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Abstract—This letter deals with the investigation of an
important property that characterizes the detectability of
nonlinear systems, namely the incremental Exponential
Input/Output-to-State Stability (i-EIOSS). While such a prop-
erty is easy to check for linear systems, for nonlinear
systems it is a hard task. On the other hand, the i-EIOSS
property is well-suited for the development of robust esti-
mators. In this letter, we propose a novel numerical design
procedure ensuring the computation of the i-EIOSS-related
coefficients which are necessary to tune the parameters
of the robust estimators. We first introduce a general sim-
ple but useful Lyapunov-based method, then we develop
a new Linear Matrix Inequality (LMI) condition guaran-
teeing the computation of the i-EIOSS coefficients. The
proposed design method is easily tractable by numerical
software and may be used for several real-world applica-
tions. Compared to the existing literature, the proposed
method is simpler, provides a finite number of LMIs to be
solved, and does not need to convert the system into a new
one with linear outputs leading to LMI conditions.

Index Terms—Incremental input/output-to-state stabil-
ity (i-EIOSS), observer design, Lyapunov functions, LMI
approach.

I. INTRODUCTION

THE I-EIOSS property has a long story in control
theory since the pioneering work by Sontag [1]. This

important property, which characterizes the detectability of
nonlinear systems, is recently investigated in a deeper way
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by [2], [3], [4] and the references therein. A considerable
attention has been paid to the relation between the existence of
a robust estimator and the i-EIOSS property of a given system.
Significant results and elegant arguments have been presented
in [3] on the existence of i-EIOSS Lyapunov functions.
Such a property has also been extensively exploited in the
context of the Moving Horizon Estimation (MHE) problem
by [4] and related papers. Although all the above results are
interesting and constructive, they need a simple and useful
method to design the coefficients of the i-EIOSS property of
a system before designing the estimation scheme, since the
estimation scheme often needs the explicit knowledge of those
coefficients.

The objective of this letter consists of establishing a simple
and useful design method that can be easily exploited by
numerical software and may be used for the design of the tun-
ing parameters of any robust estimation scheme. The i-EIOSS
notion has been investigated only recently in the discrete-
time setting and, to our knowledge, up to now no constructive
method has been proposed to find the parameters involved in
the i-EIOSS upper bound formulation. This motivated us to
propose a novel technique, which ensures not only the i-EIOSS
property of a system but more importantly allows the explicit
computation of the i-EIOSS related coefficients while optimiz-
ing their values by using Linear Matrix Inequalities (LMIs).
The result is based on the use of a convenient mathematical
tool for stability analysis, which allowed us to develop a novel
Lyapunov function-based criterion. Hence, the combination of
a quadratic Lyapunov function and the convexity principle led
to new LMI conditions. Due to a lack of space, the feasibility
analysis of the proposed LMI conditions is not addressed
in detail; however, some comments on its conservatism and
feasibility are provided.

The proposed LMI-based design procedure guaranteeing the
i-EIOSS property plays an important role in designing robust
estimators. The main motivation for developing this LMI
method is for the purpose of stability analysis in MHE. Indeed,
the design of a robust MHE as developed in [5], [6] requires
the i-EIOSS coefficients as tuning parameters. It is worth
noticing that related results on ensuring the i-IOSS property
by using matrix inequalities are established in [7], where the
authors proposed general but not numerically tractable design
conditions. Compared to [7], the advantages of our proposed
method in this letter can be summarized as follows:
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• The method in [7] is based on the differential dynamics
of the system and its linearization at a given point.
However, our technique uses the generalized version of
the differential mean value theorem for vector-valued
functions to transform equivalently, without linearization,
the nonlinear terms into a polytopic form.

• Our method is simpler than that of [7] due to the polytopic
form of the error dynamics and the convexity principle
to get a finite number of LMIs.

• Our method does not require any coordinate transforma-
tion to convert the original system into a new one with
linear outputs as in [7].

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Description and Assumptions

Consider the following nonlinear discrete-time system:{
xt+1 = f (xt, wt)

yt = h(xt, vt)
. (1)

where xt ∈ R
n is the state of the system, yt ∈ R

p is the output
vector, and wt and vt are unknown external disturbances of
appropriate dimensions. The functions f (·, ·) and h(·, ·) satisfy
f (0, 0) = 0, h(0, 0) = 0.

