
the period April 2014–July 2015 and, more recently, from May 2021 to June 2022, 
with rates increments in the range 7–12% and 4–8% respectively across all maturi-
ties. This spiky behavior sinks its roots in both the 2014 and 2022 crisis which 

Fig. 2   Plot of the daily rates setting the maturity to 1, 3, and 10 years (a) and yield curve shapes (b) 
extracted from the Russian term structure 3D surface. Time is represented on the x–axis, while the tenor 
(expressed in fractions or multiples of the year) is on the y–axis and the yield on the z–axis

Table 1   Panel A shows the results of the Hypothesis Test for a different number of break points (b).

The ∗ symbol indicates the rejection of the null hypothesis H
0
 at 5% significance level. Panel B reports 

the estimated structural break dates along with their 95% confidence interval (CI)

Panel A. Panel B.

Null Hypothesis ( H
0
) supF Statistic Break points Date 95% CI

H
0
∶ b = 0 821.62

∗ 1st 2008–07–30 2008:05 2008:08
H

0
∶ b = 1 1206.24

∗ 2nd 2011–08–25 2011:04 2011:08
H

0
∶ b = 2 1304.29

∗ 3rd 2014–03–04 2013:11 2014:04
H

0
∶ b = 3 673.66

∗ 4th 2021–02–09 2021:01 2021:03
H

0
∶ b = 4 0.00
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opposed the Russian Federation and the Western countries and brought to economic 
and trade sanctions, combined to the weakening of the Russian National currency. 
In both the occasions, the Central Bank of the Russian Federation increased inter-
est rates and adopted policies like inflation targeting and the floating exchange 
rate regime to support the banking sector and the national currency against exter-
nal shocks. Such periods of political and economic tension led, as a consequence, 
to extreme yield curves behaviour. This is evident from Fig. 2b. Here we illustrate 
yield curves at various times highlighting in red the flat and the inverted behavior 
that occurred in correspondence of the above described events.

Considering, ceteris paribus, the Euro Zone case illustrated in Figs. 1 and 3, it is 
possible to pinpoint that spot rates across the maturity spectrum are less volatile and 
that the level of spot rates is 3 to 10 times lower: peaks do not exceed the 5% thresh-
old or in some occasion are even negative. These facts indicate an overall higher 
resistance to exogenous shocks due to higher confidence of the markets and its par-
ticipants in the macro–economic and financial structure and stability of the EU.

In the light of all the above, it clearly emerges that economic and geopolitical cri-
ses exert significant pressure on bond markets of emerging countries which seem to 
be less "immune" to shocks than more developed economies. This, in turn, supports 
the rationale that it could be not appropriate to extend modeling methods with con-
stant terms, usually employed in stable markets, to more turbulent ones.

As financial turmoils are frequent events in emerging markets, we can reasonally 
extend to other markets in the sample the remarks discussed in the case of Russia.

2.2 � Models

The Nelson–Siegel model (3F–NS) is a parsimonious three–factor parametric model 
which has proved to capture a wide range of monotonic, humped and S–type yield 
curve shapes.

Let us consider a Zero–Coupon Bond (ZCB) and denote by y(t,  m) the observ-
able rate at time t = 1, 2,… , T , where T is the number of available observations, and 

Fig. 3   Euro Zone daily rates 
setting the maturity to 1, 3, and 
10 years
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maturity m ∈ M = (m
1
,m

2
,… ,mN)

� representing either a fraction or a multiple of the 
year, with N being the maximum number of examined maturities. Following Nelson 
and Siegel (1987), the interpolated spot value at time t can be represented via the para-
metric function:

where � = (�
0
, �

1
, �

2
)
� is the parameters vector whose components represent, respec-

tively, the impact of the constant long–term component ( �
0
 ) that moves the curve up 

or down; the contribution of the short–term component ( �
1
 ) controlling the curve 

slope, and the effect of the medium–term component ( �
2
 ), ruling out the magnitude 

and direction of the yield curve curvature. The model includes also a decay term � 
which controls the convergence speed of the exponential components and determines 
the position of the peak of the medium–term element, while �m ∼ N(0, �2

m
 ) is the 

normally distributed error term with cov(�r, �s) = 0 , for all r, s = m
1
,… ,mN , r ≠ s.

A proper calibration of � and � makes possible an effective replication of a wide 
variety of yield curve shapes. Parameters estimation is the result of a two–step proce-
dure, where grid search methods (Nelson & Siegel, 1987; Muthoni et al., 2015) identify 
the value of � that maximizes the medium–term component, varying the maturity. For 
each � the vector of parameters 𝜷 is then estimated through an OLS regression choosing 
in the end the values �∗ and 𝜷∗ associated to the highest coefficient of determination.

Later, De Rezende and Ferreira (2008) introduced a five–factor variant (5F–RF) 
aimed at increasing the flexibility of previous models with additional parameters and 
decay factors to capture a wider variety of trends. The 5F–RF model, in fact, extends 
(1) including additional short and medium–term components characterized by different 
decaying factors, to ensure a faster decaying rate and to increase the fitting ability of 
yield curve shapes in presence of multiple short–term maxima/minima:

where � = (�
0
, �

1
, �

2
, �

3
, �

4
)
� and � = (�

1
, �

2
)
� are the 5–dimension parameters vec-

tor and the decay terms vector, respectively. The estimation of both � and � is based 
on a two–step procedure that at first identifies the optimal decay parameters 𝜏

1
 , and 

𝜏
2
 in the space Ω of admissible values, by minimizing the Root Mean Square Error 

(RMSE):

(1)NS(t,m,�, �) = �
0
+ �

1

(
1 − e−�m

�m

)
+ �

2

(
1 − e−�m

�m
− e−�m

)
+ �m

(2)
RF(t,m,�, �) = �

0
+ �

1

(
1 − e−m∕�1

m∕�
1

)
+ �

2

(
1 − e−m∕�2

m∕�
2

)
+

+ �
3

(
1 − e−m∕�1

m∕�
1

− e−m∕�1

)
+ �

4

(
1 − e−m∕�2

m∕�
2

− e−m∕�2

)
+ �m

(3)𝝉 =

�
𝜏
1
, 𝜏

2

�
�

= arg min
(𝜏

1
, 𝜏

2
) ∈ Ω

⎧⎪⎨⎪⎩
1

N

N�
n=1

���� 1

T

T�
t=1

[y(t,mn) −
�RF(t,mn, 𝝉 , 𝜷 t)]

2

⎫⎪⎬⎪⎭
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where N is the overall number of examined maturities, and T is the number of avail-
able observations. Once obtained the optimal vector 𝝉 , the estimation of the param-
eters vector 𝜷  takes place by applying the OLS regression for each time t.

