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Abstract: The planning of efficient policies based on forecasting electricity demand is essential to
guarantee the continuity of energy supply for consumers. Some techniques for forecasting electricity
demand have used specific procedures to define input variables, which can be particular to each case
study. However, the definition of independent and casual variables is still an issue to be explored.
There is a lack of models that could help the selection of independent variables, based on correlate
criteria and level of importance integrated with artificial networks, which could directly impact
the forecasting quality. This work presents a model that integrates a multi-criteria approach which
provides the selection of relevant independent variables and artificial neural networks to forecast
the electricity demand in countries. It provides to consider the particularities of each application. To
demonstrate the applicability of the model a time series of electricity consumption from a southern
region of Brazil was used. The dependent inputs used by the neural networks were selected using a
traditional method called Wrapper. As a result of this application, with the multi-criteria ELECTRE I
method was possible to recognize temperature and average evaporation as explanatory variables.
When the variables selected by the multi-criteria approach were included in the predictive models,
were observed more consistent results together with artificial neural networks, better than the
traditional linear models. The Radial Basis Function Networks and Extreme Learning Machines
stood out as potential techniques to be used integrated with a multi-criteria method to better perform
the forecasting.

Keywords: electricity demand; multi-criteria forecasting model; dependent variable; artificial neural
networks; forecasting models

1. Introduction

The electricity demand can be predicted by various mathematical and statistical
models; however, choosing a model that provides coherent results is a critical activity in
this process [1]. Several external factors can influence electricity consumption, and it needs
to be considered as inputs in these models [1]. The use of independent factors can help
to reduce errors, and, on the other hand, the forecasting process becomes more complex
because it requires a more detailed study of relationships between the variables, which
involves recognition of criteria and level of importance [2] since these criteria are different
in each case [1,2].
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To understand these relationships, different meteorological, socioeconomic, and envi-
ronmental variables were included in a considerable number of studies related to forecast-
ing electricity demand. However, the literature shows that the selection of the independent
variables is mainly performed based on researchers’ knowledge, and it does not guarantee
that it is the best procedure to solve forecasting problems [2–7]. Thus, the development
of an integrated model for selecting independent variables and the importance of them
together with artificial neural networks on electricity demand is still a relevant gap.

Countries are faced with challenges in the energy sector, and to remain the system
in operation it is necessary to improve decisions already taken and incorporate future
targets, such as expanding the energy matrix, guaranteeing energy security, and meeting
sustainable development objectives [8].

In this context, the study of forecasting models that integrate a multi-criteria analysis
creates the opportunity to incorporate other criteria not considered by the existing models.
This step involves economic, social, and environmental dimensions, as well as the efficiency
of energy production processes.

Electricity consumption is growing on a global scale. According to the Central In-
telligence Agency [9], developed countries consume 43.26% of the total global electricity
consumption. Much of this consumption occurs in the residential, commercial, and public
sectors, and the industrial sector is the biggest consumer [10].

Electricity cannot be stored, and imbalances between supply and demand must be
efficiently modeled to avoid costs that are normally transferred to users [11]. Both excess
and reduction in electricity production are harmful to a country’s economy [12]. In this
case, decisions need to be economically viable, and it is essential to recognize the behavior
and impact of all involved variables, which makes it possible to identify present and future
trends to allocate investments in the electricity sector correctly.

The present work presents a model to improve the forecasting of electricity demand
with a selection of external factors that influence the demand by a multi-criteria approach,
forecasts of electricity demand by linear models and Artificial Neural Networks (ANNs),
data collected from a real case, and comparisons between the performance of ANNs and
linear models.

2. Theoretical Foundations

Table 1 summarizes important studies that used some development to include inde-
pendent (causal) variables and the main problems related to the theme.

A lot of studies have been using approaches with independent variables included
in some moments of the forecast process. However, these inclusions are accomplished
following the decision-makers’ knowledge, without a structured process to guarantee an
efficient selection of independent variables.

In some cases, the independent variables are used without relevance, as highlighted
by Sadownik and Barbosa [3], in which the GDP was selected by the author but was not rel-
evant. On the other hand, Darbellay and Slama [4] related that in the multivariate forecast,
temperature added as an external variable allowed more information to be integrated into
the ANNs and showed improvement over linear models.

Pao [2] found that population and national income are significant variables that directly
influence the forecasts. In the study of Adam et al. [13], the input variables were selected by
a non-homogeneous Gompertz diffusion process (NHGDP) based on a Genetic Algorithm
(GA) approach.

Different meteorological variables were used by Hernández et al. [14] to forecast
energy demand. The authors performed an autocorrelation and observed that temperature,
relative humidity, and solar radiation presented a correlation with electricity demand. Cui
et al. [5], studied the relationship between electricity load and daily temperature using
an improved ARIMAX forecast model, and the relative error was smaller than using AR,
ARMA.
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Table 1. Articles related to the research topic.

Authors (Year)/[Ref] Country
Case Study Methodology Used Independent Variables Used

Sadownik and Barbosa (1999) [3] Brazil Nonlinear dynamic model and
econometric model Gross Domestic Product (GDP)

Darbellay and Slama (2000) [4] Czechoslovakia ANNs and the autoregressive integrated
moving average model (ARIMA) Temperature

Pao (2006) [2] Taiwan

ANNS, multiple log-linear regression
(LNREG), response surface regression
(RSREG), and Autoregressive Moving

Average

National income (NI), population,
GDP, and consumer price index (CPI)

Adam et al. (2011) [13] Mauritius
Islands

ANNs and non-homogeneous
Gompertz diffusion process (NHGDP)

based on a Genetic Algorithm (GA)

GDP, temperature, hours of sunshine,
and humidity

Hernández et al. (2013) [14] Spain Multilayer perceptron (MLP)

Rainfall, temperature, average wind
speed, average wind direction,

relative humidity, pressure, and
solar radiation

Cui and Peng, (2015) [5] China
Autoregressive model (AR), ARMA,

ARIMAX, and Sigmoid Function ANN
models (MLP)

Temperature

Vu et al. (2015) [15] Australia Multiple regression model

Population, GDP, CPI, temperature,
wind speed, humidity, evaporation,
rainfall, rainy days, solar exposure,

and sunshine hours

Torrini et al., (2016) [6] Brazil Fuzzy logic methodology, Holt model
with Two Parameters

Long-term
Population and GDP

Suganthi and Samuel (2016) [16] general Econometric models GDP, CPI, and population

Wang et al. (2016) [7] China

Artificial Bee Colony (ABC) algorithm
which combined with multivariate
linear regression (MLR), ANN, and