For convenience of calculation, and brevity as well and to
avoid cumbersome notations, we consider the system (1) with
the same disturbance input wt in the output yt. This is not
a restriction. It is assumed without loss of generality since
there are no constraints on the dependence of the functions
f (.) and h(.) on wt and vt, respectively. To summarize, instead
of system (1), we consider the following form:{

xt+1 = f (xt,ωt)

yt = h(xt,ωt)
. (2)

where ωt �
[
w�

t v�
t

]� ∈ R
q. Then, all the next definitions and

results are based on the system (2). This form is convenient
in the LMI context as usual in the literature [8], [9].

Before introducing the main definitions, we need to make
some assumptions, which are necessary for the developed
design methodology.

Assumption 1: The nonlinear functions f (·, ·) and h(·, ·) are
differentiable with respect to their arguments and satisfy the
following conditions:

sup
x∈Rn

ω∈Rq

∣∣∣∣∂fi
∂x

(x,ω)

∣∣∣∣ < +∞, sup
x∈Rn,
w∈Rq

∣∣∣∣ ∂fi
∂ω

(x,ω)

∣∣∣∣ < +∞ (3)

sup
x∈Rn

ω∈Rq

∣∣∣∣∂hi

∂x
(x,ω)

∣∣∣∣ < +∞, sup
x∈Rn

ω∈Rq

∣∣∣∣∂hi

∂ω
(x,ω)

∣∣∣∣ < +∞ (4)

where the functions fi, i = 1, . . . , n and hi, i = 1, . . . , p are
the i-th component of the functions f and h, respectively.

The above assumption means that the Jacobians ∂f (x,ω)
∂x ,

∂f (x,ω)
∂ω

, ∂h(x,ω)
∂x , and ∂h(x,ω)

∂ω
are bounded, then they belong to

convex polytopic sets defined respectively by:

Vf ,x �

⎧⎨
⎩

nx∑
j=1

αjFx
j , such that αj ≥ 0,

nx∑
j=1

αj = 1

⎫⎬
⎭ (5)

Vf ,ω �

⎧⎨
⎩

nw∑
j=1

αjFω
j , such that αj ≥ 0,

nω∑
j=1

αj = 1

⎫⎬
⎭ (6)

Vh,x �

⎧⎨
⎩

qx∑
j=1

αjHx
j , such that αj ≥ 0,

qx∑
j=1

αj = 1

⎫⎬
⎭ (7)

Vh,ω �

⎧⎨
⎩

qω∑
j=1

αjHω
j , such that αj ≥ 0,

qω∑
j=1

αj = 1

⎫⎬
⎭ (8)

where Fx
j , Fω

j , Hx
j , and Hω

j are known constant matrices of
appropriate dimensions and the known integers nx, nω, qx, qω

are the number of vertices of each convex set, respectively. The
result is standard in the representation of elements in a convex
set. Indeed, since the Jacobians are bounded, then the partial
derivatives admit lower and upper bounds from which we can
construct a convex polytopic set containing the Jacobians. We
refer the reader to the classic book [10] on the representation
of elements in a convex set and the books [11], [12] for convex
decomposition of nonlinear functions.

B. Definition of i-EIOSS Property

The next definition is important in this letter. We will
introduce the main definition concerned by this letter, which is
necessary in the developed conditions ensuring the incremental
exponential input-to-state stability of the system (2).

Definition 1: System (2) is incrementally Exponentially
Input/Output-to-State Stable (i-EIOSS) if there exist constants
cx, cv, cw > 0 and � ∈ (0, 1) such that for each pair of initial
conditions x0, x̃0 ∈ X and each two disturbance sequences
ωt, ω̃t ∈ �, the following holds:

|xt

(
x0,ω

t−1
0

)
− xt

(
x̃0, ω̃

t−1
0

)
|2 ≤ cx|x0 − x̃0|2�t

+ cv

t−1∑
i=0

�t−1−i|yi

(
x,ωi−1

0

)
− yi

(
x̃, ω̃i−1

0

)
|2

+ cw

t−1∑
i=0

�t−1−i|ωi − ω̃i|2 (9)

where xt(x0,ω
t−1
0 ) means the solution of (2) generated from

the initial state x0 and ωt−1
0 �

[
ω0 . . . ωt−1

]�.
For more details on the above definition, we refer the reader

to [4] and [13, Definition 2, and Lemma 7] for a more general
formulation.

