
S P E C I A L I S S U E - EM P I R I C A L P A P E R

An empirical study to compare three web test automation
approaches: NLP-based, programmable, and capture&replay

Maurizio Leotta1 | Filippo Ricca1 | Alessandro Marchetto2 | Dario Olianas1

1Dipartimento di Informatica, Bioingegneria,

Robotica e Ingegneria dei Sistemi (DIBRIS),

Università di Genova, Genoa, Italy

2Dipartimento di Ingegneria e Scienza

dell'Informazione (DISI), Università di Trento,

Trento, Italy

Correspondence

Maurizio Leotta, Dipartimento di Informatica,

Bioingegneria, Robotica e Ingegneria dei

Sistemi (DIBRIS), Università di Genova, Genoa,

Italy.

Email: maurizio.leotta@unige.it

Abstract

A new advancement in test automation is the use of natural language processing

(NLP) to generate test cases (or test scripts) from natural language text. NLP is inno-

vative in this context and promises of reducing test cases creation time and simplify-

ing understanding for “non-developer” software testers as well. Recently, many

vendors have launched on the market many proposals of NLP-based tools and testing

frameworks but their superiority has never been empirically validated. This paper

investigates the adoption of NLP-based test automation in the web context with a

series of case studies conducted to compare the costs of the NLP testing approach—

measured in terms of test cases development and test cases evolution—with respect

to more consolidated approaches, that is, programmable (or script-based) testing and

capture&replay testing. The results of our study show that NLP-based test automa-

tion appears to be competitive for small- to medium-sized test suites such as those

considered in our empirical study. It minimizes the total cumulative cost (develop-

ment and evolution) and does not require software testers with programming skills.

K E YWORD S

empirical study, natural language processing, page object pattern, Selenium, test automation,
web testing

1 | INTRODUCTION

Web applications are one type of application requiring fast time to market and excellent quality assurance. In fact, it is recognized that putting into

production web applications that are late compared with expectations, or that users do not like, or even worse, that contain bugs can lead to the

loss of customers.1–3 A bug in a web application can cause both direct losses in corporate revenues and indirect losses due to the decline in cus-

tomer loyalty and brand reputation. Modern web applications are heterogeneous, distributed, complex, and they continuously run for providing

everyday services. Therefore, the quality assurance of the developed applications is a crucial aspect. Before the application release, the quality

assurance process aims at ensuring that the application is free of bugs and meets high-quality standards. Nowadays, standards and guidelines exist

that support the quality assurance process4,5; however, it is fairly evident that software testing plays a critical role in the application quality

improvement; it aims at discovering the presence of bugs, and thanks to the automatic execution of test cases,6 it can be effective and efficient.

Automated test cases, in fact, can be run often and quickly with each application release, thus increasing the confidence of the released applica-

tions.7 Test automation, hence, contributes to increase the application quality and makes the assurance process effective and efficient. Addition-

ally, software testing and automated testing is also a crucial aspect for continuous integration (CI) processes, which form the foundation of

DevOps8 and agile methodologies because it supports the common goal of delivering quality and speed through a flexible process. The

Received: 24 December 2022 Revised: 1 June 2023 Accepted: 12 July 2023

DOI: 10.1002/smr.2606

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

J Softw Evol Proc. 2023;e2606. wileyonlinelibrary.com/journal/smr 1 of 24

https://doi.org/10.1002/smr.2606

https://orcid.org/0000-0001-5267-0602
https://orcid.org/0000-0002-3928-5408
mailto:maurizio.leotta@unige.it
https://doi.org/10.1002/smr.2606
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/smr
https://doi.org/10.1002/smr.2606
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.2606&domain=pdf&date_stamp=2023-08-15

development process of web applications is characterized by frequent iterations, rapid changes in requirements, and rapid releases. However,

such modern applications are developed and maintained by potentially large teams of developers working on the same application repository.

Hence, building a CI pipeline can be a non-trivial and challenge. Test automation is an enabler of CI because it strongly contributes in automating

the CI pipeline, making CI effective in practice.

Testing frameworks, such as Selenium WebDriver, Selenium IDE, and JUnit, are nowadays consolidated solutions to automate the test pro-

cess.9,10 They have proven their value in practice by reducing the cost of manual testing and thus improving the quality of released applications.7,9

However, while useful, these frameworks also present challenges in their use.11 In fact, developing executable test cases and then maintaining

them is very expensive for companies. Furthermore, the development of test suites requires specialized personnel who must be technically able

to produce good quality code and know how to use the testing frameworks. All of these reasons risk limiting the adoption of testing frameworks

and thus the benefits to the applications under test.6

Recently, a new category of tools and frameworks, often provided as Software as a Service (SaaS), named code-less and based on artificial

intelligence (AI)12,13 and natural language processing (NLP) have appeared on the market. The major novelty of NLP-based test automation tools/

frameworks is that the test cases are written in pure natural language, thus simplifying their production and understanding. The huge advantage is

that with these tools even software testers with limited programming skills can produce executable test cases quickly.

Many vendors have understood the enormous potential of NLP-based solutions in the context of web applications testing and thus have pro-

posed several different testing automation frameworks and tools—for example, TestSigma,* TestRigor,† Functionize,‡ and TestProject§—able to

interpret and execute test cases written in natural language. However, although very promising and interesting, the benefits of this new category

of frameworks and tools, in terms of reduction in development and evolution times and thus in terms of costs, have not yet been proved in the

field.

The purpose of this paper, which extends a previous one from a conference,14 is to present a series of case studies where this new

NLP-based testing approach is compared with more established solutions. In particular, we have chosen a representative of available NLP test

frameworks and compared it, considering test suite development and evolution time, with Selenium WebDriver and Selenium IDE, representing

the programmable (or script-based) and capture&replay categories.

Our empirical work, started with our previous paper14 then extended in this manuscript, makes the following main contributions:

• this is the first empirical study in the web context that compares the category of NLP-based testing frameworks, able to simplify the writing

and understanding of test cases, with more consolidated testing frameworks (i.e., Selenium WebDriver and Selenium IDE);

• this work extends the empirical knowledge base related to web testing frameworks. This knowledge base is very useful because it can guide

company managers to choose the most suitable category of testing frameworks/tools for their specific purposes;

• this empirical study shows with real data that this new category of NLP-based testing frameworks is really promising and that therefore soft-

ware companies are right to propose/produce frameworks/tools of this type (or integrate NLP into already existing solutions).

The results of this empirical work may be of interest to both industrial and academic settings. Professionals can better understand and esti-

mate the possible costs and returns of investments associated with the adoption of different web testing frameworks, while researchers, in addi-

tion to increase the empirical evidence on the use of different testing frameworks, can also be inspired to conduct new experiments or

replications on the topic.

Compared with the published conference paper,14 all data of the empirical study were tripled, adding new applications belonging to different

domains. The results obtained and discussed in the paper are now based on the development and evolution of nine test suites (instead of three in

Leotta et al.14) for different web applications, built by three different software testers (only one in Leotta et al.14), thus reinforcing the generaliz-

ability of the results.

Furthermore, additional diagrams, analysis, and statistical tests, with respect to the ones of the conference paper, have been carried out to

further analyze relevant aspects and present the outcomes, of this larger study.

This paper is organized as follows. Section 2 describes the three different testing approaches (i.e., programmable, capture&replay, and NLP

based) and the tools we selected to execute the empirical study. Section 3 describes the main aspects of the empirical study we carried out to

compare the three approaches, that is, design, experimental objects (i.e., the web application chosen), subjects (i.e., the software testers

implementing the test suites), research questions (RQs), and procedure. Section 4 reports the results of the study and ends with a discussion on

the pros and cons of the various approaches. Finally, Sections 5 illustrates related works, and Section 6 concludes the paper.

*https://testsigma.com/.
†https://testrigor.com/.
‡https://www.functionize.com/.
§https://testproject.io/.

2 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://testsigma.com/
https://testrigor.com/
https://www.functionize.com/
https://testproject.io/

2 | BACKGROUND

End-to-end (E2E) testing of web applications is a type of black box testing based on the concept of test scenario.15 Test scenarios are sequences

of steps/actions performed on the web application mimicking the actual actions performed by the web application users (or a manual tester). For

example, testing a login functionality could require to execute the following actions: insert username, insert password, click the login button, and

verify that the user is authenticated in the web application. Starting from each test scenario, one or more test cases can be derived by specifying

the actual data to use in each step (e.g., username=John.Doe) and the expected results (i.e., defining the assertions). The execution of each test

case can be automated by implementing a corresponding test script following any of the existing approaches. The choice among the various

approaches could depend on different criteria including, for example, the technology used in the web application implementation, the available

tools (e.g., Selenium WebDriver and Selenium IDE¶), and the proficiency in coding of the involved testers.6

In this work, we consider and compare three different testing approaches: programmable web testing (also called script-based) and

capture&replay web testing, that both represent two relevant choices for implementing web test scripts, and the novel NLP-based web testing

approach. In the following of the section, we briefly introduce them.

2.1 | Gherkin

Before developing the test scripts relying on one specific testing approaches it is useful to describe/define the test cases to implement using a

specification language. Gherkin# is a language widely used in this context.10 More in detail, Gherkin is a DSL language that allows to describe the

behavior of the software without specifying implementation details: Therefore, it is suitable for sharing the description of usage scenarios within

software teams and thus often employed as a test specification language. The Gherkin language is a structured language composed of a set of

keywords including the following ones:

• Feature: provide a high-level description of the test

• Example/Scenario: show an example of the test

• Given: represent the initial context of the test

• When: describe an action occurred

• And: another action occurred

• Then: describe the result

The code shown in Figure 1 describes a simple example in which Gherkin is used to specify a test case for an online e-commerce application.

The test's goal is to verify a product's correct price when it is added to the shopping cart.

2.2 | Programmable web test automation (PT)

Programmable web test automation is based on the development of web test scripts using programming languages (such as Java, Python, or Ruby)

with the aid of specific libraries able to manage the browser execution. Usually, these libraries extend the programming language with powerful

¶https://www.selenium.dev.
#https://cucumber.io/docs/gherkin/reference/.

F IGURE 1 Example of test case specified with Gherkin.

LEOTTA ET AL. 3 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.selenium.dev
https://cucumber.io/docs/gherkin/reference/

and user-friendly APIs, providing commands to interact with the web application such as click a button, fill a field, or submit a form. Test scripts

are completed with assertions implemented using common libraries such as xUnit (e.g., JUnit, if the language chosen is Java) to check the obtained

execution results.

An example of programmable test script is reported in Figure 2; it represents a possible implementation for the Gherkin code in Figure 1 rely-

ing on the state-of-the-practice tool Selenium WebDriver.k,10 The test script reported in the figure adopts the design pattern Page Object

(PO).**,†† It is a popular web test design pattern, which aims at improving the test case maintainability and at reducing the duplication of code11,15

with possible benefits also during the initial development when the test suites are large.16 Basically, each PO is a class that represents the web

page elements as a series of objects and that encapsulates the functionalities provided by the web page into methods. Adopting the PO pattern in

the test scripts implementation allows testers to follow the Separation of Concerns design principle, because the test scenarios are decoupled from

many implementations details. Indeed, such details (e.g., the locator used to specify the position in the DOM of a button to click) are moved into

the POs, a bridge between web pages and test cases, with the latter only containing the test logics. Thus, all the functionalities to interact with or

to make assertions about a web page are offered in a single place, the PO, and can be easily called and reused within any test case.

