Chapter 10

Fast kernel methods for Data Quality
Monitoring
as a goodness-of-fit test

In this chapter, we address the data quality monitoring problem in high-energy physics domain
outlined in Chapter 1. The objective is to evaluate the compatibility of incoming experimental
data with a reference dataset obtained under normal circumstances. Additionally, given the
high data volume generated by experimental devices used in high-energy physics experiments,
we aim to design a procedure capable of detecting anomalies in real-time.

To accomplish this, we propose an accurate and efficient machine learning approach for real-
time monitoring of particle detectors. Our method assesses the compatibility of experimental
data with the reference dataset using a likelihood-ratio hypothesis test. The model is based on
modern kernel methods, which are nonparametric algorithms capable of learning any continu-
ous function given sufficient data.

The resulting approach is efficient and agnostic to the types of anomalies present in the data.
Our study demonstrates the effectiveness of this strategy using multivariate data from drift tube
chamber muon detectors.

Contributions.

* We introduce a new machine learning pipeline for monitoring real-time particle detectors.

* We verify the efficiency and the effectiveness of our pipeline on an empirical experiment.

Status.

This chapter is based on our paper: Grosso, G., Lai, N., Letizia, M., Pazzini, J., Rando, M.,
Rosasco, L., Wulzer, A. & Zanetti, M. (2023). Fast kernel methods for data quality mon-
itoring as a goodness-of-fit test. Machine Learning: Science and Technology, 4(3), 035029.
[GLL*23].
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10.1 Introduction

Modern high-energy physics experiments operating at colliders are extremely sophisticated
devices consisting of millions of sensors sampled every few nanoseconds, producing an enor-
mous throughput of complex data. Several types of technologies are employed for identifying
and measuring the particles originated in the collisions; in all cases, the environmental con-
ditions are severe, making the required performances challenging to achieve. Although the
various subsystems are designed to offer redundancy, measurements can be undermined by
malfunctions of parts of the experiment, either because of critical inefficiencies or because
of possibly misinterpreted spurious signals. In addition to supervising the status (powering,
electronic configuration, temperature, etc.) of the various hardware components, data from
all sources must thus be monitored continuously to assess their quality and to promptly detect
any faults, possibly providing indications about their causes. Given the rate of tens of MHz
at which data is gathered and the number of sensors to be checked, the monitoring process
needs to be as automated as possible: approaches based on Machine Learning (ML) techniques
are particularly appealing for this task and have started being employed by the experimen-
tal collaborations [PCGP22, PCG"19, AAC"19, AAB*17], complementing more traditional
methods [Rov15, AvBB*19, Marl9, Kau22, A*20]. Data quality monitoring (DQM) consists,
in essence, of comparing batches of data with corresponding reference samples gathered in
nominal conditions; departures from the latter can then be analysed to identify their origin.
The data processing must fit the computational constraints imposed by the frequency at which
batches are delivered and by their size, with the latter depending on the granularity with which
sensors are grouped and the statistical uncertainty aimed at.

In this work, we present the application of a methodology developed in the context of model-
independent searches for new physics [DW19, DGP*21, dGP*22]—specifically of its kernel
methods implementation [LLR*22] based on the Falkon [MCRR20] library—as an efficient
and effective DQM tool. The method (dubbed NPLM) implements a hypothesis test leveraging
the ability of classifiers to infer the underlying data-generating distributions in order to estimate
the likelihood ratio test statistic. The Falkon-based implementation of NPLM offers tremen-

dous advantages in terms of training time compared to the one based on neural networks. It can
thus be used for DQM.

Conventional DQM methods typically consider a number of one-dimensional distributions; a
key feature of NPLM is the capability of examining the phase space as a whole, not depending
critically on the choice of input variables and being sensitive to their correlation. It is then pos-
sible to provide low-level quantities to the algorithm that require limited pre-processing. This
can be particularly advantageous for DQM, as it allows it to deal with almost raw data from the
detectors’ electronic front-ends, therefore limiting the bias introduced by further manipulations
that could hide issues in the data.

To test the effectiveness of NPLM for DQM, we exploit an experimental setup which we have
full control of, consisting of a reduced-size version of the muon chambers installed in the
CMS experiment at the Large Hadron Collider (LHC). The setup is operated as a cosmic muon
telescope. As explained later, scaling tests are performed to assess the performances of the
DQM algorithm in view of its possible deployment during standard LHC operations.

The paper is organised as follows. In the next section, we introduce the experimental setup
and the algorithm input variables. These include a reference data set collected under standard
conditions and smaller samples with anomalous controlled behaviours. The ML model and our
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Figure 10.1: Left: the experimental apparatus at Legnaro Laboratory, with four drift-tube cham-
bers, vertically stacked. Right: a schematic view of the cell (bottom) and an example of hit
pattern left by a charged particle crossing a chamber (top).

core strategy are then described in Section 10.3, whereas an overview of the results is given in
Section 10.4. Finally, the last section is devoted to conclusions and further developments.

10.2 Experimental setup

For this research, we exploited an experimental apparatus consisting of a set of Drift Tube (DT)
chambers housed at the Legnaro INFN National Laboratory (Fig. 10.1, left). These chambers
are a smaller in size copy of those deployed in the CMS experiment at the LHC [CT08]. The
basic element of a DT chamber is a 70 cm long tube with a cross section of 4 x 2.1 cm?
(Fig. 10.1, bottom right). Inside each tube, an electric field is produced by an anodic wire laid
in the centre and two cathodic strips (cathodes) on the sides; the former is set at a voltage of
3.6 kV, the latter at —1.2 kV. An additional pair of strips at 1.8 kV is placed above and below
the wire to improve the homogeneity of the field. The tubes are filled with a mixture of argon
and carbon dioxide gas (85%-15%) that gets ionised by charged particles passing through it.
The produced electrons drift towards the wire at a constant velocity along the field lines, where
they are collected. For each tube, the front-end electronics record the arrival time of the ions,
amplify the signal, and filter out noise below a specific threshold (nominally 100 mV).