2.3 � Optimal Parameters Estimation

As seen in the previous section, the parameters � and � = (�
1
, �

2
)
� play a fundamen-

tal role in the 3F–NS and 5F–RF models respectively, because they drive the decay 
rate of the exponential components controlling the trend dynamics of the fitted yield 
curves. The choice of � and � generates a trade–off in the fitting accuracy at both the 
left and right–handed tails of the yield curve. In fact, small values of � (big values 
of �

1
, �

2
 ) lead to a slow decay of the curve, and hence assure a better fit at longer 

maturities, but the same is not true at short maturities, especially in presence of sud-
den and marked curvatures. Conversely, higher values of � (small values of �

1
, �

2
 ) 

result in a quick decay and hence a better fit at short maturities, with an accuracy 
loss in the long run.

Managing the decay parameters is therefore of paramount importance, as testified 
by the solutions suggested in the literature. A common approach consists in setting 
them to the value that maximises the curvature factor at the maturity m where humps 
or basins are empirically observed. For example, working on U.S. Treasury data, 
Diebold and Li (2006) and De Pooter (2007) set 𝜆̂ = 0.0609 ( m = 30 months), while 
Diebold et  al. (2006) assumed 𝜆̂ = 0.077 ( m = 23.3 months). Moreover, Muvingi 
and Kwinjo (2014) assumed 𝜆̂ = 0.25 ( m = 7 months) for the Bank of Zimbabwe 
certificates, while De Rezende and Ferreira (2008), based on ID–PRE Swap data of 
the Brazilian market, set 𝜏

1
 and 𝜏

2
 at the best of the estimated values according to (3). 

This latter approach simplifies the numerical optimization process as it linearizes 
the estimation process of the model with the use of the least–squares regression; in 
addition, it seems to reach a good compromise between the long and short–run accu-
racy issues. However assuming constant decay terms is in conflict with the evidence 
that the term structure of interest rates may show time changes of different intensity 
in terms of both slope and curvature as observed for all the BRICS (see Fig. 1): an a 
priori selection of either � or � can therefore lead to non–optimal estimations, weak-
ening the models fitting ability.

For the above reasons, we adopted a different approach, and we considered the 
decay components as time–varying parameters as well. We applied a two–step esti-
mation procedure to determine the proper values �∗(t) , �∗

1
(t) , �∗

2
(t) and 𝜷

∗

(t) such 
that the complete sets of parameters in both the three and five factor cases (herein 
after named 3F–DNS and 5F–DRF respectively) are at the best for each time t.

For the 3F–DNS model, the algorithm is organized into three steps: 

Step 1:	 For each market define the set M = {mk}k=1,…,N of maturities mk with N 
equal to the sets cardinality. In particular, m

1
= mL is the lower bound of M and 

corresponds to the first available maturity in the market, while the upper bound 
mU is the longest observed maturity. Values in M ranges between corresponding 
lower/upper values by proper step size Δ.
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Step 2:	 For each mk ∈ M with k = 1,… ,N , estimate at time t the value �∗
k
(t) that 

maximizes the curvature term component:

	 
 In this way, at each time t it is possible to associate the array 𝝀̂(t) = {�∗

k
(t)}k=1,…,N

.
Step 3:	 For each time t = 1,… , T  : 

i)	 use each component of the array 𝝀̂(t) found in Step 2 to estimate the param-
eters vector 𝜷(t) via the OLS regression. Clearly there are as many vectors of 
parameters as the number of 𝝀̂(t) components;

ii)	 choose the vector 𝜷
∗

(t) associated to the lowest Sum of Squared Residuals 
(SSR):

iii)	 repeat steps (i) – (ii) for each time t to get the time series of the parameter 
�∗(t).

For what it concerns the 5F–DRF model the estimation procedure is similar to 
that discussed for the 3F–DNS, although a bit more tricky, due to the presence of 
two decay factors ( �

1
 and �

2
 ) at each time instead that only one. In this case, the 

procedure works as follows: 

Step 1:	 For each market define the set Mj = {mj,k}k=1,…,Nj
 of maturities mj,k with 

j = 1, 2 and Nj equal to the sets cardinality; m
1,1

= m
1,L represents the lower bound 

of M
1
 and corresponds to the first available maturity of the market, while the 

upper bound m
1,U is, at the same time, the lower bound of M

2
 ( m

1,U = m
2,L ) and 

it is equal to the straddling maturity between the short and medium–term period. 
Finally, the upper bound of M

2
 ( m

2,U ) is the longest observed maturity. As above, 
values in M

1
 and M

2
 range between corresponding lower/upper values by proper 

step sizes Δ
1
 and Δ

2
.

Step 2:	 For each mj,k ∈ Mj with k = 1,… ,Nj and j = 1, 2 estimate the vectors 𝝉
1
(t) 

and 𝝉
2
(t) that maximize the curvature term components:

Step 3:	 For every t = 1,… , T  : 

i)	 for each component of 𝝉
1
 , vary the components of 𝝉

2
 to estimate by OLS 

regression different array sets 𝜷(t) choosing the one with the lowest Sum of 

1 − e−�(t)mk

�(t)mk

− e−�(t)mk , k = 1,… ,N

SSR(t) =

N∑
k=1

[y(t,mk) − D̂NS(t,mk, 𝜷(t), �
∗

k
(t)]2

1 − e−mj,k∕�j(t)

mj,k∕�j(t)
− e−mj,k∕�j(t), k = 1,… ,N
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Squared Residuals (SSR) computed as the squared difference between the 
observed and estimated rates: 

 Clearly there are as many sets of optimal parameters as the number of 𝝉
1
 

components;
ii)	 choose the optimal set of parameters 𝜷

∗

(t) associated to the lowest SSR.
iii)	 repeat steps (i) – (ii) for each time t to get the time series parameters of both 

�∗
1
(t) and �∗

2
(t).