Looking at Figure 2, we can see that in the test script the @BeforeEach and @AfterEach annotations are employed. They are constructs

defining commands to be executed before and after the execution of the test script main body, respectively, to set up and reset the test script

execution (e.g., open the web application and then close the browser).

In the @Test method body, the steps are implemented by calling various methods provided by the POs (in this example HomePagePO), such

as addFirstProductToCart, which contributes to the logic of the test cases, that is, adding a product to the shopping cart. Assertions

(assertEquals condition) are used to verify the price of the product added to the cart.

The advantage of programmable testing is its flexibility and the reusability of the test scripts. In fact, working with programming languages

allows developers to directly handle in the scripts conditional statements, loops, logging, and exceptions and to create parametric (i.e., data-driven)

test scripts that can be executed even on different browsers.17,18

These benefits are amplified in particular when adopting specific patterns such as the PO pattern (as in the example reported here), allowing

to reduce the coupling between web pages and test scripts, promote reusability, readability and maintainability of the test suites.15

F IGURE 2 Example of PT test script.

khttps://www.selenium.dev/documentation/webdriver/.

**https://martinfowler.com/bliki/PageObject.html.
††https://code.google.com/p/selenium/wiki/PageObjects.

4 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.selenium.dev/documentation/webdriver/
https://martinfowler.com/bliki/PageObject.html
https://code.google.com/p/selenium/wiki/PageObjects

The drawbacks of programmable testing,15,16 however, are the following: (i) Testers must have non-trivial programming skills to adopt it;

(ii) to be effective, programming guidelines and best practices typically used for software development must be followed; and (iii) a substantial ini-

tial effort is required to develop test scripts.

2.3 | Capture&replay web test automation (CRT)

CRT is often adopted for regression testing. This testing approach is based on a first manual execution in which the tester manually exercises a

web application by using a tool that, at the same time, records the whole execution session, including all user events and interactions with the

web elements, as well as all keys pressed.

Test scripts are automatically generated by the tool and can be used to replay the recorded testing sessions. Test scripts are hence executed

by replaying the whole recorded sessions that are usually also enriched with assertions (e.g., at the end of the test scripts) for checking the result

of the re-execution. Testers can also customize each re-execution by changing input values and assertions that can also be parametric to make

the test scripts more flexible.

As an example, Figure 3 shows a test script recorded with a capture&replay tool that implements the Gherkin code in Figure 1. In particular,

we used Selenium IDE,‡‡ a well-know and used tool supporting CRT.10 The Selenium IDE test script begins by opening the main page of the web

application and then several click operations are performed to add a product to the shopping cart; finally, the textual content of a specific

web element of the current page (the one having css=.my-auto) is checked with an assertion (verify text).

The advantage of capture&replay tools6,15 is that this kind of test scripts are relatively simple to produce. Hence, even software testers with-

out programming skills are able to build complex and advanced test suites. The drawbacks, however, are that the resulting test scripts: (1) have a

lot of duplicated code, (2) are difficult to read in case of complex scenarios, and (3) contain hard-coded values (e.g., data inputs and page refer-

ences and objects) that make the test scripts strongly coupled with the web application under test and, consequently, difficult to modify, for

example, during evolution.

F IGURE 3 Example of CRT test script.

‡‡https://www.selenium.dev/selenium-ide/.

F IGURE 4 Example of NLP test script.

LEOTTA ET AL. 5 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.selenium.dev/selenium-ide/

2.4 | NLP-based web test automation (NLT)

NLT uses NLP techniques to let software testers write test scripts by using the natural language. NLP, in fact, is the part of AI that allows

machines to interpret natural language. The use of NLP techniques for testing purposes is still at the infancy and its effectiveness has to be empir-

ically investigated.

As an example, Figure 4 shows a fragment of a test script that implements the Gherkin code in Figure 1. We can see that the test script is

written as a sequence of simple natural language sentences in which verbs such as open, click, assert, and their synonyms, are used to

describe the actions to be executed on the application under test. Many examples of commercial tools supporting NLT appeared recently on the

market such as TestSigma, TestRigor, Functionize, and TestProject.

The use of NLP in the web testing context emerged recently. For this reason, to the best of our knowledge, there are no studies that analyze

the pros and cons of its adoption, including comparison with other existing approaches. The expected benefit of NLP testing is the reduction of

effort required for human testers to develop (and understand) test scripts. Furthermore, specific programming skills are not required as for the

programmable approach.

NLP is used to write test cases in natural language, and using specific tools, to transform such descriptions in executable test scripts and to

run them.

A possible drawback, however, could be that a powerful NLP engine, able to interpret the natural language, is necessary to transform natural

language test cases into effective executable test scripts able to exercise the web application under test. In fact, it is known that understanding

natural language is very complex for a machine (in particular the phases of semantic analysis and disambiguation).19

3 | CASE STUDY DESIGN

In this section, we detail the planning and the design of the series of case studies we carried out to compare three considered web testing

approaches: PT, CRT, and NLT following the template and the guidelines by Wohlin et al.20 In the following of this section, we describe the design

of the case studies.

3.1 | Study design

The goal of this work is to analyze and compare three web testing approaches, PT, CRT, and NLT with the purpose of quantifying both short-term

and long-term (i.e., across multiple versions) effort required in two main testing scenarios: (1) test script development and (2) test script evolution.

Indeed, we are mainly interested in comparing the effort required for the initial test suite implementation and the effort needed for the test suite

evolution across subsequent application versions.

The results of this work can be of interest to both (i) practitioners (developers and managers) who, in their work activity, need to understand

and estimate the possible costs and returns of their investment associated with the adoption of the different web testing approaches and

(ii) researchers that look for empirical evidence about the usage of the different testing approaches.

The context of the study is defined as follows. Four participants were involved in the study: one of the authors, who defined the test specifi-

cations, and three junior professional web testers/developers, who implemented the test scripts with the three approaches. The experimental

objects of the study are nine open-source web applications.

3.2 | Web testing tools representative of the three approaches

As representative tools supporting these three testing approaches, we chose Selenium WebDriver (PT) and Selenium IDE (CRT) because they are

well-known and widely used in industry.10,11 Among the NLT available tools, we chose a commercial tool, according to a thorough analysis we

conducted. We basically analyzed (both through studying the available documentation and testing them with trial versions) many commercial tools

stating NLP web testing capabilities. Among the considered NLP tools, we selected one that (1) fully supports the NLP on the test case descrip-

tions (i.e., it is an actual NLP-based tool) and (2) can be used to implement test suites for the case studies without paying a fee (i.e., a free trial

license is available without limitations in the functionalities offered). We cannot disclose the name of the NLT commercial tool used due to propri-

etary reasons.

6 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

3.3 | Software objects

To perform our experiment, we took into account nine web applications (experimental objects) named expressCart, Shopizer, OIM, PrestaShop,

Kanboard, Bludit, MantisBT, Joomla!, and Simple Machines Forum (SMF). We selected these applications because they (1) are medium-sized appli-

cations; (2) are good representatives of typical web applications in terms of functionalities they provide and technologies they use, such as pro-

gramming languages, databases, libraries and frameworks; and (3) provide at least two major/minor versions available. The last aspect is particularly

relevant in our study for the estimation of the test script evolution effort, that is, the effort required to evolve and reuse the test scripts across soft-

ware versions. As suggested in the Semantic Versioning 2.0.0 specification,§§ each software version in a code repository like Github¶¶ is labeled

with a three-digit schema: MAJOR.MINOR.PATCH (e.g., 1.02.001), where MAJOR should be incremented when incompatible API changes are made,

MINOR when (backward-compatible) functionalities are added, and PATCH when (backward-compatible) bugs are fixed. This schema indicates that

breaking changes are expected to be present only in major releases, even if studies21 showed that in practice, also some minor versions can intro-

duce at least one breaking change. In our study, we opted for considering major/minor versions, because small changes between patch versions

can lead to a large reuse of test scripts, thus limiting the amount of evolution empirical data for our study. We applied a two-step process to select

the versions to be considered in the study: (1) We looked at the code version system of the application, searching for two consecutive major/minor

versions; (2) we verified if code changes of such versions were also related to relevant breaking changes (e.g., incompatible API changes). For each

application, we consider two subsequent major/minor versions available in the application code repository that expose relevant logical and/or struc-

tural changes.15 A logical change is a change to a system functionality that foresees the modification of the process underlying the specific func-

tionality, while a structural change is a change to the application structure that leads only to some changes to the elements, for example, of the

application GUI layout/structure. As an example, imagine to have a logical change in the test case reported in Figure 1. The change is the following:

When the user adds an element to the cart, the system shows directly the cart page. Thus, the step 06. And clicks the link “Cart” to visit the Car-

tPage should be removed. This kind of change impacts all the three test scripts (PT, CRT, and NLT, see, respectively, Figures 2–4). On the contrary,

a structural change on the page where the click is performed, that is, 06. And clicks the link “Cart” to visit the CartPage, could affect the various test

implementation differently: (1) If the link text changes (from Cart to MyCart), the NLT test should be modified; (2) if the css=.card_body locator

changes the CRT (and the PT in case the same locator is used) implementation should be modified.

In the following, we provide a short description of each web application.

expressCart## is an e-commerce application that implements functionalities such as shopping carts, payment methods, and administrative

functions. The application is very rich and dynamic: It is mainly written in Javascript, by using frameworks such as Node.js, Express.js, and

MongoDB.

Shopizerkk is another e-commerce application, mainly written in Java, that implements functionalities such as catalog management, shopping

carts, marketing components, smart pricing management, ordering, payment, and shipping management.

OIM*** is an inventory management that implements transactions management, raw material management, batch, supplier, items, categories,

and storage management. The application has been mainly developed in PHP by using AppGini,††† a web-database framework for applications

building.

PrestaShop‡‡‡ is an open-source e-commerce web application written in PHP. It provides many functionalities to create and manage an

online store. It is possible to set up a store with some demo data at the installation time. The admin panel provides many settings: for example,

from the products' management to modify store configurations.

Kanboard§§§ is a project management web application that focuses on the Kanban methodology. It is a web-based solution that provides pro-

ject management through a drag-and-drop interface and also automation, tagging, and scheduling functionalities.

Bludit¶¶¶ is a content management system (CMS) to create websites and blogs. It is a flat-file system, meaning that Bludit uses JSON files to

store the content. Users do not need to install or configure a database, and they only need a web server with PHP support.

Joomla!### is a free and open-source CMS for publishing web content on websites. Web content applications include discussion forums,

photo galleries, e-commerce, and user communities and numerous other web-based applications.

Mantis Bug Tracker (BT)kkk is a free and open-source, web-based bug-tracking system. It is usually employed to track software defects. How-

ever, users often configure MantisBT to serve as a more generic issue-tracking system and project management tool.

