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Abstract: Germline variants in the NSD1 gene are responsible for Sotos syndrome, while somatic
variants promote neoplastic cell transformation. Our previous studies revealed three alternative RNA
isoforms of NSD1 present in fibroblast cell lines (FBs): the canonical full transcript and 2 alternative
transcripts, termed AT2 (NSD1 ∆5∆7) and AT3 (NSD1 ∆19–23 at the 5′ end). The precise molecular
pathways affected by each specific isoform of NSD1 are uncharacterized to date. To elucidate the
role of these isoforms, their expression was suppressed by siRNA knockdown in FBs and protein
expression and transcriptome data was explored. We demonstrate that one gene target of NSD1
isoform AT2 is ARP3 actin-related protein 3 homolog B (ACTR3B). We show that loss of both canonical
NSD1 and AT2 isoforms impaired the ability of fibroblasts to regulate the actin cytoskeleton, and
we observed that this caused selective loss of stress fibers. Our findings provide novel insights into
NSD1 function by distinguishing isoform function and demonstrating an essential role of NSD1 in
regulating the actin cytoskeleton and stress fiber formation in fibroblasts.

Keywords: NSD1; isoforms; cell cycle; cytoskeleton; neoplastic pathways

1. Introduction

Sotos syndrome (SoS) (OMIM #117550) is an autosomal dominant disorder with an
incidence of 1:14,000 live births [1]. Clinical manifestations include overgrowth (increased
height, macrosomia, and macrocephaly), distinctive facial features, and learning and intel-
lectual disabilities [2–4]. Mutations that cause loss of function of the nuclear receptor SET
domain containing protein-1 (NSD1) (NM 022455.4) are responsible for SoS. In mouse models,
NSD1 knockout mutations result in phenotypes concordant with those of patients with SoS,
including overgrowth, limitations of motor learning and special memory and nervous system
deficits [5–7]. The NSD1 gene product is a SET-domain histone lysine methyltransferase
that interacts with nuclear receptors [8,9]. NSD1 functions to regulate chromatin, and NSD1
mutations result in genome-wide methylation alterations [4,10,11]. Though this broad epige-
netic concept is well understood, the specific alterations in pathways and their connections to
pathogenic states in humans remain largely undefined.

In our previous study, we identified two alternative transcripts of the NSD1 gene in
fibroblasts isolated from Sotos patients and healthy controls [12] (Figure S1). We described
AT2 (NSD1 ∆5∆7) and AT3 (NSD1 ∆19–23 5′ end) isoforms, characterized by the skipping
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of exons 5 and 7, and the skipping of exon 19 to the 5′ region of exon 23, respectively. In
silico analysis of NSD1 protein structure showed that isoform 2 (encoded by AT2) is a
shortened protein containing the PWWP1 domain but not the catalytic SET domain. This
observation suggests that the NSD1 protein may have an alternative function beyond its
established role in methyltransferase activity. Analysis predicting the structure of isoform
3 (encoded by AT3) revealed that this truncated isoform lacks C-terminal domains: PHD3
and PHD4 [13].

NSD1 activity is highly regulated, as evidenced by the presence of several overlapping
mechanisms that set specific thresholds for NSD1 activation in different tissues and cells, in
response to various stimuli [13]. Splicing plays an important role in gene regulation, especially
during the development of tissues and organs. Alternative splicing is known to contribute
to physiological functions in various developmental processes, as isoforms with specialized
functions can be used to tailor expression to specific developmental stages [14]. Splicing
has also been found to be highly disrupted in a broad array of cancer types, suggesting its
involvement in regulating cell growth and proliferation [15]. Even more, not all detected
alternative splicing events ultimately produce functional proteins due to various reasons:
(a) the transcript may be non-coding, resulting in it never being translated into a polypeptide,
(b) the stability of the transcript may be affected, leading to changes in its persistence or
degradation rates, (c) the localization of the mRNA may be altered, disrupting the transcript’s
or protein’s function [16]. Through these mechanisms, alternative splicing enables fine-tuned
regulation of gene expression. It follows that disruption of such processes can result in growth
and developmental abnormalities, as in cancers and congenital disease.

The NSD1 gene exhibits widespread expression across various organs, including at
elevated levels in most tissues of the healthy brain, pancreas, male reproductive tract, and
hematopoietic organs [17]. Our studies on fibroblasts derived from SoS patients and healthy
controls demonstrated that NSD1 mutations result in changes in the expression of long
noncoding RNAs and genes associated with neoplastic differentiation, particularly those
that regulate the G2/M checkpoint [18]. Despite NSD1’s ubiquitous expression, specific
characterization of each isoform, including the expression profile and precise biological role
of each, remains limited. To elucidate the impact of AT2 and AT3 isoforms on noncoding
RNA and mRNA expression, we generated transcriptional profiles in fibroblasts from
two healthy controls and treated with siRNAs, targeting the NSD1 AT2 and AT3 isoforms
specifically. A flowchart outlining the key steps of the study is shown in Figure 1.
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Foster City, CA, USA) and analyzed them on an ABI 3130XL Genetic Analyzer (Applied 
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Figure 1. Schematic representation of the study strategy. Significant modulation of target genes
between the wild-type fibroblast group and siRNA treated cells was calculated by a GeneSpring
differential expression analysis tool. A Gene Set Enrichment Analysis (GSEA) identified statistically
significantly modulated gene sets.
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2. Materials and Methods
2.1. Patients

This study was conducted with the approval of the Ethics Committee of the Liguria
Region (Approval #OG01IGG, 12 July 2021). Written informed consent was obtained from
four healthy participants (two male and two female), selected based on the availability
of skin biopsy. The fibroblast cell lines were available at the Gaslini Genetic Biobank
(20GBG0075F, 20GBG0076F, GGB16417M, 21GBG0125M).