A drift tube chamber consists of 64 tubes arranged in four layers of 16 tubes each. The layers
are staggered horizontally by half a cell. The setup at Legnaro records muons from cosmic
rays, which occur at a rate of about 1 per minute per cm? at sea level. Data acquisition occurs
continuously at a rate of 40 MHz, without the need for any trigger logic. An external time refer-
ence is provided by plastic scintillators placed in between the DT chambers; the corresponding
information is added to the data stream and used in the following analysis steps.

Thanks to the homogeneity of the electric field, the particle’s position within each tube (with a
left-right ambiguity) is linearly dependent on the drift time. Namely, the distance of the muon
track from the wire reads

T4+ = :I:vd (thit - to) = j:vdt, (101)

with %,;; the time associated to each signal in a tube (called a hit). The two parameters are
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the drift velocity vy, known by means of a calibration procedure (in our case, v; = 53 ym/ns),
and the time pedestal ¢y, which can be deduced from the timing information provided by the
scintillators'. The drift time ¢ is obtained by the difference between t,;; and the time pedestal.

The hits occurring in a time window of 90 ps centred around the signal provided by the scintilla-
tors are grouped in quadruplets (with one hit pertaining to each of the four layers as in Fig. 10.1,
right top). Then, a linear fit is performed on each of the quadruplets and the candidate muon
track is obtained from the combination yielding the best x2. In this way the trajectory of the
muon in the plane transverse to the tubes is determined, with a precision on the position of
about 180 um and on the slope of about 1 mrad. Tracks from various DT chambers can be com-
bined to determine the 3D muon trajectory; in the following we will however consider only the
2D measurement.

If the detector conditions are anomalous, the efficiency and accuracy of the muon track recon-
struction may be compromised. Ensuring the proper operation of the detector thus requires
monitoring the quality of the recorded data. In what follows, we consider six basic quantities
related to the passage of a muon through a DT chamber:

¢ Drift times t;: the four drift times associated with the muon track. The drift time distri-
bution is displayed in Fig. 10.2 in different ranges for the muon track angle 6 (or “slope”,
see the next item), showing the correlations between these two variables. The ¢; distribu-
tions are also reported in Figs. 10.3 and 10.4.

* Slope 6: the angle formed by the muon track with the vertical axis. The chamber effi-
ciency is expected to drop beyond |f| ~ 40 degrees as we see in Figs. 10.3 and 10.4.

¢ Number of hits np;.: the number of hits recorded in a time window of one second around
the muon crossing time. Many spurious hits are present in addition to those due to the
passage of a muon. The noise rate depends on the environmental conditions, with the
one at the LHC orders of magnitude larger than that of our laboratory in Legnaro, but the
recorded spurious hits rate can also be affected by issues related to the detector operation
conditions.

The six variables x = {t1,...,t4,0, ngys} will be the input features of the NPLM algorithm
for DQM, described in the next sections. Notice that the data are gathered from the subset of
tubes in a single chamber that geometrically matches the scintillators, i.e. about three tubes per
layer.

We collected the data by artificially inducing possible issues that can occur during detector
operations. Specifically, we reduced the voltage of the cathodic strips to 75%, 50%, and 25%
of their nominal value (-900 V, -600 V, and -300 V, respectively), and we lowered the front-
end thresholds to 75%, 50%, and 25% of their nominal value (75 mV, 50 mV, and 25 mV,
respectively). The former action distorts the electric field shape, whereas the latter mimics the
sudden contribution of noise sources. We conducted a dedicated data acquisition campaign in
these six anomalous configurations, collecting around 10* events for each configuration. We
also collected around 3 x 10° data points in the normal (or, reference) working conditions of
the apparatus.? The distribution of the six input features for the reference data and the data

'In addition a mean-timer algorithm [MPT*22] is executed on the back-end board receiving the data. The
timing information provided by that algorithm is currently not used in this analysis.
2Dataset available at https://doi.org/10.5281/zenodo.7128223.
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Figure 10.2: Drift time distribution in different ¢ ranges.

collected under the different anomalous conditions are shown in Fig. 10.3 (variation of the
cathodes voltages) and Fig. 10.4 (variation of the thresholds). These data will be used to design
and calibrate the DQM algorithm, as described in the following section.
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Figure 10.3: The distribution of the input features in the reference and in three anomalous
working conditions of the cathodes voltages

10.3 Methodology

In the setup described in the previous section, we are interested in assessing the quality of
individual batches of data collected by the apparatus, each of which denoted as D = {x;}}7,.
Namely, we ask whether the statistical distribution of the data points in D coincides or not with
the one expected under reference working conditions, p(x|R). We thus aim at performing what
is known in statistics as a goodness-of-fit test. See [Cou] for references and a concise overview.
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Figure 10.4: The distribution of the input features in the reference and in three anomalous
working conditions of the thresholds.

The reference distribution p(z|R) is not available in closed form. What is available is instead
a second dataset R = {xi}i-vfl collected by the same apparatus when operated in the reference
working conditions, such that the data in R do follow the p(x|R) distribution. Our goodness-
of-fit test is thus carried out by comparing the two datasets D and R, asking whether they
are sampled from the same statistical distribution. The problem can then be formulated as a
two-sample test, in which, however, D and R play asymmetric roles.

The data batch D is what needs to be tested. Therefore its composition and its size, Np, are
among the specification requirements of the DQM methodology we are developing. Np ~ 1000
is in the ballpark of what is typically considered by DQM applications deployed at CMS.

The reference dataset R is instead created within the methodology design, with mild or no limi-
tation on its size, Nz. A larger R dataset offers a more faithful representation of the underlying
reference statistical distribution and therefore a more accurate test. Furthermore, taking Nr
larger than Np reduces the effect of the R dataset statistical fluctuation on the outcome of the
test, leaving only those inherently due to the fluctuations of D. This makes the outcome for a
given data batch D nearly independent on the specific instance of the set R that is employed for
the test, making the result more robust. In what follows, we will thus preferentially consider
an unbalanced setup for the two datasets, with Nx > Np. We will further exploit the avail-
ability of a relatively large volume of data collected under the reference working conditions for
calibrating the test statistics variable and for selecting the hyperparameters, as discussed in the
following.