§§https://semver.org.
¶¶https://github.com/.
##https://github.com/mrvautin/expressCart.
kkhttps://shopizer-ecommerce.github.io/documentation/#/starting.

***https://bigprof.com/appgini/applications/online-inventory-manager.
†††https://appgini.en.softonic.com/.
‡‡‡https://www.prestashop.com/.
§§§https://kanboard.org/.
¶¶¶https://www.bludit.com/.
###https://www.joomla.org/.
kkkhttps://www.mantisbt.org/.

LEOTTA ET AL. 7 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://semver.org
https://github.com/
https://github.com/mrvautin/expressCart
https://shopizer-ecommerce.github.io/documentation/#/starting
https://bigprof.com/appgini/applications/online-inventory-manager
https://appgini.en.softonic.com/
https://www.prestashop.com/
https://kanboard.org/
https://www.bludit.com/
https://www.joomla.org/
https://www.mantisbt.org/

SMF**** is an open-source web application that provides Internet forum and message board services.

Table 1 summarizes some important information of the web applications that we have chosen as experimental objects of our study.

3.4 | Participants

The test development and evolution tasks on the nine web applications has been carried out by three junior testers/developers. They conducted

the experiment under the supervision of the researchers. They are web testers/developers with about 2/3 years of experience in the E2E web

testing field. They have good knowledge of Selenium IDE and WebDriver test suites. Moreover, before performing the experiment, they practiced

with the tool we selected for implementing the NLT approach by following tutorials and creating several sample test suites for various web appli-

cations of their choice. Finally, to complete the training, as part of the experimental procedure (see Section 3.6 for additional details), they created

a test suite for a web application we provided with all the three different testing approaches.

3.5 | RQs and metrics

To explain the RQs and the metrics we used to answer them, we introduce the following notation.

Let Vapp
1 be the first Version of a generic web application app under test (e.g., one of the applications we selected for our empirical study),

while Vapp
2 be the next version of the web application app. Instead, let TSapp1 be the Test Suite that a software tester developed for Vapp

1 , while let

TSapp2 be the test suite associated to Vapp
2 .

Our study investigates the following RQs:

• RQ1: Developing time. What is the development effort required for producing TSapp1 by adopting NLT with respect to more traditional

approaches, such as PT and CRT?

• RQ2: Reuse. How much of TSapp1 produced with a NLT approach can be reused “as-is” with respect to more traditional approaches such as PT

and CRT, when a new version of the application (i.e., Vapp
2) needs to be tested?

• RQ3: Evolution time. What is the effort required for evolving TSapp1 in TSapp2 with the three testing approaches considered, when a new version

of the application (i.e., Vapp
2) needs to be tested?

• RQ4: Trend in versions. How the cumulative effort, computed combining development and evolution effort, required by NLT varies in the time,

with respect to the one required for applying traditional approaches such as PT and CRT, by considering several different application versions?

The first RQ concerns the development cost in terms of the time required to create the test suites starting from test specifications

(i.e., Gherkin in our case). In this way, we can precisely compare the cost of adopting NLT in terms of production time required with respect to the

time required when adopting more traditional approaches, that is, PT and CRT. The results of this comparison provide the practitioners with

****https://www.simplemachines.org/.

TABLE 1 Experimental objects of the study.

Application Domain Technology Frameworks

1st

release

Last

commit #Star #Contr.

expressCart E-commerce Javascript Node.js, Express.js, MongoDB 2017 Jan 2023 2.2k 23

Shopizer E-commerce Java Spring framework 2015 Apr 2023 2.7k 5

OIM Inventory management PHP AppGini app 2018 Mar 2022 5 1

PrestaShop E-commerce PHP Symfony 2007 May 2023 7.2k 794

Kanboard Project management PHP Symfony, PHPUnit 2014 May 2023 1.7k 331

Bludit CMS Javascript, PHP No frameworks 2015 Feb 2022 1.1k 77

Joomla! CMS PHP Symfony 2005 May 2021 4.5k 772

MantisBT Bug tracker PHP No frameworks 2000 May 2023 1.5k 132

SMF Forum and messaging PHP No frameworks 2003 May 2023 504 94

Note: Last commit, number of stars (stars are a metric related to trust and quality in a project), and number of contributors were obtained from GitHub

projects of the related applications.

8 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.simplemachines.org/

the initial investment needed to adopt the various testing approaches. To answer RQ1, we measured the development effort of TSapp1 in terms of

time (minutes) needed by the testers to create/produce the executable test scripts. We compared the different development efforts and esti-

mated the ratio between NLT and the other two traditional approaches.

The second RQ concerns the analysis of the resilience to changes of the developed test suites. In particular, we aim to evaluate the capability

of the test suites, produced with the three considered testing approaches, to be reused to test new versions of the application under test. This

could provide practitioners with an estimate of the capability of the testing approach to implement reusable test suites, that is, test suites that

can be reused “as-is” to test a new software version.

To answer RQ2, we executed the test suites TSapp1 (for each app and each testing approach) against Vapp
2 and counted the number of test

scripts contained that passed without modifications. This number corresponds to the number of test scripts contained in TSapp1 reusable “as-is”
without modifications for testing Vapp

2 .

The third RQ concerns the cost of evolving TSapp1 in TSapp2 (i.e., evolution cost) in order to make TSapp2 working on Vapp
2 .

We aim to understand whether a testing approach requires additional evolution costs, with respect to others, and to estimate the ratios

between those costs. This could give practitioners an idea of the effort needed to make test suites usable across subsequent software versions.

To answer RQ3, we considered Vapp
2 . In detail, we evolved TSapp1 in TSapp2 to make them usable also for testing Vapp

2 . For each test suite, the evolu-

tion effort was measured in terms of time (minutes) the software tester spent to fix the test scripts that cannot be executed directly against Vapp
2 .

The last RQ concerns the return on investment (ROI) that can be achieved when adopting the three considered testing approaches.

In detail, this RQ aims to understand how the cumulative testing effort (considering both the development and evolution efforts) required to

apply the NLT approach varies across application versions. Such effort is compared with that of the more traditional approaches PT and CRT. In

this way, practitioners are provided with an estimation of the overall effort needed by the various testing approach.

To answer RQ4, we computed the cumulative testing effort for each approach as proposed in Leotta et al6 and estimated the number of appli-

cation versions after which the cumulative effort trend changes.

For example, given C0 and N0 the effort required for the initial development of CRT and NLT test suite, respectively, and given C1,C2,… and

N1,N2,… the test suite evolution effort associated with the successive application versions. We are seeking the lowest value n such that
Pn

i¼0Ci ≥
Pn

i¼0Ni. That value corresponds to the version number after which NLT test scripts start to be cumulatively more convenient than

CRT ones.

Figure 5 shows a graphical representation of an example where NLT costs are shown in green (dotted line) while CRT costs are in violet

(dashed line). From the figure, it is clear that the initial development cost of NLT is greater than the one of CRT but its lower evolution cost allows

to obtain a lower cumulative cost in the long term.

More in detail, under the simplifying hypothesis useful to make the calculation feasible that Ci = C 8i >0 and that Ni = N 8i > 0 (i.e., the same

evolution effort is required for the software versions), the equation above can be solved as follows: N0�C0
C�N . Thus, after n versions, the cumulative

effort of the initial development and evolution of NLT test scripts is lower than the one of CRT test scripts. In the example reported in Figure 5,

this corresponds to n¼4.

In general, the approach that has the lower evolution cost per versions will be the more convenient in the long term regardless of the initial

cost. It is interesting to note that negative values of n can be obtained: this means, for example, in case of NLT versus CRT, that the cumulative

cost of the NLT is always lower than the one of CRT and happens whether also the initial development effort of NLT is lower than that of CRT

(see an example in Figure 6 where n¼�1:25). In the rare case, the two straight lines are parallel a value for n cannot be computed.

F IGURE 5 Example of initial, evolution, and cumulative costs when comparing two web testing approaches.

LEOTTA ET AL. 9 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

With the same formula, we can estimate the value of n for NLT versus PT and CRT versus PT. By computing n, we provide the practitioners

of an estimate about when the cumulative investment (considering both development and evolution effort) due to the adoption of a given testing

approach could become favorable with respect compared testing approaches.

3.6 | Procedure

In our empirical evaluation, we compared three different approaches, that is, PT, CRT, and NLT while executing two different testing tasks: (i) test

suite development and (ii) test suite evolution. Thus, two subsequent application versions (i.e., the experimental objects of the study) have been

considered for each of the nine web applications included in the study (e.g., VExpressCart
1 and VExpressCart

2).

Initially, a preliminary training phase has been carried out to ensure a good and uniform level of familiarity with all three tools (each

implementing one of the considered approaches). In particular, we first provided the software testers that already have a good knowledge of Sele-

nium IDE and WebDriver, with some guides, tutorials on the tool implementing NLT and asked them to develop some test suites to better under-

stand its functioning. Then, as a final training task, we asked them to create a test suite for the PetClinic‡‡‡‡ application with all the three

different testing approaches, by starting from the Gherkin test specifications we provided. In this way, a uniform level of knowledge of the

approaches, and their corresponding frameworks/tools, is ensured among the three software testers.

In detail, the following procedure has been executed to complete each case study (i.e., for each web application considered) by one of the

three software testers (i.e., the one in charge of carrying out development and evolution tasks for that specific app) and one of the authors.

Note that each software tester worked on three different web applications applying on each of them all the three different testing approaches

in turn.

1. Web application selection: the tester under the supervision of one of authors selected an open-source web application following the criteria

explained in Section 3.3.

2. Web application analysis: the application has been analyzed by both the software tester and one of authors of this paper to obtain knowl-

edge about it. In particular, they analyzed the functionalities provided, the documentation, and the technology used to implement the

application.

3. Test cases definition: a test suite specification has been defined for the web application at hand by one of the authors. This required to precisely

describe a set of end-to-end functional test cases. The main functionalities provided by the first version of the application Vapp
1 (and still avail-

able in the second version Vapp
2) have been covered at least once. To maintain reasonable the effort required to complete the development and

evolution tasks of the test suites, we mainly considered the normal case behaviors (e.g., a successful login scenario) and only a few incorrect or

unexpected corner case behaviors (e.g., only incorrect password, but not all the possible cases of login test scenarios with incorrect/incomplete

credentials). This has been done also to reduce (as much as possible) redundancy among test scripts.

The Gherkin language has been employed to specify the test cases.

‡‡‡‡https://projects.spring.io/spring-petclinic.

F IGURE 6 Example of initial, evolution, and cumulative costs when comparing two web testing approaches. Case in which the estimated n
assumes a negative value.

10 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://projects.spring.io/spring-petclinic

4. Test scripts development: for the initial version Vapp
1 , the software tester implemented the test scripts using PT, CRT, and NLT, following the pre-

viously created test cases specifications. In this way, each tester developed three executable test suites for testing Vapp
1 by using the three dif-

ferent tools considered in this case study. The three test suites developed for each application are completely equivalent from the functional

point of view. Indeed, they test exactly the same functionalities in the same way because they have been developed precisely following the

defined Gherkin test specifications. To balance as much as possible the learning effects in the experiment, the order of test suites development

has been alternated.