3 � Discussion of the Fitting Results

The study was carried on using the routines of the R package DeRezende.Ferreira 
(Castello & Resta, 2019), developed by the authors and freely available at the Com-
prehensive R Archive Network (CRAN) repository.1

3.1 � Optimal vs. Constant Decay Factors

In this subsection we provide empirical evidence of the advantages deriving from 
the use of optimal time–varying decay parameters. In detail, we are going to cor-
roborate the assertion made in the introduction that is inserting constant terms in the 
models of the Nelson–Siegel family can lead to weaker performances on turbulent 
markets essentially due to lack of flexibility.

Table 2 for the 3F–DNS and Table 3 for the 5F–DRF compare for each country 
the Average Coefficient of Determination ( R2 ) obtained according to three distinct 
approaches: (i) employing the optimal values computed through our estimation pro-
cedure; (ii) using constant decay terms as suggested in Diebold and Li and in De 
Rezende and Ferreira for the three and five factor models, respectively; (iii) using 
constant parameters equal to the optimal decay parameters average values.

Analyzing the results it sticks out to eyes that the choice of optimal decay terms 
(second column in Tables 2 and 3) returns an increase in the degree of the fitting 
accuracy of both models for every BRICS country. In fact, if we consider the results 
for the 3F–DNS model in Table 2 the R2 values are on average 3.90% better than 
those obtained with constant � (the lowest increase is 1.22% for Brazil and the high-
est is 8.03% for China). Furthermore the results with our technique are also higher 
than those obtained using � average values: the appreciation of the R2 ranges from 
1.13% for China to 4.62% for South Africa.

Similar remarks hold also when we turn on Table 3 and we analyze the 5F–DRF 
model. In this case the average improvement with respect to keep �

1
 and �

2
 constant 

SSR(t) =

N∑
n=1

[y(t,mk) − D̂RF(t,mk, 𝜷(t), 𝝉(t))]
2

1  https://​cran.r-​proje​ct.​org/​web/​packa​ges/​DeRez​ende.​Ferre​ira/​index.​html.

https://cran.r-project.org/web/packages/DeRezende.Ferreira/index.html
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is 1.55%, with the minimum (+0.1%) for South Africa and the maximum (+4.50%) 
for Russia. In addition, when comparing the results in columns 2 and 4 we observe 
that time–varying parameters �

1
(t) and �

2
(t) make it possible to get higher R2 values 

with an average increase of +1.51%; the minimum increase (+0.1%) is associated to 
South Africa and the highest (+4.50%) is recorded for Russia.

To gain a better intuition of these results, Fig. 4a for the 3F–DNS and Fig. 5a for 
the 5F–DRF models respectively plot the most complex curve shapes observed for 
each countries bond market; the aim is to highlight the fitting abilities of the three 
and five factor models under different choices of the decay parameters. Furthermore, 
Figs. 4b and 5b compare the average MSE generated by each model according to the 
approaches (i) to (iii).

From the analysis of the plots it clearly turns out that time–variant � and � bring 
additional flexibility to the examined models. The fitting improves moving from 

Table 2   Comparison of the 
average R2 in the 3F–DNS 
model associated to the 
estimation of the optimal 
�∗(t) values (second column), 
constant � value (third column) 
and average value (fourth 
column)

When referring to the average � value, this latter is given within 
round brackets

R
2

Country Optimal 
�∗(t) values

Constant value 
� = 0.0609

Average value of �∗(t)

Brazil 0.990 0.978 0.978 ( � = 0.685)
Russia 0.991 0.947 0.956 ( � = 0.505)
India 0.974 0.954 0.942 ( � = 0.462)
China 0.982 0.909 0.971 ( � = 0.219)
South Africa 0.996 0.961 0.952 ( � = 0.254)

Table 3   Comparison of the average R2 for the 5F–DRF model using optimal �∗
1
(t) , �∗

2
(t) values (second 

column), constant values (third column) and average values (fourth column)

Average values of �
1
 and �

2
 are given within brackets

R
2

Country Optimal �∗
1
(t) and 

�∗
2
(t) values

Constant values Average values of �∗
1
(t) and �∗

2
(t)

Brazil 0.999 0.978

(�
1
= 1.115 �

2
= 4.182)

0.978

(�
1
= 0.775 �

2
= 3.561)

Russia 0.999 0.956

(�
1
= 0.976 �

2
= 13.941)

0.956

(�
1
= 1.073 �

2
= 6.022)

India 0.997 0.989

(�
1
= 1.394 �

2
= 5.855)

0.991

(�
1
= 1.841 �

2
= 10.338)

China 0.998 0.996

(�
1
= 3.067 �

2
= 14.777)

0.996

(�
1
= 2.620 �

2
= 11.799)

South Africa 0.999 0.998

(�
1
= 1.812 �

2
= 14.220)

0.998

(�
1
= 2.416 �

2
= 9.220)
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Fig. 4   Observable and fitted yield curves a with the 3F-DNS model using different � values in some 
sample days indicated within round brackets. Black line is associated to the observed yield curve (YC) 
while red, blue and green are associated to the fitting with optimal time–variant, constant and averaged � 
respectively. In b we provide the MSE curve generated by the three estimation approaches
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Fig. 5   Observable and fitted yield curves a with different �
1
 and �

2
 values in the 5F–DRF case in some 

sample days indicated within round brackets. Black line is associated to the observed yield curve (YC) 
while red, blue and green are associated to the fitting with optimal time–variant, constant and averaged 
parameters respectively. In b we plot the MSE curve generated by the three estimation approaches
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constant (blue) to average (green) and time–variant (red) parameters: the red–colored 
line in fact, is almost always overlapping to the black one representing the observed 
yield curve. On the contrary, constant � and � values make harder the fitting espe-
cially with much cumbersome curves like those of the BRICS markets. Similar 
conclusions can be drawn by looking at the plots reporting the behavior associated 
to the MSE curves generated by the three estimation approaches: lower values are 
always associated to the estimations obtained with time–variant � and �.