Quadratic Regression Model

GDP, fixed asset investment (FAI),
foreign direct investment (FDI),
population, urbanization level,

carbon emission

Mohammed, (2018) [17] Iraq Logarithmic linear regression model and
ANNs

Population, GDP, CPI, temperature,
and war affect

Wu et al., (2018) [1] China

Multivariable gray forecasting model
GMC (1, N) with fractional order

accumulation and the traditional gray
forecasting model

GDP, NI, population, industrial
output value, and FAI

Sahay et al. (2016) [18] Canada MLP Temperature, day of the week,
holiday indicator

Ahamad and Chen (2018) [19] USA
artificial neural network with nonlinear
autoregressive exogenous multivariable

Inputs (ANN-NAEMI)

Relative humidity, outdoor air
temperature, and global

solar radiation

Kim et al. (2019) [20] Korea LSTM temperature, humidity, season

Albuquerque et al. (2022) [21] Brazil Random Forest Dates, weather variables, price,
economic variables

Mehmood et al. (2022) [22] France, Turley, Pakistan A pool of 10 ML modes including
the MLP Energy generation, temperature

Raza et al. (2022) [23] Pakistan Energy modeling tool (LEAP) GDP (total and sector-wise),
population, household size

Rick and Berton (2022) [24] Brazil Convolutional neural network,
LSTM, Autoencoders Dates, distribution of energy data

Rao et al. (2023) [25] China Support Vector Regression SVR GDP, population, industrial output,
energy generation, among others

Vu et al. [15] used climatic and socioeconomic variables selected via statistical analysis.
The monthly demand forecast was closely matched with the real electricity demand. Torrini
et al. [6] addressed a fuzzy logic methodology approach to forecast long-term annual
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electricity demand using population and GDP additional value as variables. In Suganthi
and Samuel [16] econometric models were developed to predict Indian energy consumption.
The relationship between independent variables and energy consumption was verified
using statistical models.

According to Mohammed [17], the comparison with other studies revealed that the
selected influential factors have different impacts on the prediction for different countries.

Besides those investigations, recent studies have presented the importance of using
neural-based and machine learning (ML) models to predict electricity demand, considering
external variables. Traditional models such as MLP are addressed by Sahay et al. [18],
Ahamad and Chen [19], and Mehmood et al. [22]. The Random Forest and Support Vector
Machines are used by Albuquerque et al. [21] and Rao et al. [25], respectively. More complex
models, such as deep learning approaches, are addressed by Raza et al. [23]. Kim et al. [20]
and Rick and Berton [24] expose how crucial the nonlinear approaches are for solving
this task.

Thus, as possible to perceive as presented in this section, different meteorological,
socioeconomic, and environmental variables were included in most of the studies related
to forecasting electricity demand. However, the selection of these independent variables
was chosen by researchers and experts, which does not guarantee that this procedure is the
best option for solving variable selection problems. Even though the authors considered
their results satisfactory in some studies, they may have been improved by withdrawing
or obtaining information about the model. In fact, as suggested by Vu et al. [15], using a
few variables leads to a weak model, while increasing the number of variables leads to the
construction of more robust models. Thus, it is necessary to develop procedures to help in
the selection of the best set of inputs to increase de model’s prediction capability.

Although these studies selected a group of factors with a justification, they did not
necessarily include independent “causal” variables because the statistical tests cannot
explain whether the relations between them imply the “cause” of a change in demand
for electricity.

3. Methodology

The methodology comprised five phases, which are detailed in this section.

3.1. Phase 1—Selection of Variables

The main variables listed in Table 2 were considered independent variables from
different studies mentioned in Section 2.

Table 2. Independent variables were selected in the literature review.

Type of Variables Independent Variables Alternatives

Socioeconomic variables

National Income (NI) a1
Population a2

Gross Domestic Product (GDP) a3
Consumer Price Index (CPI) a4
Fixed Asset Investment (FAI) a5

Foreign Direct Investment (FDI) a6
Industrial output value a7

Urbanization level a8

Climate Variables

Temperature a9
Solar radiation a10

Relative humidity a11
Rainfall a12

Average wind direction a13
Average wind speed a14

Pressure a15
Evaporation a16
Rainy days a17

Environmental variable Carbon emission a18
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Thus, the independent variables were considered as alternatives to be included in the
multi-criteria selection process. These alternatives were filtered in this phase, based on the
application of the ELECTRE I method, which selects a core (“kernel”) of the alternatives
with a better compromise to the objective of the research. The next step was the definition
of the criteria (Table 3) corresponding to the main characteristics found before the execution
of the forecasting of demands. Still, in this phase, the decision-makers must perform a
criteria validation by comparing the suggested literature and/or indicating new relevant
criteria, if necessary.

Table 3. Criteria listed in the literature.

Parameters Criteria Features

Degree of complexity g1—Data availability Amount of information, numerical data, non-numerical data, and
numerical analysis

g2—Correlation with independent variable Correlation of electricity demand with independent variables

Consumption pattern
g3—Consumption pattern by sector Industrial, commercial, residential, rural, and other sectors
g4—Consumption pattern by region Geographic, economic, and social characteristics of the region
g5—Consumption pattern by calendar Holidays, weekends, special days

The criteria weights were defined in order to reflect the importance of each criterion. In
this research, the criteria weights were established by the Analytic Hierarchy Process (AHP)
method in a pairwise comparison carried out by two specialists on energy demand behavior.

The next stage of this phase was to choose the multi-criteria method for the selec-
tion process. This step aimed to select a single group of alternatives (Table 2) based on
the collected data regarding each alternative for each criterion. At this point, an over-
classification approach, based on the ELECTRE family (ÉLimination Et Choix Traduisant la
REalité-Elimination and Choice Translating Reality), more specifically ELECTRE I, was
chosen to perform the selection of the alternative (independent variables).

ELECTRE I method uses the concepts of outranking comparisons and the index of
concordance and discordance (agreement and disagreement). It can be defined by the
following concordance index [26]:

c(aSb) = ∑
{j:gj(a)≥gj(b)}

wj (1)

where
{

j : gj(a) ≥ gj(b)
}

is the set of indices for all the criteria belonging to the concordant
coalition with the outranking relation aSb).

The value of the concordance index must be greater than or equal to a given concordance
level, s, whose value generally falls within the range

[
0.5, 1−minj∈Iwj

]
, i.e., c(aSb) ≥ s.

The discordance index is measured based on a discordance level defined as follows:

d(aSb) = max
{j:gj(a)<gj(b)}

{
gj(b)− gj(a)

}
(2)

This level measures in some way the power of the discordant coalition, meaning that
if its value surpasses a given level, v, the assertion is no longer valid. Discordant coalition
exerts no power whenever d(aSb) ≤ v. Both concordance and discordance indices have to
be computed for every pair of actions (a, b) in the set A, where a 6= b.

3.2. Phase 2—Data Pre-Processing

It is consisted of a statistical and graphical time series analysis to identify the level,
trend, and seasonality. The presence of a trend can be verified by the Cox-Stuart test, while
the Friedman test can attest to seasonality. If the trend is confirmed, it is necessary to
perform one or more differentiations until the time series becomes stationary, following
Equation (3):

x′t = xt+1 − xt (3)
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where x′t is the difference between the current value of the series (xt+1) minus the previous
value (xt).