Recorded data: for each test script, the tester noted down the start and stop times (hh:mm:ss) of the development task.

5. Test script evolution: the three executable test suites built at the previous point (i.e., TSapp1) have been executed, by the tester, on Vapp
2 . This

allowed to identify the failing test scripts, that is, those test scripts that, due to application changes between the first and the second applica-

tion version, report a failure or an error. The reasons behind the detected failures can be due to either structural or logical changes

implemented in the second version Vapp
2 with respect to the previous version of the same application. Thus, the tester repaired the failed test

scripts so that the full test suites produced (TSapp2) can be executed without problems also in the second version (Vapp
2) of the applications under

test. Also in this case, to balance as much as possible the learning effects in the experiment, the order of test suite evolution has been alter-

nated.

Recorded data: for each test script, the tester noted down the start and stop times (hh:mm:ss) of the evolution task (in case a test

script runs without problems the evolution time is zero). We thus have also the number of failing test scripts (i.e., the ones with evolution

time >0).

From the data recorded during the execution of the procedure we computed the total development and evolution effort for each

test suite. Moreover, to analyze the statistical significance of the differences between couples of treatments (e.g., test scripts development

times for PT vs. NLT approaches), we used both (a) the Kruskal–Wallis test22 (considering all three approaches) and (b) the Wilcoxon

paired test23 with Holm correction24 to compare the effects when considering couples of approaches (PT vs. NLT and CRT vs. NLT) while

counteracting the problem of multiple comparisons. In all the performed statistical tests, we decided, as it is customary, to accept a

probability of 5% of committing type I error (α).20 Finally, we used the Vargha and Delaney's A test25 to measure the strength of the

relationship between couples of treatments (e.g., PT vs. NLT and CRT vs. NLT), where a statistically significant (Wilcoxon-based) value

was observed. The Vargha and Delaney's A25 value ranges between 0 and 1 and it can be interpreted according to four categories indicating

the effect of the observed statistical relationship: negligible (N), small (S), medium (M), and large (L). These categories are useful for quantifying

the observed effect size.

4 | RESULTS OF THE STUDY

In this section, we first report the quantitative results (Section 4.1) to answer the four RQs of our study; then, we discuss the results (Section 4.2)

also considering contexts different w.r.t. our setting (such as, e.g., large industrial test suites). Finally, we discuss the threats to validity

(Section 4.3) of our empirical study.

TABLE 2 Test suites code details.

Application

#Test

Code

scripts

PT CRT
NLT

Test LOCs PO LOCs Total LOCs #PO Sel lines Java LOCs lines

expressCart 40 842 932 1774 18 635 934 361

Shopizer 28 506 483 989 7 273 417 150

OIM 32 462 1065 1527 18 552 765 351

PrestaShop 21 951 977 1928 21 343 596 224

Kanboard 20 735 724 1459 21 260 372 176

Bludit 21 684 683 1367 21 271 445 173

Joomla! 14 264 599 863 21 369 677 138

MantisBT 14 247 595 842 19 231 356 130

SMF 14 293 697 990 30 213 337 110

LEOTTA ET AL. 11 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4.1 | Quantitative results

4.1.1 | RQ1: Developing time

Table 2 reports general information about the developed test suites in terms of number and characteristics (e.g., lines of code) of test scripts

developed. To compare the CRT and PT code, we exported the native CRT Selenese code (column “Sel lines”)—the language used by Selenium

IDE—in Java using the export feature provided by Selenium IDE.

In five test suites out of nine, as expected, the PT Java test code (excluded the POs) is shorter than the CRT one (column Java LOCs): Because

many technical details are moved in the PO methods, test scripts become simpler and shorter. However, for four test suites out of nine, the LOCs

number for PT test scripts (POs excluded, column test LOCs) exceeds the LOCs number for the CRT code exported in Java (column Java LOCs).

This may seem counter-intuitive, but it can be explained by the structure of test suites. For three involved applications (PrestaShop, Kanboard,

and Bludit), the test suite has been organized with one class per test script (this was a choice of the tester that developed them). In Java, this cre-

ates a great abundance of LOCs, because all class declarations and, most importantly, all imports must be repeated for each test script. The other

application instead (Shopizer) makes extensive use of thread sleeps in the PT test suite (placed between invocations of PO methods). Thread

sleeps are instructions that pause the test script execution for a given amount of time, and in E2E web testing, they are widely used to wait for

the page to be loaded to provide execution stability.

Thread sleeps in Java are particularly verbose from a LOCs perspective because they must be enclosed in a try-catch block: In this way, a sin-

gle thread sleep takes usually five to six lines of code. The Shopizer test suite contains 56 thread sleeps, and so the LOCs difference between PT

and Java export of CRT can be easily explained.

Moreover, it is interesting to note that the number of NLT test script lines is always lower than the number of Selenese lines: This is reason-

able because Selenium records every interaction with the web application (e.g., click on a “name” field + type “John”: i.e., two lines are required)

while NLT provides a higher level command set (e.g., write “John” in the “name” field: i.e., only one line).

Table 3 reports the total test suite and average test script development effort (expressed in minutes) and the statistical difference observed

(if any) between the distributions of the test development effort.

In particular, we report (a) the result of the Kruskal–Wallis test for the three treatments, (b) the results of the Wilcoxon paired test (with Holm

correction) to compare PT and CRT against NLT, and (c) the Vargha and Delaney's A effect size, when a statistically relevant relationship is

observed.

The last two columns of the table report the effort ratio measured between PT and CRT against NLT. For instance, a value higher

than 1 in the ratio between PT and NLT means that the PT test suite required more development effort (time) than the corresponding

NLT test suite.

The table shows that the development effort for PT is always higher than for NLT (p-value <0.01 and large effect size—L), while there is also

a trend, statistically relevant (with medium—M—to large—L—effect) for four out of nine applications, for which the development effort for NLT is

higher than the one of CRT.

This is confirmed by the ratio (last columns of Table 3), indeed PT required more effort than NLT in all the applications (PT/NLT ratio value is

always higher than 1) and CRT required less effort than NLT in eight applications out of nine (CRT/NLT ratio is lower than 1 for eight out of nine

cases).

TABLE 3 Test suite development time (minutes).

Application

Total Average
Kruskal–

Wilcoxon paired Effect size VD.A Ratio

time (min) time (min)
Wallis

p-value
PT/ CRT/ PT/ CRT/

PT CRT NLT PT CRT NLT p-value PT–NLT CRT–NLT NLT NLT NLT NLT

expressCart 316 46 157 9.6 1.4 4.7 <0.01 <0.01 <0.01 L L 2.02 0.29

Shopizer 225 48 75 8.0 1.7 2.7 <0.01 <0.01 <0.01 L L 2.98 0.63

OIM 310 86 93 10.0 2.8 3.0 <0.01 <0.01 0.07 L - 3.33 0.93

PrestaShop 305 47 45 14.5 2.2 2.1 <0.01 <0.01 0.60 L - 6.82 1.05

Kanboard 335 46 53 16.7 2.3 2.6 <0.01 <0.01 0.31 L - 6.28 0.86

Bludit 315 42 61 15.7 2.0 3.0 <0.01 <0.01 0.01 L M 5.16 0.68

Joomla! 256 45 99 18.2 2.3 7.0 <0.01 <0.01 0.02 L L 2.58 0.33

MantisBT 263 47 102 18.7 3.3 7.3 <0.01 0.04 0.05 L - 2.57 0.46

SMF 199 48 103 14.2 3.4 7.3 <0.01 0.02 0.09 L - 1.92 0.46

12 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The result shows unequivocally that PT requires more development time than NLT, because the former requires to write the testing code

(e.g., in Java) using the Selenium WebDriver API and the latter requires only to describe the test scenarios with a simpler step-by-step natural lan-

guage description (e.g., derived from the Gherkin descriptions and enriched with several details to allow the tool to interact with the web page

elements).

At the same time, the results of our case study show also that CRT allows to produce test scripts faster than NLT. In fact, the NLT approach

requires, unlike CRT, the analysis of the description of test scenarios (written in Gherkin), their conversion in step-by-step actions/steps that exer-

cise the application under test, and the definition of the locators strings (e.g., “Cart” for the command click “Cart”) to precisely locate the web

page elements to interact with (with the CRT approach the locators are automatically generated during the recording phase). Conversely, the CRT

approach is simpler as it is sufficient to replicate the various Gherkin steps directly on the application. By analyzing the developed NLT test scripts,

F IGURE 7 Boxplots of development (blue) and evolution (gray) time for the test suites associated with the eight considered web applications:
distributions for PT, CRT, and NLT approaches are reported.

LEOTTA ET AL. 13 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

we noticed that the software testers tried to describe the test actions/steps by using a simple natural language thus avoiding complex linguistic

constructs; this has been done to simplify the task and to avoid NLP understanding problems with the NLT tool.

Figure 7 shows the box plots of development time (in blue) partitioned by treatment for the test suites associated with the nine considered

web applications: Each box plot represents the distribution of the time required to develop the various test scripts for a specific testing approach.

From the figure, it is evident what has already been observed from the previous statistical analyses, that is, the higher development time required

by the PT approach w.r.t. the other approaches; on the contrary, the development times required by CRT and NLT are comparable even if in gen-

eral CRT requires slightly less time.

RQ1. Summarizing, with respect to RQ1, we can observe that (i) PT requires the largest initial development effort and (ii) there is a trend

for which NLT requires more development effort compared with that required for CRT.

4.1.2 | RQ2: Reuse

Table 4 reports some information about the number of fixed/repaired test scripts, that is, those test scripts developed for testing the application

version Vapp
1 and that failed in exercising the application version Vapp

2 , thus requiring some effort to be fixed.

In particular, Table 4 reports, for each testing approach: the number of fixed test scripts (the three columns “Fixed”), the result of the

Kruskal–Wallis test on the three approaches, then the statistical difference (if any) between PT and CRT with NLT distributions, computed by

using the Wilcoxon paired test with the Holm correction, and finally, the Vargha and Delaney's A effect size, when a statistically relevant relation-

ship is observed.

About the fixed test scripts, we mainly observe trends that are not statistically relevant in most of the cases, apart for OIM, MantisBT, and,

partially, Kanboard. While for OIM and MantisBT, we observe that tests to be repaired differ significantly between PT/CRT and NLT (with

medium—M—to large—L—effect), for Kanboard, the observed difference exists only between PT and NLT (with small—S—effect). Finally, for the

other applications, no relevant difference has been observed. In general, we can observe that a large amount of test scripts needs to be fixed

(in the range between 42.8% and 100%). CRT has the largest number of test scripts to be fixed, on average 86%, with respect to PT and NLT

(respectively, on average 78.8% and 69.7%), while, in terms of variability for application, NLT has the largest variability, on average 20.5%, with

respect to CRT and PT (respectively, on average 14.6% and 14%).

As we have already said, the changes between the two selected versions of the web applications Vapp
1 and Vapp

2 considered in the experimen-

tation were of two types: structural and logical. Table 5 summarizes the type of changes for each application. It is possible to note that the num-

ber of changes is well distributed both between applications (except MantisBT) and types.

TABLE 4 Test suites evolution: changes.