We can therefore preliminary assert that our framework assures a better in–sam-
ple fit as it endows the parametric models with the necessary modeling power to 
cope with the challenging dynamics of emerging countries yield curves.

3.2 � In–Sample Fitting Performance Analysis

The results of the comparison between the three and five factor models are firstly 
presented in terms of average fitted spot rates per maturity, plotted in Fig. 6 for each 
country and model.

Overall, the 3F–DNS (blue) and 5F–DRF (red) estimated curves are almost per-
fectly matching to the observed (black) ones. The 3F–DNS model, however, exhib-
its some overestimation issues in correspondence of the medium–term maturities as 
can be seen in the Russian and Chinese cases with the estimated curve lying slightly 
above the observed one, and underestimation in the long term which are particularly 
evident in the Indian, Chinese and South African markets with the blue curve going 
under the observed one; on the contrary when using the 5F–DRF model a slight over 

Fig. 6   Comparison of average observable yield curves (black) with average yield estimates obtained with 
the 3F-DNS (blue) and 5F-DRF (red) models
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(under)–estimation is present in the middle (final) section of the curve only in the 
case of the Indian market.

We have also calculated the Average Squared Error, given as the difference 
between the observed and fitted average yield curve values. Both models performed 
very well: error values span from a minimum of 7.01 × 10

−5 (Brazil) to a maxi-
mum of 1.02 × 10

−3 (South Africa) for the 3F–DNS model, and from a minimum of 
2.15 × 10

−7 (Russia) to a maximum of 6.80 × 10
−5 (India) for the 5F–DRF model.

Furthermore, we analyzed the models fitting ability using some well–known 
goodness of fit indicators: the Coefficient of Determination ( R2 ), the Mean Square 
Error (MSE) and the Root Mean Square Error (RMSE). The R2 was obtained as the 
result of the parameters estimation process via the Ordinary Least–Squares (OLS) 
method and was computed for each period t. Using the residuals generated by the 
OLS we then computed the MSE and RMSE metrics for each yield curve as well, 
hence obtaining the related time series which are plotted in Appendix 8. The main 
statistics of the three metrics are shown in Table  4. Here we reported the Mean, 
the Standard Deviation, the Minimum and the Maximum values for each indicator, 

Table 4   Comparison of R2 , MSE and RMSE for the 3F-DNS and 5F-DRF models

For each model and country Mean, Standard Deviation (SD), Minimum (Min) and Maximum (Max) 
value of the metrics are reported

R
2 MSE RMSE

3F-DNS 5F-DRF 3F-DNS 5F-DRF 3F-DNS 5F-DRF

Brazil Mean 0.990 0.999 1.436 × 10
−3

1.449 × 10
−5 2.881 × 10

−2
2.962 × 10

−3

SD 0.050 0.001 2.695 × 10
−3

6.267 × 10
−5 2.462 × 10

−2
2.391 × 10

−3

Min 0.147 0.975 1.162 × 10
−6 1.452 × 10

−8
1.078 × 10

−3
1.205 × 10

−4

Max 0.999 1 4.252 × 10
−2

2.851 × 10
−3

2.062 × 10
−1

5.340 × 10
−2

Russia Mean 0.991 0.999 2.325 × 10
−3

6.627 × 10
−5 3.385 × 10

−2
6.026 × 10

−3

SD 0.039 0.002 6.933 × 10
−3

1.589 × 10
−4

3.434 × 10
−2

5.475 × 10
−3

Min 0.263 0.935 1.934 × 10
−6 4.528 × 10

−7
1.391 × 10

−3
6.729 × 10

−4

Max 0.999 1 1.334 × 10
−1

2.774 × 10
−3

3.652 × 10
−1

5.267 × 10
−2

India Mean 0.974 0.997 2.635 × 10
−3

3.314 × 10
−4

4.427 × 10
−2

1.465 × 10
−2

SD 0.047 0.009 3.468 × 10
−3

5.555 × 10
−4

2.598 × 10
−2

1.081 × 10
−2

Min 0.298 0.717 9.405 × 10
−6 5.369 × 10

−7
3.067 × 10

−3
7.327 × 10

−4

Max 0.999 1 4.473 × 10
−2

8.669 × 10
−3

2.115 × 10
−1

9.311 × 10
−2

China Mean 0.982 0.998 4.156 × 10
−3

6.508 × 10
−4

5.174 × 10
−2

1.358 × 10
−2

SD 0.032 0.008 7.873 × 10
−3

2.862 × 10
−3

3.846 × 10
−2

2.160 × 10
−2

Min 0.220 0.793 6.571 × 10
−6 4.523 × 10

−8
2.563 × 10

−3
2.127 × 10

−4

Max 0.999 1 1.406 × 10
−1

6.357 × 10
−2

3.749 × 10
−1

2.521 × 10
−1

South Africa Mean 0.996 0.999 1.500 × 10
−2

1.922 × 10
−4

8.829 × 10
−2

9.869 × 10
−3

SD 0.005 0.001 5.351 × 10
−2

1.530 × 10
−3

8.492 × 10
−2

9.740 × 10
−3

Min 0.928 0.949 2.772 × 10
−6 2.461 × 10

−7
1.665 × 10

−3
4.961 × 10

−4

Max 0.999 1 1.182 6.128 × 10
−2 1.087 2.475 × 10

−1
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model and country. Additionally, in order to give a more granular view of the mod-
els performances, we determined the average MSE and RMSE generated by the 
3F–DNS and 5F–DRF models at each maturity for every country and we summa-
rized the results in Table 5.

A first look at Table 4 reveals that (I) both the competing models performed well: 
they generated, on average, low error values, thus ensuring over the 97.4% and 99.7% 
of modeling accuracy for the 3F–DNS and 5F–DRF, respectively; and (II) the 5F–DRF 
achieved, on average, the best approximation results.