If a seasonal component is identified, a statistical process known as deseasonalization
is applied to the original data xt, according to Equation (4):

zt =
xt − µm

σm
(4)

where zt is the deseasonalized series, µm is the average and σm is the standard deviation for
each seasonal step m. After performing these initial phases, the demand forecasting stage
can be started in the next phases.

3.3. Phase 3—Predictive Models

This phase initially made predictions with linear models and Artificial Neural Net-
works (ANNs):

• Holt-Winters Exponential Smoothing (HW);
• Autoregressive model (AR);
• Autoregressive integrated moving average model (ARIMA);
• Multilayer perceptron (MLP);
• Radial Basis Function Networks (RBF);
• Extreme Learning Machines (ELM).

The mathematical formalisms of those models are detailed in recent and classical
references [27–30].

The endogenous time series corresponds to the energy demand, which is composed
of 186 samples, comprising the monthly period from January 2004 to June 2019. For this
research, the data were separated into three sets: (a) training (from January 2004 to De-
cember 2015, totaling 144 observations); (b) validation (from January 2016 to December
2017, totaling 24 observations); (c) test (from January 2018 to June 2019, totaling 18 observa-
tions). The number of data sets used was the same for cases where exogenous variables
were included in the forecasting process. Next, another essential step was to estimate the
parameters required by each predictive model.

Regarding the HW model, the parameters, such as the smoothing constants α, β, and
γ, needed to be determined. According to Montgomery et al. [31], no exact method for
defining these values exists. Therefore, for this research, empirical parametric tests were
performed until values that exhibited the best adjustments for the forecasts were found.
The AR and ARIMA models had their coefficients (p) and (q) determined from the partial
autocorrelation graph (PACF) between the data series and its lags.

The most relevant lags used in the inputs to address neural networks, MLP, RBF, and
ELM, were determined using the Wrapper method, with consideration of up to 6 lags.
Regarding the architectures of the neural models, they were all built with one intermediate
layer. A grid search starting at 5, with increments of 5 until 200 neurons, was performed to
determine the number of neurons in that layer.

The MLP was trained using the backpropagation algorithm [30]. The non-supervised
step of the RBF was adjusted using the k-means algorithm, and the supervised one was the
backpropagation [27,30]. The stopping criterion addressed for both models was 2000 itera-
tions. The ELM was trained using the Moore-Penrose Inverse Operation [27], a closed-form
solution. In all cases, the activation function addressed was the hyperbolic tangent [30].

Having the configurations defined for all models, they were executed 30 times, and
the best execution (lowest mean square error on the validation set) was selected. As the
data were monthly, forecasts were made considering the following horizons: h = 1, h = 3,
and h = 6.

3.4. Phase 4—Post-Processing of Data

In the fourth phase, post-processing of data was completed so that they are denormal-
ized and de-standardized. Afterward, the data had to return to the original domain so that
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the performance resulting from the predictions could be compared. Thus, Equation (5) was
applied to return to the seasonal pattern and Equation (6) to return to the trend behavior:

xi = (z i.σm) + µm (5)

xt = xt−1 + x′t (6)

where the variables are the same in Equations (1) and (2).
Having the predictions placed in the original domain, a comparison was made among

the performance obtained by the forecasting models, which corresponds to the fifth phase
of the methodology.

3.5. Phase 5—Performance of Predictive Models

With the data already post-processed, the performances of predictions made were
compared using three different error measures, namely Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), which were expressed
by Equations (7), (8) and (9), respectively:

MSE =
1

NS

NS

∑
t=1

(dt−yt)
2 (7)

MAE =
1

NS

NS

∑
t=1
|dt−yi| (8)

MAPE =
1

NS

NS

∑
t=1

∣∣∣∣dt − yi
dt

∣∣∣∣× 100 (9)

where NS is the number of samples, dt is the desired result, and yi is the output given by
the models. The resulting performances of each model are shown in the following sections.

4. Results

This section discusses a real application of linear predictive models and ANNs, reach-
ing the phases after the selection of independent variables by the multi-criteria analysis. To
carry out this study, raw data on electricity consumption from the State of Paraná-Brazil
was collected, available in the database of the Federal Government’s Energy Research
Company website [32]. These data refer to the monthly electricity consumption (in MWh)
from January 2004 to June 2019, totaling 186 monthly samples of electricity consumption.
The data were plotted in Figure 1, and components of trend (growth) and seasonality were
visually identified, which were verified using the Cox-Stuart and Friedman non-parametric
tests (Table 4).

Energies 2023, 16, x FOR PEER REVIEW 8 of 25 
 

 

MSE =  
1

𝑁𝑆
∑(𝑑𝑡 − 

𝑁𝑆

𝑡=1

𝑦𝑡)² (7) 

MAE =  
1

𝑁𝑆
∑ |𝑑𝑡 − 

𝑁𝑆

𝑡=1

𝑦𝑖| (8) 

MAPE =  
1

𝑁𝑆
∑ |

𝑑𝑡 − 𝑦𝑖

𝑑𝑡
|

𝑁𝑆

𝑡=1

× 100 (9) 

where 𝑁𝑆 is the number of samples, 𝑑𝑡 is the desired result, and 𝑦𝑖 is the output given 

by the models. The resulting performances of each model are shown in the following sec-

tions.  

4. Results  

This section discusses a real application of linear predictive models and ANNs, 

reaching the phases after the selection of independent variables by the multi-criteria anal-

ysis. To carry out this study, raw data on electricity consumption from the State of Paraná-

Brazil was collected, available in the database of the Federal Government’s Energy Re-

search Company website [32]. These data refer to the monthly electricity consumption (in 

MWh) from January 2004 to June 2019, totaling 186 monthly samples of electricity con-

sumption. The data were plotted in Figure 1, and components of trend (growth) and sea-

sonality were visually identified, which were verified using the Cox-Stuart and Friedman 

non-parametric tests (Table 4).  

 

Figure 1. Paraná state energy consumption data for the period from January 2004 to June 2019. 

Table 4. Non-parametric tests for trend and seasonality analysis. 

Tests 
Original Series Differentiated and Seasonally Adjusted Series 

p-Value < 5% p-Value > 5% 

Cox-Stuart 0 0.251322103 

Friedman 3.49 × 10−15 0.994761543 

Considering the p-values < 0.05 in both tests, the presence of trend and seasonality in 

the series was statistically proven, as evidenced in Table 4 and by the visual analysis in 

Figure 1. Therefore, these components were removed through differentiation (Equation 

(3)) and deseasonalization (Equation (4)). The values of the preprocessed series in Figure 

2 varied between +3 and −3, centered at zero, indicating the stationary condition. 