Application

PT CRT NLT Kruskal–
Wilcoxon paired Effect size VD.A

Test #Test #Test Wallis
p-value

PT/ CRT/
Fixed Fixed Fixed p-value PT–NLT CRT–NLT NLT NLT

expressCart 19 23 19 0.34 0.33 1.00 - -

Shopizer 17 16 17 0.95 1.00 1.00 - -

OIM 26 28 15 <0.01 0.01 0.03 M M

PrestaShop 21 17 20 0.06 1.00 0.23 - -

Kanboard 14 20 20 <0.01 0.02 - S -

Bludit 16 16 15 0.90 0.76 0.76 - -

Joomla! 12 13 9 0.14 0.23 0.71 - -

MantisBT 11 14 6 <0.01 0.04 <0.01 M L

SMF 13 14 11 0.15 0.34 0.15 - -

Total 149 161 132 - - - - -

Average 16.5 17.8 14.6 - - - - -

14 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

As expected, PT and CRT show overall a similar levels of reusability (see Table 4) because they are based on the same DOM-based interaction

paradigm.15 More interesting is the result of NLT that appears to be able, on average more often than the other approaches, to compensate for

the change and thus finding a working solution in the novel version of the app.

Probably, this is due to the fact that the NLT steps are more abstract (e.g., Enter “John” into “name” field) than the one required in the PT

and CRT approaches (e.g., driver.findElement(By.xpath(“//*[@id=‘user-name’]”)).sendKeys(“John”); where the web element is localized using a

XPath expression), suffering more from changes to the DOM.

RQ2. Summarizing, with respect to RQ2, we can observe that (i) CRT shows the lowest reusability, while (ii) NLT shows the highest test

script reusability. This is probably due to the fact that NLT steps are more abstract with respect to the other approaches and not DOM

based and thus less affected by DOM structural changes.

4.1.3 | RQ3: Evolution time

Table 6 reports (a) general information about the evolution effort of the test suites in terms of time (expressed in minutes) required to fix

the failed test scripts, (b) the result of the Kruskal–Wallis test on the three approaches, (c) the results of the Wilcoxon paired test with the

Holm correction between PT–NLT and CRT–NLT, and (d) the Vargha and Delaney's A effect size, when a statistically relevant relationship is

observed.

TABLE 5 Type of changes per application.

Application

Logical changes Structural changes

PT CRT NLT PT CRT NLT

expressCart 8 7 3 11 17 16

Shopizer 7 12 5 9 5 12

OIM 17 19 6 11 7 9

PrestaShop 6 14 7 17 7 10

Kanboard 8 6 4 9 14 7

Bludit 6 10 8 16 11 13

Joomla! 6 5 5 7 7 5

MantisBT 0 0 0 13 14 6

SMF 6 9 9 7 5 3

TABLE 6 Test suite evolution time (expressed in minutes).

Application

Total Average
Kruskal–

Wilcoxon paired Effect size VD.A Ratio

time (min) time (min)
Wallis

p-value
PT/ CRT/ PT/ CRT/

PT CRT NLT PT CRT NLT p-value PT–NLT CRT–NLT NLT NLT NLT NLT

expressCart 88 96 45 2.7 2.9 1.3 0.03 0.01 0.04 M S 1.97 2.14

Shopizer 62 30 42 2.2 1.1 1.5 <0.01 0.03 0.66 N - 1.46 0.71

OIM 63 61 38 2.1 2.0 1.2 0.09 0.08 0.06 - - 1.63 1.58

PrestaShop 156 32 30 7.4 1.5 1.4 <0.01 <0.01 0.50 L - 5.28 1.09

Kanboard 48 37 29 2.4 1.8 1.4 <0.01 <0.01 0.26 L - 1.63 1.24

Bludit 43 35 27 2.1 1.7 1.3 <0.01 <0.01 0.05 L - 1.57 1.28

Joomla! 62 85 40 4.4 6.0 2.8 0.09 0.39 0.07 - - 1.50 2.12

MantisBT 62 54 39 4.4 3.8 2.7 0.10 0.46 0.95 - - 1.58 1.38

SMF 120 83 71 8.5 5.9 5.0 0.40 0.54 0.69 - - 1.69 1.16

LEOTTA ET AL. 15 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The table also reports the evolution effort ratio measured between PT and CRT with NLT. A value higher than 1 in the ratio between X and Y

means that the X test suite required more evolution time than the corresponding Y test suite.

From Table 6, it is apparent that PT and CRT required a higher evolution effort than NLT in almost all applications, even if the difference is

statically relevant for, respectively, five out of nine applications for PT (with a medium/large—M/L—effect size for four application, while for

Shopizer, the effect is negligible—N) and one out of nine applications for CRT (with a small—S—effect size). Indeed, the penultimate column of

Table 6 shows that PT has a ratio greater than 1 with respect to NLT for all the applications. While CRT shows, with respect to NLT (last column),

a ratio greater than 1 in eight out of nine applications (the only exception is Shopizer).

Figure 7 shows the box plots of evolution time (in gray) partitioned by treatment for the test suites associated with the nine considered web

applications: each box plot represents the distribution of the time required to evolve the test suite for a specific testing approach in order to make

it working on Vapp
2 .

From the figure, it is evident the higher evolution time required by the PT approach; on the contrary, the evolution time required by CRT and

NLT are comparable even if in general, NLT requires slightly less time.

The fact that NLT takes less time to evolve failed test scripts than PT is reasonable because no programming effort is required in that case; to

complete the evolution task with an NLT approach, it is sufficient to modify the descriptive text of the test.

On the other hand, NLT is also faster than CRT for eight applications out of nine (with only an exception, Shopizer): Also, in this case, editing

the test description text seems to be simpler than directly editing the Selenese code or re-recording the entire scenario.

In Shopizer, the trend is different, probably due to a banner for the user management of the cookies, added in VShopizer
2 , difficult to manage

with the NLT tool. Indeed, in NLT, the banner required a few attempts to find the correct interaction solution, while in the case of CRT, a simple

recording of the interaction with the approve button was sufficient to solve the problem. In our analysis, this motivates the different evolution

time observed.

RQ3. Summarizing, concerning RQ3, we can observe that (i) PT requires a higher evolution effort compared with NLT and (ii) the evolu-

tion effort required by CRT shows a high variability (but in eight cases out of nine is higher than the one required for NLT).

4.1.4 | RQ4: Cumulative effort

Table 7 reports the estimated application version n in which we foresee a change of the cumulative testing effort trend.

Concerning the adoption of NLT, Table 7 shows that the cumulative testing effort of NLT is almost always lower than the one of PT and CRT,

apart the case of Shopizer for CRT.

The nine negative values for n in column PT–NLT confirm what reported in the previous tables: NLT cost less during the initial development

and also the cost of each evolution step is lower. Thus, the straight lines representing the cumulative costs never intersect for any positive

value of n.

TABLE 7 Evolution cost: an approach that costs less starting from a version n<0 means that it costs less for both the initial development and
the evolution costs.

Application

Application versions: n

PT–NLT CRT–NLT

expressCart NLT costs less for n> �3:6 NLT costs less for n> þ2:2

Shopizer NLT costs less for n> �7:7 CRT costs less for n> �2:2

OIM NLT costs less for n> �9:0 NLT costs less for n> þ0:3

PrestaShop NLT costs less for n> �2:0 NLT costs less for n> �0:9

Kanboard NLT costs less for n> �15:0 NLT costs less for n> þ0:9

Bludit NLT costs less for n> �16:1 NLT costs less for n> þ2:5

Joomla! NLT costs less for n> �7:1 NLT costs less for n> þ1:4

MantisBT NLT costs less for n> �7:0 NLT costs less for n> þ3:6

SMF NLT costs less for n> �1:9 NLT costs less for n> þ4:5

16 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Moreover, the seven positive values of n in column CRT–NLT means that NLT have an initial higher cost w.r.t. CRT, but just after a few ver-

sions, the cumulative costs of NLT are lower because it requires lower evolution costs.

An exception is PrestaShop that exhibits a negative value in the column CRT–NLT, meaning that in this case, also, the initial development

effort of NLT is lower combined with a lower evolution effort of the NLT than CRT. Another exception is Shopizer, where both the

development and evolution costs are lower for CRT, meaning that CRT show a lower cumulative cost for any positive value of n. Also, in this case,

the difference w.r.t. the other applications could be attributable to the introduction of the banner (see the answer to RQ3).

RQ4. Summarizing, with respect to RQ4, we can observe that NLT requires the lowest cumulative testing effort with respect to the

other approaches (i.e., PT and CRT) with only one exception, Shopizer that costs less when adopting CRT.

4.2 | Discussion

In this section, we describe the strengths and weaknesses of the three testing approaches, relying on the experience gained during the execution

of the empirical study. Thus, we try to identify the best-use scenario for each approach also considering different application scenarios (such as,

e.g., large industrial test suites).

4.2.1 | PT: Pros and cons

The PT approach, in our opinion, is the most flexible and powerful one among the traditional E2E web testing approaches (i.e., vs. CRT). The devel-

oper has complete control over almost every aspect of the test script. Troubleshooting the problems is often easier than in other approaches, and

there are plenty of frameworks for PT in different languages. But this comes with a cost: The development time of test suites using the PT

approach is almost always higher than the ones required by the other approaches (this is also apparent in our series of case studies). In fact, manu-

ally writing the code for test suites is a time-consuming task, even for experienced web testers. This is particularly true when the PO pattern is

employed. As described in Section 2.2, the PO pattern prescribes to define a class for each web page of the application under test and to encapsu-

late all page accesses inside of such class. This provides better readability and maintainability of the test suite's code, but it requires more LOCs to

implement and thus more effort to adopt it.

The advantages of the PT approach become evident during the evolution of the E2E test suites: In fact, having the test suite code organized

in POs allows a quicker evolution process because the developer can quickly identify and fix the code that must be changed. This is particularly

true as the number of test scripts increases to fully cover many test scenarios of the tested functionalities.

In fact, as the reuse of PO methods between E2E test scripts increases, the advantage of being able to carry out the evolution task in a cen-

tralized way increases, that is, in the methods of the POs rather than in the body of the test scripts.

Moreover, adopting the PT approach allows the developer to choose the resilient locators26–28 used to locate web elements, and this can help

to write more robust test suites (although this can be done, to some extent, also in the CRT approach). Finally, the PT approach allows to adopt

more powerful assertions than the other two E2E approaches: PT testing frameworks offer plenty of different assertion kinds, and they can even

be extended using frameworks dedicated to this aspect (for example, Hamcrest and AssertJ in the Java language29).

Advanced assertions can make test scripts more efficient, with a lower rate of false negative (i.e., test executions that pass when they

should fail). Finally, another advantage of the PT approach is the existence of free and open-source tools, for example, the Selenium ecosys-

tem. These kind of tools can be executed also locally, so there is no need to pay fees/licenses for their usage or having vendor lock-in

issues.