Nevertheless, Table 5 and Fig. 8 provide a more detailed insight into the models’ fit-
ting ability and highlight the differences in approximation accuracy among the models. 
In this context, looking at Fig. 8, it can be noted that both the 3F–DNS and 5F–DRF 
provided MSE (RMSE) values of very small magnitude with highest spikes in the 
range [0.04, 1.18] ([0.02, 1.08]); furthermore, with regard to the MSE (RMSE) metrics 
summarized in Table 5 it can be highlighted that the range of variation of the worst out-
comes lies between [ 10−3,10−2 ] ([10−2,10−1]). These results lead to the conclusion that 
both models were able to preserve the yield curve shapes, avoiding unreasonable under/
over estimation issues, hence confirming the capability to fit the wide variety of shapes 
exhibited by the BRICS yield curves under various market statuses.

However, deepening the analysis it can be pointed out that the 3F–DNS model pre-
sents larger error values with respect to the 5F–DRF in all the examined countries. 
Consider for instance the MSE and RMSE metrics time series of Fig. 8: it is possible 
to notice that the 3F–DNS produced higher error peaks along the whole data sample, 
especially during turbulent periods. This is probably due to the well–known difficulties 
of the 3F–DNS model (Wahlstrøm et al., 2021) to fit more dynamic yield curve behav-
ior, i.e. twisted and/or humped shapes, induced by the models lower flexibility.

With regard to the five–factor model, results strongly indicate that the enhanced 
models flexibility improves the curve adjustment in all the considered markets as 
well as also during higher market volatility. As depicted in Tables 4 and 5, in fact, 
the 5F–DRF model has superior performances not only in the time domain, but also 
in the maturity domain. In detail, the data show that the model generated the low-
est MSE and RMSE values, achieving a significant improvement over the 3F–DNS 
model as well: in fact, based on Table 4, for each country we can observe a reduc-
tion of the MSE ranging between a minimum of 84.34% and a maximum of 98.99% 
for China and Brazil, respectively; if we consider the average results for each coun-
try and maturity (see Table 5) we detect a reduction of the MSE by a factor of 10 to 
1000.

In the light of the above outcomes it is possible to state that both models with 
time–varying parameters are adequate tools for yield curve modeling when applied 
to developing countries whose bond market has more complex dynamics, especially 
during market turmoil. However, the 5F–DRF performs better since it benefits of 
improved flexibility due to both time–variant decay parameters and additional slope 
and curvature terms.
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4 � Forecasting the BRICS Term Structure

4.1 � The Models

In addition to in–sample fitting, a term structure model should be also able to ensure 
effective out–of–sample predictions of the yield curve. The latter is made possible 
by the existing equivalence between forecasting the yield curve and forecasting the 
models parameters as stated in Diebold and Li.

With this in mind, instead of directly predicting spot rates, we forecasted the 
building blocks of the yield curve, that is the parameters ( 𝜷  ) and the decay terms ( ̂𝜆 , 
𝝉 ) time series. In this case the novelty of our approach relies on the techniques used 
to carry out the task, that is: the Univariate Autoregressive AR(1) model, the Trigo-
nometric seasonal Box–Cox Transformation with ARMA residuals Trend and Sea-
sonal components (TBATS), and a combination of Autoregressive Integrated Mov-
ing Average and Nonlinear Autoregressive Neural Network (ARIMA–NARNN). We 
then used the predicted outcomes to calculate spot rates at the time t + h and matu-
rity m ∈ M = (m

1
,m

2
,… ,mN)

�:

for the three factor model, and

for the five factor model.
When using the AR(1) process to predict the parameters in (4) and (5) we have:

where xk,t+h(xk,t) is the variable to model, i.e. either � , � or �
1
 , �

2
 , while �

0
 is the 

coefficient of the zero degree term; �
1
 is the coefficient of the autoregressive term 

and �t is a white noise error term with E(�k,t) = 0 and Var(�k,t) = �2

k
.

In a similar fashion, when using the TBATS, we have:

(4)

ŷDNS(t + h|t) = 𝛽
0,t+h|t + 𝛽

1,t+h|t

(
1 − e−𝜆̂t+h|t m

𝜆̂t+h|t m

)

+ 𝛽
2,t+h|t

(
1 − e−𝜆̂t+h|t m

𝜆̂t+h|t m
− e−𝜆̂t+h|t m

)
,

(5)

ŷDRF(t + h|t) = 𝛽
0,t+h|t + 𝛽

1,t+h|t
(
1 − e−m∕𝜏1,t+h|t

m∕𝜏
1,t+h|t

)
+ 𝛽

2,t+h|t
(
1 − e−m∕𝜏2,t+h|t

m∕𝜏
2,t+h|t

)

+ 𝛽
3,t+h|t

(
1 − e−m∕𝜏1,t+h|t

m∕𝜏
1,t+h|t

− e−m∕𝜏1,t+h|t
)

+ 𝛽
4,t+h|t

(
1 − e−m∕𝜏2,t+h|t

m∕𝜏
1,t+h|t

− e−m∕𝜏2,t+h|t
)
,

(6)xk,t+h = �
0
+ �

1
xk,t + �k,t

(7)x
(�)
k,t+h

= lt + �bt +

T∑
j=1

s
(i)

t+h−�j
+ dt+h
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where x(�)
k,t+h

 is the Box–Cox transformation of the observations xk,t+h with the 
Box–Cox parameter � ; lt and bt represent, respectively, the local level and the 
short–run trend at time t; � is the dampening parameter for the trend; s(i)

t+h
 is the ith 

seasonal component while �j is the seasonal period; and dt+h is the prediction error 
modeled as an ARMA(p,q) process.

Finally, the combination of the ARIMA(p,d,q) process and NAR–NN is aimed to 
provide more flexibility in forecasting the parameters. In fact, the ARIMA(p,d,q) is 
used to predict each models coefficient �k which is expressed as a linear function of 
both its past observations and past residual error terms (or random shocks):

with xk,t+h(xk,t) as above, �
0
 being the intercept, �j and �i the autoregressive and mov-

ing average coefficients respectively, p and q the lag order of the Autoregressive 
(AR) and Moving Average (MA) terms respectively, and �k,t+h a white noise process.