2.2. Cell Culture

Fibroblast culture was maintained in RPMI-1640 medium (Thermo Fisher Scientific,
Grand Island, NY, USA), complemented with 10% fetal calf serum (FCS), 2 mM L-glutamine,
100 U/mL penicillin and 100 µg/mL streptomycin (Euroclone S.p.a, Milan, Italy). In order
to verify the absence of mycoplasma contamination, we used the mycoplasma detection
kit (Lonza, Basel, Switzerland). Cell lines between passages 2 and 15 were used for
all experiments.

2.3. Analysis of NSD1 Sequence

QIAamp® DNA Blood kit (Qiagen, Milan, Italy) was used to extract DNA from
fibroblasts according to the manufacturer’s protocol. PCR amplifications were performed
using platinum-Taq DNA polymerase (Thermo Fisher Scientific, Carlsbad, CA, USA) and
specific primers for the 23 different NSD1 exons as described [12]. We sequenced PCR
products with the ABI BigDye Terminator Ready Reaction Mix (Thermo Fisher Scientific,
Foster City, CA, USA) and analyzed them on an ABI 3130XL Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. We aligned
the sequences with SeqScape analysis software V.2.5 (Thermo Fisher Scientific, Foster City,
CA, USA). The absence of deletion/duplication in the 5q35.3 region encompassing the
NSD1 gene, array-CGH was verify with CGH 8 × 60 K (Agilent Technologies, Santa
Clara, CA, USA). The data were analyzed with the Agilent Cytogenomics 4.0.3.12 software
(Agilent Technologies, Santa Clara, CA, USA). We reported all genomic positions according
to the human genome assembly (GRCh37/hg19).

2.4. siRNA Transfection

Fibroblasts were plated 24 h prior to transfection in 6-well plates (2 × 105/well)
for RNA analysis and in 8-well chamber slides for immunofluorescence tests. Three
NSD1-specific siRNAs (Eurofins Genomics, Ebersberg, Germany) were used for silencing
AT2 (siRNA-AT2), AT3 (siRNA-AT3) and the canonical NSD1 isoform (siRNA-AT1). We
also designed a specific siRNA that binds the sequence of all NSD1 isoforms in order to
completely silence NSD1, as described [19,20]. For siRNA design, we used siDirect v2.0.
tool (http://sidirect2.rnai.jp/, accessed on 6 May 2022). The details of the siRNA duplexes
are included in Table S4. We designed siRNA-AT2 specific for the AT2 NSD1 isoform, on the
overlapping sequence between exon 4 and exon 6, while siRNA-AT3 specific for AT3 NSD1
isoform was designed on the overlapping sequence between exon 18 and exon 23. Single
strands of siRNA were annealed. The annealing buffer contained 10 mM Tris, pH 7.5, and
20 mM NaCl in RNAase free water. Samples were heated to 95 ◦C for 1 min, then cooled
and annealed at room temperature for 12–16 h. The siRNAs were then precipitated and
resuspended in RNAase-free water. Fibroblasts (4 × 105) were transfected with 20 nM of
each specific siRNA using DOTAP liposomal transfection reagent (Roche Applied Science,
Monza, Italy) according to the manufacturer’s instructions. The cells were transfected with
active siRNA-AT1, siRNA-AT2, and siRNA-AT3, as well as with anti-Cy3 siRNA and anti-
PPIA, and analyzed at various time points: 6, 24, and 48, hours post-transfection. Cells
treated with the Cy3-specific and anti-PPIA siRNA were used as controls. NSD1 silencing
by siRNA was validated by real-time PCR and immunofluorescence analysis. To confirm
that NSD1 knockdown was induced by specific NSD1 RNA interference treatment, we used

http://sidirect2.rnai.jp/
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anti-PPIA siRNA as control knockdown rescue, because PPIA is a constitutively expressed
gene in a wide range of cell types (Figure S2A).

2.5. Indirect Immunofluorescence

Fibroblast cells (1 × 104/well) were transfected with siRNA-AT1, siRNA-AT2, siRNA-
AT3 and anti-Cy3 siRNAs in an 8-well chamber slide in the same manner as described in
2.4. At 24 h post-transfection, immunofluorescence was used to quantify the NSD1 protein
expression as a consequence of the siRNAs. Untransfected fibroblasts (1 × 104/well) were
grown in concurrent experiments. The medium in the plate was aspirated, washed with PBS
(pH 7.4), and fixed at room temperature for 10 min in PBS containing 4% paraformaldehyde.
PBS was used to briefly wash the fixed cells, and nonspecific binding was blocked using
5% BSA in PBS. We used an anti-NSD1 antibody that recognized an N-terminal epitope
on the NSD1 protein (mouse monoclonal antibody, clone 1K47, Santa Cruz, CA, USA),
and used an anti-NSD1 antibody that recognized an epitope encoded by exon 5 (rabbit
polyclonal anti-NSD1 primary antibody, HPA048433, Sigma, CA, USA), at a dilution of
1/500 incubated overnight at 4 ◦C. Eight-well chamber slides were washed in PBS and
incubated at room temperature for 1 h in the dark with either Alexa Fluor™ 594 conjugated
donkey anti-rabbit secondary antibody, or Alexa Fluor™ 594 goat anti-mouse antibody
(Sigma, CA, USA) at a dilution of 1/500. PBS was used to wash the cells three times. To
confirm that the results were specific to the fibroblasts, not an artefact, an experiment with
anti-PPIA siRNA (positive control for repression) and anti-Cy3 siRNA (negative control for
repression) transfected cells was performed concurrently. For β-actin, mouse monoclonal
anti-β-actin (clone C-2, Sigma, CA, USA) at a dilution of 1/100 and goat anti-mouse
secondary antibody conjugated with Alexa Fluor™ 488 at a dilution of 1/500 were used.
For β-tubulin a rabbit polyclonal antibody at a dilution of 1/500 (Thermo Fisher Scientific,
Carlsbad, CA, USA) and an Alexa Fluor™ 594 conjugated donkey anti-rabbit secondary
antibody were used. The fluorescence images were obtained using a digital camera (AX7O,
Olympus, MI, Italy).