A downside of the PT approach is that, to be effective, it requires experienced developers that extensively know: the programming language

used for developing the E2E test suite, the employed testing frameworks, and the application under test. An example of situation experimented in

our series of case studies is that in the PT approach is harder to manage (w.r.t. CRT and NLT) the presence of “iframes” in the web pages. The

testing framework we employed for the PT approach, Selenium WebDriver, can handle iframes, but it must be done manually: When the test

script has to interact with an element contained inside an iframe, the developer has to (1) switch the WebDriver context to the desired iframe,

(2) interact with the web element, and (3) restore the content to the main page. This is not a difficult task, but the problem is that the presence of

iframes may not always be evident, at first sight, looking at the page layout. This may require, in advance, an inspection of the HTML code of the

page (and so a considerable amount of time) to detect the presence of iframes.

LEOTTA ET AL. 17 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In our evaluation, even if the web testers that developed the test suites had experience with handling iframes with Selenium WebDriver, a

test script for the Joomla! web application required a considerable amount of time to be developed (56 min, out of 4 h and 16 min of the total

development time for the test suite) because the page contained multiple dynamically loaded iframes.

Instead, for the other two approaches, this problem did not occur because these testing frameworks are able to manage the iframes automat-

ically, without the need for human intervention.

Given these characteristics, in our opinion and experience,30 the PT approach is an interesting solution for large-sized, industrial E2E

test suites, composed by many complete and complex test scripts sharing many portions of the test sequences, even if it requires non-

trivial development skills. The adoption of the PO pattern and robust “ad hoc” locators provide, in this context, a major advantage in

terms of test suite evolution. Clearly, given that the experimental setting of our case studies is different, novel and specific empirical

studies are needed with large industrial test suites to understand which approach is the best choice.

4.2.2 | CRT: Pros and cons

The main strength of the CRT approach is that it allows recording E2E test scripts very easily and quickly: no knowledge about coding is required.

To create (or record) a test script, it is sufficient to perform the actions that an end user would do while using the web application functionalities.

The results of our evaluation reflect this aspect because in eight applications out of nine, the CRT approach requires the lowest initial test suite

development time.

Another advantage of the CRT approach, shared with the PT one, is that free and open-source tools implementing it are available on the web

(e.g., Selenium IDE and Katalon recorder). Also in this case, these tools can be executed locally, so there is no need to pay fees/licenses for their

usage.

The main weakness of the CRT approach is that CRT test suites are hard to maintain, mainly because of the absence (or limitation) of features

which promote code reuse: In fact, in E2E web testing, code reuse is fundamental to provide maintainability. E2E web test scripts usually share

common parts that must be executed in many test scripts. A typical example is the set of actions required to login in a web application. Without

the ability to factor and recall this group of actions, they must be manually repeated in each test script (another approach is to create a login-

specific test script and then call it from all test scripts that need it, but this approach is rarely used by software testers). This is not a big problem

when a small- or medium-sized test suite is considered: Because in the CRT approach test scripts are recorded quickly, if the common actions are

not too long, recording them for each test does not have a significant impact on the initial development time and allows the CRT approach to still

maintain an advantage against PT and NLT. However, this could become a problem for large test suites made up of complex test scripts having

many repeated actions in common.

The evolution phase, instead, is the most affected by the absence of code reuse, even in small–medium test suites (as the ones considered in

our study). In fact, if in the new version of the application under test there are changes affecting the common repeated parts, these parts have to

be re-recorded for each test script that contains them, thus severely increasing the evolution time of the test suite.

Even relying on copy and paste, although it is widely recognized as a bad practice in coding, it is not a quick task because the CRT tool we

employed (Selenium IDE) does not allow to select a group of commands to be copied and pasted, but it must be done one command at a time. In

four cases out of nine, evolving a CRT test suite required more time than developing it from scratch: In these cases, it would have been more con-

venient to re-record the test suites from scratch rather than evolving the already existing ones.

The only upside of the CRT approach from an evolution perspective is that Selenium IDE provides an auto-correct functionality for locators:

If an interaction with a web element fails (because, e.g., it is not present in the page or because the considered locator points to a non-existent

web element), the test execution does not fail immediately: Indeed, the tool tries to access the web element using another previously computed

locator (in practice, each web element is associated with many locators and Selenium IDE maintains a list of them).

In our experiment, this functionality provided a good success rate. However, this feature is also a downside from a test suite execution time

perspective, because searching the web element using alternative locators can require several tenths of seconds. Ideally, to improve the perfor-

mance, the developer should replace the original failing locator with the one suggested by the auto-correct functionality.

Finally, another issue with Selenium IDE is that there have been problems with JavaScript alerts: Even if they are supported by Selenium IDE,

often, the software tester must rearrange the recorded instructions related to a JavaScript alert acceptance in order to correctly replay the E2E

test scripts.

18 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

To conclude, we think the CRT approach is a good choice for developing small test suites that don't need major evolution activities, but

should be avoided on large and complex test suites for heavily evolving web applications. CRT can be considered a good solution in case

it is necessary to test quickly a small web application locally, employing a free tool (without fees) and with software testers having lim-

ited programming skills.

4.2.3 | NLT: Pros and cons

Finally, the NLT approach, in our opinion, represents a good compromise between the other two E2E approaches. It provides better maintainabil-

ity than the CRT approach and better development times than the PT approach: Writing E2E test scripts with a tool supporting the NLT approach

is easier than in the PT approach but not as fast and easy as in the CRT approach. The better maintainability w.r.t. the CRT approach is mainly pro-

vided by the possibility of reusing code, which is almost missing in practice in the CRT approach. The NLT tool we employed in the empirical work

provides code reuse by supporting the definition of functions (i.e., blocks of natural language instructions) that can be called inside of test scripts,

similarly to functions of programming languages. Moreover, NLT test scripts are often more resilient to evolution because steps/actions are speci-

fied in a more abstract way than CRT and PT test scripts.

The main weaknesses of the NLT approach are the reduced expressiveness of assertions and the complex troubleshooting required when the

most natural way to express a command does not work. For what concerns the assertions, in the selected NLT tool, they are performed with

the command assert that, that requires to specify the condition that must be checked. For example the assertion assert that page con-

tains “Welcome, user!” above “Home” checks that in the web page at hand the text “Welcome, user!” must be present above the text

“Home.” The problem is that it may not always be easy to describe an element's position relative to other elements using natural language, espe-

cially when the other elements are images, which cannot be easily described in the tool.

In these cases, the developer may be tempted to write weaker assertions that check only the presence of an element but not its position on

the page. However, these assertions should be avoided because they can lead to false negatives, where the test execution succeeds when it

should have failed. Otherwise, the developer may spend more time to try to define a stronger assertion in natural language, but this can reduce

one of the main advantages of the NLT approach, which is the speed in easily producing E2E test scripts.

The difficult troubleshooting instead is due to the fact that depending on the structure of the DOM of the page and the position of the ele-

ments, the most natural way to express a command may not work. In these cases, the documentation does not provide great support, because

only standard cases are described, and the developer is left alone trying to debug the test script until it works: In this sense, the possibility of using

full XPaths (as web element locators) in an NLT test provides an excellent solution.

A practical example of complex troubleshooting happened to one of the testers during the evolution of the SMF test suite. Specifically, a test

script in the SMF test suite required a specific text value to be entered into a field to post a message to a forum.

The page containing the text field can be seen in Figure 8 for both the versions considered of the web application: It is evident that there are

no major visual differences in this page between the two versions of the application.

However, in the first version of the application, the text box at the center of the page had HTML name “message”, so it is possible to insert

text on it using the command enter “text” into “message”. But in the second version of the application, the HTML name was missing, so the

tester started trying some intuitive commands, like enter “text” in the text area at the center of the page, and enter “text” in

F IGURE 8 Screenshots from the Simple Machines Forum application, version 2.0.1 and 2.1.2.

LEOTTA ET AL. 19 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the text area above “Attachments and other options”, but they all failed, although according to the documentation they were syntacti-

cally correct. Even using the full XPath, in the form enter “text” into xpath “/html/body/div[1]/textarea”, did not succeed. In the

end, the tester found a working solution by clicking the element using the full XPath, then using the command type “text” to enter the text in

it, but coming to this solution required the tester 16 min, a considerable amount of time w.r.t. the total evolution time for this test suite (1 h and

11 min).

Finally, like in the CRT approach, also in the case of NLT we encountered issues with JavaScript alerts.

Keeping these considerations in mind and looking at the results of the study, the NLT approach appears to be a good choice for

small- to medium-sized test suites (as the ones considered in our empirical study), when minimizing the overall costs (development and

evolution) is a priority even with software testers without programming skills. As aforementioned, additional evaluations are required

with complex industrial E2E test suites to assess the overall costs in particular in comparison with the PT approach. Finally, it must be

considered that the only existing NLT solutions are commercial and subject to a fee with the problem of vendor lock-in.

4.3 | Threats to validity

Internal validity threats concern factors that may affect the dependent variables and that are not considered in the study. The most relevant

threats to the internal validity of this study concern the subjectivity and variability of the test scripts implementation task: This includes the selec-

tion of the web applications to test, the choice of their functionalities to be tested, the definition of the test steps, and the input data to use. We

tried to limit these threats by involving different persons, one for the definition of the test specifications and three junior testers for the test script

development/evolution, and by applying well-known testing criteria together with a precisely defined experimental procedure. E2E testing nor-

mally takes place after functional and system testing and its starting point is the application user's perspective. Hence, as expected for this type of

testing, for each application under test, one of the authors tried to identify the test scenarios that could simulate the typical operations performed

by the application's users (mimic the typical user's gestures). This, together with the choice of using Gherkin, allowed us to separate the definition

of the test scenarios, focused on the application's domain and functionalities, with the test implementation done by the three junior testers. Gher-

kin has been used by one of the authors to specify, and document in a quite structured way, the set of test scenarios to be implemented, by the

three junior testers using the different testing tools (i.e., PT, CRT, and NLT). By adopting a domain-specific language such as Gherkin, we aim to

limit the subjectivity and variability that typically affect the adoption of informal and/or free-text-based test cases.

Another (possible) impacting threat is related to the learning effect during test scripts development and evolution tasks. As explained, we tried

to consider this threat in the experiment design by altering the order of test suite development and evolution. Because our study requires evaluat-

ing three different approaches, we asked to each tester to implement (and then evolve) three test suites in different orders: This allowed us to

consider all the possible implementation orders.

Construct validity threats concern the relationship between theory and observation. The most relevant threat to the construct validity con-

cerns the use of time (development and evolution time) as measure of the testing effort. Even if we are conscious that it is questionable because

several different aspects could impact the testing effort, we consider time as a reasonable proxy for estimating the testing effort because it is a

widely adopted practice in empirical software engineering research.

Another threat concerns the fact that Gherkin has been employed to specify the test scripts and that such specifications can be considered

quite similar to the one used for NLT (thus providing an advantage for what concerns the initial development effort to this approach).

On the one side, however, Gherkin test cases are abstract (they must be understandable to a human being), while NLT test scripts are more

concrete. Indeed, NLT test scripts are characterized by steps that must be executed, so they must contain precise values to (1) localize the web

elements to interact with (including positional properties in the web page), (2) insert values into forms' field, and (3) evaluate assertions. Further-

more, we can consider that often in industry, E2E test cases are specified in natural language and textual documentation; thus, the adoption of

Gherkin test cases allows us to mimics, in our experiment, what happens typically in the industry.