On the other hand, the NAR-NN is used to forecast the future values of the decay 
terms � and � according to the:

where m is the number of lagged input values xk,t+h−j ; �i,j is the connection weight 
between the input unit j and the closest hidden unit i; Λ represents the activation 
function; �k,i is the connection weight between the hidden unit i and the output unit 
k; while �i,0 and �k,0 are the bias used to optimize the working point of the neurons 
in the hidden and output units respectively; finally �k,t represents the error term.

Relatively to the ARIMA model, we followed the Box–Jenkins and Hynd-
man–Khandakar method to determine the most appropriate (p,d,q) specification. For 
what concerns the development of the NAR–NNs architecture (i.e. the time delays, 
number of nodes, hidden layers, activation functions etc.) we followed a trial and 
error approach due to the absence of specific rules.

4.2 � Methodology and Performance Evaluation

From a practical viewpoint, we adopted the static approach to implement forecast-
ing. Parameters and hence yield curves prediction was performed on a daily basis 
in the period June 2022 – September 2022 using the sliding window method. The 
out–of–sample prediction period covers the last three months of our dataset, for 
an overall number of 50 predicted days for each BRICS country. We collected the 
observed spot rates for the same period and used them to evaluate the forecasting 
performance of our approach. We selected a three month time–span as it includes 
different stable and spiky periods with yield curves exhibiting frequent temporary 
reversals. This enables us to validate the effectiveness and robustness of the pro-
posed methods under different market statuses.

(8)xk,t+h = �
0
+

p∑
j=1

�jxk,t+h−j +

q∑
i=1

�i�k,t+h−i + �k,t+h

(9)xk,t+h = �k,0 +

n∑
i=1

�k,i Λ

(
�i,0 +

m∑
j=1

�i,jxk,t+h−j

)
+ �k,t
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We chose a quite limited range of values close to the forecasting period on which 
the models are firstly calibrated and then used for one–step–ahead predictions. After 
each forecast the window is shifted and updated with a new observed value in order 
to predict the next one. The advantage of this approach consists in giving priority to 
the information content of the period close to that of forecasts since it is intended to 
deeply influence the events of the near future, thus incorporating the autocorrelation 
features of the series into the model. Moreover, this procedure allows to avoid the 
impact of noisy data which may result from the use of large data–sets, and thus con-
siderably reduce the volatility of predictions.

To investigate the predictive performance of the candidate models, we evalu-
ated the statistical accuracy of the forecasts with the Mean Square Forecasting Error 
(MSFE) and the Mean Absolute Percentage Error (MAPE) performance metrics:

where yt+h is the observed value in t + h and ŷt+h the related forecast.
Main results are summarized in Table 6 for each country and method. Further-

more, in Fig. 7 we compare the average observed yield curves to the average fore-
casted ones for each country, model and method.

Data in Table 6 can be interpreted in at least two ways. On the one hand, it is pos-
sible to detect the most effective forecasting method within each parametric model 
and market; on the other hand, for each market it is possible to determine which 
combination of parametric model/forecasting method delivered the overall best 
results.

Looking at the results of the MAPE indicator over the whole forecasting window 
we can clearly see the dominance of the 3F–DNS model, which produced overall the 
best performance delivering accurate predictions over the entire maturity spectrum 
and across all the countries, with an average accuracy of over 98%.

For what is concerning the 5F–DRF model, the presence of further slope and cur-
vature terms, so important to ensure higher in–sample fitting performances, didn’t 
assure any advantage to the models predictive power with respect to the 3F–DNS. 
Nevertheless, the 5F–DRF model can effectively replicate the average trends of the 
BRICS curves; moreover, the small error measures jointly with 95% level of predic-
tive precision makes the 5F–DRF an ideal alternative to the three factor model in 
every considered market despite the high variability of the parameters.

Going into details and considering the 3F–DNS model, the AR(1) process 
ensured the best result within all the countries achieving 98.65% of average fore-
casting accuracy; then comes TBATS with 98.28% and ARIMA–NARNN with 
96.47%. Moving to the 5F–DRF model, AR(1) and TBATS achieved the 94.71% 
and 90.16% predictive accuracy, respectively, while the best result was obtained 
with the ARIMA–NARNN combination with 95.10% precision. The latter result 

(10)MSFE =
1

n

n∑
j=1

(yt+h − ŷt+h)
2

(11)MAPE =
100

n

n∑
j=1

||||
yt+h − ŷt+h

yt+h

||||
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was attained due to the ability of the neural network to better handle the nonlinear 
behavior of the decay terms.

Turning our attention to the forecasting combinations and cross–checking 
the tabulated results, it is possible to highlight that the best predictions were 

Fig. 7   For each BRICS country (in column) the graph compares average observed yield curves to aver-
age forecasted ones with different techniques for the 3F-DNS and 5F-DRF models. For both models, the 
blue line is associated to the average forecasted curve obtained with the ARIMA–NARNN method, the 
red line with the AR(1) process, while the green one with the TBATS model. The black line represents 
the average observed curve
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systematically provided by the 3F–DNS–AR(1) combination in every considered 
country, with an overall average MAPE improvement of 24.52 % with respect to 
its direct competitors (3F–DNS–TBATS and 3F–DNS–ARIMA–NARNN), and of 
68.26 % with respect to the methods used within the 5F–DRF model.

Summarizing the results, it is possible to state that the proposed framework 
makes it possible to predict with high precision and reliability the challenging 
dynamics characterizing BRICS yield curves avoiding the need to resort to constant 
decay terms unlike most of similar research. Moreover, the comparison between the 
two models revealed the existence of a fitting–forecast trade–off: depending on the 
need, it is possible to opt for the 3F–DNS which ensures more accurate yield curves 
predictions, but slightly less precise in–sample–fitting; or rely on the 5F–DRF which 
ensures better fitting abilities but less accurate spot rates predictions.