2.6. Gene Expression Profiling

Gene expression profiling was performed as previously described by Conteduca
et al. [18]. Briefly, TRIzol reagent was used for RNA extraction (Thermo Fisher Scientific,
MA, USA). We verified RNA quality with a NanoDrop ND-1000, an Agilent 2100 bioan-
alyzer. We performed microarray hybridization using the Agilent One Color microarray
gene expression kit and the SurePrint G3, 8 × 60 K Human Gene Expression V3 array
(Agilent Technologies, Santa Clara, CA, USA) as described [18]. Raw data were extracted
using Feature Extraction (version 12.0.1.1; Agilent Technologies). Next, data preprocess-
ing, including normalization and filtering, was carried out with the Genespring software
(version 14.3; Agilent Technologies). Raw data were normalized by a 75-percentile shift,
log2-transformed and shifted to the median of all samples. The microarray data were
deposited in GEO under the accession number GSE253402 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE253402, accessed on 17 January 2024), GSE253403 (http:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253403, accessed on 17 January
2024), GSE253404 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE253404, ac-
cessed on 17 January 2024). Only samples of excellent quality were used for subsequent
analyses in order to reduce potential biases introduced by analyzing low-quality specimens.

2.7. Quantitative Real-Time RT–PCR

We performed real-time quantitative PCR to confirm the silencing effect on NSD1 iso-
forms by siRNA-AT1, siRNA-AT2, siRNA-AT3 and siRNA4, and to confirm results obtained
by gene expression array analysis (primers listed in Table S5). Exon-overlapping primers
were used to quantitatively determine gene expression in real time [12]. Total cellular RNA
was extracted and reverse transcribed according to the manufacturer’s protocol. Synthesis
of cDNA was carried out from 400 ng of the total RNA using the Advantage RT cDNA Kit
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(Clontech, Mountain View, CA, USA) following the manufacturer’s instructions. Specifically,
samples were incubated at 42 ◦C for 90 min, followed by at 90 ◦C for 2 min. Quantitative
real-time PCR was conducted using LightCycler 480 SYBR Green I Master (Roche Diagnostics,
Mannheim, Germany) in a 15 µL reaction mixture. GAPDH served as an internal control and
was used to normalize gene expression values with the 2−∆∆Ct method [21]. Each experiment
was performed in triplicate for robustness (Figures S2A and S3).

2.8. Western Blotting

Wild type fibroblasts obtained from healthy donors and treated with NSD1 siRNA-
AT1, siRNA-AT2, and siRNA-AT3 were lysed in RIPA buffer (NaCl 150 mM, Nonidet P-40
1%, sodium deoxycholate (DOC) 0.5%, sodium dodecyl sulfate (SDS) 0.1%, Tris-HCl (pH
7.4) 50 mM). For protein analysis by Western blotting, whole cell lysates (50 µg) for each
sample were loaded and separated by SDS/PAGE using a blot 4–12% Bis Tris Plus (Thermo
Fisher Scientific, CA, USA). Proteins were transferred to Immobilon-P PVDF membranes
(Millipore, Burlington, MA, USA), and BSA in Tris-buffered-saline (TBS) was used to block
membranes. Next, membranes were probed with primary antibodies diluted in TBS/0.05%
Tween-20 (TBS-T)/5% BSA followed by the appropriate secondary antibody anti-mouse or
anti-rabbit horseradish peroxidase (HRP)-conjugated reagent. An ECL Substrate (Bio-Rad,
CA, USA) was used for detection. Images were acquired using Alliance Q9 Advanced
Chemiluminescence Imager (UVITEC). We performed Western blotting analysis with either
a mouse monoclonal antibody that recognized an N-terminal epitope of the NSD1 protein
(1:1000, clone K47, Santa Cruz, USA), or with an anti-NSD1 antibody that recognized an
epitope encoded by exon 5 (Rabbit polyclonal anti-NSD1 primary antibody, HPA070333,
Sigma, USA), or with a β-actin mouse monoclonal antibody (1:5000, clone C-2, Sigma,
USA), or a mouse monoclonal antibody anti-GAPDH (1:5000, clone FF26A, Sigma, USA).
We used anti-rabbit or anti-mouse horseradish peroxidase-linked antibodies as secondary
antibodies (Thermo Fisher Scientific, CA, USA) (Figure S2B).

2.9. Bioinformatic Analysis

The bioinformatic analysis was performed as previously described by Conteduca
et al. [19] on 4 fibroblast cell lines in separate independent experiments (20GBG0075F,
20GBG0076F, GGB16417M, 21GBG0125M).

Based on the normalized fluorescence signal values of the lncRNA/mRNA probes,
this analysis showed differential expression.