Conclusion validity concerns the relationship between the treatment and the outcome. To analyze the data and answer the RQs of interest,

we chose to use non-parametric tests (i.e., Kruskal–Wallis and Wilcoxon paired test), due to the size of the sample and because we could not

safely assume normal distributions. Moreover, we applied corrections (specifically, Holm correction) to the statistical tests due to multiple re-

executions. Because we had to compare three treatments, we first applied the Kruskal–Wallis statistical test.22 This test is used for

comparing two or more independent samples of equal or different sample sizes. It extends the Wilcoxon–Mann–Whitney test, which is used for

comparing only two treatments. Finally, we adopted the Vargha and Delaney's A test25 to measure the strength of the relationship between cou-

ples of treatments (e.g., PT vs. NLT and CRT vs. NLT), when a statistically significant effect was observed.

20 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

External validity threats are related to the generalization of the results. One of the most relevant threats to external validity concerns the

involvement of only three junior testers. Concerning this point, the involved testers have industrial experience in the web testing domain, particu-

larly employing Selenium WebDriver. Thus, they are good representatives of junior web testers in general. Moreover, it is essential to underline

that the case study is challenging and time-consuming to complete; therefore, finding subjects available to participate in it is not simple and

takes work.

Another critical threat could be related to the complexity of the tasks performed during the experiment in relation to the participants experi-

ence. We observed that having 2/3 years of experience (as our junior testers) is by far sufficient to complete them. As a result, we believe having

test engineers with more years of experience may not significantly change the results. On the contrary, having testers with very little (or even no)

experience could give some further advantage to NLT (and partially also to CRT), given that to develop test suites with the PT approach it is nec-

essary to have some programming skills and therefore a non-negligible experience can be a plus.

Another critical threat could be related to the web applications adopted in the study. The chosen applications are medium-sized, realistic, rep-

resentative of their domain, and based on modern technologies and languages. The fact that, for maintaining the case study feasible, we did not

consider the development of test suites for large industrial applications requires care regarding the generalization of the results to this class of

applications (as we mentioned multiple times while reporting and discussing the results) and offers an important starting point for future works.

Other potentially impacting threats are related to the developed test suites and the chosen tools representative of the three approaches. Test

suites have been designed as much as possible by following a systematic approach aiming at mimic the typical user's actions with respect to the

considered applications (as well as needed for E2E testing) and defining at least one test script for each significant application's functionality. In

terms of chosen tools, we used third-party frameworks/tools, well-known and available on the Internet, thus avoiding any authors' bias. More-

over, the frameworks/tools selected as representative of the PT and CRT approaches (respectively, Selenium WebDriver and Selenium IDE) are

among the most used in E2E web testing.10 Concerning the NLT tools, there are no published statistics on their usage, but we selected one that

appears to be mature, complete, and mentioned in many online guides and tutorials: Moreover, we compared its functionalities with the ones

offered by the other NLT solutions, and they appear to be equivalent.

5 | RELATED WORK

In the literature, we are witnessing a progressive interest in the adoption of NLP-based techniques to support software testing and test automa-

tion. However, to the best of our knowledge, there is a lack in the literature of objective and comparative evaluations (i.e., empirical studies) of

the proposed NLP methods with respect to more traditional approaches (e.g., programming and capture&replay6) to develop, generate, represent,

and evolve test cases. Differently from most of the existing literature, in our work, we focus on an empirical evaluation in the web context by con-

sidering different types of test case representations.

We decided to structure the related works into three subsections considering three very important aspects connected with software testing

and the use of natural language.

5.1 | Empirical studies and surveys on NLP in the context of software testing

Perhaps the most representative work in this field is that Garousi et al31 which reviews the state of the art of NLP in the context of software test-

ing by means of a survey in the form of a systematic literature mapping. Many of the papers contained in this survey present approaches and

techniques to conduct and automate NLP-based analysis (i.e., morphologic, syntactic, and semantic NLP approaches) for assisting software testing

and generating: (1) test cases from natural language (NL) requirement specifications, (2) textual input values for test cases, and (3) test oracles

aiming at verifying exceptional software behaviors. Some approaches adopt an intermediate representation between the natural language specifi-

cations and the generated test cases or test artifacts, as, for example, behavioral models represented as state machines and activity diagrams. In

this work, Garousi et al. emphasize the fact that the generation of executable test cases is a complex task when NLP techniques are employed.

This applies regardless of the intermediate representation adopted.

Gupta and Mahapatra32 investigate recent research trends in the adoption of NLP in the context of software testing and highlight the follow-

ing interesting issues: (i) The adopted requirement specifications are often constrained to a specific structure that limits their expressiveness;

(ii) intermediate behavioral models inferred from NL requirements need to be precise and comprehensive enough, thus often leading to large and

complex models difficult to use; (iii) manual rectification of models is often required when models are extracted from NL requirements;

and (iv) test cases generated by adopting NLP techniques are often not executable and need an additional intervention, for example, providing

test input data.

Ricca et al12 provide the results of a survey of the gray literature concerning the use of AI and NLP to improve test automation practices. The

authors filtered 136 relevant documents from which a taxonomy of problems that AI aims to tackle is extracted, along with a taxonomy of

LEOTTA ET AL. 21 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

AI-enabled solutions to such problems. The paper concludes by distilling the six most prevalent AI-based testing tools on the market. Among

these, there are TestSigma and Functionize, tools adopting natural language to express test cases for web applications.

5.2 | Test case generation

Carvalho et al33 present a NLP-based method for test case generation by starting from NL requirements. The proposed method converts the NL

requirements in an intermediate and hidden formalism named software cost reduction (SCR). The produced specifications are then used by a tool

(NAT2TESTSCR) to generate test cases. Several industrial case studies have been conducted to evaluate the effectiveness of the proposed

approach, in terms of performance in generating test cases and of their fault detection capability. The obtained results have been compared with

randomly generated test cases.

Sarmiento et al34 present a NLP-based tool offered as web application and named C&L able to translate NL requirements into behavioral

models expressed by means of activity diagrams. In a second time, test scenarios and elements are derived from the generated behavioral models

and used to produce abstract test cases, then enriched with input values to make them executable.

Fischbach et al35 describe a NLP-based approach and a tool (Specmate) for deriving test cases from requirements expressed by means of user

stories. The considered user stories follow the template established by Cohn,36 that is, “As a <type of user>, I want <goal>, so that <some rea-

son>.” A cause–effect graph, generated by the dependency tree extracted from the user stories, is used as an intermediate model. By traversing

the cause–effect graph, a set of test cases is finally defined. A case study of 961 user stories in cooperation with the industry has been conducted

to evaluate the effectiveness of the proposed approach/tool.

Gröpler et al37 propose the use of NLP to extract sequence models and model specifications from functional requirements written in natural

language. These models and specifications are then used in a toolchain for generating test cases. The toolchain for requirement-based model and

test case generation is applied with success to an industrial use case from the e-mobility domain: a system for charging approval of an electric

vehicle in interaction with a charging station.

Wang et al38 investigate the adoption of a NLP-based method for analyzing textual documents that aim at extracting information relevant for

the construction of test cases and for the identification of test data. As result, the authors present UMTG, a tool-based approach able to support

the generation of executable acceptance test cases from requirements specifications written in natural language, with the goal of reducing the

manual effort required to produce test cases. UMTG has been validated in two industrial case studies with excellent results. It was able to gener-

ate test cases that exercise all the test scenarios manually implemented by experts and some other test scenarios not previously considered.

5.3 | Gherkin

As introduced in Section 2, Gherkin is a structured quasi-natural language that let software testers to specify test cases by using a constrained

natural language structured around a set of pre-defined keywords. Gherkin is mainly used to define scenarios in behavior-driven development

(BDD),39 an agile software development technique also referred to as “Specification by Example” that drives developers to define executable and

testable requirements.

Oruç and Ovatman40 apply the BDD approach for testing web services. The authors develop a tool which, starting from test cases expressed

in Gherkin, automatically generates JMeter test scripts.‡‡‡‡

Colombo et al41 present an approach to convert Gherkin-based specifications into models that can subsequently be used to generate and

execute Selenium WebDriver test scripts. The authors instantiated the proposed approach using QuickCheck (a lightweight tool for random test-

ing of Haskell programs)42 and shown its applicability via a case study on the national health portal for Maltese residents.

Finally, both the works presented by Marchetto et al43 and Longo et al44 evaluate the adoption of Fitnesse¶¶¶¶ and fit tables45 as tools/

techniques to define acceptance tests in constrained natural languages. In particular, while Marchetto et al43 compares fit tables for traditional

systems and web-specific fit tables in maintenance tasks, Longo et al44 compares Fitnesse and Gherkin projects from the point of view of test

data uniformity. Uniform test data, as explained by the authors, are expressions that are common to various test documents.

6 | CONCLUSIONS

This paper reports the results of a series of case studies we conducted to compare NLT and two more traditional approaches, that is, PT and CRT.

‡‡‡‡https://jmeter.apache.org/.
¶¶¶¶https://docs.fitnesse.org/FrontPage.

22 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://jmeter.apache.org/
https://docs.fitnesse.org/FrontPage

The comparison is based on four factors: (1) the effort required for developing test suites (computed in minutes), (2) the resilience to changes

of the test suites, (3) the effort required to evolve the test suites (computed in minutes), and (4) the cumulative effort computed combining conve-

niently development and evolution effort.

Results show that the NLT approach appears to be the best option for small- to medium-sized test suites such as those considered in our

empirical study. In fact, compared with competitors, the NLT approach minimizes the total cumulative cost (development and evolution) and does

not require software testers with programming skills. NLT is also the best in terms of resiliency being more robust to the evolution of a web appli-

cation. CRT is slightly faster during development but then loses when evolution is considered. In conclusion, these new NLP-based tools appear

to be very promising and will probably be even more performing in the near future when the adopted NLP algorithms used to transform natural

language based test cases into executable test cases improve further.

For the future, we plan to increase the generalizability of the results of this study. In particular, we would like to (1) conduct a larger study by

extending the set of the considered web applications and involving others developers, possibly professional developers; (2) experiment with dif-

ferent testing tools/frameworks, in particular considering other testing tools belonging to the NLP category; and (3) consider many corner cases

of the tested web app functionalities to analyze the increment of the maintenance effort due to test suite redundancy. Such effort could be differ-

ent among the approaches (PT, CRT, and NLT). Indeed, specific testing design patterns such as the PO pattern could reduce the maintenance

effort in such cases; thus, the PT could have some advantages from an evolution cost perspective at least compared with the CRT approach.

Finally, we would like to conduct another study to understand the actual potential of these new NLP-based tools in terms of language expressive-

ness. In fact, in some cases, the testers who conducted the case studies realized that the NLP algorithm was not able to interpret some test case

steps even if they were described correctly. So it would be interesting to test this aspect empirically to understand and evaluate the limits of the

NLP algorithms in the web context.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Maurizio Leotta https://orcid.org/0000-0001-5267-0602

Filippo Ricca https://orcid.org/0000-0002-3928-5408

REFERENCES

1. Callaghan D, O'Sullivan C. Who should bear the cost of software bugs? Comput Law Secur Rep. 2005;21:56-60.

2. Marchetto A, Ricca F, Tonella P. An empirical validation of a web fault taxonomy and its usage for web testing. J Web Eng. 2009;8:316-345.