The availability of a large set of data that are accurately labelled as having been collected
under the reference detector conditions deserves further comments. These data are routinely
available, in particular in high-energy physics experiments, and are in fact used for the design
and calibration of regular DQM methods [Rov15, AvBB*19, Mar19, Kau22, A*20]. They are
validated by a careful offline inspection, which typically requires human intervention. This
validation process is way too demanding and slow to be employed as a DQM algorithm. The
purpose of DQM is in fact to monitor the data quality online, i.e. while they are being collected.
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The offline validation is instead straightforwardly capable of producing labelled reference data
samples that are way larger than individual data batches.

10.3.1 The NPLM method

We employ the “New Physics Learning Machine” (NPLM) method, which was proposed and
developed by some of us [DW19, DGP*21, dGP*22, LLR*22] to address a similar problem
in the different context of searches for new physical laws at collider experiments. The search
for new physics is performed by comparing the measured data with a reference dataset whose
statistical distribution is the one predicted by a standard set of physical laws that supposedly
describe the experimental setup. The purpose of the comparison is not to assess the quality of
the data like in DQM, but the quality of the distribution prediction and in turn to check whether
the standard laws are adequate or, instead, new physical laws are needed to model the experi-
mental setup. However, this conceptual difference does not have practical consequences. The
NPLM setup of D versus R data comparison is straightforwardly portable to DQM problems.

The NPLM method design is inspired by the classical approach to hypothesis testing based
on the likelihood ratio [NP33]. A model fy,(x) acting on the space of data =, with trainable
parameters w, is employed to define a set of alternatives to p(x|R) for the distribution of the
data points in D. Since the alternative hypothesis depends on w, we denote it as Hy, and
p(z|Hy,) is the alternative distribution of x. In particular, f,, (z) directly parametrises the log-
arithm of the ratio between p(z|Hy,) and p(z|R). The model fy (x) could be a neural network
as in [DW19, DGP*21, dGP'22], or it could be built with kernel methods [LLR™22]. We
will employ the latter option for reasons that will become clear soon. The model is trained
by adjusting its parameters to best accommodate the observed data. Consequently, the trained
parameters w define the best-fit hypothesis H ;. Following [NP33], the test statistic variable to
be employed for the assessment of the quality of the data D is *

—ZZlg le wa . (10.2)

In order to train the model we exploit a classical result of statistical learning: a continuous-
output classifier trained to tell apart two datasets approximates —possibly up to a given mono-
tonic transformation— the log ratio between the probability distribution of the two training
sets. This property is proven explicitly in e.g. [DW19, LLR*22] for the weighted logistic loss

Uy, fw()) = (L=y)(1+Ni/Np) log (1 + e™®) 4y (1+No/N1) log (1 + e~ @) . (10.3)

By assigning label y = 0 to the data in R, and y = 1 to those in D, the model f;(x) trained
with the loss in Eq. (10.3) approaches the logarithm of p(z|Hy)/p(z|R) as it was needed in
Eq. (10.2). The weight factors in Eq. (10.3), which depend on Ny /Ny = Np/Ng, are included
because the two training datasets are unbalanced as previously explained.

A direct application of the classical theory of hypothesis testing [NP33] would actually suggest
to employ a different loss function. In fact, the best-fit parameters w to be used in the definition

3Unlike in NPLM applications to new physics searches, the total number of data points in D is not a random
variable, but is fixed to the data batch size. The regular likelihood for i.i.d. data is thus employed rather than the
extended likelihood. Correspondingly, the test statistic contains one term less than in [DW19, DGP*21, dGP*22,
LLR*22].
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of the test statistic (10.2) should be those that maximise the likelihood function. Minimising
the logistic loss produces instead an estimate of the best-fit parameters that is different, a pri-
ori, from the maximum likelihood estimate. This can be remedied by employing a special loss
function called “maximum likelihood loss”, whose minimisation is equivalent to maximising
the likelihood [DW19]. The maximum likelihood loss is not used in the kernel-based imple-
mentation of NPLM [LLR"22] and the logistic loss (10.3) is preferred for practical reasons.
No strong performance degradation has been observed using the logistic loss in place of the
maximum likelihood loss in the tests of the NPLM method performed so far.

Using the elements above, the design of the NPLM method for DQM works as follows. We
first pick up a model for fy, () and select its hyperparameters. The hyperparameters selection
strategy is described in the next section for the kernel-based implementation of NPLM. Next,
we need to calibrate the test statistics variable (10.2) in order to be able to associate its value
t(D) to a probability p[t(D)], the p-value. This probability will be the output of the DQM
algorithm. Based on its value, the analyser will eventually judge the quality of each data batch
D. For instance, the analyser might define a probability threshold, below which the data batch
is discarded or set apart for further analyses. Above the threshold the batch could be retained
as a good batch.

It should be noted that the selected hyperparameters and the p-value do depend on the detailed
setup of the DQM problem under consideration. For instance, different hyperparameters will
be used in Section 10.4 for the setup with 5 input features and data batch size Np = 1000
than in the case of 6 features and Np = 500. The p-value calibration function p[t| will be also
different. However, once these elements are made available for a given setup, they can be used
to evaluate the quality of all the D batches in that setup. The only operation that the DQM
algorithm has to perform at run-time is one single training of D against R, out of which ¢(D)
is obtained and in turn p[¢t(D)].

Calibration is performed as follows. The test statistics (10.2) is preferentially large and positive
if the best-fit alternative distribution p(z|H;) accommodates the data better than the reference
distribution p(x|R) does, signalling that the data batch is likely not drawn from p(z|R). Large
t(D) should thus correspond to a small probability. The precise correspondence is established
by comparison with the typical values that ¢ attains when the data batch is instead a good batch.
We thus compute the distribution, p(¢|R), that the ¢ variable possesses when the data follow the
reference statistical distribution and the p-value is defined as

plt] = / dt' p(t'|R). (10.4)
¢

The physical meaning of p[t(D)] is the probability that a good data batch gives a value of ¢ that
is more unlikely (i.e., larger) than the value ¢(D) produced by the batch D. If a threshold is set
on p, this threshold measures the frequency at which good data batches are not recognised as
such by the algorithm.