Protein–protein functional interactions among the differentially expressed genes were
evaluated with the STRING database (http://stringdb.org, accessed on 24 May 2023) [22]
using default parameters. An extension of the network was analyzed to identify potential in-
direct interactions between the differentially expressed genes. To address these limitations,
a gene set enrichment analysis (GSEA) [23] was used to test the enrichment of functionally
related gene sets in FB cell lines. Chemical and genetic perturbations (C2.CGP), hallmark
(H), gene ontology biological processes (C5.GO.BP) and gene set collections retrieved from
the Molecular Signature Database (MSigDB) v7.4 [24]. were used for enrichment analyses.
GSEA calculated an enrichment score (ES) and a normalized enrichment score (NES) for
each gene set, with the statistical significance of the NES estimated, using an empirical per-
mutation test using 1000 gene permutations in order to obtain the nominal p-value (NOM
p-value). The gene sets analyzed contained between 15 and 250 genes. Gene sets with
nominal p-values < 0.05 and FDR q-values < 0.05 were considered significantly enriched.

3. Results
3.1. Effect of Anti-NSD1 siRNAs on NSD1 Isoform Expression

To determine the specific roles of the AT2 and AT3 encoded polypeptides, each with
unique functional domains with respect to the canonical NSD1 isoform, we established a
workflow integrating both in vitro and in silico experiments. Our objective was to analyze
the molecular pathways up- and down-regulated by the NSD1 AT2, AT3, and AT1 isoforms.

http://stringdb.org
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A flowchart outlining the key steps of the study is shown in Figure 1 and a diagram of the
NSD1 canonical gene and NSD1 predicted domain architecture for each NSD1 isoforms is
displayed in Figure 2A,B.
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protein (bottom) with all functional domains indicated. Open boxes denote coding exons and grey
boxes denote the 5′ and 3′ untranslated regions. (B) Modular domain architecture of putative NSD1
protein isoforms. Predicted protein domains were detected using PFAM motif markseq server (https:
//www.genome.jp/tools/motif/, accessed on 26 July 2023) and trRosetta tool (https://yanglab.
nankai.edu.cn/trRosetta/, accessed on 2 October 2023). Colored boxes highlight specific functional
domains. PWWP: proline-tryptophan-tryptophan-proline domain; NLS: nuclear localization signal;
PHD: plant homeodomain domain; AWS: associated with SET domains; SET: Su(var)3–9, Enhancer-
of-zeste, Trithorax domain.

To ensure the specificity of individual siRNAs for their target mRNA, a critical consid-
eration in studies using siRNA, we designed three NSD1 siRNAs (anti-NSD1 siRNA-AT1,
anti-NSD1 siRNA-AT2, and anti-NSD1 siRNA-AT3) against each of the specific RNA
isoforms of the NSD1 gene (Figure S1). The effect of siRNA-mediated silencing on the
levels of NSD1 protein and RNA was assessed by RT–PCR (Figure S2A) and Western blot
(Figure S2B). Following fibroblast transfection, we observed maximal knockdown of NSD1
expression between 6 and 24 h.

3.2. NSD1 Protein Isoform AT3 Exhibits Distinct Subcellular Localization with Respect to the
Long Canonical Isoform in Fibroblasts

Immunostaining wild-type (WT) fibroblasts with antibodies against an NSD1 N-
terminal epitope that identifies AT1 and AT2 isoforms, or an NSD1 exon 5 epitope that
identifies AT1 and AT3, showed a positive NSD1 signal both in the cytoplasm and the
nucleus (Figure 3A). When we treated fibroblasts with siRNA-AT1, immunofluorescence
staining with an antibody that recognized the NSD1 exon 5 epitope (AT1 and AT3), only the
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nuclear signal was detected. In contrast, the antibody that recognized the NSD1 N-terminal
epitope displayed both the cytoplasmatic and nuclear signal (Figure 3B).
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Figure 3. Expression analysis of NSD1 isoforms in fibroblasts by immunofluorescence. (A) Rep-
resentative image of IF with rabbit polyclonal NSD1 antibody, HPA070333 for the exon 5 epitope.
(B) Representative image of IF with mouse monoclonal NSD1 antibody, sc-130470, clone K47, binding
to the N-terminal epitope. After 24 h of post anti-NSD1 siRNA treatment and untreated control
cells, DAPI was used to stain the cell nucleus to locate cells and Alexa fluor 595-labelled NSD1
antibodies for NSD1 AT2, NSD1 AT3, and NSD1 AT1. (×100 magnification; blue = DAPI; red = NSD1.
Scale bar = 50 µm).The arrows indicate NSD1 red signals.

When we treated fibroblasts with siRNA-AT2 or siRNA-AT3 and stained with anti-
bodies that recognize the NSD1 exon 5 epitope or NSD1 N terminal-epitope, we observed
both cytoplasmatic and nuclear signals. This suggested that the AT2 isoform contributes to
the cytoplasmatic signal (Figure 3A,B). It is also of interest that we observe that the nuclear-
specific AT3 isoform retains the SET domain whereas AT2 does not, thus AT2’s cytosolic
functions are independent of the catalytic activity. We also designed a specific siRNA that
binds the sequence of all NSD1 isoforms in order to completely silence NSD1 (Figure S3).

3.3. NSD1 AT2 and NSD1 AT3 Isoforms May Mediate Transcriptomic Effects on BCL2, KRAS
and p53 Signaling Pathways

Fibroblasts obtained from four different healthy donors were screened to confirm the
absence of NSD1 mutations. To silence specific NSD1 isoforms (canonical AT1, AT2 and
AT3), wild-type fibroblasts were treated with siRNA-AT1, siRNA-AT2 or siRNA-AT3 in
three independent experiments, achieving isoform silencing after 24 h of treatment. Data
presentation is identical and independent for all four different fibroblasts cell lines. We
showed mean value data.