5 � Conclusion

In this paper we analyzed a methodology aimed at identifying optimal time–var-
ying parameters for the Three Factor Dynamic Nelson–Siegel (3F–DNS) and the 
Five Factor Dynamic De Rezende–Ferreira (5F–DRF) models. We tested the mod-
eling and predictive abilities of the proposed framework outside the comfort zone 
of western economies, that is we focused our attention on BRICS countries. Within 
the estimation phase we highlighted the advantages of using optimal time–varying 
decay terms over the constant alternatives. With regard to the predictive process, 
we moved within the Diebold–Li dynamic framework and employed AR(1), TBATS 
and a combination of ARIMA–NARNN as Local Data Generating Processes to pre-
dict models parameters, and hence yield curves, as an alternative approach to direct 
interest rates forecasting.

According to the in–sample fitting results, we first found that the use of time–var-
ying decay terms allowed to outperform the results obtained keeping � and � con-
stant or averaging them and ensure the desired flexibility to manage anomalies and 
extreme dynamics characterizing BRICS markets. Additionally, we showed that 
both models performed well in–sample as they can describe and replicate the main 
trends and shapes of BRICS yield curves. However, the 5F–DRF model with mul-
tiple decay parameters and additional slope and curvature factors assures improved 
fitting results. On the contrary the 3F–DNS model generates significantly larger 
errors due to its well known limitations in approximating the short and long term 
maturities as well as curves with more inflexion points.

Relatively to the models out–of sample performances, we obtained satisfying 
results with an average predictive accuracy of over 95%. Overall, the out–of–sample 
predictions of the 3F–DNS–AR(1) model turned out to be more accurate with lower 
errors in every market, so that we concluded that not necessarily a richer parametri-
zation ensures also better predictive abilities. The results obtained herein confirm 
the relevant predictive power of our approach also within emerging economies with-
out the need to resort to constant decay terms.

Overall, our research introduced an innovative approach to model yield curve 
dynamics that could potentially bring several benefits to market players and 
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policy–makers. The yield curve offers important insights on the future macroeco-
nomic environment as well as on investors expectations about future inflation, inter-
est rates and economic dynamics and plays a central role in the transmission of 
monetary policy and it is a determinant of the profitability of different market par-
ticipants. Our findings can therefore help central banks to more accurately analyze 
interest rates dynamics, trends and their response to changes in the macroeconomic 
policy, and plan more efficient monetary policy interventions (e.g. lower short–term 
interest rates in an attempt to stimulate economic activity). On the other hand, gov-
ernments can take advantage of an accurate modeling framework to manage interest 
rate risk, design and implement the necessary adjustments in the fiscal policy and 
public debt structure (e.g. conduct tax cuts or increase public spending, to stimulate 
the economy and counteract the effects of a potential recession).

Furthermore our study could be extended in different ways. First of all alternative 
estimation approaches (e.g. the Maximum Likelihood, Kalman Filter or Machine 
Learning methods) can be tested, thus avoiding the a priori selection of the decay 
terms. Eventually, a refined version of the models which integrates financial and 
macroeconomic factors (e.g. monetary policy, inflation, economic growth) can be 
considered for the BRICS bond market. Finally it would be interesting to test the 
proposed framework in different markets (e.g. commodity, derivatives, forex) or for 
different financial instruments (e.g. corporate bonds, credit default swaps). Actually 
all these topics represent a part of our ongoing research.

Appendix A

Table 7   Descriptive statistics for the Brazilian daily spot rates over the sample period 09/2011–09/2022

For each maturity the table reports the Mean, the Standard Deviation (SD), the Minimum (Min), the 
Maximum (Max) the Skewness and the Kurtosis values. The last three columns contain sample autocor-
relations at displacements of 1, 40 and 80 days

Maturity Mean SD Min Max Skewness Kurtosis �
1

�
40

�
80

0.5 8.990 3.785 1.924 15.508 −0.076 1.895 0.999 0.962 0.892
0.75 9.079 3.646 2.102 15.839 −0.098 1.942 0.999 0.962 0.895
1 9.178 3.505 2.346 16.071 −0.105 2.004 0.999 0.962 0.895
2 9.572 3.047 3.368 16.531 −0.071 2.276 0.999 0.955 0.885
3 9.904 2.739 4.268 16.627 −0.022 2.483 0.998 0.943 0.865
4 10.163 2.531 4.980 16.702 0.019 2.637 0.998 0.930 0.842
5 10.364 2.388 5.538 16.730 0.050 2.751 0.997 0.919 0.822
6 10.524 2.285 5.984 16.728 0.074 2.835 0.997 0.910 0.806
7 10.655 2.209 6.267 16.771 0.092 2.896 0.997 0.903 0.794
8 10.765 2.152 6.425 16.800 0.106 2.939 0.997 0.899 0.784
9 10.859 2.110 6.565 17.076 0.117 2.965 0.996 0.895 0.777
10 10.943 2.077 6.692 17.359 0.125 2.977 0.995 0.891 0.770
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Table 8   Descriptive statistics for the Russian daily spot rates over the sample period 01/2003–09/2022

For each maturity the table reports the Mean, the Standard Deviation (SD), the Minimum (Min), the 
Maximum (Max) the Skewness and the Kurtosis values. The last three columns contain sample autocor-
relations at displacements of 1, 40 and 80 days

Maturity Mean SD Min Max Skewness Kurtosis �
1

�
40

�
80

0.25 6.382 2.354 1.690 17.870 1.049 4.551 0.994 0.850 0.703
0.5 6.599 2.243 2.150 17.560 1.086 4.436 0.994 0.857 0.715
0.75 6.783 2.166 2.600 17.690 1.154 4.508 0.994 0.857 0.716
1 6.940 2.109 3.050 17.860 1.225 4.646 0.994 0.855 0.714
2 7.389 1.974 4.240 18.450 1.431 5.285 0.994 0.844 0.698
3 7.659 1.887 4.600 18.520 1.498 5.658 0.994 0.837 0.690
5 7.954 1.746 4.950 17.720 1.469 5.694 0.994 0.830 0.683
7 8.109 1.631 5.220 16.760 1.388 5.365 0.994 0.825 0.680
10 8.244 1.505 5.590 15.830 1.269 4.911 0.994 0.819 0.677
15 8.370 1.376 5.970 15.150 1.140 4.715 0.993 0.801 0.665
20 8.446 1.304 6.170 14.890 1.076 4.872 0.993 0.783 0.650
30 8.538 1.247 6.370 14.650 1.023 5.234 0.993 0.756 0.624

Table 9   Descriptive statistics for the Indian daily spot rates over the sample period 02/2012–09/2022

For each maturity the table reports the Mean, the Standard Deviation (SD), the Minimum (Min), the 
Maximum (Max) the Skewness and the Kurtosis values. The last three columns contain sample autocor-
relations at displacements of 1, 40 and 80 days

Maturity Mean SD Min Max Skewness Kurtosis �
1

�
40

�
80

0.25 6.489 1.915 2.833 12.002 −0.229 2.337 0.999 0.948 0.915
0.5 6.550 1.787 3.224 10.943 −0.371 2.210 0.999 0.959 0.925
0.75 6.611 1.698 3.381 10.425 −0.443 2.194 0.999 0.962 0.925
1 6.669 1.627 3.511 10.133 −0.482 2.192 0.999 0.962 0.922
2 6.887 1.417 3.988 9.695 −0.511 2.170 0.999 0.956 0.907
3 7.086 1.263 4.459 9.693 −0.442 2.116 0.999 0.948 0.891
4 7.260 1.143 4.853 9.766 −0.324 2.054 0.999 0.941 0.879
5 7.404 1.052 5.209 9.833 −0.190 2.010 0.999 0.936 0.867
6 7.517 0.982 5.521 9.862 −0.065 1.996 0.998 0.931 0.857
7 7.604 0.930 5.787 9.856 0.040 2.010 0.998 0.928 0.848
8 7.673 0.889 6.008 9.829 0.120 2.045 0.998 0.924 0.839
9 7.729 0.857 6.187 9.795 0.180 2.091 0.998 0.920 0.832
10 7.777 0.830 6.323 9.762 0.224 2.142 0.998 0.916 0.824
12 7.860 0.787 6.501 9.705 0.283 2.239 0.998 0.908 0.809
15 7.962 0.744 6.628 9.784 0.343 2.336 0.998 0.894 0.788
20 8.059 0.718 6.699 9.830 0.435 2.382 0.997 0.874 0.758
25 8.073 0.728 6.719 9.844 0.525 2.418 0.997 0.865 0.745
30 8.029 0.765 6.657 9.941 0.562 2.450 0.994 0.860 0.743
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Table 10   Descriptive statistics for the Chinese daily spot rates over the sample period 01/2005–09/2022

For each maturity the table reports the Mean, the Standard Deviation (SD), the Minimum (Min), the 
Maximum (Max) the Skewness and the Kurtosis values. The last three columns contain sample autocor-
relations at displacements of 1, 40 and 80 days

Maturity Mean SD Min Max Skewness Kurtosis �
1

�
40

�
80

1 2.509 0.735 0.859 4.221 −0.098 2.319 0.984 0.841 0.696
2 2.781 0.626 1.302 4.396 0.132 2.374 0.993 0.854 0.679
3 2.971 0.571 1.486 4.514 0.354 2.536 0.991 0.832 0.632
4 3.114 0.550 1.692 4.626 0.502 2.613 0.989 0.817 0.606
5 3.229 0.538 1.905 4.666 0.614 2.721 0.990 0.816 0.602
6 3.326 0.529 2.104 4.757 0.694 2.852 0.991 0.820 0.606
7 3.410 0.521 2.283 4.837 0.735 2.968 0.991 0.824 0.614
8 3.485 0.513 2.443 4.928 0.739 3.043 0.991 0.827 0.622
9 3.552 0.505 2.579 5.042 0.714 3.076 0.991 0.828 0.629
10 3.614 0.496 2.654 5.103 0.669 3.073 0.992 0.828 0.633
12 3.725 0.476 2.785 5.088 0.547 2.994 0.993 0.827 0.635
15 3.870 0.451 2.965 5.071 0.388 2.785 0.986 0.820 0.629
20 3.996 0.428 2.697 5.278 0.559 3.267 0.973 0.803 0.612
30 4.061 0.556 2.021 5.575 0.039 2.997 0.935 0.733 0.591

Table 11   Descriptive statistics for the South African daily spot rates over the sample period 02/2011–
09/2022

For each maturity the table reports the Mean, the Standard Deviation (SD), the Minimum (Min), the 
Maximum (Max) the Skewness and the Kurtosis values. The last three columns contain sample autocor-
relations at displacements of 1, 40 and 80 days

Maturity Mean SD Min Max Skewness Kurtosis �
1

�
40

�
80

0.25 5.957 1.261 2.844 7.995 −0.588 2.362 0.993 0.872 0.768
1 6.233 1.138 3.522 8.441 −0.474 2.495 0.997 0.906 0.815
2 6.640 1.059 3.946 8.996 −0.365 2.450 0.998 0.900 0.802
3 7.058 0.984 4.583 9.373 −0.330 2.418 0.997 0.866 0.754
4 7.461 0.917 5.302 9.905 −0.283 2.555 0.995 0.821 0.694
5 7.838 0.876 5.494 10.542 −0.203 3.083 0.994 0.781 0.644
6 8.188 0.872 5.688 11.511 −0.117 3.814 0.994 0.761 0.627
7 8.509 0.907 5.875 12.349 −0.032 4.154 0.994 0.768 0.647
8 8.803 0.971 6.058 13.040 0.069 3.940 0.995 0.791 0.687
9 9.072 1.052 6.244 13.617 0.189 3.495 0.995 0.820 0.730
10 9.318 1.139 6.437 14.087 0.315 3.104 0.996 0.846 0.767
12 9.746 1.301 6.849 14.768 0.554 2.765 0.996 0.884 0.818
15 10.248 1.484 7.470 15.386 0.849 2.994 0.997 0.913 0.851
20 10.775 1.640 8.230 16.451 1.214 4.004 0.997 0.923 0.851
25 11.021 1.702 8.277 17.837 1.556 5.461 0.997 0.923 0.851
30 11.106 1.729 8.433 19.067 1.956 7.495 0.992 0.885 0.775
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