The p(¢|R) distribution is straightforwardly estimated empirically, thanks to the availability
of reference-distributed labelled data points. We create several artificial data batches—called
Toy datasets— of the same size Np as the true batches. We run the training and compute
t on each of them. Each Toy dataset should be statistically independent, and independent
from the reference dataset ‘R that is employed for training. A very large sample of reference-
distributed data is thus used in order to produce both the Toy batches and the reference dataset.
By histogramming the values of ¢ computed on the Toys we could easily obtain an estimate

194



of p(t|R) and hence of p[t]. A different procedure is adopted here, exploiting the empirical
observation [LLR22] that p(¢|R) is well approximated by a chi-squared (%) distribution. The
number of degrees of freedom of the x? depends on the setup but can be determined by fitting
to the empirical distribution of the ¢ values computed on the Toys. The survival function (one
minus the cumulative) of the corresponding x? distribution will be used as an estimate of p[t]. It
should be noted that by proceeding in this way we will be formally able to compute very small
p-values that correspond to highly-discrepant data batches with very large ¢(D). However, the
agreement of p(¢|R) with the x? cannot be verified in the high ¢ region, which the Toys do
not populate, and there is no theoretical reason to expect that this agreement will persist in
that region. Our quantification of the p-value is thus only accurate in the region that the Toys
statistically populate. For instance, if 300 Toys are thrown, only p-values larger than around
1/300 are accurately computed. If ¢(D) falls in a region where our determination of p is much
smaller than that, ours should be regarded as a reasonable estimate that is particularly useful
to compare the level of discrepancy of different batches, but it cannot be directly validated.
However, in those cases we will be able to ensure that p[t(D)] < 1/300 by directly comparing
with the ¢ values on the Toys.

Another feature of the NPLM approach is the possibility of exploiting the function f,; learned
during the training task to characterise anomalous batches of data. The function f,; represents
the log-ratio between p(x|H;) and p(z|R) and, hence, can be used to deform and adapt the
reference distribution to the data by reweighting, according to the following expression

p(z|Hy) = e*@p(z|R). (10.5)

The function exp( f,;(x)) will be close to one if the data are well-described by the reference dis-
tribution, while it will depart from it otherwise. One should therefore be able to gain additional
information about the anomalous batch by inspecting this quantity as a function of the input
variables, or any combination of them, even when not explicitly provided as an input feature for
the training. Having access to this kind of information is a valuable element in the context of
the search for new physics [DW19, DGP*21, LLR"22], since the physics-motivated variables
that one might want to inspect to explain a potential anomalous score could be some type of
nontrivial combination of the input features with a clear physical meaning, such as the invariant
mass of a many-body final state. For DQM applications, this analysis is less relevant since a
direct visual inspection of the ratio between the binned data and reference marginal distribu-
tions is already quite informative and the user might not be not interested in exploring specific
high-level features in the first place. On the other hand, one can still exploit the possibility of
reconstructing the data distribution using f; as a debugging tool, namely to check whether the
learning model correctly recognises if the data deviates from the reference and how.

Moreover, somewhat aside from the main goal of the present article, the output of the NPLM-
DQM application could be exploited to study those data batches that display significant devi-
ations from the reference and, depending on the characteristic of the departures, to classifying
them into different anomalous categories. Further investigations on a possible extension of the
application in this respect are left for future work.

10.3.2 Falkon-based NPLM

Applying NPLM to the DQM problem is simpler than using it for new physics searches. For
new physics searches one needs to worry about imperfections in the reference data that stem
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from the mismodelling of the reference distribution based on the underlying standard physical
laws. Including these effects in NPLM is possible but requires dedicated work and domain-
specific expertise [dGP22]. Mismodelling is not a concern in DQM problems because no
modelling is required at all: the reference-distributed data are merely collected from the same
experimental apparatus and not simulated. NPLM algorithms for DQM can thus be designed
more easily and systematically without the need for extremely specialised domain knowledge.

DQM applications are, however, much more computationally demanding than new physics
searches. For new physics searches there is typically only one dataset D to be analysed. For
DQM, a large flow of data batches needs to be analysed online. We will see in Section 10.5
that, for instance, order 10 seconds are needed to the CMS muon system to collect one data
batch. Our DQM algorithm must respond on a competitive timescale in order to be applicable
to that problem. The relevant operation time is the one needed for a single training, as pre-
viously explained. The original implementation of NPLM based on neural networks is vastly
incompatible with this requirement. On the other hand, the one based on kernel methods is
much faster to train on problems of comparable scale [LLR*22]. It could thus match the spec-
ification requirements for applications to LHC detectors.

The performance of the kernel-based version of NPLM stems from those of the Falkon [MCRR20]
library, the core algorithm powering our implementation. A sketch of the basic theoretical and
algorithmic ideas implemented in Falkon, developed in Ref. [RCR17, MFBR19, MOBR19],
are reported below.

With kernel methods, one learns functions of the following form

N
ful@) = wiky(z,2;) | (10.6)
i=1

with N = Ny + N; the total size of the training dataset. Here k,(z, x;) is the kernel function
and o some hyperparameter. We consider the Gaussian kernel

ko (x,2) = e le=IP/20% (10.7)

so that fy, is a linear combination of Gaussians of fixed width o, centred at the training data
points. The optimisation of the model parameters w is achieved by minimising the empirical
risk L( fw), plus a regularisation term

La(fw) = L(fw) + AR(fu) - (10.8)

The empirical risk in our case is the one associated with the logistic loss (10.3)

N
L(fw) =Y i, fu(z)). (10.9)
=1
The regularisation term is given by

R(fw) = Zwiwjkg(xi, l’j) . (1010)
tj

Its relative importance in the optimisation target (10.8) is controlled by the hyperparameter \.