Gene expression analysis identified 4174 significantly differentially expressed mRNAs
(DEGs) after anti-NSD1 siRNA-AT1 treatment (Table S1). The most upregulated gene in
the NSD1 siRNA-AT1 treated samples was associated with the FGFR1 oncogene partner
2 gene (FGFR1OP2) (fold change, 5.8, p < 0.05), and the most downregulated gene was
associated with the polymerase RNA I polypeptide C (POLR1C) gene (fold change, −3.4,
p < 0.05). Differential expression analysis identified 9785 significantly differentially ex-
pressed mRNAs after anti-NSD1 siRNA-AT2 treatment (Table S2). The most upregulated
gene was associated with the KISS-1 metastasis-suppressor (KISS1) gene (fold change, 6.6,
p < 0.05), and the most downregulated was associated with the T-cell lymphoma invasion
and metastasis 1 (TIAM1) gene (fold change, −5.5, p < 0.05). A differential expression analy-
sis identified 337 significantly differentially expressed mRNAs after anti-NSD1 siRNA-AT3
treatment (Table S3). The most upregulated gene was associated with the doublecortin-
like kinase 1 (DCLK1) gene (fold change, 0.9, p < 0.05), and the most downregulated was
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associated with the fem-1 homolog a (FEM1A) gene (fold change, −1.3, p < 0.05). The
number of shared DEGs between wild type and siRNA-AT1, siRNA-AT2 and siRNA-AT3
treated fibroblasts is summarized as a Venn diagram (Figure 4). This analysis revealed a
general exclusivity across the subsets of deregulated genes but showed a common pattern
of genes regulated by isoforms 1, NSD1 AT2 isoform and NSD1 AT3 isoform. Following
siRNA treatment, we observed concordant genes regulated under isoform 1 knockdown
conditions (wild type vs. NSD1 siRNA-AT1 + wild type vs. NSD1 siRNA-AT2 + wild
type vs. NSD1 siRNA-AT3), in both datasets of silenced isoform 2 and isoform 3 genes.
Therefore, these DEGs represent common gene sets regulated by NSD1 AT1 and NSD1 AT2.
We combined these concordant lists of NSD1-regulated genes by anti NSD1 siRNA-AT3
specific for silencing of NSD1 AT3 isoform (two genes positively and 47 negatively reg-
ulated including in fibroblasts treated with anti NSD1 siRNA-AT3), to describe the role
of specific NSD1 isoforms in fibroblast molecular pathways. We observed that there were
DEG uniquely regulated by NSD1 isoform AT3. The most relevant downregulated genes
after siRNA -AT1 treatment were fibroblast growth factors (FGF1, FGF3) and KRAS (Table 1,
Figure S4A). In addition, genes coding for proteins involved in the cytoskeleton and stress
fiber formation ACTR2, ACTR3, ARPC2, and ARPC3, were significantly downregulated
after NSD1 AT2 knockdown (Table 2, Figure S4B). Anti-NSD1 siRNA-AT3 treatment also
resulted in significantly decreased expression of the prostaglandin E2 receptor FEM1A
and FEM1B genes, and neural precursor cell, NEDD (Table 3, Figure S4C). To confirm
differential gene expression induced by siRNA treatment, mRNA levels of a representative
gene were quantified by RT–PCR (Figure S4).
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Network analysis performed using the STRING-DB software, v11.0 [22] showed more
connections among these genes than expected by chance (PPI interaction p-value < 0.05),
indicating their potential involvement in common biological processes. Knowing that
indirect interactions likely exist between differentially expressed genes, we also expanded
our gene network (Figure 5). In the expanded network, the significantly modulated genes
did not display any direct interaction with NSD1. These genes did display interactions with
a subset of other gene products, including KRAS, BCL2, p53, β tubulin and actin-related
protein 3. These gene products are known to interact with NSD1 [25–28]. In particular, we
observed that the NSD1 AT2 isoform is implicated in KRAS and β actin protein-associated
molecular pathways. In addition, the NSD1 AT3 isoform is involved in EP300, H4C6, H3-3B,
DDB1, FEM1A and FEM1B-related pathways. These results suggest that NSD1 potentially
functions to regulate genes involved in cell differentiation and proliferation, and that NSD1
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AT2 and NSD1 AT3 isoforms contribute to the regulation of pathways distinct from those
regulated by the canonical NSD1 isoform.

Table 1. Relevant significant differentially expressed probe sets after anti-NSD1 siRNA-AT1 treatment.

Probe Set ID Gene
Symbol Gene Name Seq. Name Log2 Fold

Change p-Value p-Value Adjusted

A_33_P3389286 SFN stratifin NM_006142 5.2 1.61 × 10−1 0.002

A_33_P3321205 BEGAIN brain-enriched guanylate
kinase-associated NM_001159531 1 0.002 0.011

A_33_P3363898 TUBG1 tubulin, γ 1 NM_001070 −0.29 0.011 0.03
A_32_P377880 GDNF glial cell derived neurotrophic factor NM_001190468 −0.4 0.009 0.025

A_23_P80694 ACTR8 ARP8 actin-related
protein 8 homolog NM_022899 −0.5 0.003 0.014

A_23_P377376 ACTR2 ARP2 actin-related
protein 2 homolog NM_001005386 −0.5 0.003 0.013

A_33_P3330283 SP1 Sp1 transcription factor NM_138473 −0.6 0.022 0.049
A_24_P726336 PHACTR2 phosphatase and actin regulator 2 NM_001100164 −0.6 0.018 0.043
A_33_P3363674 NFYC Nuclear transcription factor Y NM_001142590 −0.7 0.0019 0.010

A_33_P3260016 NEDD1 neural precursor cell expressed,
developmentally down-regulated 1 NM_152905 −0.7 0.003 0.014