C. Mathematical Tools for Stability Analysis

In this section, we present some basic results, presented in
three lemmas, which we will exploit in the next section to
analyze the i-EIOSS property of the system (2) by using
quadratic Lyapunov functions. Such lemmas are presented in
a general framework so that they can be exploited in different
cases for different control design problems.

Lemma 1 [5]: Let (ut)t≥−� be a sequence of non-negative
real numbers and � ≥ 1 such that

ut ≤ αut−� + βzt,∀t ≥ �,
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where α and β are scalars such that β ≥ 0, 0 < α < 1. The
sequence (zt)t≥0 is non negative. Then the following inequality
holds for any κ ∈ N, κ ≥ 2:

ut ≤ α
t

κ� max−�≤j≤0
uj +

(
β

1 − α
κ−1
κ

)
max

t−s�≤j≤t
t−j
�

∈N

(
α

t−j
κ� zj

)
. (10)

Lemma 2 (Differential Mean Value Theorem): Let 	 : R
n

	→ R
q be a differentiable function and two vectors x ∈ R

n

and y ∈ R
n. Then, there exists

z �

⎡
⎢⎢⎢⎣

z1

z2

...

zq

⎤
⎥⎥⎥⎦ ∈ R

nq, zi ∈ Co(x, y), i = 1, . . . , q (11)

where Co(x, y) stands for the set of convex combinations of
x and y, such that

	(x) − 	(y) = ∇	
x (z)(x − y) (12)

where

∇	
x (z) �

[
∂	1

(
z1
)

∂x
∂	2

(
z2
)

∂x · · · ∂	q(zq)

∂x

]�
. (13)

Lemma 3: Let 	 : R
n × R

m 	→ R
q be a differentiable

function and two vectors (x, x̄) ∈ R
n × R

m and (y, ȳ) ∈ R
n ×

R
m. Then, there exist z ∈ R

nq as in (11) and

v �

⎡
⎢⎢⎢⎣

v1

v2

...

vq

⎤
⎥⎥⎥⎦ ∈ R

mq, vi ∈ Co(x̄, ȳ), i = 1, . . . , q (14)

such that

	(x, x̄) − 	(y, ȳ) = ∇	
x (z, x̄)(x − y)

+∇	
x̄ (y, v)(x̄ − ȳ). (15)

Proof: The proof is straightforward. It is based on the
decomposition

	(x, x̄) − 	(y, ȳ) = [
	(x, x̄) − 	(y, x̄)

]
+ [

	(y, x̄) − 	(y, ȳ)
]

(16)

and the application of (12) in Lemma 2 on both terms in the
right hand side of (16).

D. Motivation

The i-EIOSS property is extensively used in the recent
literature to develop robust estimators. Such robust estimators
depend on some tuning parameters and those tuning parame-
ters depend on the coefficients related to the i-EIOSS of the
system, namely the parameters �, cx, cν , and cw. However,
the computation of these parameters from the trajectories of
the system (2) is not easy or even impossible in general.
Subsequently, it becomes crucial to develop a straightforward
and practical universal numerical method for achieving this
goal. We will present a novel numerical approach based
on LMI conditions, which are easily tractable by numerical
software. Such a simple method is based on the use of the
Lyapunov theory.

III. LYAPUNOV-BASED STABILITY

CRITERION FOR I-EIOSS

A. Lyapunov Function Based i-EIOSS

In this section, we provide a general criterion based on
Lyapunov theory to guarantee the i-EIOSS property of a
given system. The result of this section is summarized in the
following proposition.

Proposition 1: Let (xt, x̃t) be two arbitrary solutions of (1)
generated from two initial conditions x0, x̃0 ∈ X and two
disturbance sequences wt, w̃t ∈ �, respectively. Let ϑ(xt, x̃t)

be a Lyapunov function and

�θϑ(xt, x̃t) � ϑ(xt+1, x̃t+1) − θϑ(xt, x̃t)

� �θϑt = ϑt+1 − θϑt (17)

where θ > 0. Define εt � xt−x̃t and assume that the following
items hold:
(i) There exist two positive scalars ϑmin and ϑmax with

ϑmin < ϑmax satisfying:

ϑmin|εt|2 ≤ ϑ(xt, x̃t) ≤ ϑmax|εt|2, ∀t ≥ 0; (18)

(ii) There exist θ < 1, cy > 0, c̄w > 0 such that

�θϑt ≤ cy|yt − ỹt|2 + c̄w|wt − w̃t|2,∀t ≥ 0, (19)

where yt and ỹt are the outputs generated by system (1)
with xt and x̃t, respectively.