Kernel methods are non-parametric approaches, in the sense that the number of parameters w
in Eq. (10.6) increases automatically with the total number of data points. Gaussian kernel
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methods are universal, meaning that they can recover any continuous function in the large
sample limit [MXZ06, CS08]. However, optimising the function in Eq. (10.6), with the target in
Eq. (10.8), requires handling an NV x N matrix—the kernel matrix—with entries k, (z;, z;). The
computational complexity of the optimisation thus scales cubically in time and quadratically
space with respect to the number of training points N [RCR17, MCRR20]. These costs prevent
the application to large-scale settings, and some approximation is needed.

Within the Falkon library, the problem of minimising Eq. (10.8) is formulated in terms of an
approximate Newton method (see Algorithm 2 of [MCRR20]). The algorithm is based on
the Nystrom approximation, which is used twice. First, to reduce the size of the problem, by
considering solutions of the form

M
fwl@) =Y wiky (2, ), (10.11)
=1

where {Z1,...,Zy } C {z1,...,2n} are called Nystrom centres and are sampled uniformly at
random from the input data. The number of centres M < N is a hyperparameter to be chosen.
Then, Nystrom approximation is again used to derive an approximate Hessian matrix

N 1 -
H=—-TDTT + ). 10.12
i + ( )

Here, T is such that 77T = K (Cholesky decomposition), with K € RM*M the kernel matrix
subsampled with respect to both rows and columns. D € RM*M jg 4 diagonal matrix s.t.
the i-th element is the second derivative of the loss ¢’(y;, fw(x;),) with respect to its first
variable. Eq. (10.12) is then used as a preconditioner to perform conjugate gradient descent.
With this strategy, the overall computational cost to achieve optimal statistical bounds is O(N)
in memory and, of particular importance for our scope, O(N+v/N log N) in time. The reader

can find more details in Ref. [MCRR20].

Hyperparameters selection

The selection of the three Falkon hyperparameters M, o and A follows the prescriptions of
Ref. [LLR"22], with one minor modification described below. The hyperparameters selection
employs data collected under the reference working condition, and proceeds as follows.

The number of centres M controls the expressive power of the model and therefore it should be
as large as possible not to compromise the sensitivity to anomalous distributions with intricate
shapes. It must also be at least as large as v/ in order to achieve statistically optimal bounds of
the training convergence. At the same time, training is faster if M is smaller. The experiments
performed in Ref. [LLR"22] show that any value of M above around the data batch size Np
does not compromise sensitivity.

The Gaussian width o is selected as the 90th percentile of the pairwise distance between
reference-distributed data points. Notice that the model (10.11) acts on an input vector x whose
input features are standardised to have zero mean and unit variance on reference-distributed
data. The same standardisation is applied before computing the distances.

The regularisation parameter \ is kept as small as possible while keeping training stable, i.e.
avoiding large training times or non-numerical outputs. A number of reference-distributed Toy
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data batches is employed for this study, each trained against the reference sample R. Some
of the experiments performed in this paper employ quite smaller data batches (e.g., Np =
250) than those considered in Ref. [LLR"22]. In these new conditions we observe that the
compatibility of the test statistic distribution with a x? (see the end of Section 10.3.1) is violated
for very small \. In these cases, we raise \ until when the agreement with the ? is restored.

The hyperparameters selected with the above criteria, in the different setups for DQM consid-
ered in this paper, are reported in Table 10.1.

NR ND M g A dof

250 107 40

5D 2000 500 2000 4.5 1077 83
1000 1078 171

250 58

6D 2000 500 2000 4.8 1076 78
1000 109

Table 10.1: NPLM algorithm parameters configuration for the five-dimensional and six-
dimensional experiments considered in this work. The numbers of degrees of freedom of the
x* that best approximates p(t|R) is reported in the last column.

10.3.3 Alternative approaches

Goodness-of-fit and two-sample test problems are of interest in several domains of science.
Many approaches exist, and developing new strategies is an active area of research. One heuris-
tic reason to choose NPLM for DQM, among the many different options, is that it has been
developed in the challenging context of new physics searches. Prior experimental and theo-
retical knowledge suggests that new physics is elusive. The target for new physics searches
is thus to spot out minor departures of the actual data from the reference distribution. These
departures could emerge either as small corrections to the distribution shape or as relatively
large corrections like sharp peaks, which however only account for a very small fraction of
the experimental data. Detecting such small effects requires precisely comparing the reference
distribution with large datasets, which NPLM is designed to perform. Using NPLM for DQM
could thus enable a more accurate monitoring of the data offering sensitivity to more subtle
failures of the apparatus. The number of input features in the data that are typically relevant for
new physics searches ranges from few to tens, which is an adequate number also for the moni-
toring of individual detectors and detector systems fully exploiting the correlations among the
variables. For comparison, methods to assess the quality of generated images target instead
order thousand-dimensional input data. They could be less performant for DQM as they are
designed to address a radically different problem.

These heuristic considerations suggest that NPLM is a reasonable starting point for the develop-
ment of novel DQM algorithms based on advanced multivariate goodness-of-fit or two-sample
test methods, which we advocate in this paper. On the other hand, no comprehensive com-
parative study of the NPLM performances is currently available. Such comparison is beyond
the scope of this paper. However, the DQM problems and datasets we study will be useful
benchmarks for future work in this direction.
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Work has initiated [CKLW21, GLPW] to compare NPLM with a certain class of methods,
called “classifier-based” methods. The classifier-based approaches [Fri03] are all those that
entail training a classifier to tell apart D from R and using the trained classifier to construct a
test statistic for the hypothesis test. A simple implementation [LO17] employs the classification
accuracy as test statistics. Following the standard pipeline for classifiers, the model is trained on
part of the D and 'R datasets (the training set), while the accuracy is evaluated on the remaining
data (the test set). The idea is that while the accuracy will be poor (around random guess) if D
and R follow the same distribution, it will be higher if their distributions differ.

NPLM is technically a classifier-based method. Its major peculiarities are the choice of the
likelihood ratio test statistic in Eq. (10.2) and the fact that the entire datasets are employed both
for training and for the evaluation of the test statistics. None of these choices is motivated from
the viewpoint of the theory of classification, while they are both natural or in fact required from
the perspective of the theory of hypothesis testing that underlies the NPLM approach. Perfor-
mance studies in [GLPW] show that these choices are beneficial for the sensitivity. These re-
sults partly contradict Ref. [CKLW21], which however employs different classification models,
different criteria for hyperparameters selection and uses permutation tests for the estimate of
the sensitivity rather than computing it empirically as in NPLM. These differences are evidently
responsible for the different findings and more work is needed for a conclusive assessment.

10.4 Results

In this section, we present the application of the NPLM strategy for DQM to the DT chambers
data described in Section 10.2.* We will consider monitoring data batches of variable size
Np = 250, 500 and 1000, by employing a reference dataset of fixed size Nz = 2000.

The input data consists of six features: the four drift times, the muon angle and the number of
hits. As shown in the bottom-right plots of Figures 10.3 and 10.4, the number of hits, 1, 1S
highly discriminant for the anomalies we considered in our study, and in particular for the ones
affecting the thresholds (the lower the threshold, the higher the noise). At the LHC, however,
that quantity also depends on the luminosity delivered to the experiment, which could vary
greatly even during a single run. Not being necessarily a proxy to a detector issue, it is worth
considering also the case where only the other five variables are provided to the algorithm; as an
additional benefit, this will allow assessing the ability of the NPLM DQM approach to exploit
correlations between variables and detect anomalies even when their effect is unexpected and
not straightforwardly evident.

The left and middle panels of Figure 10.5 show the test statistics distribution in the five-
dimensional problem, for data batches size Np = 500. The grey histograms display the dis-
tribution of ¢ in the reference working conditions, P(¢|R). This is obtained empirically by
processing reference-distributed Toy data batches, and fitted to a x? distribution as explained
in Section 10.3.1. The different distributions of the test statistic associated with the anomalous
batches shown in the coloured histograms are very well separated from the reference distribu-
tion, meaning that anomalous data are very likely to be identified as such by the algorithm. This
is quantified by the median p-value of the anomalous batches, reported in the central column
of Table 10.2. The table also reports the median p-value for larger (Np = 1000) and smaller
(Np = 250) batches. The sensitivity to the anomaly increases with Np, as expected.

4Code available at https://github.com/FalkonHEP.
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5D - Ng = 2000, Np = 500 5D - Ng = 2000, Np =500 6D - Ng =2000, Np =500
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Figure 10.5: Distribution of the test statistics in the scenario Np = 500. The plot displays the
distribution of the test statistic ¢ on reference-distributed Toys and on the data collected under
anomalous detector conditions.

Anomaly Np = 250 Np = 500 Np = 1000
Cathode 75% 0.0034 1.1x107% | <107"
Cathode 50% 0.029 34x107* | <1077
Cathode 25% 0.14 0.0019 <1077
Threshold 28 x 1077 | <1077 <1077
75%

Threshold <1077 <1077 <1077
50%

Threshold <1077 <1077 <1077
25%

Table 10.2: Median p-values for different anomalies and data batches size. Five input features
are considered, excluding nys.

For a comparative assessment of the performance, we computed a Kolmogorov—Smirnov (KS)
test on each individual feature for the same data used to train the NPLM model. The KS
median p-values are reported in Table 10.3 and compared with the ones obtained with the
five-dimensional NPLM test. We see that individual variables have a very limited power to
discriminate the anomalous batches. The NPLM method instead is sensitive to correlated dis-
crepancies in the different distributions and discriminates the anomalies effectively. For illus-
trative purposes, we show in the left and middle panels of Figure 10.6 the distribution of the
one-dimensional KS statistic computed on the drift time of the first layer (¢;) for reference and
anomalous batches. By comparison with Figure 10.5, it is easy to recognise the advantage of
the NPLM strategy.

35 35

~ Drift time, Layer = 1 Drift time, Layer = 1 35 Npits, Ng = 2000, Np =500
Nz = 2000, Np =500 Nz =2000, Np = 500 Reference Ca 25%
30 Reference 30 Reference 30 Thr75% [ Ca50%
Ca 25% Thr 75% 1 Thr 50% 1 Ca75%
25 1 Ca50% 25 =4 [ Thr 50% 25 [ Thr 25% —— KS pdf (400)
[ Ca75% [ Thr 25%
= 20 —— KS pdf (400) s 20 —— KS pdf (400) S0
& A A
15 15 15
10 Xﬁ‘ 10 10
5 / \—‘ 5 . 5
~= I
0 = oL —— 0
0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 008 010 0.12 0.0 0.2 0.4 0.6 0.8 1.0
t t t

Figure 10.6: Distribution of the test statistic for the KS test.

We now turn to the study of the complete six-dimensional problem, including the variable
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Anomaly NPLM (5D) | KS (t1) | KS (t2) | KS (t3) | KS (t4) | KS (¢)
Cathode 75% 1.1x107% | 0.50 0.41 0.43 0.40 0.42
Cathode 50% 3.4 x 107 | 047 0.27 0.47 0.37 0.41
Cathode 25% || 0.0019 0.45 0.44 0.13 0.45 0.50
Threshold <1077 0.23 0.14 0.16 0.14 0.48
75%

Threshold <1077 0.09 0.10 0.06 0.17 0.42
50%

Threshold <1077 0.11 0.07 0.04 0.11 0.66
25%

Table 10.3: Median p-values in the setup Np = 500.

npits- The reference and anomalous test statistic distributions are shown on the right panel of
Figure 10.5. By comparing with the other panels of the figure we can appreciate the tremendous
discriminating power of the ny;;s variable: including ny;, all the anomalies can be detected
with very high significance. Therefore, using this variable alone for the NPLM DQM test, or
running a regular KS test (as shown in the right panel of Figure 10.6), is sufficient to identify
the anomalies, as previously mentioned.

We conclude this section by showing some examples of the data marginal distribution recon-
structed by the model. The three plots reported in Figure 10.7 are produced by reweighting
each event of the reference sample used for the training by an exponential factor e/#(*), as ex-
plained in Eq. 10.5; both the reweighted reference and the data samples are binned, and their
ratio with respect to the original reference sample is shown in the bottom panels. By comparing
the data-versus-reference ratio (labelled as “true”) with the reconstructed one (“learned”) we
can appreciate the correctness of the model in understanding the nature of the anomaly and,
hence, trust the results of the machine learning task.

Layer = 1 Reference [IThr50% e learned Layer = 2 Reference Ca25% e learned Reference Ca25% o learned

107 true (binned)  —— learned

—— true (binned) — learned

true (binned) — learned

2
—— bl 0
e ERU

0 50 100 150 200 250 300 350 0
Drift time (ns)

50 100 150 200 250 300 350
Drift time (ns)

1200 1400 1600

Nhits

1800 2000

Figure 10.7: Examples of input data and respective learned likelihood ratios with sample size
Npr = 2000 and Np = 500.

All the numerical experiments presented in this paper have been performed on a single machine
equipped with a NVIDIA Titan Xp GPU with 12 GB of VRAM. We tested the performances
of the algorithm in terms of execution time; the training time for a single five-dimensional
classification task is approximately 0.5 seconds, with no significant dependency on the nature
of the data and the size of the sample.
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10.5 Conclusions and outlook

We presented the test of a powerful ML-based algorithm, NPLM, as a tool to monitor the
quality of the data originated by a typical detector used for measuring particles at high energy
colliders. NPLM compares collected measurements with a reference dataset describing the
standard detector readout, performing a multidimensional likelihood-ratio hypothesis test.

The study demonstrated the capability of the algorithm to detect anomalous detector conditions,
with a much greater discriminating power than simpler traditional methods, like Kolmogorov—
Smirnov test.

Although conducted on simplified experimental conditions, the test presents figures appropriate
for a typical monitoring system of a detector operating at the LHC; in particular, the number of
channels and the size of the datasets are of the same order of magnitude as the corresponding
CMS DQM application. The amount of data we consider for each batch can be gathered much
more quickly at the LHC than in a cosmic stand like the one used here, anyhow the rate at
which possible issues should be detected is not larger than one in a minute®; the time requested
by NPLM to run —less than a second— makes the algorithms suitable to be executed online.

Acknowledgements: L.R., M.L. and M.R. acknowledge the financial support of the Euro-
pean Research Council (grant SLING 819789). L.R. acknowledges the financial support of
the AFOSR project FA9550-18-1-7009 and the EU H2020-MSCA-RISE project NoMADS -
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Union’s Horizon 2020 research and innovation program (grant agreement no 772369). A.W. is
supported by the grant PID2020-115845GB-100/AEI/10.13039/501100011033.

SFailures potentially leading to catastrophic consequences that requires a much prompt reaction are typically
controlled by hardware interlock systems
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Chapter 11

Conclusions

In this thesis, we addressed both black-box optimization problems and practical machine-
learning applications by designing, analyzing, and implementing various solutions.

In the first part of the manuscript, we tackled the black-box optimization problem facing the
challenges of the structured finite-difference approach and Bayesian Optimization framework.
To this aims, we introduced two algorithms: S-SZD (Stochastic Structured Zeroth-order De-
scent) and O-ZD (Orthogonal Zeroth-order Descent). Through the analysis of these algorithms,
we derived convergence rates in the smooth stochastic and non-smooth settings, respectively.

For S-SZD, we observed that the convergence rate in the stochastic convex case approaches
1/ vk, analogous to SGD in the same setting. Additionally, for the A-smooth stochastic non-
convex v-PL setting, we derived a convergence rate close to 1/k, matching the rate of SGD in
the strongly convex case. However, the convergence rate deteriorates for the limit choice of the
stepsize ay = 1/k, depending on the function’s condition number v/ and the ratio d/¢, where
d is the dimension of the input space and / is the number of directions. A similar behavior
can be observed in SGD applied to strongly convex functions. Empirical comparisons with a
variety of zeroth-order methods suggest that our algorithm outperforms direct search methods
in different settings. With O-ZD, we addressed the non-smooth setting by introducing the first
Smoothing Lemma for structured gradient approximation. We derived convergence rates for
convex and non-convex functions in both smooth and non-smooth settings. For convex non-
smooth functions, we achieved a convergence rate similar to the subgradient method in terms
of iterations k. The complexity depends on the choice of stepsize, and with an appropriate
choice, our method achieves optimal dependence on the dimension. Similarly, for non-convex
non-smooth functions, we provided rates on the expected norm of the smoothed gradient and
assessed approximate stationarity through the concept of Goldstein stationarity. For convex
smooth settings, our method achieved a rate of O(1/k), matching Gradient Descent, with op-
timal dependence on dimension in complexity. Similarly, for smooth non-convex functions,
we derived a rate of O(1/k) with complexity O(de~!). These works open up several research
directions, including the development of adaptive strategies to choose direction matrices along
iterations, and extending the algorithms to include inertia or variance reduction.

Next, we addressed the scalability limitations of Bayesian Optimization on continuous do-
mains by introducing Ada-BKB, an algorithm that combines ideas from BKB [CCL*19] and
optimistic optimization. The proposed approach is analyzed theoretically in terms of regret
guarantees, demonstrating improved efficiency without sacrificing accuracy. Through com-
putational cost analysis, we observed that Ada-BKB has the smallest provable computational
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complexity among methods with adaptive discretization capable of handling noisy observation
cases. Furthermore, note that the GP-UCB algorithm (explained in Chapter 2) has a compu-
tational cost of O(T3A) with A representing the size of the discretization of the search space
X, and it has been proven in [SKKS12] that achieving low regret requires the cardinality of the
discretization to grow exponentially with the dimension of X. Moreover, our algorithm is faster
than other scalable methods, including BKB (O(T Ad%;)) and TS-QFF (@(T A2Pd)) [MK19],
in the same setting. Empirically, we observed very good performances on both simulated data
and a hyperparameter tuning task. This work opens up several research directions. For ex-
ample, efficiency could be further improved using experimentation batching, as discussed in
[CCL*20]. Another interesting question could be to extend the ideas presented in Chapter 6
to explore alternative methods for defining upper function estimates, such as those based on
expected improvements [QKR17].

Then, in the second part of the manuscript, we tackled the applicative challenges proposing and
implementing different methods.

We tackled the plankton monitoring problem by introducing an efficient unsupervised learning
pipeline for plankton image clustering. Our approach is composed of three steps. In the first
step, input images are pre-processed and fed to a neural network (DenseNet201 in our exper-
iments) pre-trained on ImageNet, without fine-tuning. In the second step, the set of features
extracted are used as inputs to train an variational encoder-decoder neural network and the
resulting latent space representations of the inputs are used as a lower dimensional set of em-
bedded features. In the third step, the embedded features are passed to a clustering algorithm (a
fuzzy k-means in our experiments). We showed that our approach outperforms state-of-the-art
unsupervised learning methods [PZBB20] where hand-crafted features are engineered and used
for clustering. Furthermore, we empirically proved the high quality of the embedded features
produced by our pipeline using a supervised classification framework (in terms of test accu-
racy). Precisely, we showed that our embedded features coupled to a ridge regression classifier
outperforms state-of-the-art classifiers where hand-crafted features are used as input for SVM
[SO07, ZWY"17], fully connected neural networks and random forests [PZBB20]. As a fur-
ther development, the implementation of an end-to-end solution would be crucial for an easy
deployment in real-life scenarios. Additionally, it would be interesting and useful to test the
approach for anomaly detection. Moreover, since our pipeline is general with respect to the
source of input data, it could be interesting to perform a complete analysis of the performances
on other kind of data. These aspects are currently under study.

For the olfactory navigation problem, we demonstrated that agents exposed to a turbulent odor
plume learn to associate key features of the odor time trace (the olfactory state) with optimal
moves that guide them towards the odor source. By responding solely to odor cues, the agent
operates without a spatial map or prior information about the odor plume, thereby avoiding
significant computational burden. However, in our stimulus-response algorithm, agents must
start from within the plume, even if it is sparse and fragmented. When far enough from the
source, Q-learning agents primarily exist in a ’void’ state, and they can only recover the plume
if they previously detected the odor or are right outside the plume. In contrast, agents using a
map of space can navigate from larger distances than those reachable by responding directly to
odor cues. In a map-based Partially Observable Markov Decision Process (POMDP) setting,
the absence of odor detection is still informative, enabling agents to first find the plume and
then refine the search to localize the target within the plume [RRSV22]. We addressed the
challenge of handling both the absence and presence of odor stimuli by alternating between
two strategies:

204



(1) The prolonged absence of odor triggers entry into the void state, prompting a recovery
strategy to make contact with the plume again. We explored two heuristic recovery methods
and found that back-tracking to the last odor detection point is more efficient than Brownian
recovery. An even more efficient recovery mimics cross-wind casting, limiting the void state to
a narrow region just outside the plume. Casting, a well-studied computational strategy [BI102],
is also observed in animal behavior, notably in flying insects [DKL83].

(i1) Odor detections prompt entry into non-void olfactory states, primarily resulting in upwind
surges. Short blanks in odor detection, typical of turbulence, are ignored, allowing agents to
respond to stimuli experienced prior to the blank.

Further optimization of these non-void olfactory states may involve feature engineering, such
as testing different discretizations to reduce redundancy or screening a large feature library us-
ing supervised learning methods [RMRS22]. Alternatively, recurrent neural networks (RNNs)
could bypass feature engineering altogether, as proposed in [SYBRB23], potentially sacrificing
interpretability. A systematic comparison using a common dataset is necessary to understand
how other heuristic and normative model-free algorithms handle odor presence versus absence.

We addressed the new physiscs learning problem by presenting a machine-learning approach
for model-independent searches using kernel-based machine-learning models. Our approach
is powered by Falkon, a recent library developed for large-scale applications of kernel meth-
ods, and builds on the original ideas of [DW19, DGP*21]. The main focus of our contribution
in this field is computational efficiency. The original neural network proposal suffers from
long training times, which, combined with a toy-based hypothesis testing framework, makes
the algorithm challenging to use in high-dimensional cases. In contrast, our model delivers
comparable performance with a dramatic reduction in training times. As a consequence, the
model can be efficiently trained on single GPU machines while possessing high scalability for
multi-GPU systems [MCRR20]. However, similar to [DGP*21], the applicability of our pro-
posed method relies on a heuristic procedure to tune the algorithm hyperparameters. A deeper
understanding of the interplay between the expressibility of the model, its complexity, and the
structure of the input dataset could lead to more performant alternatives for hyperparameter se-
lection. A possible research direction would be to find a more principled way to relate Falkon
hyperparameters to physical quantities. This could also allow the introduction of explicit quan-
tities to be optimized, opening the possibility of applying modern optimization techniques for
hyperparameter selection. Besides the challenges related to optimization and regularization,
an essential development for the application of realistic data analysis concerns the treatment
of systematic uncertainties, which has not been considered in the present work. This aspect
was successfully addressed in a recent work [dGP*22] in the context of the neural network
implementation. Finally, the boost in efficiency provided by the model developed in this part
of the work could extend the applicability of this analysis strategy to other use cases beyond
the search for new physics and to other domains

For data quality monitoring application, we developed and tested a robust machine-learning-
based algorithm to monitor the quality of the data originated by a typical detector used in high-
energy collider experiments. Our method compares collected measurements with a reference
dataset that describes the standard detector readout, employing a multidimensional likelihood-
ratio hypothesis test. The study demonstrated the algorithm’s effectiveness in detecting anoma-
lous detector conditions, showcasing significantly greater discriminating power compared to
simpler traditional methods, such as the Kolmogorov-Smirnov test. While conducted under
simplified experimental conditions, the test’s parameters align well with those of a typical de-
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tector monitoring system at the LHC. Although the data batch sizes considered in our study can
be collected more rapidly at the LHC compared to a cosmic stand like the one used here, the
rate at which potential issues should be detected remains relatively low (not exceeding one per
minute). However, our approach’s quick execution time (less than a second) renders it suitable
for online execution.
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