A_24_P251969 FGF1 fibroblast growth factor 1 NM_000800 −0.8 1.13 × 10−2 0.029
A_23_P153256 FGF3 fibroblast growth factor 3 NM_005247 −0.8 8.64 × 10−6 0.035

A_23_P123193 ACTR3B ARP3 actin-related protein 3
homolog B NM_020445 −0.9 2.3 × 10−2 0.002

A_23_P162596 ACTR6 ARP6 actin-related
protein 6 homolog NM_022496 −1 0.006 0.019

A_23_P311201 ACTR3 ARP3 actin-related
protein 3 homolog NM_005721 −1.1 6.2 × 10−2 0.031

A_23_P208961 KRAS Kirsten rat sarcoma viral oncogene
homolog (KRAS) NM_004985 −1.1 8.00 × 10−6 0.039

A_33_P3363799 NCAM1 neural cell adhesion molecule 1 NM_001242607 −3.1 0.011 0.030

A_22_P00001924 DDB1 damage-specific DNA binding
protein 1 NM_001923 −3.9 7.04 × 10−2 0.029

Table 2. Relevant significant differentially expressed probe sets after anti-NSD1 siRNA-AT2 treatment.

Probe Set ID Gene
Symbol Gene Name Seq. Name Log2 Fold

Change p-Value p-Value Adjusted

A_23_P77493 TUBB3 tubulin, β 3 class III NM_006086 1 0.002 0.006

A_23_P102122 ARPC2 actin-related protein 2/3
complex, subunit 2, 34 kDa NM_152862 −0.2 0.007 0.010

A_23_P377376 ACTR2 ARP2 actin-related protein 2 NM_001005386 −0.4 7.9 × 10−3 0.004

A_24_P167473 ARPC3 actin-related protein 2/3
complex, subunit 3, 21 kDa NM_001278556 −0.5 0.002 0.006

A_33_P3416946 ACTR10 actin-related protein 10 homolog NM_018477 −0.7 0.013 0.014

A_24_P72479 ARPC1A actin-related protein 2/3
complex, subunit 1A, 41 kDa NM_006409 −0.8 0.005 0.009

A_23_P19291 TUBB2A tubulin, β 2A class IIa NM_001069 −0.8 0.002 0.006

A_33_P3338909 ARPC5 actin-related protein 2/3
complex, subunit 5, 16 kDa NM_001270439 −0.9 9.12 × 10−2 0.004

A_23_P60283 PHACTR2 phosphatase and actin
regulator 2 NM_014721 −1 0.001 0.005

A_21_P0014389 ACTR3 ARP3 actin-related protein
3 homolog NM_005721 −1 1.96 × 10−3 0.003

A_23_P162596 ACTR6 ARP6 actin-related protein
6 homolog NM_022496 −1 5.24 × 10−2 0.002

A_23_P123193 ACTR3B ARP3 actin-related protein 3
homolog B NM_005247 −1.1 0.002 0.007
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Table 3. Relevant significant differentially expressed probe sets after anti-NSD1 siRNA-AT3 treatment.

Probe Set ID Gene
Symbol Gene Name Seq. Name Log2 Fold

Change p-Value p-Value Adjusted

A_23_P344555 NEDD9 neural precursor cell expressed,
developmentally down-regulated 9 NM_006403 −0.05 1.13 × 10−2 0.0013

A_33_P3270009 NCOA1 nuclear receptor coactivator 1 NM_147223 −0.4 8.13 × 10−1 0.01
A_32_P75902 MEIOB meiosis specific with OB domains NM_152764 −0.6 8.08 × 10−8 0.01
A_23_P76774 GSC goosecoid homeobox NM_173849 −1.1 1.92 × 10−2 0.002

A_33_P3302389 FEM1A fem−1 homolog a NM_018708 −1.3 2.22 × 10−10 1.74 × 10−6
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Figure 5. Protein–protein interaction network among differentially expressed genes between wild
type fibroblasts group and treated with NSD1 siRNA-AT1 (A) or with NSD1 siRNA-AT2 (B) or
with NSD1 siRNA-AT3 (C). Protein–protein interaction networks were generated using the STRING
database to assess potential functional interactions among selected genes involved in actin cytoskele-
ton organization, cell differentiation and cell cycle regulation. Networks were expanded to assess
likely indirect interactions. Nodes represent gene products, and edges represent protein–protein
associations. Only the associations with an evidence score higher than 0.3 are shown, with colors
indicating different kinds of evidence. The legend for evidence type is shown in the bottom right
corner. Networks showed that the significantly modulated genes in the distinct experiments did not
show direct interactions with NSD1, but they did show indirect interactions with a subset of other
related gene products. Red circle showed NSD1 gene.

3.4. Gene Set Enrichment Analysis to Perform an Unbiased Biological Interpretation of the Data

Gene set enrichment analysis (GSEA) computationally assesses the coordinated expres-
sion modulation of functionally related genes between two groups [23]. GSEA analysis was
performed using the gene sets included in the chemical and genetic perturbation, hallmark
(H), and C2 gene ontology collections from the MSigDB database [24]. There were 89 signif-
icantly enriched biological processes and pathways in the anti-NSD1-siRNA-AT2 treated
fibroblasts compared to control fibroblasts (Figure 6A), and in the anti NSD1-siRNA-AT3
treated fibroblasts compared to untreated fibroblasts (Figure 6B). After NSD1 AT2 silenc-
ing, the most over-represented gene sets were related to cell cycle and proliferation, cell
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differentiation, and P53-mediated cell cycle arrest (Figure S5). The most under-represented
gene sets were related to cell cycle G2/M checkpoint and epithelial mesenchymal transition
pathway (Figure S6). In the treated fibroblasts after NSD1 AT3 isoform knockdown, we
observed that upregulated genes were mainly involved in TNFA signaling, NFKB, KRAS
signaling, and the inflammatory response. The most under-represented gene sets were E2F
pathway, MYC targets, the cell cycle G2/M, androgen response, and the unfolded protein
response pathway (Figure 6B). Additionally, we examined differentially regulated genes
from AT2 knock-down vs AT3 knock-down and observed that they target distinct subsets
of genes. Specifically, AT2-modulated genes contributed to actin cytoskeleton and stress
fiber formation, while AT3-regulated genes were involved in cell cycle regulation and in
tumoral and neoplastic development.
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Figure 6. Lists of statistically significantly enriched gene sets from the Hallmark collection. Gene Set 
Enrichment Analysis (GSEA) was used to perform an unbiased biological reasoning of the expres-
sion data in different treatments. Gene sets with nominal p − values < 0.05 and FDR q − values < 0.05 
were considered significantly enriched. Plots report the normalized enriched score of gene sets in 
decreasing order. The Y −axis reports the gene set names. (A) Gene sets enriched in the group treated 
with NSD1 siRNA-AT2. (B) Gene sets enriched in the group treated with NSD1 siRNA-AT3. It is 
evident that siRNA-AT2 treatment induces a downregulation of the mitotic spindle pathway, which 
is not observed after treatment with siRNA-AT3. 

Figure 6. Lists of statistically significantly enriched gene sets from the Hallmark collection. Gene Set
Enrichment Analysis (GSEA) was used to perform an unbiased biological reasoning of the expression
data in different treatments. Gene sets with nominal p-values < 0.05 and FDR q-values < 0.05
were considered significantly enriched. Plots report the normalized enriched score of gene sets in
decreasing order. The Y—axis reports the gene set names. (A) Gene sets enriched in the group treated
with NSD1 siRNA-AT2. (B) Gene sets enriched in the group treated with NSD1 siRNA-AT3. It is
evident that siRNA-AT2 treatment induces a downregulation of the mitotic spindle pathway, which
is not observed after treatment with siRNA-AT3.

3.5. NSD1 Is Involved in the Cytoskeleton Actin Stress Fiber (SFs) Organization Pathway

To investigate the potential role of NSD1 in cytoskeleton formation and fiber position-
ing in mitosis and meiosis, we performed immunofluorescence analysis with anti-β Actin
antibody after siRNA-AT1, siRNA-AT2 or siRNA-AT3 treatment. Fibroblast cultures were
treated with siRNA targeting each NSD1 isoform individually for 24h with or without anti-
Cy3 siRNA control (Figure 7). Interestingly, we observed that NSD1 canonical protein AT1
and NSD1 AT2 isoform were co-localized with β-actin proteins in a cell context-dependent
manner on SFs (Figure 7B,D). Using immunofluorescence staining, we confirmed NSD1
knockdown after siRNA treatment, and we observed that NSD1 AT2 isoform silencing
induced a morphological transition into an amoeboid phenotype in fibroblasts, with respect
to wild-type cells, characterized by a flat, elongated morphology and processes extending
out from the ends of the cell body (Figures 7A,B and S7).
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Figure 7. NSD1 loss in fibroblasts (FBs) impairs actin cytoskeleton organization and stress fiber
structure. (A) Representative images of FBs 24 h post-transfection with anti NSD1 siRNA-AT2
showed a morphological transition into an amoeboid phenotype and (B) FBs not transfected with
siRNA displayed a typical flat and elongated structure. (C) FBs transfected with anti-NSD1 siRNA-
AT1 showed NSD1 isoform 1 knockdown and normal β-actin expression. (D) FBs transfected with
anti Cy3 siRNA control. (E) FBs transfected with anti NSD1 siRNA-AT3 (×100 magnification; blue
= DAPI; red = NSD1; green = β-actin. Scale bar = 50 µm). Immunofluorescence images with NSD1
antibody, sc-130470, clone K47, confirmed that AT2 isoform silencing changed stress fiber organization
in fibroblasts, therefore we observed an ameboid phenotype induced by siRNA-AT2 treatment (A)
with respect to the canonical flat, elongated morphology characteristic of fibroblasts. Since the cells in
culture were heterogeneous, some differences of fluorescence intensity can be noted compared to the
same treatment condition in Figure 3.

4. Discussion

A more nuanced understanding of the biological functions of the NSD1 gene will lead
to insights into the etiologies of SoS and cancer. NSD1 encodes for a histone methyltrans-
ferase that regulates protein transcription by modifying chromatin. NSD1’s mono- and
di-methylation of H3K36 is mainly associated with regulating gene expression, DNA repair,
and alternative splicing [29,30]. An expanding body of research indicates that the range of
biological functions regulated by NSD1 is broad and complex [31–33].

Acquired somatic variants in NSD1 drive neoplastic cell transformation, whereas
germline mutations cause Sos. NSD1 mutations can inhibit cellular differentiation by in-
ducing alternate methylation of H3K36 [34,35]. This inhibition can promote oncogenesis, as
evidenced by the frequent occurrence of NSD1 mutations in cancer [36,37]. The association
between NSD1 and SoS is rooted in the gene’s role in regulating developmental processes.
It is reported that NSD1 is an important gene for early post-implantation and embryonic
development [38], aligning with its involvement in a congenital disease characterized by
developmental delay and overgrowth.

In this study, we investigated which genes are up- or down-regulated by the NSD1
canonical isoform AT1 and the NSD1 isoforms AT2 and AT3 after RNA interference using
siRNA-AT1, siRNA-AT2 and siRNA-AT3. We used fibroblast cell line fibroblasts cell lines
because they were used as in vitro model for patients carrying NSD1 mutation affected by
Sotos Syndrome. We already have produced iPSC from those cell lines [39,40].

Our results showed that NSD1 AT1 canonical isoform and NSD1 AT3 isoform are
involved in the control of different genes important for neoplastic pathways and cell cycle
regulation, while NSD1 AT2 isoform was involved in cytoskeleton organization and actin
fiber distribution. Expression Microarray analysis revealed 4174 significantly differentially
expressed mRNAs after NSD1 canonical AT1 isoform silencing, 9785 significantly differen-
tially expressed mRNAs after NSD1 AT2 silencing and 337 after NSD1 AT3 silencing. To
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better understand the potential underlying mechanisms of the DEG, we also performed in
silico GSEA analyses.

The results demonstrated that genes involved in meiotic and mitotic division are up- or
down-regulated by specific NSD1 isoforms. Relevant points of regulation included check-
points that control transitions between cell cycle phases and the onset of cell senescence.
Abnormalities in regulation of this nature have been determined to be associated with
neoplastic disease and tumor development [41]. Furthermore, we found that the KRAS sig-
naling pathway, TNFA signaling via NFKB, and apoptosis by CDKN1A via TP53-signaling
were remarkably upregulated in fibroblasts after NSD1 AT1 or AT3 isoform silencing. On
the other hand, genes involved in DNA repair, cell cycle G2/M checkpoint and epithelial
mesenchymal transition pathways were remarkably downregulated in fibroblasts after
NSD1 AT1 and NSD1 AT3 silencing. Among the differentially expressed genes, KiSS-1
was the most upregulated by NSD1 AT2 (FC = 6.6). The KiSS-1 protein inhibits melanoma
and breast carcinoma metastasis [42,43]. This metastasis-suppressor protein may interfere
with the migration of cancer cells toward signals promoting their invasion. Additionally,
changing the cytoskeleton structure has been proposed as a mechanism by which the KiSS-1
protein suppresses metastasis [44]. T-cell lymphoma invasion and metastasis 1 (TIAM1)
was the most downregulated gene by the NSD1 AT2 isoform (FC = −5.5). Therefore, when
integrated with the previously reported evidence, our study suggests the potential impor-
tance of the AT2 isoform (along with the NSD1 AT1 canonical protein) in regulating genes
involved in cell cycle, mitotic translation, and G2/M checkpoint.

In this study, comprehensive gene expression analysis was performed after gene
expression suppression by siRNA. Our results showed a change in the gene group, whose
expression differed both as a direct result of the of gene expression suppression and also as
a secondary consequence due to the suppression of the first gene. Further research should
be carried out to distinguish between the direct and indirect expression consequences.

According to the reported involvement of NSD1 in tumorigenesis [45,46], our study
may help to clarify which distinct pathways of genes associated to tumor are specifically
regulated by different NSD1 isoforms. In addition, in our study, FEM1A was the most
down-regulated gene after NSD1 AT3 knockdown (FC= −1.3) and DCLK1 was the most
up-regulated gene after anti-NSD1 siRNA-AT3 knockdown (FC = 0.9). FEM1A encodes for
fem-1 homolog A protein, a negative regulator of inflammatory response and ubiquitin-
dependent protein catabolic process [47]. DCLK1 encodes for the doublecortin-like kinase
1, which binds microtubules and regulates microtubule polymerization [48]. This kinase is
also important during brain development due to its involvement in the calcium-signaling
pathway that controls neuronal migration [48].

We also observed that the AT1 canonical and AT2 isoforms co-localized with β-actin
proteins in a cell context-dependent manner on cytoskeleton actin stress fibers. In recent
years the idea of the “histone code” has been reconceptualized as a “tubulin code” to de-
scribe how post-translational modifications (PTMs), like histone H3 lysine 36 trimethylation
(H3K36me3). of chromatin distinctly label subsets of microtubules in the cytoskeleton [49].
Other PTMs, such as phosphorylation, detyrosination, polyglutamylation, polyglycylation
and acetylation, are concentrated on specific microtubule structures. like neuronal axons,
primary cilia, centrioles and basal bodies.

Microtubule-associated proteins (MAPs) are able to recognize PTMs and promote
dynamic changes in microtubules during mitosis [50]. The role of PTMs associated with
the mitotic spindle and midbody microtubules in mitotic polymerization and depolymer-
ization remains unclear [51–53]. Moreover, in cancer, where defects in genes involved in
chromatin remodeling of H3K36me3 are detected with high frequency, research has fo-
cused on chromatin and the consequences of H3K36me loss on the epigenome. Our results
highlight that the NSD1 AT2 isoform could cooperate with the long canonical AT1 protein
in regulating cytoskeleton fibers during mitosis and meiosis processes. Currently, we
propose our manuscript that shows the first functional evidence based on transcriptomics
and immunohistochemistry In addition to gene expression analysis and immunostaining
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assay, more validation is necessary to confirm our data regarding cell cycle assay and gene
silencing on up-regulated and down-regulated target of NSD1 isoforms.

5. Conclusions

In summary, this study suggests that in fibroblasts the AT2 NSD1 isoform plays a role
in β-actin interaction and in stress fiber organization, while NSD1 isoform AT3 promotes
AT1 canonical isoform activity as a check point of cell differentiation and cell division,
preventing neoplastic transformation. These expression signatures may be useful tools to
understand the function of NSD1 in different cellular processes and to determine the specific
impact of NSD1 isoforms on the mechanisms of tumorigenesis and in embryogenesis.

Further studies are necessary to clarify the detailed molecular mechanism of inter-
action between NSD1 and β-actin, as well as its impact on cytoskeleton actin stress fiber
organization.
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