Then system (1) is i-EIOSS according to (9) in Definition 1
with the following coefficients ∀κ ≥ 2:

{
� = θ, cν = cy

ϑmin(1−θκ−1)

cx = ϑmax
ϑmin

, cw = c̄w
ϑmin(1−θκ−1)

(20)

with θ ∈ (0, 1).
Proof: From item (ii) and (17), we can write

ϑt ≤ θϑt−1 + zt,∀t ≥ 1, (21)

where zt = cy|yt−1 − ỹt−1|2 + c̄w|wt−1 − w̃t−1|2. Therefore, by
applying (10) of Lemma 1 with the parameters

� = 1, β = 1, s = t − 1, α = θκ, κ ≥ 2 (22)

and from ϑj = ϑ0,∀j ≤ 0, by convention and construction, we
get

ϑt ≤ ϑ0θ
t +

(
1

1 − θκ−1

)
max
1≤j≤t

(
θ t−jzj

)

≤ ϑ0θ
t + 1(

1 − θκ−1
)

t∑
j=1

θ t−jzj

=︸︷︷︸
i:=j−1

ϑ0θ
t + 1(

1 − θκ−1
)

t−1∑
i=0

θ t−1−izi+1

= ϑ0θ
t + cy(

1 − θκ−1
)

t−1∑
i=0

θ t−1−i|yi − ỹi|2

+ c̄w(
1 − θκ−1

)
t−1∑
i=0

θ t−1−i|wi − w̃i|2. (23)
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On the other hand, from item (i), we have |εt|2 ≤ 1
ϑmin

ϑt and
ϑ0 ≤ ϑmax|ε0|2. Hence, we deduce the following inequality
for all t ≥ 1:

|εt|2 ≤ ϑmax

ϑmin
|ε0|2θ t + cy

ϑmin
(
1 − θκ−1

)
t−1∑
i=0

θ t−1−i|yi − ỹi|2

+ c̄w

ϑmin
(
1 − θκ−1

)
t−1∑
i=0

θ t−1−i|wi − w̃i|2 (24)

which means that system (1) is i-EIOSS according to (9) with
the coefficients given in (20).

Proposition 1 provides a criterion to guarantee the i-EIOSS
of a given system, which is in general difficult to characterize.
Without this Lyapunov-based characterization, computing the
values of the i-EIOSS coefficients cx, cν , and cw becomes a
hard task. On the other hand, such coefficients are necessary
to design the tuning parameters of any robust estimator of
system (2). Then, in the next section, we propose an LMI-
based design procedure, which is easily tractable by numerical
software.

B. New LMI-Based i-EIOSS Criterion

By considering a particular Lyapunov function, we will
obtain sufficient conditions, expressed in terms of LMIs,
ensuring the property of i-EIOSS of the system (2). To this
end, let us consider the following quadratic Lyapunov function,
usually used in the literature in the LMI context:

ϑ(xt, x̃t) � (xt − x̃t)
�
P(xt − x̃t) (25)

where P = P
� > 0 and (xt, x̃t) are two arbitrary solutions

of (2) generated from two initial conditions x0, x̃0 ∈ R
n and

two disturbance sequences ωt, ω̃t ∈ R
q, respectively. Consider

εt � xt − x̃t, the error between the two trajectories, εω �
ωt − ω̃t, εy � yt − ỹt, and define ϑy as:

ϑy � �θϑ(xt, x̃t) − cy|εy|2 − c̄w|εω|2. (26)

First, we have

εt+1 = ∇ f
x

(
zf ,ω

)
εt + ∇ f

ω

(
x̃, vf

)
εω (27)

εy = ∇h
x (zh,ω)εt + ∇h

ω(x̃, vh)εω. (28)

After developing �θϑ(xt, x̃t) and from Lemma 2, we get:

ϑy = ε�
t

[(
∇ f

x(zf ,ω)
)�

P∇ f
x

(
zf ,ω

)
.

−cy

(
∇h

x (zh,ω)
)�∇h

x (zh,ω) − θP

]
εt

+ ε�
ω

[(
∇ f

ω(x̃, vf )
)�

P∇ f
ω

(
x̃, vf

)
.

− cy

(
∇h

ω(x̃, vh)
)�∇h

ω(x̃, vh) − c̄wIq

]
εω

+ 2ε�
t

[(
∇ f

x(zf ,ω)
)�

P∇ f
ω

(
x̃, vf

)
.

− cy

(
∇h

x (zh,ω)
)�∇h

ω(x̃, vh)

]
εω (29)

which can be written under the matrix form

[
εt
εω

]�
M

(
P, cy, c̄w

)[ εt
εω

]
(30)

where M

(
P, cy, c̄w

)
is defined in (31), shown at the bottom

of the page.
Then, we have ϑy < 0 for all

[
ε�

t ε�
ω

]� �= 0

if the inequality M

(
P, cy, c̄w

)
< 0 is satisfied. Hence,

from Schur Lemma, the previous inequality is equivalent
to (32), shown at the bottom of the page. Before stat-
ing the main theorem, we need to introduce some convex
polytopic sets. As in (5)–(8), from Assumption 1, the
Jacobians

(∇h
x (zh,ω)

)�∇h
x (zh,ω),

(∇h
x (zh,ω)

)�∇h
ω(x̃, vh), and(∇h

ω(x̃, vh)
)�∇h

ω(x̃, vh) are bounded. Therefore, by using the
convex decomposition technique [10], they belong to the
convex polytopic sets defined respectively as:

V�
h �

⎧⎨
⎩

n�∑
j=1

αjH�
j , such that αj ≥ 0,

n�∑
j=1

αj = 1

⎫⎬
⎭ (33)

for � = 1, 2, 3, respectively. The matrices H�
j , j = 1, 2, 3 are

known and constant with appropriate dimensions. As for the
known integers n�, they represent the number of vertices of
V�

h , for � = 1, 2, 3.
Now we are ready to state the main theorem, which provides

LMIs ensuring the i-EIOSS property of the system (2).

M
(
P, cy, c̄w

)
�

⎡
⎢⎢⎣
N
(
P, cy

) − θP
(
∇ f

x(zf ,ω)
)�

P∇ f
ω

(
x̃, vf

) − cy
(∇h

x (zh,ω)
)�∇h

ω(x̃, vh)

(�)
(
∇ f

ω(x̃, vf )
)�

P∇ f
ω

(
x̃, vf

) − cy
(∇h

ω(x̃, vh)
)�∇h

ω(x̃, vh) − c̄wIq

⎤
⎥⎥⎦

N
(
P, cy

)
�

(
∇ f

x(zf ,ω)
)�

P∇ f
x

(
zf ,ω

) − cy

(
∇h

x (zh,ω)
)�∇h

x (zh,ω) (31)⎡
⎢⎢⎢⎢⎢⎢⎣

−cy
(∇h

x (zh,ω)
)�∇h

x (zh,ω) − θP −cy
(∇h

x (zh,ω)
)�∇h

ω(x̃, vh)
(
∇ f

x(zf ,ω)
)�

P

(�) −cy
(∇h

ω(x̃, vh)
)�∇h

ω(x̃, vh) − c̄wIq

(
∇ f

ω(x̃, vf )
)�

P

(�) (�) −P

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (32)
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Theorem 1: Assume that there exists a positive definite and
symmetric matrix P, positive scalars cy, c̄w, and θ ∈ (0, 1)

such that the following matrix inequalities are satisfied:⎡
⎢⎣

−cyH1
i − θP −cyH2

j

(Fx
l

)�
P

(�) −cyH3
k − c̄wIq

(Fω
m

)�
P

(�) (�) −P

⎤
⎥⎦ < 0 (34)

for all i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, k ∈ {1, . . . , n3}, l ∈
{1, . . . , nx}, and m ∈ {1, . . . , nω}. Then the system (2) is i-
EIOSS according to (9) in Definition 1 with the coefficients
defined in (20) with ϑmax = λmax(P) and ϑmin = λmin(P).

Proof: From Schur Lemma we have equivalence between
M

(
P, cy, c̄w

)
< 0 and (32). On other hand, the left

hand side of (32) is affine (then convex) with respect
to all the Jacobian matrices ∂f (x,ω)

∂x , ∂f (x,ω)
∂ω

, ∂h(x,ω)
∂x ,

∂h(x,ω)
∂ω

,
(∇h

x (zh,ω)
)�∇h

x (zh,ω),
(∇h

x (zh,ω)
)�∇h

ω(x̃, vh), and(∇h
ω(x̃, vh)

)�∇h
ω(x̃, vh). In addition, from (5)-(8) and (33),

these Jacobians can be decomposed into a convex form by
using the convex decomposition technique [10]. Hence, from
the convexity principle [11], the inequality (32) is satisfied for
any element on the convex sets defined by (5)-(8) and (33)
if it is satisfied on the vertices H1

i ,H2
j ,H3

k , Fx
l , and Fω

m .
Since (34) are exactly (32) evaluated on the vertices, then from
the convexity principle, we have M

(
P, cy, c̄w

)
< 0, which

leads to ϑy ≤ 0. Hence, from Proposition 1 it follows that the
system (2) is i-EIOSS with the coefficients given in (20) with
ϑmax = λmax(P) and ϑmin = λmin(P). This ends the proof.

To optimize the values of �, cx, cν , and cw while solving the
LMIs (34), we can minimize the values of cy and c̄w by fixing
θ a priori in (0, 1) by using some gridding method. However,
an ill-conditioned P would make λmin(P) small, which leads
to large values of cν and cω even if cy and c̄ω are small. To
avoid this issue, one can resort to additional constraints on P

such as

P ≥ In (35)

by taking advantage of homogeneity. Nevertheless, the con-
straint (35) may increase the value of cx = λmax(P)

λmin(P)
≤ λmax(P).

To minimize cx, we need the additional constraint:

P ≤ αIn, (36)

while minimizing α. To sum-up, to minimize the values of cx,
cν , and cω, we propose the following optimization problem

min
cy,c̄w,P,α

(
γ1α + γ2cy + γ3c̄ω

)
subject to (35), (36), (34)

where γi, i = 1, 2, 3 are constants to be fixed by the user.

C. Case of a Particular Family of Nonlinear Systems

The systems described by equation (2) in this letter are
quite broad, leading to a significant number of LMI conditions
that need to be solved in (34). However, several real-world
applications models are simpler than (2), namely the following
class of systems is often used in the literature, especially in
the LMI context: {

xt+1 = f (xt) + Eωt
yt = h(xt) + Dωt

. (37)

In this case, the LMI (34) is reduced to the following one:⎡
⎣−cyH1

i − θP −cyHx
j D

(Fx
l

)�
P

(�) −cyD�D − c̄wIq E�
P

(�) (�) −P

⎤
⎦ < 0 (38)

for all i ∈ {1, . . . , n1}, j ∈ {1, . . . , qx}, and l ∈ {1, . . . , nx}.
In addition, if we consider systems with linear outputs, i.e.:
yt = Cxt + Dωt, then the LMI condition is much simplified as
follows:⎡

⎢⎣−cyC�C − θP −cyC�D
(
Fx

j

)�
P

(�) −cyD�D − c̄wIq E�
P

(�) (�) −P

⎤
⎥⎦ < 0 (39)

for all j ∈ {1, . . . , nx}.

D. On the Conservatism and Feasibility of (34)

The conservatism related to the proposed approach lies,
first, in converting (32) into (34) by using the convexity
principle [11], [12]. Indeed, it is reported in [14] that using the
polytopic approach based on the convexity principle always
provides less conservative LMI conditions compared to other
strong upper bounding techniques, namely the use of Lipschitz
inequality or the Young inequality instead of the convexity
principle. Furthermore, the use of a constant Lyapunov matrix
is conservative; however, it provides a systematic numerical
procedure applicable to a wide class of nonlinear systems. A
more general Lyapunov function and matrices instead of the
scalars cy, c̄ω may be used; however, we will lose getting a
systematic synthesis procedure, or even the linearity of the
synthesis conditions.

The decision variables in (34) are the matrix P and the
positive scalars cy and c̄w, while θ is fixed a priori. All these
decision variables are free solutions returned by (34) and have
not been fixed a priori by the gridding method. Indeed, the
gridding method on θ ∈ ]0, 1[ consists in subdividing the
interval ]0, 1[ into � subintervals and solving the LMI (34)
for each value θj = j

�
until a solution is returned. All the

other matrices are known and specific to the system at hand.
Especially, the matrices H1

i ,H2
j ,H3

k , Fx
l , and Fω

m are known
and result from the convex decomposition of the Jacobian
matrices of the nonlinear functions. These matrices implicitly
depend on the Lipschitz constant and the structure of the
functions f and h. Therefore, the feasibility of (34) depends
strongly on the structure of those matrices [8].

IV. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the proposed LMI-based tech-
nique to design the i-EIOSS coefficients, which are necessary
for tuning the parameters of the MHE algorithm proposed
in [5]. Indeed, it has been shown in [5, Th. 1] that the MHE
algorithm associated to the cost function

JN
t

(
x̂t−N

) = μ|x̂t−N − x̄t−N |2ηN

+ ν

t−1∑
i=t−N

ηt−1−i|yi − Cx̂i|2 (40)

with η ∈ (0, 1) and μ, ν > 0, is robustly exponentially
convergent if the following conditions are satisfied: η ≥ �;
μ ≥ 2cx; ν ≥ cv; 2μηN < 1, where �, cx, cν, and cw are
the i-EIOSS related coefficients to be computed by applying
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Theorem 1. To this end, we consider the following nonlinear
discrete-time system:[

x1(t + 1)

x2(t + 1)

]
=

[
1 − ax2

1(t) + x2(t)
bx1(t)

]
+

[
ω1(t)
ω2(t)

]

yt = x1(t) + νt (41)

with a = 1.4 and b = 0.3. The system exhibits a chaotic
behavior and its state belongs to the bounded compact set
[ − 1, 1] × [ − 1, 1], which is a bounded invariant compact set
on which the nonlinearity is globally Lipschitz. Both system
and measurement noises are generated according to zero-mean
Gaussian distributions with covariances equal to 0.01.

We need only to determine the matrices Fx
j since we

have linear outputs and the system depends linearly on the
disturbance ωt. To compute Fx

j , we have to decompose the
Jacobian matrix into a convex form. We have

∂f

∂x

(
zf ,ω

) =
[−2azf (t) 1

b 0

]

where zf (t) comes from the differential mean value theorem
in Lemma 2. Since zf (t) ∈ [ − 1, 1], then we have −2a ≤
−2azf (t) ≤ 2a. By using the convex decomposition technique,
there exists 0 < α(t) ≤ 1 such that

−2azf (t) = −2aα(t) + 2a(1 − α(t))

which means that α(t) = zf (t)+1
2 < 1 since zf (t) ∈ [ − 1, 1].

Hence, we can write the Jacobian matrix under the form

∂f

∂x

(
zf ,ω

) = α(t)

F x
1︷ ︸︸ ︷[−2a 1

b 0

]
+(1 − α(t))

F x
2︷ ︸︸ ︷[

2a 1
b 0

]
.

It follows that Vf ,x in (5) is given by:

Vf ,x � {
2∑

j=1

αjFx
j , such that αj ≥ 0,

2∑
j=1

αj = 1}

=
{

(z + 1)

2

[−2a 1
b 0

]
+ (1 − z)

2

[
2a 1
b 0

]
,

such that z ∈ [ − 1, 1]

}
. (42)

In this case, we have nx = 2 instead of nx = 2n2 = 16, since
we have only one nonlinear component; the other components
in the system are linear. Then we have two LMI conditions to
solve in (39) to obtain the i-EIOSS related coefficients.

Utilizing MATLAB Yalmip toolbox, the LMI (39) provides
the following parameters associated with i-EIOSS property (9):
θ = 0.8, cx = 124.6827, cν = 55.2984, cω = 22.1197. Then,
the tuning parameters in (40) can be fixed to � = 0.8, μ =
249.3654, ν = 55.2984, and the size of the window can
be fixed to N = 4 due to the condition 2μηN < 1. The
initial values of the actual and estimated states are

[
0 0

]�
and

[
1 1

]�, respectively. Figure 1 illustrates the simulation
results, which show that the MHE successfully estimates the
actual states.

The minimization of the cost function is carried out by
means of a descent method. The optimization was performed
by using the general-purpose MATLAB routine fmincon.

Fig. 1. Behavior of the system states and their estimates.

V. CONCLUSION AND FUTURE WORK

In this letter, we provided a simple but useful LMI-based
design method to check the i-EIOSS property of nonlinear
systems. This method may be used easily without needing
to compute its trajectories. To develop such an LMI method,
we proposed a mathematical tool, which allows to develop a
general method based on Lyapunov functions. The established
outcome is significant within the field of robust estimation
techniques, as it simplifies the process of tuning the parameters
of the estimator. This is primarily because these tuning directly
relies on the coefficients associated with the i-EIOSS property.
In future work, we aim to combine the proposed design
methodology with robust estimators, in particular, to solve
MHE problems. We will also investigate a novel method
of state observer design based on the use of the i-EIOSS
property.
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