Figure 1. Paraná state energy consumption data for the period from January 2004 to June 2019.



Energies 2023, 16, 1712 8 of 24

Table 4. Non-parametric tests for trend and seasonality analysis.

Tests
Original Series Differentiated and Seasonally Adjusted Series
p-Value < 5% p-Value > 5%

Cox-Stuart 0 0.251322103
Friedman 3.49 × 10−15 0.994761543

Considering the p-values < 0.05 in both tests, the presence of trend and seasonality
in the series was statistically proven, as evidenced in Table 4 and by the visual analysis in
Figure 1. Therefore, these components were removed through differentiation (Equation (3))
and deseasonalization (Equation (4)). The values of the preprocessed series in Figure 2
varied between +3 and −3, centered at zero, indicating the stationary condition.
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Figure 2. Paraná State energy consumption data for the period from January 2004 to June 2019,
differentiated and seasonally adjusted.

Next, the parameters of each model were defined. The HW model was used for
predicting series that present components of level, trend, and seasonality. It presents as
parameters the smooth components (α, β, and γ). The additive model that provided the
best results used α = 0.63, β = 0.12, and γ = 0.45. The parameters of the AR (p) and ARIMA
(p, d, q) models were estimated from the analysis of the partial autocorrelation function
(PACF) for the stationary series (Figure 3). The parameter d was set to 1, corresponding to
the number of differentiations necessary to withdraw from the trend. From the analysis of
Figure 3, it can be seen that a series has a significant partial autocorrelation coefficient up
to the fifth lag, with a 95% confidence level. From 1 to 5 lags for p and q, the AR (2) and
ARIMA (5, 1, 5) models presented the smallest forecasting errors. To adjust the models,
maximum likelihood estimators were addressed.

For ANNs, the number of neurons in the intermediate layer was empirically chosen to
consider a grid search, starting with 5 neurons and using increments of 5, until reaching
200 neurons.

The method wrapper was applied for each variation, which made a progressive scan
considering up to six lags. The configurations of the ANNs that gave the best prediction
results were the MLP of 5 neurons in the middle layer and with the third lag as an input for
prediction; RBF with 10 neurons and 6 lags; ELM with 25 neurons and lags 1 and 6. After
the forecasting, one step ahead (h = 1) for the energy consumption series was performed.

Table 5 lists the values of MSE in the original domain of the series, MSE (d) that
represents the error of considering the series after the preprocessed adjusted values, MAE,
MAE (d), and MAPE (as it is a percentage, the measurement is not sensitive to the treatment
of the data), as well as their respective performance rankings. The comparatives used data
from the test portion. The MSE results are in (MWh)2 and the MAE in MWh.
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Figure 3. Graph of the partial autocorrelation function (PACF) for the differentiated and seasonally
adjusted time series of electricity consumption in Paraná.

Table 5. Forecast results for one step ahead, compared by the error measures MSE, MAE, MAPE, and
their respective performance rankings.

One Step Ahead

Model Model’s Parameters MSE MSE(d) MAE MAE(d) MAPE

HW α = 0.63, β = 0.12, γ = 0.45 5679573386.83 0.2566 62124.83 0.4286 2.3265
AR p = 2 5247636249.96 0.2371 60064.66 0.4144 2.2765

ARIMA p = 5, d = 1, q = 5 5860003521.64 0.2647 65994.23 0.4553 2.5035
MLP neurons = 5, lag = 3 6557391893.34 0.3152 70231.17 0.4796 2.6589
RBF neurons = 10, lag = 6 4634913071.81 0.2094 55409.00 0.3823 2.0994
ELM neurons = 25, lags = 1, 6 4599769468.03 0.1945 48604.73 0.3463 1.8538

Performance ranking

Model MSE MSE (d) MAE MAE (d) MAPE

HW 4 4 4 4 4
AR 3 3 3 3 3

ARIMA 5 5 5 5 5
MLP 6 6 6 6 6
RBF 2 2 2 2 2
ELM 1 1 1 1 1

The results listed in Table 5 show that the best performance was obtained by the ELM,
followed by the RBF, for all the error measures analyzed, whereas the MLP exhibited the
worst results. Figure 4 shows the data given by the models and the actual data separated
for testing.

Although visually the results in Figure 4 seem close, the series under analysis has
monthly consumption in the order of millions of Wh. The difference between the actual
and estimated value, which is represented in thousands of Wh, when squared and divided
by the number of forecasts (MSE calculation), can reach billions of Wh per month for
the entire state since the MSE penalizes greater errors compared to other performance
measures. In the sequence, Table 6 presents the error metrics and the ranking considering
three steps ahead, while Figure 5 shows the forecasting made by the models and the actual
data separated for testing.
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Table 6. Forecast results for three steps ahead, compared by the error measures MSE, MAE, MAPE,
and their respective performance rankings.

Three Steps Ahead

Model Model’s Parameters MSE MSE(d) MAE MAE(d) MAPE

HW α = 0.63, β = 0.12, γ = 0.45 7485077440.82 0.3292 72273.26 0.4987 2.7328
AR p = 2 7013687861.15 0.3247 70897.07 0.4836 2.6770

ARIMA p = 5, d = 1, q = 5 8924931364.90 0.4853 80795.54 0.5770 3.0485
MLP neurons = 5, lag = 3 6573580787.03 0.3162 70331.85 0.4806 2.6625
RBF neurons = 10, lag = 6 6528243517.99 0.2871 62256.53 0.4296 2.3556
ELM neurons = 25, lags = 1, 6 6366837641.56 0.2740 64652.19 0.4296 2.4487

Performance ranking

Model MSE MSE (d) MAE MAE (d) MAPE

HW 5 5 5 5 5
AR 4 4 4 4 4

ARIMA 6 6 6 6 6
MLP 3 3 3 3 3
RBF 2 2 1 1 1
ELM 1 1 2 2 2
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The results listed in Table 6 show that the ELM once again had higher forecasting
performance than the others considering the MSE, whereas the RBF network was the best
one considering MAE and MAPE. It is noteworthy that MAE and MAPE do not penalize
large errors as the MSE does. Concerning the MSE in the real domain, the error of the RBF
compared to the ELM in percentage terms was 2.54% higher, while from the MLP was
3.25% higher. On the other hand, the AR, HW, and ARIMA models performed much lower
compared to the neural models.

Finally, forecasts were obtained considering the six steps ahead, whose results are
listed in Table 7, while Figure 6 brings the predictions made by the models and the actual
data separated for testing.

Table 7. Forecast results for six steps ahead, compared by the error measures MSE, MAE, MAPE, and
their respective performance rankings.

Six Steps Ahead

Model Model’s Parameters MSE MSE(d) MAE MAE(d) MAPE

HW α = 0.63, β = 0.12, γ = 0.45 8283400542.03 0.3916 76488.21 0.5268 2.8931
AR p = 2 6840287879.73 0.3175 71062.50 0.4815 2.6849

ARIMA p = 5, d = 1, q = 5 8174710719.13 0.3865 73181.97 0.5041 2.7387
MLP neurons = 5, lag = 3 6686402960.82 0.3168 69819.32 0.4766 2.6426
RBF neurons = 10, lag = 6 6595147324.83 0.3118 68586.05 0.4724 2.5950
ELM neurons = 25, lags = 1, 6 6406990346.37 0.3020 63890.27 0.4487 2.4310

Performance ranking

Model MSE MSE (d) MAE MAE (d) MAPE

HW 6 6 6 6 6
AR 4 4 4 4 4

ARIMA 5 5 5 5 5
MLP 3 3 3 3 3
RBF 2 2 2 2 2
ELM 1 1 1 1 1
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It is necessary to note that the ELM and RBF maintained the position in the ranking
with the best performances for all horizons, while the HW, for six steps ahead, had the
worst performance. Comparing the MSE in the real domain, the ELM in relation to the RBF,
MLP, AR, ARIMA, and HW models allowed a reduction in the percentage error by 3.94,
4.36, 6.76, 27.59, and 29.29%, respectively.
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After the predictions for one, three, and six steps ahead considering the independent
variables in the univariate forecasting, the next stage was to evaluate the use of these
independent variables in multivariate forecasting.

4.1. Selection of Independent Variables

The data collection of the exogenous variables was selected from some bases, such
as the System for Estimating Greenhouse Gas Emissions (SEEG); National Meteorological
Institute (INMET); Institute of Applied Economic Research (IPEA); Brazilian Institute of
Geography and Statistics (IBGE); and Chamber of Commercialization of Electric Energy
(CCEE). Those are official organisms of the Brazilian government that make available the
data to researchers.

4.1.1. Criteria

The criteria of both qualitative and quantitative types were validated by the decision-
makers. The measurement of qualitative ones was carried out based on the perception and
experience of the decision-makers and experts in the theme. In sequence, are presented
details related to the criteria adopted:

Criterion g1—Data availability: This criterion is quantitative and is related to the avail-
ability of data for training models. The score attributed to the alternatives is represented by
Equation (10):

gd =
qntvi
qntvd

× 100 (10)

where gd represents the degree of data availability, qntvi corresponds to the amount of data
available for the independent variable under analysis, and qntvd refers to the amount of
data available for training and validation of the dependent series (consumption of electricity
in Paraná).

Criterion g2—Correlation with the dependent variable: This quantitative criterion
seeks to correlate the variable “electricity consumption” with exogenous variables (alterna-
tives). Pearson’s correlation coefficient (r) was used [33], and for reasons of collinearity, the
maximum score (100) was assigned to coefficients with values of 0.8 and −0.8. Equations
(11) and (12) express the score attributed to the alternatives, with Equation (11) being used
for positive r values and Equation (12) for negative ones:

d =
r− 0
0.8
× 100 (11)

d =
r− 0
−0.8

× 100 (12)

These measures represent the percentages of the distances (d) of correlation coefficient
values concerning the zero value, which means that the closer to zero the correlation
coefficients, the lower the score attributed to these alternatives, while the values −0.8 and
0.8 present a score equal to 100.

Criterion g3—Consumption pattern by sector: Some variables might influence the
demand depending on particular contexts, varying according to the sector. In the time
series of electric energy consumption, the percentages corresponding to the consumption
of industrial, residential, commercial, and other sectors are 41.68, 23.72, 18.36 and 16.23%,
respectively [32].

The scale developed for this criterion was based on this percentage, that is, if the
decision-makers consider that the independent variable has an influence on energy con-
sumption only in the industrial and commercial sectors, for example, the score attributed to
this variable corresponds to the percentage sum of consumption of these sectors (41.68% +
18.36% = 60.04%). This criterion is qualitative due to the value attributed to each alternative
to the analyzed context. Therefore, the ELECTRE I decision matrix can be made based
on the perception and experience of the decision-makers. The g4 and g5 criteria outlined
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below are also qualitative in nature, as there are no parameters for their measurement; so
they were assessed based on the 5-point Likert ordinal scale (Table 8).

Table 8. Example of the scale used in criteria g4 and g5.

Value Description

5 Very high
4 High
3 Average
2 Low
1 Very low

Criterion g4—Consumption patterns by region: (geographical, economic, and social
characteristics). It determines the influence that the explanatory variables can have. The
same variable presents very high or very low influence in different regions due to the
different locations’ characteristics.

Criterion g5—Consumption pattern by the calendar: The variables that influence
demand may present different frequencies depending on the calendar (vacation, weekdays,
weekends, holidays, among others). This criterion determines how recurrent (or not) the
influence of an explanatory variable on demand is due to the calendar pattern. With the
criteria established for selecting variables, the next step was to apply the AHP method to
identify the degree of importance of each criterion that was established a priori.

4.1.2. Application of AHP (Weights Definition)

The AHP method proposed by Saaty [34] was used to determine the weights regarding
each criterion. The two decision-makers performed the paired comparison (AHP method)
concerning the above five criteria. With a peer review, the decision-makers answered which
criteria they considered the most important and what intensity of importance one presented
in relation to the other.

The weight of the decision-makers’ judgments was considered equal, with the same
importance. After performing this comparison alongside, it was possible to obtain the
judgment matrix (Table 9), which had its data normalized by dividing the value of the
judgment obtained for each criterion by the total sum of its respective column (Table 10).
These expressed values referring to the preference vectors of each criterion (Table 11) were
calculated by the geometric mean of the normalized values.

Table 9. AHP evaluation matrix (Part A).

Criteria g1 g2 g3 g4 g5
g1 1 1/4 3 5 3
g2 4 1 5 7 5
g3 1/3 1/5 1 2 1
g4 1/5 1/7 1

2 1 1
2

g5 1/3 1/5 1 2 1
Sum 5.86 1.79 10.5 17 10.5

Table 10. AHP normalized weights considered for the criteria (Part B), in which GM = Geometric
mean CR = 0.0308.

CR g1 g2 g3 g4 g5 GM
g1 0.17 0.14 0.29 0.29 0.29 0.24
g2 0.66 0.56 0.48 0.41 0.48 0.51
g3 0.06 0.11 0.1 0.12 0.1 0.10
g4 0.03 0.08 0.05 0.06 0.05 0.05
g5 0.06 0.11 0.1 0.12 0.1 0.10
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Table 11. Criteria score ranking.

Ranking Criterion Score Description

1 g2 0.51 Correlation with the dependent variable
2 g1 0.24 Data availability
3 g3 0.10 Consumption pattern by sector
4 g4 0.10 Consumption pattern by calendar
5 g5 0.05 Consumption pattern by region

Finally, the ratio of consistency (CR) was calculated based on the AHP theory formula-
tions [34] to verify the coherence in the judgments of the decision-makers. The condition
of consistency of acceptable judgments is CR ≤ 0.10 [34]. The value of CR calculated for
this problem was 0.0308, and therefore it was followed by the stage of variable selection by
ELECTRE I.

4.1.3. Application of ELECTRE I (Selection of Independent Variables)

For the ELECTRE I application, an evaluation matrix was built based on the quantita-
tive scales previously defined and the qualitative scales, which were assigned according
to the premises established by the decision-makers. The data were also normalized using
Equation (13) so that all criteria alternatives had equivalent evaluations:

Bene f it =

(
Vij −MinV j

)(
MaxV j −MinV j

) (13)

where Vij is the value of the alternative being evaluated, while MinV j and MaxV j are the
minimum and maximum values of the alternatives for a given criterion.

As a result, the standardized decision matrix shown in Table 12 was obtained, in which
the variables were previously defined in Tables 2 and 11.

Table 12. Ranking of criteria scores.

ai/gj a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
g1 0.07 0.07 0.29 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.78 1.00 1.00 0.92 0.72 0.08
g2 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.56 0.35 0.20 0.37 0.00 0.13 0.25 1.00 0.24 0.00
g3 1.00 0.40 1.00 0.58 0.00 0.60 0.58 0.58 1.00 0.58 0.42 0.42 0.00 0.00 0.00 0.00 0.42 0.60
g4 0.75 0.50 1.00 0.75 0.25 0.50 1.00 1.00 1.00 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.25 0.50
g5 0.00 0.33 0.00 0.67 0.00 0.33 0.00 0.67 1.00 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.33

After that, the concordance matrix was initially calculated (Table 13). Each index that
composes this matrix was determined as shown by the calculation of alternative one in
relation to two, considering all criteria (Equation (14)).

C1,2 = g1(i f a1 ≥ a2) + g2(i f a1 ≥ a2) + g3(i f a1 ≥ a2) + g4(i f a1 ≥ a2) + g5(i f a1 ≥ a2)/∑ g (14)

where the variables were defined in Tables 2 and 3.
The concordance index C1,2 represents the weights of the criteria that are added when

the alternative ‘a1’ exceeds ‘a2’. The calculation is performed in the pairwise comparison
of all alternatives until the matrix was established. In this example, we have: C1,2 =
0.24(a1 = a2) + 0.52(a1 = a2) + 0.1(a1 > a2) + 0.05(a1 > a2) + 0(a1 < a2)/Σg = 0.90.

For the discordance indexes, the scales of each criterion were first calculated, corre-
sponding to the value of the difference of the highest value assigned to the alternative
minus the lowest value. Thus, the scale of all criteria resulted in 1.0. Therefore, the discor-
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dance matrix (Table 14) could be elaborated, comparing the alternative ‘a1’ in relation to
‘a2’. Equation (15) shows this process:

D1,2 = Max
[

g1
(a2− a1)

1
; g2

(a2− a1)
1

; g3
(a2− a1)

1
; g4

(a2− a1)
1

; g5
(a2− a1)

1

]
(15)

Finally, for the alternatives to be classified, a selection matrix containing only the
values 0 and 1 was created (Table 15).

Table 13. Concordance matrix generated by pairwise comparison of all alternatives.

C a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
a1 0.90 0.71 0.15 1.00 0.90 0.71 0.85 0.10 0.15 0.25 0.15 0.76 0.25 0.25 0.25 0.15 0.66
a2 0.85 0.61 0.00 1.00 0.90 0.61 0.75 0.00 0.15 0.15 0.15 0.76 0.25 0.25 0.25 0.15 0.66
a3 1.00 0.90 0.15 1.00 0.90 0.76 0.90 0.15 0.15 0.25 0.15 0.76 0.25 0.25 0.25 0.15 0.90
a4 0.90 1.00 0.85 1.00 0.90 0.95 0.95 0.24 1.00 1.00 1.00 1.00 1.00 1.00 0.49 1.00 0.90
a5 0.61 0.51 0.61 0.00 0.75 0.61 0.75 0.00 0.05 0.15 0.05 0.76 0.25 0.25 0.25 0.05 0.51
a6 0.61 0.76 0.61 0.10 1.00 0.71 0.85 0.00 0.25 0.25 0.25 0.76 0.25 0.25 0.25 0.25 0.76
a7 0.90 0.90 0.90 0.39 1.00 0.80 0.90 0.29 0.39 0.49 0.39 1.00 0.49 0.49 0.49 0.39 0.80
a8 0.66 0.76 0.66 0.25 1.00 0.90 0.76 0.05 0.25 0.25 0.25 0.76 0.25 0.25 0.25 0.25 0.66
a9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.49 1.00 1.00

a10 0.85 0.95 0.85 0.34 1.00 0.85 0.95 0.85 0.24 1.00 0.49 1.00 1.00 1.00 0.49 1.00 0.85
a11 0.85 0.85 0.85 0.24 0.95 0.75 0.85 0.75 0.24 0.24 0.34 1.00 1.00 0.49 0.49 0.34 0.75
a12 0.85 0.95 0.85 0.24 1.00 0.85 0.85 0.75 0.24 0.90 1.00 1.00 1.00 1.00 0.49 1.00 0.85
a13 0.85 0.75 0.85 0.00 0.95 0.75 0.61 0.75 0.00 0.00 0.15 0.00 0.25 0.25 0.25 0.24 0.75
a14 0.85 0.75 0.85 0.24 0.95 0.75 0.85 0.75 0.24 0.24 0.39 0.24 1.00 0.49 0.49 0.24 0.75
a15 0.85 0.75 0.85 0.24 0.95 0.75 0.85 0.75 0.24 0.24 0.90 0.24 1.00 1.00 0.49 0.75 0.75
a16 0.85 0.75 0.85 0.51 0.95 0.75 0.61 0.75 0.51 0.51 0.66 0.51 1.00 0.76 0.76 0.75 0.75
a17 0.85 0.95 0.85 0.00 1.00 0.85 0.61 0.75 0.00 0.15 0.76 0.25 0.76 0.76 0.25 0.25 0.85
a18 0.85 1.00 0.61 0.10 1.00 1.00 0.71 0.85 0.00 0.25 0.25 0.25 0.76 0.25 0.25 0.25 0.25

Table 14. Discordance matrix generated by pairwise comparison of all alternatives.

D a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
a1 0.33 0.25 0.93 0.00 0.33 0.93 0.67 1.00 0.93 0.93 0.93 0.71 0.93 0.93 1.00 0.65 0.33
a2 0.60 0.60 0.93 0.00 0.20 0.93 0.50 0.93 0.93 0.93 0.93 0.71 0.93 0.93 1.00 0.65 0.20
a3 0.00 0.33 0.71 0.00 0.33 0.71 0.67 1.00 0.71 0.71 0.71 0.49 0.71 0.71 1.00 0.43 0.33
a4 0.42 −0.18 0.42 −0.48 0.02 0.25 0.25 0.42 0.00 0.00 0.00 −0.22 0.00 0.00 0.52 −0.16 0.02
a5 1.00 0.40 1.00 1.00 0.60 1.00 0.75 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 0.72 0.60
a6 0.40 0.07 0.50 1.00 0.00 1.00 0.50 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 0.72 0.08
a7 0.42 0.33 0.42 0.67 0.00 0.33 0.67 1.00 0.35 0.20 0.37 0.00 0.13 0.25 1.00 0.33 0.33
a8 0.42 0.07 0.42 1.00 0.00 0.02 1.00 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 0.72 0.08
a9 0.00 −0.50 0.00 0.00 −0.56 −0.40 0.00 0.00 0.00 0.00 0.00 −0.22 0.00 0.00 0.44 −0.28 −0.40

a10 0.50 0.25 0.75 0.50 0.00 0.25 0.75 0.75 0.75 0.00 0.02 −0.22 0.00 0.00 0.65 0.00 0.25
a11 0.75 0.50 1.00 0.75 0.25 0.50 1.00 1.00 1.00 0.33 0.33 0.00 0.00 0.05 0.80 0.33 0.50
a12 0.58 0.25 0.75 0.50 0.00 0.25 0.75 0.75 0.75 0.16 0.00 −0.22 0.00 0.00 0.63 0.00 0.25
a13 1.00 0.50 1.00 0.75 0.25 0.60 1.00 1.00 1.00 0.58 0.42 0.42 0.22 0.25 1.00 0.42 0.60
a14 1.00 0.50 1.00 0.75 0.25 0.60 1.00 1.00 1.00 0.58 0.42 0.42 0.00 0.12 0.87 0.42 0.60
a15 1.00 0.50 1.00 0.75 0.25 0.60 1.00 1.00 1.00 0.58 0.42 0.42 0.00 0.00 0.75 0.42 0.60
a16 1.00 0.50 1.00 0.75 0.25 0.60 1.00 1.00 1.00 0.58 0.42 0.42 0.00 0.08 0.08 0.42 0.60
a17 0.58 0.25 0.75 0.50 0.00 0.25 0.75 0.75 0.75 0.28 0.28 0.28 0.06 0.28 0.28 0.76 0.25
a18 0.40 0.00 0.50 0.92 0.00 0.00 0.92 0.50 0.92 0.92 0.92 0.92 0.70 0.92 0.92 1.00 0.64
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Table 15. Selection matrix generated by the condition defined by the concordance and discordance
and thresholds.

D a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18
a1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
a3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
a4 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1
a5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a6 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
a7 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
a8 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
a9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

a10 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1
a11 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
a12 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1
a13 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
a14 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
a15 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
a16 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0
a17 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1
a18 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

According to Saaty [34], it is assigned the value one only if alternative “a” over
classify “b”, for example. For the calculation of this matrix, the decision-makers defined
the thresholds of concordance (0.7) and discordance (0.3).

This outranking relationship occurs if the indexes of the concordance matrix comply
with the condition of equal to the concordance threshold and if the indexes of the discor-
dance matrix comply with the condition of equal to the threshold of discordance. For cases
that do not obey the condition, the assigned value is 0 [35].

As a result, according to the established criteria, the alternatives that were selected as
independent variables were a9 and a16, which correspond to temperature and evaporation
(according to Table 1).

Note that the correlation coefficients between the target variable (power demand) and
a9 and a16 are 0.1568 and −0.2782, respectively.

4.2. Forecasting with Exogenous Variables

After the selection of the exogenous variables, the data were collected to identify
the regularity. To this purpose, the data of evaporation and temperature were plotted in
Figure 7, from which it is possible to observe the presence of seasonality in both series and
the absence of a trend.

Aiming to confirm or not the absence of trend and presence of seasonality, the Cox-
Stuart and the Friedman non-parametric statistical tests were applied. The samples prepro-
cessed by deseasonalization of Equation (2) of both series are shown in Figure 8.

The results listed in Table 16 show that the p-value for the trend of both analyzed
series was greater than 5%, indicating that there is no trend in the series, while the p-value
for the seasonality was less than 5%, statistically proving the presence of seasonality. After
removing the seasonality, the series became stationary, and the Friedman test p-values for
evaporation and temperature were 0.997947317 and 0.999969254, respectively.

It is noteworthy that there was no trend in the evaporation series. Additionally, the
missing data from September to December 2015 and April to December 2016 were replaced
by the respective mean values corresponding to the months analyzed.
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Table 16. Non-parametric tests for trend and seasonality analysis.

Tests
Cox-Stuart Friedman

p-Value > 5% p-Value < 5%

Evaporation 0.146177029 7.58419 × 10−8

Temperature 1 1.37641 × 10−26
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The next step was to define the parameters for predicting the ANNs with the ex-
ogenous variables. The parameters of the ANNs that ensured the best prediction were
as follows:

• MLP with 35 neurons in the intermediate layer, using the first energy lag, sixth
temperature lag, and evaporation room as inputs;

• RBF with 50 neurons and lag 1 for energy, lag 6 for temperature, and lag 4 for evaporation;
• ELM with 45 neurons and lag 1 and 6 for energy, lag 3 for evaporation, and lag 6 for

temperature.

After the parametrization of the parameters of the models, the electricity demand was
forecast for one step ahead. Table 17 gathers the results obtained for the test set and the
performance ranking, with errors referring to the best of 30 simulations performed for each
model. It can be seen that the RBF ensured the best performance, followed by ELM for all
error measures, while the MLP was the worst one. Figure 9 shows the predictions made by
the models and the actual data in the test set.

Table 17. Forecast results for one step ahead, compared by the error measures MSE, MAE, MAPE,
and their respective performance rankings.

One Step Ahead

Model Model’s Parameters MSE MSE (d) MAE MAE (d) MAPE

MLP neurons = 35, lags = 1, 6, 4 5854808140.90 0.2363 62140.20 0.4015 2.3501
RBF neurons = 50, lags = 2, 6, 6 3900550265.86 0.2142 50749.56 0.3643 1.9354
ELM neurons = 45, lags = 1, 6, 3, 6 4154631401.10 0.2180 51866.49 0.3673 1.9694

Performance ranking

Model MSE MSE (d) MAE MAE (d) MAPE

MLP 3 3 3 3 3
RBF 1 1 1 1 1
ELM 2 2 2 2 2
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Table 18 shows the predictions for the same series considering three steps ahead and
the performance ranking.

Table 18. Forecast results for three steps ahead, compared by the error measures MSE, MAE, MAPE,
and their respective performance rankings.

Three Steps Ahead

Model Model’s Parameters MSE MSE (d) MAE MAE (d) MAPE

MLP neurons = 35, lags = 1, 6, 4 6248871037.89 0.2823 66536.95 0.4368 2.5146
RBF neurons = 50, lags = 2, 6, 6 6205419571.17 0.2761 67111.50 0.4544 2.5330
ELM neurons = 45, lags = 1, 6, 3, 6 5536080184.82 0.2594 58071.25 0.4042 2.2150

Performance ranking

Model MSE MSE (d) MAE MAE (d) MAPE

MLP 3 3 2 2 2
RBF 2 2 3 3 3
ELM 1 1 1 1 1

Comparing MSE, ELM was the best among the tested models, followed by the RBF
network. However, the positioning of RBF and MLP depended on the other error measures.
Figure 10 shows predictions made by the models and the actual data separated for testing.
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and ELM.

Finally, predictions were also made considering the six steps ahead, whose results are
presented in Table 19 by the error metrics, as well as the performance ranking.

On the other hand, Figure 11 depicts the predictions made in the models and the data
used in the test set. The ELM showed the best performance for the MSE, while the MLP for
the MAE and MAPE. It is noticed RBF was the second best in the ranking for all forecasting
horizons. As mentioned, MAE and MAPE do not penalize large errors. MSE percentage
reduction by the ELM in comparison with RBF and MLP was 5.11% and 6.36%, respectively.
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Table 19. Forecast results for six steps ahead, compared by the error measures MSE, MAE, MAPE,
and their respective performance rankings.

Six Steps Ahead

Model Model’s Parameters MSE MSE (d) MAE MAE (d) MAPE

MLP neurons = 35, lags = 1, 6, 4 6433456508.91 0.3195 68395.90 0.4847 2.5895
RBF neurons = 50, lags = 2, 6, 6 6358076170.74 0.3180 68783.06 0.4873 2.6132
ELM neurons = 45, lags = 1, 6, 3, 6 6049034166.40 0.3165 70008.28 0.4886 2.6619

Performance ranking

Model MSE MSE (d) MAE MAE (d) MAPE

MLP 3 3 1 1 1
RBF 2 2 2 2 2
ELM 1 1 3 3 3
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Comparing the best predictor for each forecasting horizon, considering the univariate
forecasting (ELM), and considering the best model’s proposed method, we have the follow-
ing percentage gains: 17.93% for one step ahead, 15.01% for three steps ahead, and 5.96%
for six steps ahead.

5. Discussion

In an initial analysis considering only the univariate electricity demand forecasting,
it was possible to notice that all neural models with the exception of the MLP network
ensured the best one-step-ahead forecasting performances. However, even though the
MLP did not perform well compared to the other models, with increasing steps ahead, this
behavior was reversed. Its performance for six steps ahead, for example, was better than
those of AR, ARIMA, and HW.

The ELM performed better in all scenarios and horizons than the other models. It
is important to note that the errors for MLP, ELM, RBF, and HW increased when the
forecasting horizon grew. Interestingly, for the AR and ARIMA models, the error for three
steps ahead was smaller than for six steps ahead.

As expected, linear models provided worse results compared to ANN due to the
generalization capability of the latter to map the inputs in the desired output. As a result,



Energies 2023, 16, 1712 21 of 24

ANNs predictions are well-adjusted to the actual values. Another point to comment on is
that the ELM also requests a smaller computational effort, spending less processing time
than other networks [27,36–42]. This occurs because its hidden layer remains untuned, and
the output layer is adjusted based on a deterministic method during the training phase.

Despite the linear models being simpler and faster to be implemented and executed,
they did not present good results in relation to neural approaches. Just in a few cases, they
may exhibit equivalent performances.

In addition, it is perceived that when the explanatory variables are included, all ANNs
increase their predictive capability for all the steps ahead. In this case, the RBF and ELM
occupied the first and second positions in almost all cases, respectively. This behavior
indicates that the use of ELECTRE I for variable selection was effective in improving
the overall performance of the models [43,44]. Although we addressed up to eighteen
exogenous variables, only two were selected by ELECTRE I when considering the five
criteria and their degrees of importance.

Finally, although positive results have been presented for the Paraná state, these same
variables can be used in similar contexts and may result in more accurate predictions. In
addition to the characteristics of the data, each application site has other characteristics that
experts who understand the electricity demand and know the application’s place would
need to consider.

6. Conclusions

The forecasting process for electricity demand is essential to plan the energy distribu-
tion and to avoid waste or scarcity of this resource. In the literature, different authors have
proposed solutions with linear models, also adding other independent predicting variables
intuitively. The independent variables are often chosen based on correlation analysis or on
the authors’ knowledge, which does not guarantee that all explaining variables are selected.
Different criteria are related in this process, and correlation does not necessarily recognize
the impact of these variables.

It is crucial to include decision criteria involved in order to do the predictive process
more efficient. Insufficient data, correlation with energy, and consumption patterns by sec-
tor, calendar, and region are the most important criteria to help the selection of independent
variables since these also can be validated by the decision-makers.

This investigation involved eighteen exogenous variables listed in the literature and
five criteria with different degrees of importance. As a relatively large problem, the multi-
criteria approach has advantages and helps the conducting for more assertive decision-
making, using the ELECTRE I method to select variables that influence electricity demand.
There were no indications in the literature review of multi-criteria methods especially
used for this purpose. Because of this, this work contributes to forecasts of electricity
demand modeling, initially in the selection of alternative inputs, such as temperature and
evaporation, which influence the demand. Subsequently, the consideration of univariate
monthly time series of electricity consumption to perform forecasts with linear models HW,
AR, and ARIMA; and neural models MLP, RBF, and ELM. After selecting the independent
variables, the forecasts were made considering the period between January 2018 and June
2019 with one, three, and six horizons ahead.

Additionally, the comparison regarding forecasting electricity demand models, as
performed in this work, contributes to enlarging the theory, mainly showing what the
potential integrations between models can be made, allied with the multi-criteria analysis.
In general, the ANN presented the lowest errors for all horizons, except for MLP one
step ahead which showed the worst performance. However, increasing the horizon, MLP
behaved better than the linear models for three and six steps ahead. The higher performance
of the ANN compared to linear models was already expected because they are nonlinear
mappers with a generalization capability. In addition, RBF and ELM request a lower
computational cost compared to MLP.
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After performing the predictions considering only the univariate time series, we
added as input for the predictive model’s data of the variables selected by ELECTRE I. With
the addition of these inputs, there was an improvement in the performance of all ANNs
considering all horizons. Once again, the RBF and ELM networks occupied the first and
second positions, considering the overall performances.

Future investigations should be developed using other neural approaches or com-
bination models, such as ensembles. Moreover, other databases should be applied. In
addition, the selected input variables can be investigated considering their influence on the
forecasting horizon separately.
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