3. Ocariza F, Bajaj K, Pattabiraman K, Mesbah A. A study of causes and consequences of client-side JavaScript bugs. IEEE Trans Softw Eng. 2016;43:

128-144.

4. Software Testing Help. What is software quality assurance (SQA): a guide for beginners; 2023.

5. Laporte CY, April A. Software Quality Assurance. Wiley-IEEE; 2018.

6. Leotta M, Clerissi D, Ricca F, Tonella P. Capture-replay vs. programmable web testing: an empirical assessment during test case evolution. In: Proceed-

ings of 20th Working Conference on Reverse Engineering (WCRE 2013). IEEE; 2013:272-281.

7. Berner S, Weber R, Keller RK. Observations and lessons learned from automated testing. In: Proceedings of the 27th International Conference on

Software Engineering, ICSE '05. Association for Computing Machinery; 2005:571-579.

8. Ebert C, Gallardo G, Hernantes J, Serrano N. DevOps. IEEE Softw. 2016;33(3):94-100.

9. García B, Gallego M, Gortízar F, Organero M. A survey of the Selenium ecosystem. Electronics. 2020;9:1067.

10. Cerioli M, Leotta M, Ricca F. What 5 million job advertisements tell us about testing: a preliminary empirical investigation. In: Proceedings of 35th

ACM/SIGAPP Symposium on Applied Computing (SAC 2020). ACM; 2020:1586-1594.

11. Leotta M, García B, Ricca F, Whitehead J. Challenges of end-to-end testing with Selenium WebDriver and how to face them: a survey. In: Proceedings

of 16th IEEE International Conference on Software Testing, Verification and Validation (ICST 2023). IEEE; 2023:339-350.

12. Ricca F, Marchetto A, Stocco A. AI-based test automation: a grey literature analysis. In: 2021 IEEE International Conference on Software Testing, Veri-

fication and Validation Workshops (ICSTW). IEEE; 2021:263-270.

13. Trudova A, Dolezel M, Buchalcevova A. Artificial intelligence in software test automation: a systematic literature review. In: Proceedings of the 15th

International Conference on Evaluation of Novel Approaches to Software Engineering—Volume 1: ENASE. SciTePress; 2020:181-192.

14. Leotta M, Ricca F, Stoppa S, Marchetto A. Is NLP-based test automation cheaper than programmable and capture & replay?. Proceedings of 15th Inter-

national Conference on the Quality of Information and Communications Technology (QUATIC 2022). Springer; 2022:77-92.

15. Leotta M, Clerissi D, Ricca F, Tonella P. Approaches and Tools for Automated End-to-End Web Testing. Adv Comput. 2016;101:193-237. doi:10.

1016/bs.adcom.2015.11.007

16. Leotta M, Biagiola M, Ricca F, Ceccato M, Tonella P. A family of experiments to assess the impact of page object pattern in web test suite develop-

ment. In: Proceedings of 13th IEEE International Conference on Software Testing, Verification and Validation (ICST 2020). IEEE; 2020:263-273.

17. Leotta M, García B, Ricca F. An empirical study to quantify the setup and maintenance benefits of adopting WebDriverManager. In: Vallecillo A,

Visser J, Pérez-Castillo R, eds. Proceedings of 15th international conference on the quality of information and communications technology (quatic 2022).

CCIS, vol. 1621. Springer; 2022:31-45.

LEOTTA ET AL. 23 of 24

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-5267-0602
https://orcid.org/0000-0001-5267-0602
https://orcid.org/0000-0002-3928-5408
https://orcid.org/0000-0002-3928-5408
info:doi/10.1016/bs.adcom.2015.11.007
info:doi/10.1016/bs.adcom.2015.11.007

18. García B, Ricca F, del Alamo JM, Leotta M. Enhancing web applications observability through instrumented automated browsers. J Syst Softw. 2023;

203:111723. doi:10.1016/j.jss.2023.111723

19. Moro A, Raganato A, Navigli R. Entity linking meets word sense disambiguation: a unified approach. Trans Assoc Comput Linguist. 2014;2:231-244.

https://aclanthology.org/Q14-1019

20. Wohlin C, Runeson P, H}ost M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in Software Engineering. Springer; 2012.

21. Raemaekers S, van Deursen A, Visser J. Semantic versioning versus breaking changes: a study of the Maven repository. In: 2014 IEEE 14th Interna-

tional Working Conference on Source Code Analysis and Manipulation. IEEE; 2014:215-224.

22. McKight PE, Najab J. Kruskal-Wallis test. The Corsini Encyclopedia of Psychology. John Wiley & Sons, Ltd; 2010:1.

23. Wilcoxon F. Individual comparisons by ranking methods. Breakthroughs in Statistics. Springer; 1992:196-202.

24. Holm S. A simple sequentially rejective multiple test procedure. Scandinavian J Stat. 1979;6:65-70.

25. Vargha A, Delaney HD. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J Educat Behav Stat.

2000;25:101-132.

26. Nass M, Alégroth E, Feldt R, Leotta M, Ricca F. Similarity-based web element localization for robust test automation. ACM Trans Softw Eng Methodol

(TOSEM). 2023;32(3):1-30. doi:10.1145/3571855

27. Leotta M, Ricca F, Tonella P. SIDEREAL: statistical adaptive generation of robust locators for web testing. J Softw: Test, Verif Reliab (STVR). 2021;31:

e1767. doi:10.1002/stvr.1767

28. Leotta M, Stocco A, Ricca F, Tonella P. ROBULA+: an algorithm for generating robust XPath locators for web testing. J Softw: Evol Process (JSEP).

2016;28(3):177-204. doi:10.1002/smr.1771

29. Leotta M, Cerioli M, Olianas D, Ricca F. Two experiments for evaluating the impact of Hamcrest and AssertJ on assertion development. Softw Qual J

(SQJ). 2020;28:1113-1145. doi:10.1007/s11219-020-09507-0

30. Olianas D, Leotta M, Ricca F. SleepReplacer: a novel tool-based approach for replacing thread sleeps in selenium WebDriver test code. Softw Qual J

(SQJ). 2022;30:1089-1121. doi:10.1007/s11219-022-09596-z

31. Garousi V, Bauer S, Felderer M. NLP-assisted software testing: a systematic mapping of the literature. Inf Softw Technol. 2020;126:106321.

32. Gupta A, Mahapatra RP. A circumstantial methodological analysis of recent studies on NLP-driven test automation approaches. Intelligent Systems:

Springer; 2021:155-167.

33. Carvalho G, Falcão D, Barros F, et al. NAT2TESTSCR: test case generation from natural language requirements based on SCR specifications. Sci Comput

Progr. 2014;95:275-297.

34. Sarmiento E, Do Prado Leite JCS, Almentero E. C&L: generating model based test cases from natural language requirements descriptions. In: 1st Inter-

national Workshop on Requirements Engineering And Testing (RET). IEEE; 2014.

35. Fischbach J, Vogelsang A, Spies D, Wehrle A, Junker M, Freudenstein D. SPECMATE: automated creation of test cases from acceptance criteria. In:

13th International Conference on Software Testing, Validation and Verification (ICST). IEEE; 2020.

36. Cohn M. User Stories Applied: For Agile Software Development. Addison Wesley Longman Publishing Co., Inc.; 2004.

37. Gröpler R, Sudhi V, García EJC, Bergmann A. NLP-based requirements formalization forautomatic test case generation. In: 29th International Work-

shop on Concurrency, Specification and Programming (CSP). CEUR; 2021.

38. Wang C, Pastore F, Goknil A, Briand LC. Automatic generation of acceptance test cases from use case specifications: an NLP-based approach. IEEE

Trans Softw Eng. 2022;48(2):585-616.

39. Patkar N, Chis A, Stulova N, Nierstrasz O. Interactive behavior-driven development: a low-code perspective. In: 2021 International Conference on

Model Driven Engineering Languages and Systems Companion (MODELS-c). IEEE; 2021.

40. Oruç AF, Ovatman T. Testing of web services using behavior-driven development. In: 6th International Conference on Cloud Computing and Services

Science. SCITEPRESS; 2016.

41. Colombo C, Micallef M, Scerri M. Verifying web applications: from business level specifications to automated model-based testing. Electron Proc Theor

Comput Sci. 2014;141:14-28.

42. Claessen K, Hughes J. QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of the fifth acm sigplan international

conference on functional programming, ICFP '00. Association for Computing Machinery; 2000:268-279.

43. Marchetto A, Ricca F, Torchiano M. Comparing “traditional” and web specific fit tables in maintenance tasks: a preliminary empirical study. In: 12th

European Conference on Software Maintenance and Reengineering. IEEE; 2008.

44. Longo DH, Vilain P, da Silva LP. Measuring test data uniformity in acceptance tests for the FitNesse and Gherkin notations. J Comput Sci. 2021;17(2):

135-155.

45. Melnik G, Read K, Maurer F. Suitability of fit user acceptance tests for specifying functional requirements: developer perspective. In: XP/AGILE Uni-

verse 2004: Extreme Programming and Agile Methods—XP/AGILE Universe 2004; 2004:60-72.

How to cite this article: Leotta M, Ricca F, Marchetto A, Olianas D. An empirical study to compare three web test automation approaches:

NLP-based, programmable, and capture&replay. J Softw Evol Proc. 2023;e2606. doi:10.1002/smr.2606

24 of 24 LEOTTA ET AL.

 20477481, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2606 by C
ochraneItalia, W

iley O
nline L

ibrary on [12/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1016/j.jss.2023.111723
https://aclanthology.org/Q14-1019
info:doi/10.1145/3571855
info:doi/10.1002/stvr.1767
info:doi/10.1002/smr.1771
info:doi/10.1007/s11219-020-09507-0
info:doi/10.1007/s11219-022-09596-z
info:doi/10.1002/smr.2606

	An empirical study to compare three web test automation approaches: NLP-based, programmable, and capture&replay
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Gherkin
	2.2 Programmable web test automation (PT)
	2.3 Capture&replay web test automation (CRT)
	2.4 NLP-based web test automation (NLT)

	3 CASE STUDY DESIGN
	3.1 Study design
	3.2 Web testing tools representative of the three approaches
	3.3 Software objects
	3.4 Participants
	3.5 RQs and metrics
	3.6 Procedure

	4 RESULTS OF THE STUDY
	4.1 Quantitative results
	4.1.1 RQ1: Developing time
	4.1.2 RQ2: Reuse
	4.1.3 RQ3: Evolution time
	4.1.4 RQ4: Cumulative effort

	4.2 Discussion
	4.2.1 PT: Pros and cons
	4.2.2 CRT: Pros and cons
	4.2.3 NLT: Pros and cons

	4.3 Threats to validity

	5 RELATED WORK
	5.1 Empirical studies and surveys on NLP in the context of software testing
	5.2 Test case generation
	5.3 Gherkin

	6 CONCLUSIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES

