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Abstract

The goal of many data-driven problems is to achieve a good prediction by estimating a
quantity of interest based on a finite set of (possibly noisy) measurements, exploiting
training data, and some property of the model that may be known or not a-priori. The
most common methods to reach this objective are explicit and implicit regularization. The
first technique consists of minimizing the sum of a loss function plus a regularizer, which
is explicitly added to the objective function and entails some a priori knowledge or some
desired property of the solutions that we want to select. The second technique, implicit
regularization, which is the main focus of this thesis, consists of minimizing a regularizer
subject to the constraints established by the loss function minimizers. In this thesis, we
propose two different approaches to solving the implicit problem.

In the first part of the thesis, we follow a more traditional approach. We propose and
study two new iterative regularization methods for inverse problems that are based on a
primal-dual algorithm, where the bias and the loss is fixed. Our analysis, in the noise-free
case, provides convergence rates for the Lagrangian and the feasibility gap. In the noisy
case, it provides stability bounds and early stopping rules with theoretical guarantees. The
main novelty of our work is the exploitation of some a priori knowledge about the solution
set: we show that the linear equations determined by the data can be used more than once
along the iterations. We discuss various approaches to reusing linear equations that are
at the same time consistent with our assumptions and flexible in their implementation.
Finally, we illustrate our theoretical findings with numerical simulations for robust sparse
recovery and image reconstruction. We confirm the efficiency of the proposed regulariza-
tion approaches by comparing the results with state-of-the-art methods.

In the second part of this thesis, inspired by the recent success of re- and over- param-
eterization trained with gradient descent in machine learning, we flip our perspective by
fixing the loss and the algorithm (gradient flow) and reparameterize the linear model.
Then, we aim to find the implicit bias introduced by the chosen optimization method and
reparameterization. But there is still an open question of how to find systematically what
the inductive bias hidden behind the model for a particular optimization scheme is. The
goal of this thesis is to take a step in this direction by studying a unified framework encom-
passing various reparametrizations presented in the state of the art, called time-warped
mirror flow. However, a theoretical analysis of the existence and convergence of the trajec-
tory is missing in the state of the art. Here, we fill this gap by providing a comprehensive
study. First, we prove the existence and uniqueness of the solution. Next, we establish
the convergence of both the trajectory and the corresponding values of the loss function.
Finally, for any convex loss function, we prove that the trajectory converges towards a
minimizer of the loss function, and we provide an implicit bias. For a specific case of loss
functions, including least squares, the implicit bias can be made explicit. Furthermore,
we explore the flexibility of our formulation by applying the previous results to different
examples related to weight normalization. Finally, we give a criterion to determine, for a
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given function that depends only on the norm, a suitable weight normalization parame-
terization.

Keywords. Primal-dual splitting algorithms, Iterative regularization, Early stopping, Landweber
method, Stability and convergence analysis, Overparameterization, Implicit Regularization, Time-
warping mirror flow, Fully connected normalized linear networks, Weight normalization.
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CHAPTER 1

General introduction

1.1 Motivation

Many data-driven problems involve estimating an input-output relation based on a finite
set of (possibly noisy) measurements, i.e., f(xi) ≈ yi. Assuming that f is linear, expressed
as f(x) = ⟨β∗ | x⟩, the problem simplifies to determine β∗ from the following linear equa-
tion:

Xβ∗ = y,

where X represents a matrix with rows corresponding to input data points, and y can be
seen as the vector of measurements of some unknown β∗ that we want to recover.

In general, the solution might not exist or might not be unique, or might not depend
continuously on the data y. To address the issue of existence, a loss or data-fitting func-
tion L, often the least squares, is utilized. To solve non-uniqueness and select a particular
solution, a regularization term R is introduced, also called the bias of the solution. This
regularization enforces prior knowledge or a desired property of the solution. A standard
approach to recover β∗ is to assume that it is a minimizer of the following constrained
optimization problem:

min
β∈Rp

{R(β) : β ∈ argminL} . (1.1.1)

Typically, in (1.1.1), the regularizer R and the loss function L are fixed. Subsequently,
a suitable algorithm that leverages the properties of both the loss and the regularizer is
designed to efficiently find a solution. In this thesis, we propose two different approaches
to solve the implicit problem.

We also assume that L is the least squares and the data is noisy, meaning that there exists
yδ such that:

∥yδ − y∥ ≤ δ,

where δ is the level of noise. A common method to solve the above problem and avoid
instabilities is Tikhonov regularization [52, 128] which consists in minimizing the sum of
a penalized loss term plus a regularizer. A trade-off parameter is then introduced to bal-
ance the fidelity term and the regularizer. In practice, this implies that the optimization
problem has to be solved many times for different values of the parameter. Then, the best
performing iterate is chosen according to some a priori data driven criterion and consid-
ered the regularized solution.
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2 1. GENERAL INTRODUCTION

In the first part of our thesis, we solve (1.1.1) using a classical approach, to deal the
case where R is a convex regularizer, which is neither smooth nor strongly convex. We
explore an alternative, efficient approach known as early stopping [12, 20, 27, 30, 82,
112, 141, 146]. This method runs an iterative algorithm solving the exact problem but on
the inexact data and early stopping to prevent convergence to the noisy solution. In this
setting, the number of iterations plays the role of the regularization parameter. Compared
to Tikhonov regularization, this procedure is very efficient since only one optimization
problem is solved, and not even until convergence. Recently, in [40, 84] an algorithm was
introduced that combined primal-dual methods with early stopping. On the other side, in
[24], an extra activation step is added, improving the feasibility of the iterates, obtaining
empirical speed up. Then, the idea is to combine these two approaches to design an effi-
cient algorithm to solve (1.1.1).

We introduce and analyze two new iterative regularization methods based on a primal-
dual algorithm with activations. Our analysis yields in the noise-free scenario (δ = 0)
convergence rates for the Lagrangian and the feasibility gap of (P), and stability bounds
along with early stopping criteria with theoretical guarantees in the noisy scenario. The
main novelty of our work is the exploitation of some a priori knowledge about the solution
set: we show that the linear equations determined by the data can be used more than once
along the iterations. We propose various strategies for reusing linear equations that align
with our theoretical framework while remaining flexible for practical implementation. Fi-
nally, we illustrate our theoretical findings with numerical simulations for robust sparse
recovery and image reconstruction. We confirm the efficiency of the proposed regulariza-
tion approaches by comparing the results with state-of-the-art methods.

In the second part of this thesis, we flip this perspective by fixing the loss and the algo-
rithm, which, to simplify the analysis, will be gradient flow. We also reparameterize the
linear model as follows:

θ 7→ β = q(θ)

which is called re- or over-parameterization. Then, we want to answer the following
question:

For a given loss, algorithm, and reparameterization, what implicit bias is introduced
by the chosen optimization method and reparameterization?

In simpler terms, does there exist a regularization function R such that the output of
gradient flow applied to the loss function L for a specific reparameterization q is the
solution of problem (1.1.1)?.

This question was partially answered in [4, 77], which found that gradient flow on the
reparameterization and mirror flow on β are equivalent, for a suitable mirror map that
only depends on reparametrization. While these articles cover a wide range of reparam-
eterizations, their assumptions are too restrictive to include certain interesting reparame-
terizations, such as weight normalization and the multiplication of a matrix by a vector.

To address this limitation, we study a unified framework proposed in [7], called time-
warp mirror flow. This consists of the vanilla mirror flow with a scalar preconditioning
that allows us to encompass many reparameterizations presented in the state of the art.
However, the theoretical analysis of the existence and convergence of the trajectory is
missing. Then, we pose the following question:



1.2. MAIN CONTRIBUTIONS 3

Can we expect well-posedness, convergence to a stationary point, convergence rates,
and implicit bias of the sequence β(t) generated by time-warped mirror flow?

In this thesis, we provide a set of assumptions to prove the well-posedness of the trajectory
of the time-warping mirror flow. Our analysis includes convergence of both the trajectory
and the corresponding values of the loss function. In the case when the loss function is
the composition of a linear operator with a strictly convex function, we provide an explicit
expression of the implicit bias. Finally, we illustrate our theoretical findings by applying
the obtained result to weight normalization and matrix vector overparameterization.

1.2 Main contributions

We briefly mention the main contributions of our work.

• In Chapter 4, we design and analyze two new iterative regularization methods for
convex regularizers, which are not necessarily smooth nor strongly convex. The new
iterative regularization methods are based on primal-dual algorithms [40, 46, 133]
combined with the idea of reusing the linear equations determined by the data at ev-
ery iteration [24]. The first method that we propose is a primal-dual algorithm with
additional activations of the linear equations. The second method is a dual-primal
algorithm, where a subset containing the dual solutions is activated at each step.

Our analysis, in the noisy case, provides stability bounds and early stopping rules
with theoretical guarantees. In the noise-free case, we provide convergence rates
for the Lagrangian and the feasibility gap of the problem (P).

We propose different variants of our algorithm, using different extra activation steps,
including a gradient descent step over the least square with a fixed or adaptive step
size. We also compare their numerical performance with state-of-the-art methods,
obtaining a considerable improvement in run-time.

• In Chapter 6, we provide an implicit bias for reparametrizations such that applying
gradient flow over θ is equivalent to apply time-warped mirror flow over β. The anal-
ysis consists of several steps. First, we establish conditions for the well-posedness of
the time warped mirror flow. Second, we demonstrate that for any convex function,
the sequence β(t) generated by time-warping mirror flow converges to a stationary
point that minimizes the loss function while avoiding the extra stationary points that
the reparameterization produces. For the specific case of a strictly convex function
composed with a linear operator, an explicit expression for the implicit bias is pro-
vided.

We apply our results to matrix vector parameterization and to various weight nor-
malization reparameterizations, generalizing many results in the state of the art.
Furthermore, we give a criterion to determine, for a given function that depends
only on the norm, a suitable weight normalization parameterization. Finally, we ex-
plore the flexibility of our formulation by applying the previous results to different
examples related to weight normalization.

Journal publications

• C. Vega, C. Molinari, S. Villa, and L. Rosasco, “Fast iterative regularization by reusing
data”, Journal of Inverse and Ill-posed Problems, 2023.

https://www.degruyter.com/document/doi/10.1515/jiip-2023-0009/html
https://www.degruyter.com/document/doi/10.1515/jiip-2023-0009/html


4 1. GENERAL INTRODUCTION

Articles in preparation

• C. Vega, C. Molinari, S. Villa, and L. Rosasco, “Learning from data via overparame-
terization”, In preparation, 2024.

1.3 Outline

This section offers a concise overview of the thesis, which is organized into six chapters
and supplemented by one appendix. Chapters 4 and 6 comprise the core articles devel-
oped during the doctoral research, one of them published in a journal [132]. Chapters 3
and 5 provide technical introductions that precede the discussions in Chapters 4 and 6,
respectively.

Chapter 2 lays out the notations and mathematical framework essential for this thesis,
organized into four sections. The first section is dedicated to Hilbert spaces, establishing
the fundamental concepts used throughout the thesis. The second section delves into
matrices, presenting the results necessary for our analysis. The third section explores
convex optimization concepts, which are mainly, but not exclusively, applied in Chapter
4. In the last section, we introduce essential notions of calculus, ordinary differential
equations, and the algorithms used in this thesis necessary for the discussion in Chapter
5.

Chapter 3 presents implicit and iterative regularization approaches. Initially, it outlines
the four fundamental components of implicit regularization: the model, the loss, the bias,
and the algorithm. Subsequently, the chapter provides a review of iterative algorithms.

Chapter 4 is organized as follows. In Section 4.2 we present the main problem and propose
two algorithms to solve it numerically. In Section 4.3 we derive stability and feasibility
gap bounds and related early stopping rules. In Section 4.4 we verify the performance of
the algorithm on two numerical applications: robust sparse recovery problem and image
reconstruction by total variation. Finally, we provide some conclusions.

Chapter 5 formulates our problem as an implicit regularization problem. Next, from the
point of view of optimization, we explain how overparameterization induces some implicit
bias and we give some examples. Finally, we present the main results in the state of the
art for vanilla and time-warped mirror flow.

Chapter 6 is organized as follows. In Section 6.2, we derive the convergence of our al-
gorithm to a stationary point and characterize this solution. In Section 6.3, we derive
conditions to cast gradient flow on weight normalization reparameterization, which de-
composes a vector into its direction and its norm, as a mirror flow over a radial function.
Finally, we provide some conclusions and open problems for future research directions.

Additionally, the thesis includes an appendix: which offers the supplementary material
of Chapter 6, omitted from the main text due to its extension. This section is mainly
focused on examples of overparameterization.



CHAPTER 2

Notation and Preliminaries

We begin by introducing some notation used throughout this thesis.

2.1 Basic notions

Let H, G be two real vector spaces. Although in most of this thesis H = Rp and G = Rd,
which are finite dimensional, this section is written for general Hilbert spaces. For further
results, the reader is referred to [15].

Definition 2.1.1. Now, we present some examples of norms in Rp, which will be used in
this thesis.

• General ℓq-norm: Let β ∈ Rp. For q ≥ 1, the ℓq-norm is defined as:

∥β∥q =

(
p∑

i=1

|βi|q
) 1

q

For q = 1, 2, and ∞, we have that

∥β∥1 =
p∑

i=1

|βi|, ∥β∥2 =

√√√√ p∑
i=1

β2i and ∥β∥∞ = max
1≤i≤p

|βi|.

• ℓ1,2-norm: Let β be a square matrix in Rp×p. The ℓ1,2-norm is defined as:

∥ · ∥1,2 : Rp×p × Rp×p → R, β →
p∑

i=1

p∑
j=1

∥(β1ij , β2ij)∥2,

where from now on βij is i-th component of the j-th column of β. This norm will be
used in the numerical examples.

Remark 2.1.2. The following two fundamental inequalities are continuously employed
throughout this thesis. For every (β, z) ∈ H× H and λ > 0, we have that:

⟨β | z⟩ ≤ ∥β∥∥z∥ ≤ λ∥z∥2

2
+

∥β∥2

2λ
.

The first and second inequalities are known as the Cauchy-Schwarz and Young inequali-
ties, respectively.

5



6 2. NOTATION AND PRELIMINARIES

The open ball of radius r > 0 centered at β ∈ H is the set of all points in H whose distance
from β is strictly less than r. This can be formally written as:

B(β, r) = {z ∈ H | ∥z − β∥ < r}.

Analogously, the closed ball of radius r > 0 centered at β ∈ H is the set of all points in H
whose distance from β is less than or equal to r and is denoted by B̄(β, r). This can be
formally written as:

B̄(β, r) = {z ∈ H | ∥z − β∥ ≤ r}.

Definition 2.1.3. Given λ ∈ ]0, 1[, an operator T : H → H is

• λ-averaged non-expansive, if for all (β, z) ∈ H× H,

∥Tβ − Tz∥2 ≤ ∥β − z∥2 − 1− λ

λ
∥(Id− T )β − (Id− T )z∥2.

• Firmly nonexpansive if it is 1
2−average.

• Non-expansive if, for all (β, z) ∈ H× H,

∥Tβ − Tz∥2 ≤ ∥β − z∥2.

• Quasi-non-expansive if
∥Tβ − z∥2 ≤ ∥β − z∥2,

for all β ∈ H and all z ∈ FixT , where FixT = {β ∈ H | Tβ = β} is the set of fixed
points of T .

The next lemma allows us to bound a positive sequence (see [111, Lemma A.1] for further
references).

Lemma 2.1.4. Assume that the sequence {βN} is a non-negative and satisfies the recursion

β2N ≤ SN +
N∑
k=1

λkβk, (2.1.1)

for all N ≥ 1, where {SN} is an increasing sequence, S0 ≥ β20 , and λk ≥ 0 for all k ≥ 0.
Then for all N ≥ 1

βN ≤ 1

2

N∑
k=1

λk +

SN +

(
1

2

N∑
k=1

λk

)2
 1

2

. (2.1.2)

The following lemma allows us to prove convergence of a given sequence.

Lemma 2.1.5 (Opial’s Lemma). Let C be a nonempty subset of a finite dimensional Hilbert
space H and let

{
βk
}
k∈N be a sequence in H. Assume

• For every β ∈ C there exists lim
k→+∞

∥βk − β∥; and

• Every limit point of
{
βk
}
k∈N belongs to C.

Then
{
βk
}
k∈N converges as k → +∞ to some β∞ ∈ C.
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2.2 Matrices

This section introduces various fundamental definitions and results in matrix theory and
linear algebra.

We use lowercase and uppercase letters, for matrices and vectors, respectively. For any
positive integer p, the set of all integers from 1 to p is denoted by [p]. The Hadamard
product of two vectors β and z in Rp is represented as β⊙z, where, for every i in [p],
(β⊙z)i = βizi. For a positive scalar L, the vector β⊙L :=

(
βLi
)p
i=1

. The vector λ⃗ in Rp has
all components equal to λ. The diagonal matrix Diag(β) ∈ Rp×p, for a vector β ∈ Rp, has
the components of β on its main diagonal and zeros elsewhere.

The operator norm for a matrix X ∈ Rd×p is defined by

∥X∥ = sup
z∈Rp

∥z∥≤1

∥Xz∥.

The Frobenius norm of X, represented as ∥X∥F , is defined as

∥X∥2F :=
d∑

i=1

∥xi∥2,

where xi is the i-th row of X. This norm extends the Euclidean norm to matrices.

The adjoint (or transpose) of a matrix X ∈ Rd×p, denoted by X⊤, is the unique matrix sat-
isfying ⟨Xβ | z⟩ =

〈
β | X⊤z

〉
, for every β ∈ Rp and z ∈ Rd. Two vectors (β, z) ∈ Rp × Rp

are orthogonal if and only if ⟨β | z⟩ = 0. For a subset V ⊆ Rp, its orthogonal complement
is defined as:

V ⊥ = {β ∈ Rp | for all z ∈ V, ⟨β | z⟩ = 0} .

The range of X ∈ Rd×p is denoted by ran(X) and defined as {u ∈ Rd | ∃β such that Xβ =
u}. Similarly, the kernel of X is denoted by ker(X) and defined as {β ∈ Rd | Xβ = 0}. In
the finite-dimensional setting, it follows that both ker(X) and ran(X) are closed subspaces,
and we have the relationship ran(X) = ker(X)⊥. An orthogonal matrix, or orthonormal
matrix, is a real square matrix X ∈ Rp×p whose columns and rows are orthonormal vec-
tors.

A matrix M ∈ Rp×p is positive definite if β⊤Mβ > 0 for every non-zero vector β ∈ Rp.
Similarly, a matrix is positive semidefinite if β⊤Mβ ≥ 0 for every vector β ∈ Rp. The set
of all p× p positive semidefinite and positive definite matrices are represented by Sk

+ and
Sk
++, respectively.

Definition 2.2.1. Given a matrix X ∈ Rp×d, its Singular Value Decomposition (SVD) is a
factorization of the form X = UΣV ⊤, where:

• U ∈ Rp×p and V ∈ Rd×d are orthogonal matrices.

• Σ ∈ Rp×d is a diagonal matrix with non-negative real numbers on the diagonal.

These diagonal entries of Σ are known as the singular values of X, and the columns of U
and V are called the left-singular vectors and right-singular vectors of X, respectively.
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Definition 2.2.2. Given a matrix X ∈ Rp×d, if the singular values of the X matrix are
denoted by σi for every i ∈ [min{p, d}], then the nuclear-norm ∥ · ∥∗ is defined by:

∥X∥∗ =
min{p,d}∑

i=1

σi.

The next formula provides an efficient method for calculating the inverse of a matrix plus
a rank-one matrix, specifically for (M + zβ⊤) where M is an invertible p × p matrix and
z, β ∈ Rp.

Lemma 2.2.3. If M is an invertible p× p matrix and z and β are two p-dimensional vectors
such that β⊤M−1z ̸= −1, the Sherman–Morrison formula gives

(M + zβ⊤)−1 =M−1 − M−1zβ⊤M−1

1 + z⊤M−1β
. (2.2.1)

The following definition will be used in the numerical examples.

Definition 2.2.4. The discrete gradient operator D : Rp×p → (R2)p
2
, for every matrix

u ∈ Rp×p is defined by:

(Du)ij =((Dxu)ij , (Dyu)ij) ,

where

(Dyu)ij =

{
ui+1,j − ui,j , if 1 ≤ i ≤ N − 1;

0, if i = N ;

(Dxu)ij =

{
ui,j+1 − ui,j , if 1 ≤ j ≤ N − 1;

0, if j = N.

2.3 Convex optimization

This section introduces various fundamental definitions and results in convex optimiza-
tion. For further results on convex analysis and operator theory, the reader is referred to
[15, 107].

Definition 2.3.1. Let f : H → [−∞,+∞]. The domain of f is

dom(f) = {β ∈ H | f(β) < +∞} ,

the graph of f is
gra(f) = {(β, ξ) ∈ H× R | f(β) = ξ} ,

the epigraph of f is
epi(f) = {(β, ξ) ∈ H× R | f(β) ≤ ξ} .

The function f is proper if −∞ ̸∈ f(H) and dom(f) ̸= ∅.

Definition 2.3.2. The argmin of a proper function f : H → ] − ∞ , + ∞ ] is

argmin(f) := {β∗ ∈ H | f(β∗) ≤ f(β) for all β ∈ H}.

Definition 2.3.3. A subset C ⊆ H is convex if and only if

λβ1 + (1− λ)β2 ∈ C

for every β1, β2 ∈ C and λ ∈ (0, 1).
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Definition 2.3.4. A function f : H → [−∞,+∞] is convex if

f(λβ1 + (1− λ)β2) ≤ λf(β1) + (1− λ)f(β2)

for every β1, β2 ∈ dom(f) and λ ∈ (0, 1).

Definition 2.3.5. A function f : H → R ∪ {+∞} is lower semicontinuous (l.s.c.) if and
only if epi(f) is closed in H× R.

We denote by Γ0(H) the set of convex, lower semicontinuous, and proper functions on H.

Definition 2.3.6. Let f : H → R∪{+∞} be a proper and convex function. A point β∗ ∈ H
is a subgradient of f at β if, for all z ∈ H,

f(z) ≥ f(β) + ⟨β∗ | z − β⟩.

The set of all subgradients of f at β is the subdifferential of f at β and is denoted by ∂f(β).
If ∂f(β) ̸= ∅, we say that f is subdifferentiable at β. The domain of the subdifferential is

dom(∂f) = {β ∈ H | ∂f(β) ̸= ∅} .

Note that, by definition,
dom(∂f) ⊆ dom(f).

Proposition 2.3.7. Let f : H → R ∪ {+∞} be a convex function. If β∗1 ∈ ∂f(β1) and
β∗2 ∈ ∂f(β2), then ⟨β1 − β2 | β∗1 − β∗2⟩ ≥ 0.

Example 2.3.8. Let f : R → R ∪ {+∞} : β 7→ |β|. Then, ∂f(β) = {1} if β > 0,
∂f(β) = {−1} if β < 0, and ∂f(0) = [−1, 1].

Example 2.3.9. Let f : H → R ∪ {+∞} : β 7→ ∥β∥. Then, ∂f(β) = β
∥β∥ if β ̸= 0, and

∂f(0) = B(0, 1), where ∥ · ∥ is the norm induced by the scalar product.

Example 2.3.10. Let C a subset of H. Define the indicator function of C as

ιC(β) =

{
0, if β ∈ C;
+∞, if β /∈ C.

If C ⊆ H is a nonempty, convex, and closed subset, then ιC ∈ Γ0(H). Moreover, ∂ιC = NC ,
where, for every β ∈ H,

NC(β) =

{
{β∗ ∈ H | ⟨z − β | β∗⟩ ≤ 0, for all z ∈ C} if β ∈ C;

∅, if β /∈ C.

The following definition allows us to define a Hilbert space by the product of a finite
number of Hilbert spaces.

Definition 2.3.11. The Hilbert direct sum of a family of real Hilbert spaces (Hi)i∈[d] is the
real Hilbert space: ⊕

i∈[d]

Hi =

{
β = (βi)i∈[d] ∈×

i∈[d]
Hi

}
.

For every i ∈ [d], let fi : Hi → R ∪ {+∞}. Then,

⊕
i∈[d]

fi :
⊕
i∈[d]

Hi → R ∪ {+∞} : (βi)i∈[d] 7→
d∑

i=1

fi(βi).
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Proposition 2.3.12. Consider a finite family of functions {fi}i∈[d] such that, for every i ∈ [d],
fi : Hi → R ∪ {+∞} is proper and convex. Then,

∂
⊕
i∈[d]

fi =×
i∈[d]

∂fi.

The following lemma allows us to characterize the minimizer of a function.

Theorem 2.3.13. Let f : H → R ∪ {+∞} be a proper and convex function. Then

argmin f = {β ∈ Rp | 0 ∈ ∂f(β)}.

For a given set C, we denoted by C the smallest closed subset containing C. The relative
interior of C is

ri(C) = {x ∈ C | R++(C − x) = span(C − x)} ,

where
R++C = {λy | (λ > 0) ∧ (y ∈ C)}

and span(C) is the smallest linear subspace of H containing C. From now on, every time
we use ri we assume that we are in a finite dimensional space.

Proposition 2.3.14. Let f : H → R ∪ {+∞}, and g : G → R ∪ {+∞} be two proper, l.s.c.,
and convex functions. Let X : H 7→ G a nonzero, bounded, and linear operator. Suppose that
dom g ∩ X dom f ̸= ∅. Then, ∂f + X⊤∂g ◦ X ⊆ ∂(f + g ◦ X). Additionally, if we suppose
that 0 ∈ ri (dom g −X dom f) , then ∂f +X⊤∂g ◦X = ∂(f + g ◦X).

Definition 2.3.15. Let f : H → R ∪ {+∞} be in Γ0(H). The conjugate (or Fenchel conju-
gate, or Legendre transform, or Legendre–Fenchel transform) of f is

f∗ : H → R ∪ {+∞}, u 7→ f∗(u) := sup
β∈H

⟨β | u⟩ − f(β).

Proposition 2.3.16. Consider a finite family of functions {fi}i∈[d] such that, for every i ∈ [d],
fi : Hi → R ∪ {+∞} is proper and convex. Then,⊕

i∈[d]

fi

∗

=
⊕
i∈[d]

f∗i .

Example 2.3.17. Let C be a nonempty, closed, and convex set. Then,

(ιC)
∗ = σC : H → R ∪ {+∞}, u 7→ sup

β∈C
⟨β | u⟩.

Note that if C = {y}, then f∗(u) = ⟨u | y⟩.

Example 2.3.18. Set B∞ =

{
β ∈ H | max

i∈[p]
|βi| ≤ 1

}
. Then, (∥ · ∥1)∗ = ιB∞ .

Proposition 2.3.19. Let f ∈ Γ0(H). Then (∂f)−1 = ∂f∗, where the inverse of ∂f , is defined
through its graph

gra
(
(∂f)−1

)
= {(u, β) ∈ H× H | u ∈ ∂f(β)}
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Definition 2.3.20. Let f : H → R ∪ {+∞}, and g : G → R ∪ {+∞} be two proper, l.s.c.,
and convex functions. Let X : H 7→ G a nonzero, bounded, and linear operator. The primal
problem is given by:

inf
β∈H

f(β) + g(Xβ).

Its optimal value is denoted by µ and the set of primal solutions is S. The dual problem is
given by:

inf
u∈H

f∗(−X⊤u) + g∗(u).

Its optimal value is denoted by µ∗ and the set of dual solutions is S∗.

Theorem 2.3.21. Let f : H → R ∪ {+∞}, and g : G → R ∪ {+∞} be two proper, l.s.c., and
convex functions. Let X : H 7→ G a nonzero, bounded, and linear operator. Then, µ+ µ∗ ≥ 0.
Additionally, if

0 ∈ ri (dom g −X dom f) ,

then µ+ µ∗ = 0.

The next theorem characterize the primal-dual solutions.

Theorem 2.3.22. Let β∗ ∈ H and u∗ ∈ G. Then the following are equivalent:

1. −X⊤u∗ ∈ ∂f(β∗) and u∗ ∈ ∂g(Xβ∗);

2. f(β∗) + g(Xβ∗) + f∗(−X⊤u∗) + g∗(u∗) = 0; and

3. β∗ ∈ S and u∗ ∈ S∗ and µ+ µ∗ = 0.

Definition 2.3.23. The proximal operator of f ∈ Γ0(H) is defined by

proxf : H → H, β 7→ argmin
z∈H

f(z) +
1

2
∥β − z∥2.

Proposition 2.3.24. Let f ∈ Γ0(H), and let β and p be in H. Then p = proxf (β) if and only
if β ∈ ∂f(p) + p.

For every self-adjoint positive definite matrix Σ, we define the proximity operator of f
relative to the metric induced by ∥ · ∥2Σ := ⟨· | Σ·⟩ as proxΣf = (Id+Σ∂f)−1. If Σ = σId for
some real number σ > 0, it is customary to write proxσf rather than proxΣf .

Proposition 2.3.25. Let f ∈ Γ0(H) and let γ > 0. Then proxf∗(β) = β − γ prox f
γ
(βγ ).

Proposition 2.3.26. Consider a finite family of functions {fi}i∈[d] such that, for every i ∈ [d],
fi : Hi → R ∪ {+∞} is in Γ0(Hi). Set β = (βi)i∈[d] and f =

⊕
i∈[d]

fi. Then, proxf (β) =(
proxfi(βi)

)
i∈[d].

Example 2.3.27. Let γ > 0 and β ∈ H. Then,

proxγ∥·∥1 = (softγ(βi))i∈[p] ,

where

softγ(x) =


x+ γ, if x < γ;
0, if x ∈ [−γ, γ];
x− γ, if x > γ,

and

proxγ∥·∥1 (β) =

(
1− γ

max {∥β∥, γ}

)
β.
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Definition 2.3.28. The projection operator onto a non-empty closed convex set C ⊆ H is
defined by

PC : H → H, β 7→ argmin
z∈C

1

2
∥β − z∥2.

Let f = ιC ∈ Γ0(H), then proxιC = PC . The distance to C is defined as dist2(β,C) =
min
z∈C

∥β − z∥2 = ∥β − PC β∥2.

Example 2.3.29. Let x be a non-zero vector in H, let y ∈ R, and set

C = {β ∈ H | ⟨β | x⟩ = y}.

Then

PC β = β +
y − ⟨β | x⟩

∥x∥2
x.

Example 2.3.30. Let x be a non-zero vector in H, let (y1, y2) ∈ R2, such that y2 ≤ y1, and
set C = {β ∈ H | y1 ≤ ⟨β | x⟩ ≤ y2}. Then

PC β =


β + y1−⟨β|x⟩

∥x∥2 x, if ⟨β | x⟩ < y1;

β, if y1 ≤ ⟨β | x⟩ ≤ y2;

β + y2−⟨β|x⟩
∥x∥2 x, if ⟨β | x⟩ > y2.

Theorem 2.3.31. Let C be a nonempty closed and convex subset of H. Then, for every β ∈ H,
PC β ∈ C, and for every z ∈ C,

⟨z − PC β | β − PC β⟩ ≤ 0.

Additionally, if C is a closed affine subspace, then PC is an affine operator, and for every
z ∈ C, ⟨z − PC β | β − PC β⟩ = 0.

In the following two definitions and two propositions, we assume that H and G are finite
dimensional.

Definition 2.3.32. Let X : H 7→ G a nonzero, bounded, and linear operator and let y ∈ G.
Then β∗ is a least square solution to the linear system Xz = y if

β∗ ∈ argmin
z∈H

∥Xz − y∥2.

Proposition 2.3.33. Let X : H 7→ G a nonzero, bounded, and linear operator and let y ∈ G.
Then the equation Xβ∗ = y has at least one least squares solution. Moreover, for every
β∗ ∈ H, the following are equivalent:

1. β∗ is the least square solution.

2. Xβ∗ = Pran(X) y.

3. X⊤Xβ∗ = X⊤y.

Definition 2.3.34. Let X : H 7→ G a nonzero, bounded, and linear operator. Let Cy ={
β ∈ H | X⊤Xβ = X⊤y

}
. The generalized (or Moore-Penrose) inverse of X is X† : G →

H : y 7→ PCy(0).

Proposition 2.3.35. Let X : H 7→ G a nonzero, bounded, and linear operator, such that
ran(X) is closed. Then X† is a bounded linear operator, Pran(X) = XX†, and Pker(X) =

Id − X⊤(X⊤)†.
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2.4 Differential Calculus and Ordinary differential equa-
tions

In this section, we recall some basic facts of Differential Calculus and Ordinary differential
equations.

Definition 2.4.1. Let f : H → R∪ {+∞}. The directional derivative of f : H → R∪ {+∞}
at β ∈ int(dom(f)) in the direction d ∈ H is:

f ′(β; d) = lim
t→0+

f(β + td)− f(β)

t
,

whenever the limit exists. The function f is Gâteaux differentiable at the point β if f ′(β; d)
exists for all d ∈ H and the function d 7→ f ′(β; d) is linear and continuous. In this situation,
the Gâteaux derivative (or gradient) of f at β is ∇f(β) = f ′(β; ·).

As before, we can define a directional derivative of ∇f at β ∈ int(dom(f)) in the direction
d ∈ H as:

(∇f)′(β; d) = lim
t→0+

∇f(β + td)−∇f(β)
t

whenever the limit exists. The function f is twice Gâteaux differentiable at the point β if
(∇f)′ (β; d) exists for all d ∈ H and the function d 7→ (∇f)′ (β; d) is linear and continu-
ous. In this situation, the second Gâteaux derivative (or hessian) of f at β is denoted by
∇2f(β) = (∇f)′(β; ·).

Proposition 2.4.2. Let f : H 7→ R∪{+∞} be proper and convex function, and let β ∈ dom(f).
If the function f is Gâteaux differentiable at the point β, then ∂f(β) = {∇f(β)}.

Lemma 2.4.3 (Descent Lemma). If f : H → R ∪ {+∞} is Gâteaux-differentiable and ∇f is
Lipschitz-continuous with constant L, then:

f(z) ≤ f(β) + ⟨∇f(β) | z − β⟩+ L

2
∥β − z∥2,

for every (z, β) ∈ dom(f)× int(dom(f)).

Definition 2.4.4. Let f : H → R ∪ {+∞} be strictly convex, proper, and Gâteaux differen-
tiable on int dom f ̸= ∅. The Bregman divergence Df associated with f is defined as:

Df : H× H →R ∪ {+∞}

(z, β) 7→
{
f(z)− f(β)− ⟨∇f(β) | z − β⟩, if β ∈ int(dom(f));
+∞, otherwise.

(2.4.1)

Note that, for every (z, β) ∈ dom(f) × int(dom(f)), the Bregman distance Df (z, β) is
positive and Df (z, β) = 0 ⇐⇒ β = z.

The next Lemma provides a sufficient condition to determine if a vector field is a gradient.

Lemma 2.4.5. Let f = (f1, . . . , fp) : U ⊆ Rp 7→ Rp let be a continuously differentiable vector
field on an open set U . If f is a gradient on U , then the partials derivatives of the components
of f are related by the equations:

∂fi
∂βj

(β) =
∂fj
∂βi

(β),

for all i, j ∈ [p] and β ∈ U .
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Definition 2.4.6. Let U ∈ Rp be a non-empty open set. Let a function f : U → R ∪ {+∞}
such that at each point of the set U all partial derivatives are continuous. Then we say
that f is of the class C1 on U . The set of all these functions is denoted by C1(U).

Analogously, a function f : U → R ∪ {+∞} is said to be of the class C2 on U if it has
continuous second partial derivatives at each point in the set U . The set of all such func-
tions is denoted by C2(U).

Definition 2.4.7. Let f : Rp → R ∪ {+∞} in Γ0(Rp) such that U := int (dom (f)) ̸= ∅. We
say that f is essentially smooth if it satisfies the following two conditions

1. f is differentiable on U ;

2. For every sequence {βk}+∞
k=1 ⊆ U converging to a point in ∂U := Ū\ int(U), we get

that
lim

k→+∞
∥∇f(βk)∥ → +∞.

In addition, f is a Legendre type (or simply Legendre) function if it is essentially smooth
and strictly convex on U .

For this part, we follow [11]. Now, we introduce the notion of a solution of an ordinary
differential equation.

Definition 2.4.8. Let U ⊆ R×Rp be an open set. Let f : U → R be a continuous function.
Consider the (ordinary) differential equation:

β̇(t) = f(t, β). (2.4.2)

A function β : (t−, t+) → Rp of class C1 (with t− > −∞ and t+ < +∞) is said to be a
solution of (2.4.2) if:

1. (t, β(t)) ∈ U , for every t ∈ (t−, t+);

2. β̇(t) = f(t, β(t)), for every t ∈ (t−, t+).

The ordinary differential equation (2.4.2) is said to be autonomous if f does not depend
on t and U ⊆ Rp, which is the setting that we consider from now on. Next we introduce
the notion of initial value problem.

Definition 2.4.9. Given (t0, β0) ∈ (t−, t+)× U , the initial value problem

β̇(t) = f(β), β(t0) = β0, (2.4.3)

consists of finding an interval (t−, t+) containing t0 and a solution β : (t−, t+) → U of
(2.4.2) such that β(t0) = β0. The condition β(t0) = β0 is called the initial condition of
problem (2.4.3).

Proposition 2.4.10. Let U ⊆ Rp be an open set. Let f : U → R be a continuous function.
Given (t0, β0) ∈ (t−, t+) × U , a continuous function β : (t−, t+) → Rp in a open interval
(t−, t+) containing t0 is a solution of the initial value problem (2.4.3) if and only if

β(t) = β0 +

∫ t

t0

f(β(s))ds,

for every t ∈ (t−, t+).
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Proposition 2.4.11. Let β : [t0,+∞) → R with β(t0) = β0 be a continuously differentiable
function, whose derivative satisfies

β̇(t) ≤ u(t)β(t),

for an integrable function u : [t0,+∞) → (−∞, 0]. Then we have

β(t) ≤ β0 exp

∫ t

t0

u(s)ds.

Definition 2.4.12. Let U ⊆ Rp be an open set. A function f : U → Rd is said to be locally
Lipschitz if for every compact set K ⊆ U there exists L > 0 such that

(∀β, z ∈ K) ∥f(β)− f(z)∥ ≤ L∥β − z∥.

Theorem 2.4.13. Let U ⊆ Rp be an open set. Let f : U → Rp. If f is continuous and
locally Lipschitz function in U , then for every (t0, β0) ∈ R × U there exists an open interval
containing t0 such that the solution of the initial value problem (2.4.3) is unique.

Definition 2.4.14. Let U ⊆ Rp be an open set. Let f : U → Rp a continuous and locally
Lipschitz in an open set U ⊆ Rp. The maximal interval of a solution β : I → Rp of the
equation β̇(t) = f(β) is the largest open interval (t−, t+) where there exists a solution.

Definition 2.4.15. If β = β(t) is a solution of (2.4.2) with maximal interval (t−, t+), then
the set {β(t) : t ∈ (t−, t+)} ⊆ U is called trajectory of the equation. This solution is said to
be global if its maximal interval is R.

Proposition 2.4.16. Any solution of equation (2.4.2) whose trajectory is contained in a
compact subset of U is global.

Definition 2.4.17. A point β∞ ∈ U with f(β∞) = 0 is called stationary point of (2.4.2).

Theorem 2.4.18 (Cauchy, Lipschitz, Picard). Let f : Rp → R be a Lipschitz continuous
function in Rp. Then for every β0 ∈ Rp there exists a unique solution β : [0,+∞) → Rp in
C1 (Rp) of the initial value problem (2.4.3).

The following definitions are collected from [77]. From now on, the map

θ ∈ Rk 7→ β = q(θ) ∈ Rp,

is called reparameterization.

Definition 2.4.19. The Jacobian of q = (q1, . . . , qp) in θ ∈ Rk is denoted by Jq(θ) and is
defined as

Jq :=

[
∂q

∂θ1
; . . . ;

∂q

∂θk

]
:=


∂q1
∂θ1

. . . ∂q1
∂θk

...
. . .

...
∂qp
∂θ1

. . .
∂qp
∂θk

 .
Definition 2.4.20. A regular parameterization q : Rk → Rp is a C1 parameterization such
that Jq(θ) is of rank p for all θ ∈ Rp.

Definition 2.4.21. A C2 parameterization q : Rk → Rp is commuting if and only if for any
i, j ∈ [p], we have that,

∇2qj(θ)∇qi(θ)−∇2qi(θ)∇qj(θ) = 0,

for all θ ∈ Rk.
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Definition 2.4.22. For any C1 function f : Rk 7→ R ∪ {+∞}, we denote by θtf (θ0) = θ(t),
where θ(t) is the solution at time t (when it exists) of{

θ̇(t) = −∇f(θ(t)), t > 0;

θ(0) = θ0 ∈ Rk.
(2.4.4)

We say θtf (β0) is well-defined at time t when the above differential equation has a solution
at time t.

Definition 2.4.23. Given a C2 parameterization q : Rk → Rp, for any θ0 ∈ Rp and t̄ ∈ Rp,
we define

ψ(θ0, t̄) := θt1q1 ◦ · · · ◦ θ
tp
qp(θ0),

when it is well-defined, i.e., the corresponding differential equations have a solution. For
any θ0 ∈ Rp, we define the domain of ψ(θ0, ·) as:

U(θ0) = {t̄ ∈ Rp | ψ(θ0, t̄) is well defined} .

Definition 2.4.24. For any parameterization q : Rk → Rp in C2 and for any function
L : Rp → R ∪ {+∞} in C1, given any starting point θ0 ∈ Rp, we define the reachable
set Ω(θ0, q) as

Ω(θ0, q) =
{
θtL◦q(θ0) | t > 0.

}
.

For further results, the reader is referred to [3, 11, 15, 77].



CHAPTER 3

Regularization techniques

In this Chapter, we recall key ideas at the basis of our study, in particular with respect to
the design regularization techniques.

3.1 Inverse problems

Many applied problems require estimating a function of interest from input/output data
relation,

(xi, yi)
d
i=1 ⊆ Rp × R 7→ f : Rp → R.

In this chapter, we are interested in the case when f is a linear function, expressed as

f : Rp → R , x 7→ ⟨β∗ | x⟩,

for some β∗ ∈ Rp. Then, the problem simplifies to determining β∗ from the following
linear equation

Xβ∗ = y,

where X represents a matrix with rows corresponding to input data points, and y can be
seen as the vector of measurements of the vector β∗ that we want to recover.

Observe that, if y /∈ ran(X), the previous problem does not have a solution. For this
reason, it is necessary to introduce a loss function L : Rp → R∪{+∞} such that it ensures
the existence of at least one solution, for example, least squares. In general, this function
is defined via a function ℓ : R× R → R, through the following equation:

L(β) =
d∑

i=1

ℓ(⟨xi | β⟩, yi).

On the other hand, the solution of the linear system may be not unique and a selection
criterion is needed to choose a suitable solution. To deal with non-uniqueness and select
a particular solution, a regularization term R : Rp → R ∪ {+∞} is introduced. This
regularization includes the prior knowledge on the solution in the model, and enforces a
bias on the solution. Summarizing, a standard approach to recover β∗ is to assume that it
is a minimizer of the following linearly constrained optimization problem:

min
β∈Rp

{R(β) : β ∈ S = argminL} , (P)

The above ideas can be justified from different perspectives. For instance, compressed
sensing [32, 34, 48, 115, 129], image processing [37, 39, 103, 105, 116, 117, 140], and
various problems in machine learning [13, 50, 90, 114, 121, 140, 141].
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Example 3.1.1. In this example, we show the most common losses used both in regression
and classification. In classification tasks, loss functions are typically based on the concept
of margin, i.e., ŷ⟨β∗ | x̂⟩, while in regression, they are often based on the difference ŷ −
⟨β∗ | x̂⟩. Some well-known examples include:

• Least Squares: It is defined as L(β) = 1
d

d∑
i=1

(⟨β | xi⟩ − yi)
2. This loss function mea-

sures the average squared difference between the predicted values and the actual
values.

• Huber Loss: A piece-wise function that combines squared error and absolute error,

defined as L(β) = 1
d

d∑
i=1

ℓγ(⟨β | xi⟩ − yi), where ℓγ is defined as follow

ℓγ(β) =

{
1
2β

2 for |β| ≤ γ;

γ(|β| − 1
2γ) otherwise.

• Exact Penalization: It is defined as

L(β) =

{
0 if Xβ = y;

+∞ otherwise.

This loss is the one we will use throughout this thesis.

• Hinge Loss: Typically used in Support Vector Machines (SVMs) for classification, it

is defined as L(β) = 1
d

d∑
i=1

max(0, 1− yi⟨β | xi⟩). Here, for every i ∈ [d], yi ∈ {−1, 1}.

• Exponential Loss: It is defined as L(β) = 1
d

d∑
i=1

e−yi⟨β|xi⟩. Here, for every i ∈ [d],

yi ∈ {−1, 1}.

• Logistic Loss: This is widely used in logistic regression for binary classification.

It can be expressed as L(β) = 1
d

d∑
i=1

log
(
1 + e−yi⟨β|xi⟩

)
, where, for every i ∈ [d],

yi ∈ {−1, 1}.

Example 3.1.2. We illustrate some examples of regularizers presented in the state of the
art [32, 34, 52, 105, 116, 117, 148].

• Squared norm: It is defined as R(β) = ∥β∥22. This regularizer leads to the minimum
norm solution that is the Moore-Penrose pseudoinverse X†y [52, Theorem 2.5],
when the loss is the least square.

• ℓ0-norm: It is defined as R(β) = ∥β∥0, where ∥ · ∥0 is the function that counts the
non-zero elements of the vector.

• ℓ1-norm: It is defined as R(β) = ∥β∥1. This function is a convex surrogate for the
ℓ0-norm, and promotes sparsity of the solution.

• Nuclear norm: It is defined as R(β) = ∥β∥∗, where β ∈ Rp×p is a square matrix.
This function is a convex surrogate for the rank of a matrix, enhancing row/column
correlation [28]. This function will be used in the numerical examples in Section
4.5.

• Group lasso norm: It is defined as R(β) = ∥β∥J , where J = {J1, . . . , Jl} is a
partition of [p].
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• Total variation: It is defined as R(β) = ∥Dβ∥1,2, where the ∥ · ∥1,2 and D denote
the ℓ1,2 - norm and D is the discrete gradient operator, respectively (see Chapter 2).
This regularizer is usually used in image reconstruction (deblurring + denoising)
since it maintains sharp edges between different areas with constant color (see for
example [23, 37, 39, 87, 103, 105, 116, 117, 140]).

This function will be used in the numerical examples in Section 4.5.

3.2 Tikhonov regularization, flows, and algorithms

A classical way to solve (P) is to relax the constraint, and use Tikhonov regularization
[19, 52, 128]:

min
β∈Rp

1

λ
L(β) +R(β). (Pλ)

Note that the loss is explicitly added to the objective function and is multiplied by a regu-
larization parameter λ. The minimizers of the above problem define a sequence {β∗λ}λ>0,
of possible solutions, called regularization path [51, 63]. Among these solutions, the best
regularized solution is selected according to some criteria, such as the Morozov discrep-
ancy principle in inverse problems [52] or cross-validation on left-out data in machine
learning [57, 126]. Typically, this involves fixing a grid Λ within the interval [λmin, λmax]
and then solving (Pλ) for each λ ∈ Λ, where the best regularized solution is selected
according to an appropriate data-driven criterion.

Example 3.2.1 (Ridge regression). The most classic example is when L is the least square,
and R is the square norm. Then, problem (Pλ) becomes

min
β∈Rp

1

λ
∥Xβ − y∥2 + ∥β∥2.

The above problem is also called ridge regression [57, 65, 128]. It is a classic fact that the
sequence of solutions {β∗λ :=

(
λId+X⊤X

)−1
X⊤y}λ>0, converges to a minimum norm

solution [52, Theorem 5.2], when λ→ 0.

In the following section we present flows and algorithms that can be applied to solve (Pλ).
From the above discussion, it is clear that optimization to solve (Pλ) (and also (P)) plays
a crucial role in the solution of machine learning and inverse problems.

3.2.1 R ≡ 0: Continuous case
Note that when R ≡ 0, the problems described in equations (Pλ) and (P) simplify to
solve:

min
β∈Rp

L(β),

Additionally, if we assume that L : Rp → R is a convex and differentiable function such
that ∇L is Lipschitz continuous on Rp, a good approach to solving the previous problem
is to consider the steepest descent trajectory. The gradient flow defines a trajectory for
each point β0 in the space, which can be described by the following ordinary differential
equation: {

β̇(t) = −∇L(β(t)), t > 0
β(0) = β0.

(GF)

It follows from Theorem 2.4.18 that the previous flow, for every β0 ∈ Rp, has unique
solution.
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An extension of gradient flow to non-Euclidean geometries is mirror flow [3], which can
be modeled as the following ordinary differential equation:[

∇2F (β(t))
]
β̇(t) = −∇L(β(t)), (MF)

where F : dom(F ) → R is the mirror map and is strictly convex, Legendre and twice-
differentiable in U = int(dom(F )), and the mapping β ∈ U 7→ [∇2F (β)] is invertible with
locally Lipschitz inverse. In the case when the mirror map is defined as the Euclidean
norm, i.e., F (β) = ∥β∥2

2 , the equation describing the mirror flow becomes equivalent to
the gradient flow.

Observe that, for every z ∈ S,

d(DF (z, β(t)))

dt
= ⟨∇L(β(t)) | β(t)− z⟩ ≤ L∗ − L(β(t)) ≤ 0, (3.2.1)

where L∗ = min
β∈Rp

L(β). Since the Bregman distance is decreasing and bounded below we

get that, for every z ∈ S, DF (z, β(t)) converges. Moreover, computing the derivative of
L(β(t)), we get that

d(L(β(t))− L∗)

dt
= −

〈[
∇2F (β)

]−1∇L(β(t)) | ∇L(β(t))
〉
≤ 0,

Which implies that (L(β(t)) − L∗) is decreasing with respect to t. Since DF (·, ·) is non-
negative, we can integrate (3.2.1) and obtain that

t (L(β(t))− L∗) ≤
∫ t

0
(L(β(s))− L∗) ds ≤ DF (z, β0),

which implies convergence in value.

Note that, if F (β) = ∥β∥2
2 , we get that ∥β(t) − z∥ converges for every z ∈ S, which is

the first condition of Opial’s Lemma. While the second condition, each limit point belongs
to the solution set, is obtained by convergence in value. Then, by using Lemma 2.1.5, we
conclude that β(t) converges to some β∗ ∈ S.

3.2.2 R ≡ 0: Discrete case

If we discretize β̇(t) with t ∈ [k, k + 1], using finite differences with a positive step-size
η ∈]0, 2

L [, where L is the Lipschitz constant of ∇L, then

β̇(t) ≈ βk+1 − βk

η
.

Gradient descent [35]: If we take ∇L(β(t)) ≈ ∇L(βk), then the algorithm has the fol-
lowing explicit update rule

βk+1 = βk − η∇L(βk). (3.2.2)

In the following theorem, we establish sufficient conditions for the convergence of gradi-
ent descent in Rp.



3.2. TIKHONOV REGULARIZATION, FLOWS, AND ALGORITHMS 21

Theorem 3.2.2. Let L : Rp → R be a convex Gâteaux differentiable function, such that
S ≠ ∅. Suppose that ∇L is L-Lipschitz continuous on Rp. Let {βk}k∈N be the sequence
generated by (3.2.2) starting from some arbitrary β0 ∈ Rp and with step-size η ∈]0, 2

L [.
Then,

lim
k→+∞

βk = β∗ ∈ S.

Example 3.2.3 (Gradient descent on the least squares). Let X be the matrix with rows
corresponding the input data and let y be the vector of measurements. In this case the
iterates of gradient descent are given by

βk+1 = βk − ηX⊤
(
Xβk − y

)
.

The previous method is also known as the Landweber method [52, 72]. In Chapter 4 we
use a single iteration of this algorithm with different step-sizes to improve the feasibility
of iterations.

If we assume that X is full rank and we continue assuming that L is the least square, we
can use a well-known stochastic algorithm.

Randomized Kaczmarz: Let β0 ∈ Rp and consider the following algorithm:

βk+1 = βk −
(〈
βk | xϵt

〉
− yϵt

) x⊤ϵt
∥xϵt∥2

,

where {ϵk}k∈N is a sequence of independent [d]-valued random variables. It is well-known
and has been demonstrated that the sequence {βk}k∈N converges to a feasible point (see
[41, 127]). For further information, refer to [36, 41, 62, 70, 73, 95–98, 127, 150]. In
Chapter 4 we use a single iteration of this algorithm to improve the feasibility of iterations.

In the case when L is not necessary L-smooth and proxηL is easy to compute, we can
use proximal point algorithm [81], which has the following implicit update rule

βk+1 = proxηL(β
k). (3.2.3)

Note that this method can be applied, unlike gradient descent, to non-differentiable func-
tions. However, since it is an implicit rule, in most cases the prox cannot be easily calcu-
lated. In the following theorem, we provide the conditions for the convergence of proximal
point algorithm in Rp.

Theorem 3.2.4. Let L : Rp → R∪{+∞} be a proper convex lower semi-continuous function
such that S ≠ 0. Let {βk}k∈N be the sequence generated by (3.2.3) starting from some
arbitrary β0 ∈ Rp and with step-size η > 0. Then,

lim
k→+∞

βk = β∗ ∈ S.

3.2.3 Case R ̸≡ 0

If R and L are both L-smooth, then we can apply gradient descent, which has the follow-
ing update rule

βk+1 = βk − η∇L(βk)− ηλ∇R(βk), (3.2.4)

where λ > 0 is the regularization parameter. In Theorem 3.2.2 are provided conditions to
ensure the convergence of (3.2.4). In the case when R is non-smooth and proxηλR is easy
to compute, we can use forward-backward algorithm, which is

βk+1 = proxηλR
(
βk − η∇L(βk)

)
.
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In the following theorem, we provide the conditions for the convergence of forward-
backward in Rp.

Theorem 3.2.5. Let R : Rp → R ∪ {+∞} and L : Rp → R be two functions in Γ0(Rp) such
that argminβ∈Rp(L(β)+λR(β)) ̸= ∅. Suppose that L is Gâteaux differentiable such that ∇L
is L-Lipschitz continuous on Rp. Let {βk}k∈N be the sequence generated by (3.2.2) starting
from some arbitrary β0 ∈ Rp and with step-size η ∈]0, 2

L [. Then,

lim
k→+∞

βk = β∗ ∈ argminβ∈Rp(L(β) + λR(β)).

For all of the methods presented above, selecting an appropriate λ can be challenging and
typically requires solving the optimization problem multiple times with different parame-
ter values.

3.3 Iterative regularization

In this section, we explore a more efficient alternative known as iterative regularization.
Unlike Tikhonov regularization, this technique involves running a single optimization pro-
cedure that stops before convergence. Typically, since a single problem is solved and the
algorithm is not run even until convergence, iterative regularization is numerically more
efficient compared to Tikhonov.

In practice, the exact data y is unknown, and only a noisy version is accessible. Given
a noise level δ ≥ 0, we consider a worst-case scenario where the error is deterministic and
the accessible data yδ is such that

∥yδ − y∥ ≤ δ,

which limits us to solve only a noisy version of (P).

Iterative regularization consists of finding an approximation of β∗ by running an iterative
algorithm that generates a regularizing sequence {βkδ }k∈N and stopping when it is closed
to the solution according to certain criteria. The algorithm must consider the properties
of R, L, and X, and for any data yδ ∈ Rd, the algorithm generates a sequence. To analyze
the behavior of the sequence {βkδ }k∈N, it is necessary to define the auxiliary sequence
{βk}k∈N, which is obtained by applying the same algorithm but using y instead of yδ. We
additionally assume that the sequence converges to β∗, the solution of (P). Then, we can
decompose the error as

∥βkδ − β∗∥ ≤ ∥βk − β∗∥+ ∥βkδ − βk∥. (3.3.1)

The first term corresponds to an optimization error, which decreases with respect to k.
While the second error measures the stability of noise, which increases with respect to k,
since the iterations converge to a noisy solution or diverges. An early stopping strategy
takes in account the different behaviours of the two terms in equation (3.3.1) and stops
the iterations when these terms are approximately equal. In this way, the number of it-
erations plays the role of the regularization parameter in the same way as λ in Tikhonov
regularization.

For the next two algorithms, we consider a simpler noisy version of (P),

min
Xβ=yδ

R(β), (3.3.2)
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which is studied in the Chapter 4. The above problem is obtained by choosing L equal to
least squares and taking yδ instead of y. Note that (3.3.2) may not be feasible. We also
define the noise free problem as

min
Xβ=y

R(β). (3.3.3)

We now present two algorithms: the first for strongly convex regularizers and the second
for regularizers that are only convex. Additionally, both algorithms incorporate early stop-
ping strategies.

Dual Gradient descent: Let R : Rp 7→ R∪{+∞} be proper, lower semicontinuous, and µ-
strongly convex function. Let w0

δ = 0 and γ = µ
∥X∥2 . Then, the iterations of dual gradient

descent are:

βk+1
δ = proxR

µ

(
−X⊤wk

δ

µ

)
;

wk+1
δ = wk

δ + γ
(
Xβk+1

δ − yδ
)
;

pk+1
δ =

1

k + 1

k+1∑
i=1

βiδ.

Now we present an early stopping result for the previous algorithm.

Theorem 3.3.1. [82, Theorem 4.1] Let δ ∈]0, 1]. Assume that there exists w∗ ∈ Rp such that
−X⊤w∗ ∈ ∂R(β∗). Set c1 = 2∥X∥−1 and c2 = ∥X∥∥w†∥1

µ , where w† is a solution of the dual
problem of (3.3.3). Then, for every k ∈ N,

∥pkδ − w†∥ ≤ c1
√
kδ +

c2√
k
. (3.3.4)

In particular, choosing k̃ ≈ c
δ for some c > 0, we derive

∥pk̃δ − w†∥ ≤
[
c1(c

1
2 + 1) +

c2

c−
1
2

]
δ

1
2 .

The previous result gives us a decomposition of the error into optimization and stability
errors as in (3.3.1) in (3.3.4). In some cases the regularizer is neither smooth nor strongly
convex. In this situation it is suitable to use the dual primal-dual algorithm.

Primal-dual: Let R : Rp 7→ R ∪ {+∞} be a function in Γ0(Rp). Let w0
δ = w−1

δ ∈ Rd,
β0δ ∈ Rp and γ > 0 and τ > 0 such that τγ∥X∥2 < 1. Then, the iterations of primal dual
are:

βk+1
δ = proxτR

(
βkδ − τX⊤

(
2wk

δ − wk−1
δ

))
;

wk+1
δ = wk

δ + γ
(
Xβk+1

δ − yδ
)
;

pk+1
δ =

1

k + 1

k+1∑
i=1

βiδ.

Note that the above algorithm is a specific case of the primal-dual algorithm proposed in
[40], where the function in the primal is R, the function in the dual is the indicator {yδ},
and the linear operator is X.
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Theorem 3.3.2. [85, Proposition 7] Let R : Rp 7→ R∪{+∞} be a proper, convex, and lower
semicontinuous function. Assume that the problem (3.3.3) has at least one solution. Let
(β∗, w∗) ∈ Rp × Rd, where β∗ is solution of (3.3.3) and w∗ is a solution of the dual problem
of (3.3.3). Then, there exist strictly positive constants c1 and c2 such that, for every k ∈ N,

∥Xpkδ − y∥ ≤ c1

(
δ + δ2k +

1

k

)
(3.3.5)

and

R(pkδ ) +
〈
w∗ | Xpkδ − y

〉
−R(β∗) ≤ c2

k
(1 + δk)2 . (3.3.6)

Moreover, if we choose k̃ ≈ c
δ for some c > 0, then there exist constants c3 and c4 such that

∥Xpk̃δ − y∥ ≤ c3
(
δ + δ2

)
and

R(pk̃δ ) +
〈
w∗ | Xpk̃δ − y

〉
−R(β∗) ≤ c4δ.

Unlike (3.3.1), the previous result gives us a decomposition of the error into optimization
and stability errors, but in this case applied to the feasibility gap in (3.3.5) and the duality
gap in (3.3.6).

In Chapter 4, we introduced two algorithms inspired by the primal-dual approach with
activation discussed in [24]. This method has shown significant numerical speed up in
noise-free scenarios by improving the feasibility of the iterations. We combine this algo-
rithm with the early stopping strategy presented in [84].



CHAPTER 4

Fast iterative regularization by reusing data

Abstract

Discrete inverse problems correspond to solving a system of equations in a stable way with
respect to noise in the data. A typical approach to selecting a meaningful solution is to
introduce a regularizer. While for most applications the regularizer is convex, in many
cases it is neither smooth nor strongly convex. In this chapter, we propose and study two
new iterative regularization methods, based on a primal-dual algorithm, to regularize in-
verse problems efficiently. Our analysis, in the noise-free case, provides convergence rates
for the Lagrangian and the feasibility gap. In the noisy case, it provides stability bounds
and early stopping rules with theoretical guarantees. The main novelty of our work is
the exploitation of some a priori knowledge about the solution set: we show that the lin-
ear equations determined by the data can be used more than once along the iterations.
We discuss various approaches to reusing linear equations that are at the same time con-
sistent with our assumptions and flexible in their implementation. Finally, we illustrate
our theoretical findings with numerical simulations for robust sparse recovery and image
reconstruction. We confirm the efficiency of the proposed regularization approaches by
comparing the results with state-of-the-art methods.

Keywords. Primal-dual splitting algorithms, Iterative regularization, Early stopping, Landweber
method, Stability and convergence analysis.
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4.1 Introduction

Many applied problems require the estimation of a quantity of interest from noisy linear
measurements, for instance compressed sensing [32, 34, 48, 115, 129], image processing
[37, 39, 103, 105, 116, 117, 140], matrix completion [28, 31, 33, 84], and various prob-
lems in machine learning [13, 50, 90, 114, 121, 140, 141]. In all these problems, we are
interested in finding stable solutions to a system of equations where the accessible data
is corrupted by noise. This is classically achieved by regularization. The most popular
procedure in the literature is Tikhonov (or variational) regularization [52], which consists
in minimizing the sum of a data fidelity term plus a regularizer, which is explicitly added
to the objective function and entails some a priori knowledge or some desired property on
the solutions that we want to select. A trade-off parameter is then introduced to balance
the fidelity term and the regularizer. In practice, this implies that the optimization prob-
lem has to be solved many times for different values of the parameter. Finally, a parameter
- and the correspondent solution - are chosen accordingly to the performance with respect
to some criterion, such as the Morozov discrepancy principle in inverse problems [52] or
cross-validation on left-out data in machine learning [57, 126].

A computationally efficient alternative to explicit regularization is iterative regularization,
also known as implicit regularization [8, 21, 27, 52]. The minimization of the regular-
izer under noisy data constraints is considered, and a numerical algorithm to solve the
optimization problem is chosen and early stopped, to avoid convergence to the noisy so-
lution. In this setting, it is known that the number of iterations plays the role of the
regularization parameter [52]. As for Tikhonov regularization, the best-performing iter-
ate is chosen according to some a priori criterion and then considered as the regularized
solution. Compared to Tikhonov regularization, this procedure is very efficient since only
one optimization problem is solved, and not even until convergence.

The main novelty of this work is the design and analysis of two new iterative regulariza-
tion methods for convex regularizers, which are neither necessarily smooth nor strongly
convex. The new iterative regularization methods are based on primal-dual algorithms
[40, 46, 133] combined with the idea of reusing the linear equations determined by the
data at every iteration [24]. Primal-dual algorithms perform one minimization step on the
primal variable followed by one on the dual and are well-suited for the large-scale setting,
as only matrix-vector multiplications and the calculation of a proximity operator are re-
quired. The idea of exploiting redundant information was presented in [24] and turned
out to be very effective in practice. The first method that we propose is a primal-dual
algorithm (PDA) with additional activations of the linear equations: We propose different
variants, depending on the extra activation steps. For instance, we are able to exploit the
data constraints more than once at every iteration via gradient descent, with a fixed or
adaptive step size. The second method is a dual-primal algorithm (DPA), where a subset
containing the dual solutions is activated at each step. This subset is not affected by the
noise in the data and is usually determined by a finite number of constraints.

These additional steps may seem artificial or inefficient. However, while maintaining easy
implementation, our methods achieve better numerical performances and considerable
speed-ups with respect to the vanilla primal-dual algorithm.We extend to the noisy case
the techniques studied in [24, 25] for the exact case. The assumptions on the noise are
the classical ones in inverse problems, see e.g. [27, 30, 82, 84], and the proposed results
generalize the ones in [84], by including in the primal-dual procedure a diagonal precon-
ditioning and an extra activation step. For the noisy case, we provide an early stopping
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criterion to recover a stable approximation of an ideal solution, in the same spirit of [12,
20, 27, 30, 82, 112, 141, 146]. The early stopping rule is derived from theoretical stabil-
ity bounds and feasibility gap rates for both algorithms, obtaining implicit regularization
properties similar to those stated in [84] and [82]. Theoretical results are complemented
by numerical experiments for robust sparse recovery and total variation, showing that
state-of-the-art performances can be achieved with considerable computational speed-ups.

Related works. In this section, we briefly discuss the literature about variational and iter-
ative regularization techniques.Tikhonov regularization has been introduced in [128]; see
also [19, 52] and the references therein for an extensive treatment of the topic.The most
famous iterative regularization method is the Landweber algorithm [52, 72], namely gra-
dient descent on the least squares problem. Duality theory in optimization gives another
interpretation that sheds light on the regularizing properties of this procedure. Indeed,
consider the problem of minimizing the squared norm under linear constraints. Running
gradient descent on its dual problem and mapping back to the primal variable, we obtain
exactly the Landweber method. This provides another explanation of why the iterations
of the Landweber algorithm converge to the minimal norm solution of the linear equation
[82]. Stochastic gradient descent on the previous problem is the generalization of the
Kaczmarz method [70, 78, 120, 127], which consists in applying cyclic or random pro-
jections onto single equations of the linear system. Accelerated and diagonal versions are
also discussed in [52, 101] and [10, 71, 119], respectively. The regularization properties
of other optimization algorithms for more general regularizers have also been studied. If
strong convexity is assumed, mirror descent [16, 100] can also be interpreted as gradient
descent on the dual problem, and its regularization properties (and those of its acceler-
ated variant) have been studied in [82]. Diagonal approaches [9] with a regularization
parameter that vanishes along the iterations have been studied in [54]; see [30] for an
accelerated version. Another common approach relies on the linearized Bregman itera-
tion [103, 140, 142, 143], which has found applications in compressed sensing [29, 104,
143] and image deblurring [29]. However, this method requires to solve non-trivial mini-
mization problems at each iteration. For convex, but not strongly convex regularizers, the
regularization properties of primal-dual algorithms have been investigated in [84]. Other
optimization techniques are available to solve this kind of minimization problem (for in-
stance, [86, 87] and [22, 83, 110]; see also [66, 123, 124]), but no iterative regularization
properties have been studied so far for these algorithms.

4.2 Main problem and algorithm

Many applied problems require to estimate a quantity of interest β ∈ Rp based on linear
measurements y = Xβ, for some matrix X ∈ Rd×p. A standard approach to recover the
desired solution is to assume that it is a minimizer of the following linearly constrained
optimization problem:

min
β∈Rp

{R(β) : Xβ = y} , (P)

where R ∈ Γ0(Rp) encodes a priori information on the solution and is usually hand-
crafted. Typical choices are: the squared norm [52]; the elastic net regularization [47, 69,
74, 82, 148, 149]; the ℓ1-norm [32, 34, 48, 129]; and the total variation [37, 105, 116,
117]. Note that, in the previous examples, the first two regularizers are strongly convex,
while the second two are just convex and non-smooth.
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If we use the indicator function of {y}, the problem (P)can be written equivalently as

min
β∈Rp

R(β) + ι{y}(Xβ).

We denote by µ the optimal value of (P) and by S the set of its minimizers. We assume
that S ̸= ∅. In order to build our regularization procedure, we consider the Lagrangian
functional for problem (P):

L : Rp × Rd → R ∪ {+∞}
(β,w) 7→ R(β) + ⟨w | Xβ − y⟩.

This approach allows us to split the contribution of the non-smooth term R and the one
of the linear operator R, without requiring to compute the projection on the set

S := {β ∈ Rp | Xβ = y}.

We define the set of saddle points of L by

Z =
{
(β,w) ∈ Rp × Rd : L(β, v) ≤ L(β,w) ≤ L(y, w) ∀(y, v) ∈ Rp × Rd

}
.

The set Z is characterized by the first-order optimality condition:

Z =
{
(β,w) ∈ Rp × Rd : 0 ∈ ∂R(β) +X⊤w and Xβ = y

}
.

In the following, we always assume that Z ̸= ∅.

Remark 4.2.1 (Saddle points and primal-dual solutions). Observe that the objective func-
tion of (P)is the sum of two functions in Γ0(Rp) where one of the two is composed with a
linear operator. This formulation is suitable to apply Fenchel-Rockafellar duality. Recalling
that ι∗{y}(w) = ⟨u | y⟩, the dual problem of (P)is given by

min
w∈Rd

R∗(−X⊤w) + ⟨w | y⟩. (D)

We denote its optimal value by µ∗ and its set of minimizers by S∗. Then, Z ⊆ S× S∗, and
equality holds if the qualification condition (see [15, Proposition 6.19] for special cases
when it holds)

y ∈ ri (X (domR)) (4.2.1)

is satisfied [15, Proposition 19.21 (v)]. In addition, condition (4.2.1) implies that problem
(D) has a solution. Then, under (4.2.1), since we assumed that S ̸= ∅, we derive also that
Z ̸= ∅.

In practical situations, the exact data y is unknown and only a noisy version is accessi-
ble. Given a noise level δ ≥ 0, we consider a worst case scenario, where the error is
deterministic and the accessible data yδ is such that

∥yδ − y∥ ≤ δ.

This is the classical model in inverse problems [52, 71]. The solution set of the inexact
linear system Xβ = yδ is denoted by Sδ. Analogously, we denote by Sδ and S∗δ the sets
of primal and dual solutions with noisy data, respectively. It is worth pointing out that, if
yδ ̸∈ ran(X), then Sδ ⊆ Sδ = ∅ but our analysis and bounds still hold.
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4.2.1 Primal-Dual Splittings with a priori Information
In this section, we propose an iterative regularization procedure to solve problem (P),
based on a primal-dual algorithm with preconditioning and arbitrary activations of a pre-
defined set of operators. While the use of primal-dual algorithms [40] as iterative regular-
ization methods is somewhat established [84], in this chapter we focus on the possibility
of reusing the data constraints along the iterations. This idea was originally introduced in
[24], where the authors studied the case in which the exact data is available, and consists
in the activation of extra operators, which encode information about the solution set, to
improve the feasibility of the updates. In our setting, we reuse data constraints, and we
project, in series or in parallel, onto some equations given by the (noisy) linear constraints.
But we will show that other interesting choices are possible, as projections onto the set of
dual constraints.

More formally, for i ∈ [m], we consider a finite number of operators Ti : Rp → Rp or
Ti : Rd → Rd, such that the set of noisy primal (or dual) solutions is contained in FixTi
for every i ∈ [m]. We refer to this as redundant a priori information. A list of operators
suitable to our setting (and with a cheap practical implementation) can be found in Sec-
tion 4.4.

The primal-dual algorithms with reuse of data which are given in Table 4.1 are a pre-
conditioned and deterministic version of the one proposed in [24] applied to the case of
linearly constrained minimization.

Primal-Dual splitting with activations

Input: (p̄0, β0, w0) ∈ R2p × Rd.
For k = 1, . . . ,N:

wk+1 = wk + Γ(Xp̄k − yδ)
βk+1 = proxΣR(p

k − ΣX⊤wk+1)
Choose ϵk+1 ∈ [m] and set
pk+1 = Tϵk+1

βk+1

p̄k+1 = pk+1 + βk+1 − pk,

(PDA)

End

Dual-Primal splitting with activations

Input: (v̄0, w0, β0) ∈ R2d × Rp.
For k = 1, . . . ,N:

βk+1 = proxΣR(β
k − ΣX⊤v̄k)

wk+1 = vk + Γ(Xβk+1 − yδ)
Choose ϵk+1 ∈ [m] and set
vk+1 = Tϵk+1

wk+1

v̄k+1 = vk+1 + wk+1 − vk,

(DPA)

End

Table 4.1: Proposed algorithms for iterative regularization.

We first focus on the Primal-Dual splitting. It is composed by four different steps, to
be performed in series. The first step is the update of the dual variable, in which the
residuals to the linear equation Xβ = yδ are accumulated after preconditioning by the
operator Γ. The second step is an implicit prox-step, with function R and norm ∥ · ∥Σ−1 ,
on the primal variable. The third one is the activation of the operator related to reusing
data constraints, on the primal variable. Finally, the last step is an extrapolation again
on the primal variable. Notice that, if no operator is activated, it corresponds simply to
p̄k+1 = 2βk+1 − βk, which is the classical update in the primal-dual algorithm. Observe
that, the Dual-Primal Splitting algorithm, except for permutation in the order of the steps,
differs from the previous one because the activation of the operator is done not on the
primal variable but on the dual one.

Remark 4.2.2. Observe that in the proof convergence and stability (Theorem 4.3.1 and
Theorem 4.3.2) we will never used that β belongs to a finite dimensional space. This
is in line with previous research on the convergence guarantees of the plain methods in
Hilbert and Banach spaces, as outlined in [46, 122, 133]. It follows that the primal-dual
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algorithms above can be formulated exactly in the same way when the unknown vector x
belongs to an infinite dimensional Hilbert space, and our analysis can be extended to that
setting. Another possible extension of the algorithm, which we do not analyze explicitly in
this work, is related with the stochastic version of primal-dual algorithm; see [1, 38, 61].

4.2.2 Equivalence between Primal-dual and Dual-primal algo-
rithms.
The next lemma establishes that, if T = Id and the initialization is the same, then there is
an equivalence between the k-th primal variable generated by PDA and the ones generated
by DPA.

Lemma 4.2.3. Let

(p̄0PD, β
0
PD, w

0
PD) ∈ R2p × Rd and (v̄0DP , w

0
DP , β

0
DP ) ∈ R2d × Rp

be the initialization PDA and DPA, respectively, in the case when m = 1 and T = Id. Suppose
that

β0PD = p̄0PD, w0
DP = v̄0DP , w0

PD = v0DP , and β1PD = β1DP .

Then for every k ∈ N, βkPD = βkDP .

Proof. Since m = 1 and T = Id in both algorithms, for every k ∈ N, we have that βkPD =
pkPD and wk

DP = vkDP . On one hand, by the definition of PDA, we have that

wk+1
PD = w1

PD + Γ
k∑

i=1

(
Xp̄iPD − yδ

)
= w1

PD +
k∑

i=1

ΓX(piPD − pi−1
PD) + Γ

k∑
i=1

(
XβiPD − yδ

)
= w1

PD + ΓX(pkPD − p0PD) + Γ

k∑
i=1

(
XβiPD − yδ

)
= w0

PD + Γ(XβkPD − yδ) + Γ
k∑

i=1

(
XβiPD − yδ

)
, (4.2.2)

where the last equality is obtained since p0PD = p̄0PD. Replacing (4.2.2) in the definition
of βk+1

PD , we obtain

βk+1
PD = proxΣR

(
βkPD − ΣX⊤

(
w0
PD + Γ(XβkPD − yδ) + Γ

k∑
i=1

(
XβiPD − yδ

)))
.

On the other hand, by DPA we have that

wk+1
DP = vk+1

DP = v0DP + Γ

k+1∑
i=1

(
XβiDP − yδ

)
,

and

v̄kDP = vkDP + wk
DP − vk−1

DP = v0DP + Γ(XβkDP − yδ) + Γ
k∑

i=1

(
XβiDP − yδ

)
, . (4.2.3)
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Replacing (4.2.3) in DPA, for every k > 1, we can deduce that

βk+1
DP = proxΣR

(
βkDP − ΣX⊤

(
v0DP + Γ(XβkDP − yδ) + Γ

k∑
i=1

(
XβiDP − yδ

)))
.

Since w0
PD = v0DP and β1PD = β1DP the result follows by induction.

Remark 4.2.4. An analysis similar to that in the proof of Lemma 4.2.3 shows that

βk+1
PD = proxΣR

(
βkPD − ΣX⊤

(
w0
PD + Γ(XTϵkβ

k
PD − yδ) + Γ

k∑
i=1

(
XβiPD − yδ

)))
,

which implies that the algorithm can be written in one step if we only care about the
primal variable.

4.2.3 Assumptions
In the following, we list the assumptions that we require on the parameters and the oper-
ators involved in the algorithm.

Assumption 4.2.5. Consider the setting of PDA or DPA:

A1 The preconditioners Σ ∈ Rp×p and Γ ∈ Rd×d are two diagonal positive definite matrices
such that

0 < α := 1− ∥Γ
1
2XΣ

1
2 ∥2. (4.2.4)

A2 For every k ∈ N, ϵk ∈ [m].

Consider the setting of PDA:

A3 The family of operators {Ti}i∈[m] is from Rp to Rp and for every i ∈ [m]:

(a) FixTi ⊇ Sδ;

(b) there exists ei ≥ 0 such that, for every β ∈ Rp and β̄ ∈ S,

∥Tiβ − β̄∥2Σ−1 ≤ ∥β − β̄∥2Σ−1 + eiδ
2. (4.2.5)

We set e = max
i∈[m]

ei.

Now consider the setting of DPA:

A4 {Ti}i∈[m] is a family of operators from Rd to Rd and for every i ∈ [m]:

(a) FixTi ⊇ S∗δ;

(b) for every u ∈ Rd and ū ∈ S∗δ ,

∥Tiu− ū∥2Γ−1 ≤ ∥u− ū∥2Γ−1 .
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Remark 4.2.6 (Hypothesis about the operators). If Assumption A3a holds and δ = 0, then
Assumption A3b is implied by the quasi-nonexpansivity of Ti on S. This is a weaker condi-
tion than the one proposed in [24], where, due to the generality of the setting, α-averaged
non-expansive operators were needed. A similar reasoning applies to Assumption A4.

4.3 Main results

In this section, we present and discuss the main results of the chapter. We derive con-
vergence and stability properties of primal-dual and dual-primal splitting algorithms for
linearly constrained optimization with a priori information.

First, we define the averaged iterates and the square weighted norm induced by Σ and
Γ on Rp × Rd, namely

(
β̂n, ŵn

)
:=

n∑
k=1

zk

n
and V (z) :=

∥β∥2Σ−1

2
+

∥w∥2Γ−1

2
,

where zk := (βk, wk) is the k-th iterate and z := (β,w) is a primal-dual variable. We also
recall the definition of the Lagrangian as L(β,w) = R(β) + ⟨w | Xβ − y⟩.

The first result establishes the stability properties of the algorithm PDA, both in terms
of the Lagrangian and feasibility gap. We recall that here we use activation operators
based on the noisy data and corresponding constraints in the primal space, namely the set
Cδ.

Theorem 4.3.1. Consider the setting of PDA under Assumptions A1, A2, and A3. Let
(p̄0, β0, w0) ∈ R2p × Rd be such that β0 = p̄0. Then, for every z = (β,w) ∈ Z and
for every N ∈ N, we have

L
(
β̂N , w

)
− L

(
β, ŵN

)
≤V (z0 − z)

N
+

2N∥Γ
1
2 ∥2δ2

α
+ δ∥Γ

1
2 ∥
(
2V (z0 − z)

α

) 1
2

+ δ∥Γ
1
2 ∥
(
Neδ2

α

) 1
2

+
eδ2

2
(4.3.1)

and

∥Xβ̂N − y∥2 ≤16N∥Γ∥∥Γ−1∥δ2

α2
+ 8δ∥Γ−1∥

(
2∥Γ∥V (z0 − z)

α3

) 1
2

+ 8δ2∥Γ−1∥
(
∥Γ∥eN
α3

) 1
2

+
8∥Γ−1∥V (z0 − z)

Nα
+ 2δ2 +

4∥Γ−1∥eδ2

α
, (4.3.2)

where we recall that the constant α and e are defined in Assumptions A1 and A3, respectively.

Proof. From PDA, we deduce that:

Σ−1(pk − βk+1)−X⊤wk+1 ∈ ∂R(βk+1)

Γ−1(wk − wk+1) +Xp̄k = yδ (4.3.3)

Thus

R(βk+1) +
〈
Σ−1(pk − βk+1)−X⊤wk+1 | β − βk+1

〉
≤ R(β) for all x ∈ Rp, (4.3.4)
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and (4.3.4) yields

0 ≥R(βk+1)−R(β) +
〈
Σ−1(pk − βk+1)−X⊤wk+1 | β − βk+1

〉
=R(βk+1)−R(β) +

∥pk − βk+1∥2Σ−1

2
+

∥βk+1 − β∥2Σ−1

2

−
∥pk − β∥2Σ−1

2
+
〈
βk+1 − β | X⊤wk+1

〉
(4.3.5)

From (4.3.3) we get

0 =
〈
Γ−1(wk − wk+1) +Xp̄k − yδ | w − wk+1

〉
0 =

∥wk+1 − wk∥2Γ−1

2
+

∥wk+1 − w∥2Γ−1

2
−

∥wk − w∥2Γ−1

2

+
〈
yδ −Xp̄k | wk+1 − w

〉
(4.3.6)

Recall that

z := (β,w) ∈ Z ⊆ S × Rd, zk := (βk, wk) and V (z) :=
∥β∥2Σ−1

2
+

∥w∥2Γ−1

2
.

Summing (4.3.5) and (4.3.6), and by Assumption A3, we obtain

R(βk+1)−R(β) +
∥βk+1 − pk∥2Σ−1

2
+

∥wk+1 − wk∥2Γ−1

2

+V (zk+1 − z)− V (zk − z) +
〈
X(βk+1 − β) | wk+1

〉
+
〈
yδ −Xp̄k | wk+1 − w

〉
− eδ2

2
≤ 0. (4.3.7)

Now compute

R(βk+1)−R(β)) +
〈
X(βk+1 − β) | wk+1

〉
+
〈
yδ −Xp̄k | wk+1 − w

〉
=L(βk+1, w)− L(β,wk+1)−

〈
Xβk+1 − y | w

〉
+
〈
Xβ − y | wk+1

〉
+
〈
X(βk+1 − β) | wk+1

〉
+
〈
yδ −Ap̄k | wk+1 − w

〉
=L(βk+1, w)− L(β,wk+1)−

〈
Xβk+1 | w

〉
+ ⟨y | w⟩+

〈
Xβ | wk+1

〉
−
〈
y | wk+1

〉
+
〈
Xβk+1 | wk+1

〉
−
〈
Xβ | wk+1

〉
+
〈
yδ | wk+1 − w

〉
−
〈
Xp̄k | wk+1 − w

〉
=L(βk+1, w)− L(β,wk+1) +

〈
yδ − b | wk+1 − w

〉
+
〈
Xβk+1 −Xp̄k | wk+1 − w

〉
≥L(βk+1, w)− L(β,wk+1)− δ∥Γ

1
2 ∥∥wk+1 − w∥Γ−1

+
〈
Xβk+1 −Xp̄k | wk+1 − w

〉
. (4.3.8)
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From (4.3.8) and (4.3.7) we obtain

L(βk+1, w)− L(β,wk+1) +
∥βk+1 − pk∥2Σ−1

2
+

∥wk+1 − wk∥2Γ−1

2

+ V (zk+1 − z)− V (zk − z)− δ∥Γ
1
2 ∥∥wk+1 − w∥Γ−1 −

eδ2

2

≤−
〈
X(βk+1 − p̄k) | wk+1 − w

〉
(4.3.9)

=−
〈
X(βk+1 − pk) | wk+1 − w

〉
+
〈
X(βk − pk−1) | wk − w

〉
+
〈
X(βk − pk−1) | wk+1 − wk

〉
(4.3.10)

=−
〈
X(βk+1 − pk) | wk+1 − w

〉
+
〈
X(βk − pk−1) | wk − w

〉
+
〈
Γ

1
2XΣ

1
2Σ− 1

2 (βk − pk−1) | Γ− 1
2 (wk+1 − wk)

〉
≤−

〈
X(βk+1 − pk) | wk+1 − w

〉
+
〈
X(βk − pk−1) | wk − w

〉
+ ∥Γ

1
2XΣ

1
2 ∥2

∥wk+1 − wk∥2Γ−1

2
+

∥βk − pk−1∥2Σ−1

2

Then, recalling that α = 1− ∥Γ
1
2XΣ

1
2 ∥2, we have the following estimate

L(βk+1, w)− L(β,wk+1) +
∥βk+1 − pk∥2Σ−1

2
−

∥βk − pk−1∥2Σ−1

2

+
α

2
∥wk+1 − wk∥2Γ−1 + V (zk+1 − z)− V (zk − z)

≤δ∥Γ
1
2 ∥∥wk+1 − w∥Γ−1 −

〈
X(βk+1 − pk) | wk+1 − w

〉
+
〈
X(βk − pk−1) | wk − w

〉
+
eδ2

2
.

Summing from 1 to N − 1, we obtain

N−1∑
k=1

(
L(βk+1, w)− L(β,wk+1)

)
+

∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2
+
α

2

N−1∑
k=1

∥wk+1 − wk∥2Γ−1

+ V (zN − z)− V (z1 − z)−
〈
X(β1 − p0) | w1 − w

〉
≤δ∥Γ

1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 +
(N − 1)eδ2

−
〈
Γ

1
2XΣ

1
2Σ− 1

2 (βN − pN−1) | Γ− 1
2 (wN − w)

〉
2

≤δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 +
(N − 1)eδ2

2

+
∥βN − pN−1∥2Σ−1

2
+ ∥Γ

1
2XΣ

1
2 ∥2

∥wN − w∥2Γ−1

2
(4.3.11)
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Now, by choosing k = 0 in (4.3.9) we get

L(β1, w)− L(β,w1) +
∥β1 − p0∥2Σ−1

2
+
α

2
∥w1 − w0∥2Γ−1

+ V (z1 − z)− V (z0 − z) +
〈
X(β1 − p̄0) | w1 − w

〉
≤δ∥Γ

1
2 ∥∥w1 − w∥Γ−1 +

eδ2

2
. (4.3.12)

Adding (4.3.11) and (4.3.12) we obtain

N−1∑
k=0

(
L(βk+1, w)− L(β,wk+1)

)
+
α

2
∥wN − w∥2Γ−1

+

N∑
k=1

α

2
∥wk − wk−1∥2Γ−1 +

∥βN − β∥2Σ−1

2

≤δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 + V (z0 − z) +
Neδ2

2
(4.3.13)

Next, by (4.3.10), we have the following estimate

∥βk+1 − pk∥2Σ−1

2
−
〈
X(βk − pk−1) | wk+1 − wk

〉
+

∥wk+1 − wk∥2Γ−1

2
+ L(βk+1, w)− L(β,wk+1)

+ V (zk+1 − z)− V (zk − z)

≤δ∥Γ
1
2 ∥∥wk+1 − w∥Γ−1 −

〈
X(βk+1 − pk) | wk+1 − w

〉
+
〈
X(βk − pk−1) | wk − w

〉
+
eδ2

2

Summing from 1 to N − 1 we obtain

N−1∑
k=1

(
∥βk+1 − pk∥2Σ−1

2
−
〈
X(βk − pk−1) | wk+1 − wk

〉
+

∥wk+1 − wk∥2Γ−1

2

)

+
N−1∑
k=1

(
L(βk+1, w)− L(β,wk+1)

)
+ V (zN − z)− V (z1 − z)

−
〈
X(β1 − p0) | w1 − w

〉
≤δ∥Γ

1
2 ∥

N−1∑
k=1

∥wk+1 − w∥Γ−1 +
(N − 1)eδ2

2

−
〈
X(βN − pN−1) | wN − w

〉
=δ∥Γ

1
2 ∥

N−1∑
k=1

∥wk+1 − w∥Γ−1 +
(N − 1)eδ2

2

−
〈
Γ

1
2XΣ

1
2Σ− 1

2 (βN − pN−1) | Γ− 1
2 (wN − w)

〉
≤δ∥Γ

1
2 ∥

N−1∑
k=1

∥wk+1 − w∥Γ−1 +
(N − 1)eδ2

2

+
∥Γ

1
2XΣ

1
2 ∥2

2
∥βN − pN−1∥2Σ−1 +

∥wN − w∥2Γ−1

2
(4.3.14)
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Now, since wk+1 − wk = Γ
(
Xp̄k − yδ

)
we derive that

N−1∑
k=1

(
∥βk+1 − pk∥2Σ−1

2
−
〈
X(βk − pk−1) | wk+1 − wk

〉
+

∥wk+1 − wk∥2Γ−1

2

)

=
N−1∑
k=1

(
∥βk − pk−1∥2Σ−1

2
−
〈
X(βk − pk−1) | wk+1 − wk

〉
+

∥wk+1 − wk∥2Γ−1

2

)

+
∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2

=

N−1∑
k=1

(
∥Γ

1
2X(βk − pk−1)∥2

2
−
〈
Γ

1
2X(βk − pk−1) | Γ

1
2 (Xp̄k − yδ)

〉
+

∥Γ
1
2 (Xp̄k − yδ)∥2

2

)

+
∥βN − pN−1∥2Σ−1

2
− ∥β1 − p0∥2

2

+
N−1∑
k=1

(
∥βk − pk−1∥2Σ−1

2
− ∥Γ

1
2X(βk − pk−1)∥2

2

)

=
N−1∑
k=1

∥Γ
1
2 (Xpk − yδ)∥2

2
+

∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2

+
N−1∑
k=1

(
∥βk − pk−1∥2Σ−1

2
− ∥Γ

1
2X(βk − pk−1)∥2

2

)
.

Furthermore, since

α = 1− ∥Γ
1
2XΣ

1
2 ∥2 > 0,

we obtain

N−1∑
k=1

∥Γ
1
2 (Xpk − yδ)∥2

2
+

∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2

+
N−1∑
k=1

(
∥βk − pk−1∥2Σ−1

2
− ∥Γ

1
2X(βk − pk−1)∥2

2

)

≥
N−1∑
k=1

∥Γ
1
2 (Xpk − yδ)∥2

2
+

∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2

+
α

2

N−1∑
k=1

∥Γ
1
2X(βk − pk−1)∥2

≥
N−1∑
k=1

∥Γ
1
2 (Xpk − yδ)∥2

2
+

∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2

− α

2
∥Γ

1
2X(βN − pN−1)∥2 + α

2
∥Γ

1
2X(β1 − p0)∥2

+
α

2

N−1∑
k=1

∥Γ
1
2X(βk+1 − pk)∥2.
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In turn, by the convexity of ∥ · ∥2, we obtain

N−1∑
k=1

∥Γ
1
2 (Xpk − yδ)∥2

2
+

∥βN − pN−1∥2Σ−1

2
−

∥β1 − p0∥2Σ−1

2

− α

2
∥Γ

1
2X(βN − pN−1)∥2 + α

2
∥Γ

1
2X(β1 − p0)∥2

+
α

2

N−1∑
k=1

∥Γ
1
2X(βk+1 − pk)∥2

≥α
4

N−1∑
k=1

∥Γ
1
2 (Xβk+1 − yδ)∥2 −

∥β1 − p0∥2Σ−1

2
+
α

2
∥Γ

1
2X(β1 − p0)∥2

+
α2 + ∥Γ

1
2XΣ

1
2 ∥2

2
∥βN − pN−1∥2Σ−1

≥α
4

N∑
k=2

∥Γ
1
2 (Xβk − yδ)∥2 −

∥β1 − p0∥2Σ−1

2
+
α

2
∥Γ

1
2X(β1 − p0)∥2

+
α2 + ∥Γ

1
2XΣ

1
2 ∥2

2
∥βN − pN−1∥2Σ−1 . (4.3.15)

On the other hand, we get

∥Γ
1
2 (Xβk − yδ)∥2 ≥∥Xβk − yδ∥2

∥Γ−1∥

≥ 1

∥Γ−1∥

(
∥Xβk − y∥2

2
− ∥yδ − y∥2

)
. (4.3.16)

Combining (4.3.12), (4.3.14), (4.3.15), and (4.3.16) we have that

N−1∑
k=0

(
L(βk+1, w)− L(β,wk+1)

)
+
α2

2
∥βN − pN−1∥2Σ−1

N∑
k=1

α

8∥Γ−1∥
∥Xβk+1 − b∥2 +

∥βN − β∥2Σ−1

2

≤δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 + V (z0 − z) +
Neδ2

2
+N

α

4∥Γ−1∥
δ2 (4.3.17)

It remains to bound δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 . From (4.3.13) and since (x, u) is a saddle-

point of the Lagrangian we deduce that

∥wN − w∥2 ≤ 2∥Γ
1
2 ∥δ
α

N∑
k=1

∥wk − w∥+ 2V (z0 − z)

α
+
Neδ2

α
. (4.3.18)

Applying [111, Lemma A.1] to Equation (4.3.18) with

λk :=
2∥Γ

1
2 ∥δ
α

and SN :=
2V (z0 − z)

α
+
Neδ2

α
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we get

∥wN − w∥ ≤N∥Γ
1
2 ∥δ

α
+

2V (z0 − z)

α
+
Neδ2

α
+

(
N∥Γ

1
2 ∥δ

α

)2
 1

2

≤2N∥Γ
1
2 ∥δ

α
+

(
2V (z0 − z)

α

) 1
2

+

(
Neδ2

α

) 1
2

. (4.3.19)

Inserting (4.3.19) into (4.3.13) to obtain

N−1∑
k=0

(
L(βk+1, w)− L(β,wk+1)

)
≤2(N∥Γ

1
2 ∥δ)2

α
+N∥Γ

1
2 ∥δ

(
V (z0 − z)

α

) 1
2

+N∥Γ
1
2 ∥δ

(
Neδ2

α

) 1
2

+ V (z0 − z) +
Neδ2

2
.

By (4.3.17), we have

N∑
k=1

∥Xβk − y∥2 ≤16N2∥Γ∥∥Γ−1∥δ2

α2
+ 8Nδ∥Γ−1∥

(
2∥Γ∥V (z0 − z)

α3

) 1
2

+ 8Nδ2∥Γ−1∥
(
∥Γ∥eN
α3

) 1
2

+
8∥Γ−1∥V (z0 − z)

α

+ 2Nδ2 +
4N∥Γ−1∥eδ2

α

and both results are straightforward from Jensen’s inequality.

Note that, the previous proof combines and extends the techniques developed in [24]
and [84], based on the firm non-expansivity of the proximal point operator and discrete
Bihari’s lemma to deal with the error; see also [111].

In the next result, we establish upper bounds for the Lagrangian and feasibility gap analo-
gous to those proposed in Theorem 4.3.1, but for the algorithm DPA. The main difference
is that now the activation step is based on a priori information in the dual space Rd, and
not on Sδ. This set is represented by the intersection of fixed point sets of a finite number
of operators and encodes some knowledge about the dual solution.

Theorem 4.3.2. Consider the setting of DPA under Assumptions A1, A2, and A4. Let
(v̄0, w0, β0) ∈ R2d × Rp be such that w0 = v̄0. Then, for every z = (β,w) ∈ Z and
for every N ∈ N, we have that

L
(
β̂N , w

)
− L

(
β, ŵN

)
≤V (z0 − z)

N
+ 2∥Γ

1
2 ∥2Nδ2 + ∥Γ

1
2 ∥δ

(
2V (z0 − z)

) 1
2 , (4.3.20)

and

∥Xβ̂N − y∥2 ≤8∥Γ
1
2 ∥2∥Γ−1∥Nδ2

α
+

4∥Γ
1
2 ∥∥Γ−1∥δ

(
2V (z0 − z)

) 1
2

α

+
4∥Γ−1∥V (z0 − z)

Nα
+ 2δ2. (4.3.21)

where we recall that the constant α is defined in Assumptions A1.
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Proof. It follows from DPA that

Σ−1(βk − βk+1)−X⊤v̄k ∈ ∂R(βk+1)

Γ−1(vk − wk+1) +Xβk+1 = yδ (4.3.22)

Thus,

R(βk+1) +
〈
Σ−1(βk − βk+1)−X⊤v̄k | β − βk+1

〉
≤ R(β) (4.3.23)

and (4.3.23) yields

0 ≥R(βk+1)−R(β) +
〈
Σ−1(βk − βk+1)−X⊤v̄k | β − βk+1

〉
=R(βk+1)−R(β) +

∥βk − βk+1∥2Σ−1

2
+

∥βk+1 − β∥2Σ−1

2

−
∥βk − β∥2Σ−1

2
+
〈
βk+1 − β | X⊤v̄k

〉
(4.3.24)

From (4.3.22), it follows that

0 =
〈
Γ−1(vk − wk+1) +Xβk+1 − yδ | w − wk+1

〉
0 =

∥wk+1 − vk∥2Γ−1

2
+

∥wk+1 − w∥2Γ−1

2
−

∥vk − w∥2Γ−1

2

+
〈
yδ −Xβk+1 | wk+1 − w

〉
(4.3.25)

Recall that z := (β,w) ∈ Z ⊆ S × Rd, zk := (βk, wk), and V (z) :=
∥β∥2

Σ−1

2 +
∥w∥2

Γ−1

2 .
Summing (4.3.24) and (4.3.25), we obtain

R(βk+1)−R(β) +
∥βk+1 − βk∥2Σ−1

2
+

∥wk+1 − vk∥2Γ−1

2
+ V (zk+1 − z)

−V (zk − z) +
〈
X(βk+1 − β) | v̄k

〉
+
〈
yδ −Xβk+1 | wk+1 − w

〉
≤ 0. (4.3.26)
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Now compute

R(βk+1)−R(β) +
〈
X(βk+1 − β) | v̄k

〉
+
〈
yδ −Xβk+1 | wk+1 − w

〉
=L(βk+1, w)− L(β,wk+1)−

〈
Xβk+1 − y | w

〉
+
〈
Xβ − y | wk+1

〉
+
〈
X(βk+1 − β) | v̄k

〉
+
〈
yδ −Xβk+1 | wk+1 − w

〉
=L(βk+1, w)− L(β,wk+1)−

〈
Xβk+1 | w

〉
+ ⟨y | w⟩+

〈
Xβ | wk+1

〉
−
〈
y | wk+1

〉
+
〈
X(βk+1 − β) | v̄k

〉
+
〈
yδ | wk+1 − w

〉
−
〈
Xβk+1 | wk+1

〉
+
〈
Xβk+1 | w

〉
=L(βk+1, w)− L(β,wk+1) +

〈
yδ − y | wk+1 − w

〉
+
〈
X(βk+1 − β) | v̄k − wk+1

〉
(4.3.27)

=L(βk+1, w)− L(β,wk+1) +
〈
yδ − y | wk+1 − w

〉
+
〈
X(βk+1 − β) | vk − wk+1

〉
+
〈
X(βk+1 − β) | wk − vk−1

〉
=L(βk+1, w)− L(β,wk+1) +

〈
yδ − y | wk+1 − w

〉
+
〈
X(βk+1 − β) | vk − wk+1

〉
+
〈
X(βk − β) | wk − vk−1

〉
+
〈
X(βk+1 − βk) | wk − vk−1

〉
=L(βk+1, w)− L(β,wk+1) +

〈
yδ − y | wk+1 − w

〉
+
〈
X(βk+1 − β) | vk − wk+1

〉
+
〈
X(βk − β) | wk − vk−1

〉
+
〈
Γ

1
2X(βk+1 − βk) | Γ− 1

2 (wk − vk−1)
〉
. (4.3.28)

From (4.3.28) and (4.3.26) we obtain

L(βk+1, w)− L(β,wk+1) +
∥βk+1 − βk∥2Σ−1

2

+
∥wk+1 − vk∥2Γ−1

2
+ V (zk+1 − z)− V (zk − z)

≤−
〈
yδ − y | wk+1 − w

〉
−
〈
X(βk+1 − β) | vk − wk+1

〉
+
〈
X(βk − β) | vk−1 − wk

〉
−
〈
Γ

1
2X(βk+1 − βk) | Γ− 1

2 (wk − vk−1)
〉

≤δ∥Γ
1
2 ∥∥wk+1 − w∥Γ−1 −

〈
X(βk+1 − β) | vk − wk+1

〉
+
〈
X(βk − β) | vk−1 − wk

〉
+

∥βk+1 − βk∥2Σ−1

+ ∥Γ
1
2XΣ

1
2 ∥2

∥wk − vk−1∥2Γ−1

2
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Therefore we have that

L(βk+1, w)− L(β,wk+1) +
∥wk+1 − vk∥2Γ−1

2

− ∥Γ
1
2XΣ

1
2 ∥2

∥wk − vk−1∥2Γ−1

2
+ V (zk+1 − z)− V (zk − z)

≤δ∥Γ
1
2 ∥∥wk+1 − w∥Γ−1 −

〈
X(βk+1 − β) | vk − wk+1

〉
+
〈
X(βk − β) | vk−1 − wk

〉
(4.3.29)

Summing from 1 to N − 1 we obtain

N−1∑
k=1

(
L(βk+1, w)− L(β,wk+1)

)
+
α

2

N−1∑
k=1

∥wk+1 − vk∥2Γ−1

+ V (zN − z) + ∥Γ
1
2XΣ

1
2 ∥2

∥wN − vN−1∥2Γ−1

2

≤δ∥Γ
1
2 ∥

N−1∑
k=1

∥wk+1 − w∥ −
〈
X(βN − β) | vN−1 − wN

〉
+
〈
X(β1 − β) | v0 − w1

〉
+ V (z1 − z)

≤δ∥Γ
1
2 ∥

N−1∑
k=1

∥wk+1 − w∥+ ∥Γ
1
2XΣ

1
2 ∥2

∥wN − vN−1∥2Γ−1

2

+
∥βN − β∥2Σ−1

2
+
〈
X(β1 − β) | v0 − w1

〉
+ V (z1 − z) (4.3.30)

Reordering (4.3.30) we obtain

N−1∑
k=1

(
L(βk+1, w)− L(β,wk+1)

)
+
α

2

N−1∑
k=1

∥wk+1 − vk∥2Γ−1 +
∥wN − w∥2Γ−1

2

≤δ∥Γ
1
2 ∥

N−1∑
k=1

∥wk+1 − w∥+
〈
X(β1 − β) | v0 − w1

〉
+ V (z1 − z). (4.3.31)

On the other hand, from (4.3.26) and (4.3.27) we get

L(β1, w)− L(β,w1) +
α

2
∥w1 − v0∥2 ≤δ∥w1 − w∥

−
〈
X(β1 − β) | v̄0 − w1

〉
+ V (z0 − z)− V (z1 − z) (4.3.32)

Summing (4.3.31) and (4.3.32) yields

N∑
k=1

(
L(βk, w)− L(β,wk)

)
+
α

2

N∑
k=1

∥wk − vk−1∥2Γ−1 +
∥wN − w∥2Γ−1

2

≤δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥+ V (z0 − z). (4.3.33)



42 4. FAST ITERATIVE REGULARIZATION BY REUSING DATA

Moreover, since wk+1 − vk = Γ(Xβk+1 − yδ) we have

∥wk+1 − vk∥2Γ−1 =
〈
Γ(Xβk+1 − yδ) | Xβk+1 − yδ

〉
≥∥Xβk+1 − yδ∥2

∥Γ−1∥

≥ 1

∥Γ−1∥

(
∥Xβk+1 − y∥2

2
− ∥yδ − y∥2

)
(4.3.34)

and from (4.3.33) and (4.3.34) we obtain

N−1∑
k=0

(
L(βk+1, w)− L(β,wk+1)

)
+

α

4∥Γ−1∥

N∑
k=1

∥Xβk − y∥2 +
∥wN − w∥2Γ−1

2

≤δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 + V (z0 − z) +
αNδ2

2∥Γ−1∥
(4.3.35)

From (4.3.33) it follows that

∥wN − w∥2Γ−1 ≤ 2δ∥Γ
1
2 ∥

N∑
k=1

∥wk − w∥Γ−1 + 2V (z0 − z), (4.3.36)

Applying [111, Lemma A.1] to Equation (4.3.36) with λk := 2δ∥Γ
1
2 ∥ and Sk := 2V (z0−z)

to get

∥wk − w∥Γ−1 ≤N∥Γ
1
2 ∥δ +

(
2V (z0 − z) +

(
N∥Γ

1
2 ∥δ
)2) 1

2

≤2N∥Γ
1
2 ∥δ +

(
2V (z0 − z)

) 1
2 (4.3.37)

Insert the previous in Equation (4.3.33), to obtain

N−1∑
k=0

(
L(βk+1, w)− L(β,wk+1)

)
≤2∥Γ

1
2 ∥2N2δ2 +N∥Γ

1
2 ∥δ

(
2V (z0 − z)

) 1
2

+ V (z0 − z) (4.3.38)

and by (4.3.35) and (4.3.37) we have

N∑
k=1

∥Aβk − b∥2 ≤4∥Γ−1∥
α

(
2∥Γ

1
2 ∥2N2δ2 +N∥Γ

1
2 ∥δ

(
2V (z0 − z)

) 1
2

)
4∥Γ−1∥
α

(
V (z0 − z) +

αNδ2

2∥Γ−1∥

)
(4.3.39)

and both results follows from Jensen’s inequality.

First, we comment on the chosen optimality measures. As discussed in [84, 85, 111], the
Lagrangian gap is equivalent to the Bregman distance of the iterates to the solution. If
the penalty is strongly convex, the Bregman divergence is an upper bound of the squared
norm of the difference between the reconstructed and the ideal solution, while if R is only
convex, the Bregman divergence gives only limited information, and in general, it is a very
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weak convergence measure. For instance, in the exact case, a vanishing Lagrangian gap
does not imply that cluster points of the generated sequence are primal solutions. How-
ever, as can be derived from [85], a vanishing Lagrangian gap coupled with a vanishing
feasibility gap implies that every cluster point of the primal sequence is a solution to the
primal problem.

In both theorems, the established result ensures that the two optimality measures can be
upper bounded with the sum of two terms. The first one, which can be interpreted as an
optimization error, is of the order O(N−1), and so it goes to zero as N tends to +∞. Note
that, in the exact case δ = 0, only this term is present and both the Lagrangian and the
feasibility gap are indeed vanishing, guaranteeing that every cluster point of the sequence
is a primal solution. The second term, which can be interpreted as a stability control, col-
lects all the errors due to the perturbation of the exact datum and also takes into account
the presence of the activation operators T , when the data constraints are noisy. It is an
increasing function of the number of iterations and the noise level δ.

Remark 4.3.3. Theorems 4.3.1 and 4.3.2 are an extension of [24, Theorem 1], where
it is proved that the sequence generated by the algorithms converges to an element in
Z when δ = 0, but neither convergence rates nor stability bounds were given. In this
work, we filled the gap for linearly constrained convex optimization problems. Moreover,
in the noise-free case, our assumptions on the additional operators T are weaker than
those proposed in [24], where α-averagedness is required. For the noisy case, without the
activation operators (and so with e = 0), our bounds are of the same order as in [84] in
the number of iterations and noise level (δ).

As mentioned above, in (4.3.1) and (4.3.2), when δ > 0 and N → +∞, the upper bounds
for the PDA iterates tend to infinity, and the iteration may not converge to the desired
solution. The same comment can be made for the DPA iterates, based on (4.3.20) and
(4.3.21). In both cases, to obtain a minimal reconstruction error, we need to impose a
trade-off between convergence and stability. The next corollary introduces an early stop-
ping criterion, depending only on the noise level and leading to stable reconstruction.

Corollary 4.3.4. (Early-stopping). Under the assumptions of Theorem 4.3.1 or Theorem 4.3.2,
choose N = c/δ for some c > 0. Then, for every z = (β,w) ∈ Z, there exist constants c1,
c2, and c3 such that

L
(
β̂N , w

)
− L

(
β, ŵN

)
≤c1δ

∥Xβ̂N − y∥2 ≤c2δ + c3δ
2.

The early stopping rule prescribed above is computationally efficient in the sense that the
number of iterations is proportional to the inverse of the noise level. In particular, if the
error δ is small, then more iterations are useful, while if δ is big, it is convenient to stop
sooner. So, the number of iterations plays the role of a regularization parameter. Using
the early stopping strategy proposed above, we can see that the error in the data transfers
to the error in the solution with the same noise level, which is the best that one can expect
for a general operator X.
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Remark 4.3.5. Comparison with Tikhonov regularization. The reconstruction prop-
erties of the proposed algorithms are comparable to the ones obtained using Tikhonov
regularization [18, 52], with the same dependence on the noise level. We underline that
in [18, Theorem 5.1] only the Bregman divergence is considered and not the feasibility. In
addition, iterative regularization is way more efficient from a computational point of view,
as it requires the solution of only one optimization problem, while Tikhonov regulariza-
tion amounts to solving a family of problems indexed by the regularization parameter. Let
us also note that, when δ is unknown, any principle used to determine a suitable λ can be
used to determine the stopping time.

4.4 Implementation details

In this section, we discuss some standard choices to construct non-expansive operators T
that satisfy our assumptions and encode some redundant information on the solution set.
We first present examples for PDA, and later for DPA.

To define the operators, we first recall how to compute the projection on the constraint
determined by each datum. For every j ∈ [d], we denote by xj the j-th row of X and by
Pj the projection onto the j-th linear equation; namely,

Pj : Rp 7→ Rp, β 7→ β +
yj − ⟨xj | β⟩

∥xj∥2
x⊤j .

Analogously, for every j ∈ [d], we denote by P δ
j the projection operator as in the previous

definition but with the noisy data yδ instead of y.

We proceed to define the four families of operators proposed in this chapter for PDA.

Definition 4.4.1. Consider the operator T : Rp 7→ Rp is a

1. Serial projection if

T = P δ
πl
◦ · · · ◦ P δ

π1
,

where, for every j ∈ [l], πj ∈ [d].

2. Parallel projection if

T =

l∑
j=1

λjP
δ
πj

(4.4.1)

where, for every j ∈ [l], πj ∈ [d] and (λj)
l
j=1 are real numbers in [0, 1], such that

l∑
j=1

λj = 1.

3. Landweber operator with parameter η if

T : Rp 7→ Rp, β 7→ β − ηX⊤(Xβ − yδ). (4.4.2)

where η ∈]0, 2
∥X∥2 [.
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4. Landweber operator with adaptive step and parameter M if

T : Rp 7→ Rp, β 7→
{
β − η̄(β)X⊤(Xβ − yδ) if X⊤Xβ ̸= X⊤yδ

β otherwise.
(4.4.3)

where, for M > 0, η̄(β) = min
(

∥Xβ−yδ∥2
∥X⊤(Xβ−yδ)∥2 ,M

)
.

The next lemma states that the operators in Definition 4.4.1 satisfy Assumption A3.

Lemma 4.4.2. Let T : Rp → Rp be one of the operators given in Definition 4.4.1. Then
Assumption A3 holds with the following

1. If T is a serial projection, then

e =
l

max
i=1,...,d

∥xi∥

2. If T is a parallel projection, then

eT =
l∑

j=1

λj
∥xπj∥2

.

3. If T is the Landweber operator with parameter η,then

eT =
η

2− η∥X∥2
.

4. If T is the Landweber operator with adaptive step and parameter M , then eT =M.

Proof. Let us first recall that

P δ : β 7→ β +
yδj − ⟨xj | β⟩

∥xj∥2
x⊤j .

Note that the j-th equation of S and Sδ are parallel. Then, for every j ∈ [d] and β̄ ∈ S, we
get

∥P δ
j β − β̄∥2 =∥Pjβ − β̄∥2 + 2

〈
Pjβ − β̄ | P δ

j β − Pjβ
〉

+ ∥Pjβ − P δ
j β∥2

=∥Pjβ − β̄∥2 + ∥Pjβ − P δ
j β∥2. (4.4.4)

Analogously, we have that

∥β − β̄∥2 =∥β − Pjβ∥2 + ∥Pjβ − β̄∥2. (4.4.5)

It follows from (4.4.4) and (4.4.5) that

∥P δ
j β − β̄∥2 + ∥β − Pjβ∥2 = ∥β − β̄∥2 + ∥P δ

j β − Pjβ∥2.

Hence,

∥P δ
j β − β̄∥2 ≤ ∥β − β̄∥2 + ∥P δ

j β − Pjβ∥2

≤ ∥β − β̄∥2 +
(yδj − yj)

2

∥xj∥2

≤ ∥β − β̄∥2 + δ2

∥xj∥2



46 4. FAST ITERATIVE REGULARIZATION BY REUSING DATA

1. Since T = P δ
πl
◦ · · · ◦ P δ

π1
it is clear that Sδ ⊆ FixT and by induction we have that,

∥Tβ − β̄∥2 ≤ ∥β − β̄∥2 + eδ2,

where e = l
max

i=1,...,d
∥xi∥ .

2. The proof follows from the convexity of ∥ · ∥2 which is obtained with e = 1
max

i=1,...,d
∥xi∥ .

3. Let β̄ ∈ S. By (4.4.2), we have

∥Tβ − β̄∥2 =∥β − β̄∥2 − 2η
〈
β − β̄ | X⊤(Xβ − yδ)

〉
+ η2∥X⊤(Xβ − yδ)∥2

=∥β − β̄∥2 − 2η
〈
Xβ − y | Xβ − yδ

〉
+ η2∥X⊤(Xβ − yδ)∥2

≤∥β − β̄∥2 − 2η
〈
yδ − y | Xβ − yδ

〉
+
(
η2∥X∥2 − 2η

)
∥Xβ − yδ∥2

Now using the Young inequality with parameter 2− η∥X∥2, we have that

∥Tβ − β̄∥2 ≤∥β − β̄∥2 + η

2− η∥X∥2
∥yδ − y∥2

≤∥β − β̄∥2 + ηδ2

2− η∥X∥2
.

It remains to prove that, if Sδ ̸= 0, then Sδ ⊆ FixT , which is clear from (4.4.2).

4. Let β̄ ∈ S and x ∈ Rp. If X⊤Xβ = X⊤yδ, then (4.2.5) immediately holds. Other-
wise, we have

∥Tβ − β̄∥2 =∥β − β̄∥2 − 2η̂(β)
〈
β − β̄ | X⊤(Xβ − yδ)

〉
+ η̂(β)2∥X⊤(Xβ − yδ)∥2

=∥β − β̄∥2 − 2η̂(β)
〈
Xβ − y | Xβ − yδ

〉
+ η̂(β)2∥X⊤(Xβ − yδ)∥2

=∥β − β̄∥2 − 2η̂(β)
〈
yδ − y | Xβ − yδ

〉
− 2η̂(β)∥Xβ − yδ∥2 + η̂(β)2∥X⊤(Xβ − yδ)∥2

Now using the Young inequality with parameter 2− η̂(β)∥X
⊤(Xβ−yδ)∥2
∥Xβ−yδ∥2 , we have that

∥Tβ − β̄∥2 ≤∥β − β̄∥2 + η̂(β)

2− η̂(β)∥X
⊤(Xβ−yδ)∥2
∥Xβ−yδ∥2

∥yδ − y∥2

≤∥β − β̄∥2 +Mδ2.

Finally, it is clear from (4.4.3) that, if Sδ ̸= 0, then Sδ ⊆ FixT .

Remark 4.4.3. Relationship between Parallel projection and Landweber operator. A
particular parallel projection is the one corresponding to l = d, πj = j, and αj =

∥xj∥2
∥X∥2F

.

Then, (4.4.1) reduces to

T (β) = β − 1

∥X∥2F
X⊤(Xβ − yδ).
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Observe that, since ∥X∥ ≤ ∥X∥F , the previous is a special case of the Landweber operator
with η = 1

∥X∥2F
.

Remark 4.4.4. Steepest descent. Let β̄ ∈ Rp be such that Xβ̄ = b. Then, from (4.4.3),
we derive

∥Tβ − β̄∥2 = ∥β − β̄∥2 − 2η̂(β)
〈
yδ − y | Xβ − yδ

〉
− 2η̂(β)∥Xβ − yδ∥2

+ η̂(β)2∥X⊤(Xβ − yδ)∥2. (4.4.6)

If δ = 0, then the choice of η̂(β) given in (4.4.3) minimizes the right-hand side of (4.4.6),
if the minimizer is smaller than M . In this case, η̂ is chosen in order to maximize the con-
tractivity with respect to a fixed point of T . While we cannot repeat the same procedure
for δ > 0, since we do not know y, we still keep the same choice. If yδ ∈ ran(X), then
sup
β∈Rp

∥Xβ − yδ∥2/∥X⊤(Xβ − yδ)∥2 < +∞. However, in general, if δ > 0, this is not true

and M is needed to ensure that η̂(β) is bounded.

Remark 4.4.5. From a computational point of view, parallel projections and Landweber
operators are more efficient than serial projections. In particular, note that the quantity
(Xβk − yδ) needs to be computed anyway in the other steps of the algorithm.

While for the primal space the data constraints that we want to reuse are clearly given by
the linear constraints, for the dual there is not always a natural choice. In the following
we present an example related to the ℓ1 norm. A similar implementation can be extended
to the case of 1-homogenous penalty functions, for which the Fenchel conjugate is the
indicator of a closed and convex subset of the dual space [15, Proposition 14.11 (ii)].

Example 4.4.6. Consider the noisy version of problem (P)with R(β) = ∥β∥1. Then the
dual is given by

min
w∈Rd

{〈
yδ | w

〉
: |(X⊤w)i| ≤ 1, for every i ∈ [p]

}
.

For every i ∈ [p], set Di = {w ∈ Rd : |(X⊤w)i| ≤ 1} and denote by Ti the projection over
Di. Note that this projection is easy to compute, see for example [15, Example 28.17],
since it is the projection onto the intersection of two parallel half-hyperplane. Clearly
Assumption A4 holds. Differently from the primal case, here we are projecting on exact
constraints, which are independent of the noisy data yδ.

4.5 Numerical results

In this section, to test the efficiency of the proposed algorithms, we perform numerical
experiments in two settings: sparse reconstruction with ℓ1-norm regularization and Image
denoising and deblurring with total variation regularization. For the ℓ1-norm regulariza-
tion, we compare our results with other regularization techniques. In the more complex
problem of total variation we explore the properties of different variants of our procedure.

Code statement: All numerical examples are implemented in MATLAB® on a laptop. In
the second experiment we also use the library Numerical tours [108]. The corresponding
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code can be downloaded at https://github.com/cristianvega1995/L1-TV-Experiments-of-
Fast-iterative-regularization-by-reusing-data-constraints

4.5.1 ℓ1-norm regularization

In this section, we apply the routines PDA and DPA when R is equal to the ℓ1-norm. We
compare the results given by our method with two state-of-the-art regularization proce-
dures: iterative regularization by vanilla primal-dual [84], and Tikhonov explicit regular-
ization, solving each problem by using the forward-backward algorithm [45]. In addition,
we compare to another classical optimization algorithm for the minimization of the sum
of two non-differentiable functions, namely the Douglas-Rachford algorithm [26]. In the
noise free case, this algorithm is very effective in terms of number of iterations, but at
each iteration it requires the explicit projection on the feasible set. In the noisy case, a
stability analysis of the latter is not available.

We use the four variants of the algorithm PDA corresponding to the different choices
of the operators T in Definition 4.4.1 and the version of DPA described in Example 4.4.6.
Unless otherwise stated, in all the experiments we use as preconditioners Σ = Γ = 0.99

∥X∥ Id,
which both satisfy (4.2.4).

Let d = 2260, p = 3000, and let X ∈ Rd×p be such that every entry of the matrix is an
independent sample from N (0, 1), then normalized column by column. We set y := Xβ∗,
where β∗ ∈ Rp is a sparse vector with approximately 300 non-zero entries uniformly dis-
tributed in the interval [0, 1]. It follows from [53, Theorem 9.18] that β∗ is the unique min-
imizer of the problem with probability bigger than 0.99. Let yδ be such that yδ = y+ ∥y∥w
where the vector w is distributed, entry-wise, as uniformly on [−0.2, 0.2]. In this exper-
iment, to test the reconstruction capabilities of our method, we use the exact datum β∗

to establish the best stopping time, i.e. the one minimizing ∥βk − β∗∥. The exact data
solution is also used for the other regularization techniques. In a real practical situation,
when both β∗ and δ are unknown, we would need to use parameter tuning techniques in
order to select the optimal stopping time, but we do not address this aspect here.

We detail the used algorithms and their parameters below.

(Tik) Tikhonov Regularization: We consider a grid of penalty parameters

G =

{(
1− l − 1

5

)
101−d∥X⊤yδ∥∞ : l ∈ [5], d ∈ [6]

}
and, for each value λ ∈ G, the optimization problem

min
β∈Rp

{
λ∥β∥1 +

1

2
∥Xβ − yδ∥2

}
. (4.5.1)

We solve each one of the previous problems with 300 iterations of forward-backward
algorithm, unless the stopping criterion ∥βk+1−βk∥ ≤ 10−3 is satisfied earlier. More-
over, to deal efficiently with the sequence of problems, we use warm restart [17].
We first solve problem (4.5.1) for the biggest value of λ in G. Then, we initialize the
algorithm for the next value of λ, in decreasing order, with the solution reached for
the previous one; and so on.

(DR) Douglas Rachford: see [26, Theorem 3.1].

(PD) Primal-dual: this corresponds to PDA with m = 1 and T1 = Id.

https://github.com/cristianvega1995/L1-TV-Experiments-of-Fast-iterative-regularization-by-reusing-data-constraints
https://github.com/cristianvega1995/L1-TV-Experiments-of-Fast-iterative-regularization-by-reusing-data-constraints
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(PDS) Primal-dual with serial projections: at every iteration, we compute a serial projec-
tion using all the equations of the noisy system, where the order of the projections
is given by a random shuffle.

(PDP) Primal-dual with parallel projections: Setm = 1 and T1β = β− 1
∥X∥2F

X⊤(Xβ−yδ),
see Remark 4.4.3.

(PDL) Primal-dual Landweber: Set m = 1 and T1β = β − 2
∥X∥2X

⊤(Xβ − yδ).

(PDAL) Primal-dual Landweber with adaptive step: Set m = 1, and T1β = β −
η̄(β)X⊤ (Xβ − yδ), where η(β) = min

(
∥Xβ−yδ∥2

∥X⊤(Xβ−yδ)∥2 ,M
)

for M = 106.

(DPS) Dual primal with serial projections: at every iteration, we compute a serial pro-
jection over every inequality of ∥X⊤w∥∞ ≤ 1, where the order is given by a random
shuffle of the rows of X⊤.

Time [S] Iteration Reconstruction error
Tik 1.89 109 3.07
DR 3.08 5 5.01
PD 0.36 14 3.11
PDS 1.41 11 2.58
PDP 0.35 14 3.11
PDL 0.28 12 2.60
PDAL 0.27 11 2.56
DPS 0.54 17 2.83

Table 4.2: Run-time and number of iterations of each method until it reaches the best
reconstruction error. We compare the proposed algorithms with Tikhonov regularization
(Tik), Douglas-Rachford (DR), and iterative regularization (PD).

Figure 4.1: Graphical representation of early stopping. Note that the reconstruction error
decreases and then increases, since the iterates first approach the exact solution and then
converges to the noisy solution.

In Table 4.2, we reported also the number of iterations needed to achieve the best recon-
struction error, but it is important to note that the iteration of each method has a different
computational cost, so the run-time is a more appropriate comparison criterion.
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Figure 4.2: Early stopping with respect to the feasibility. Note that their behavior with
respect to k is similar to that in Figure 4.1.

Figure 4.3: Reconstruction error of Tikhonov Method with different penalties.

Douglas-Rachford with early stopping is the regularization method performing worst on
this example, both in terms of time and reconstruction error. This behavior may be ex-
plained by the fact that this algorithm converges fast (meaning in fews iterations) con-
vergence to the noisy solution, from which we infer that Douglas-Rachford is not a good
algorithm for iterative regularization. Moreover, since we project on the noisy feasible set
at every iteration, the resolution of a linear system is needed at every step. This also ex-
plains the cost of each iteration in terms of time. Note in addition that in our example yδ

is in the range of X and so the noisy feasible set is non-empty. Tikhonov’s regularization
performs similarly in terms of time, but it requires many more (cheaper) iterations (see
Figure 4.3). The achieved error is smaller than the one of DR, but bigger than the minimal
one achieved by other methods.

Regarding our proposals, we observe that in Table 4.2 the proposed methods perform
better than (PD). This supports the idea that reusing the constraints determined by the
data is beneficial with respect to vanilla primal-dual. The benefit is not evident for (PDP),
which achieves the worst reconstruction error, since ∥X∥2F is very big and so T1 is very
close to the identity. All other methods give better results in terms of reconstruction error.
On the other hand, (PDS) is the slowest since it requires computing several projections
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at each iteration in a serial manner. We also observe that (PDL) and (PDAL) have better
performance improving 22.2% and 25.0% in reconstruction error and 16.4% and 17.7%
in run-time.

Figure 4.1 empirically shows the existence of the trade-off between convergence and sta-
bility for all the algorithms, and therefore the advantage of early stopping. Similar results
were obtained for the feasibility gap (see Figure 4.2).

4.5.2 Total variation
In this section, we perform several numerical experiments using the proposed algorithms
for image denoising and deblurring. As done in the classical image denoising method in-
troduced by Rudin, Osher, and Fantemi in [117], we rely on the total variation regularizer.
See also [37, 39, 103, 105, 116, 117, 140]. We compare (PD) with (PDL) and (PDAL)
algorithms, which were the algorithms performing the best in the previous application.
In this section, we use two different preconditioners, which have been proved to be very
efficient in practice [109].

Let β∗ ∈ RN2
represent an image with N × N pixels in [0, 1]. We want to recover β∗

from a blurry and noisy measurement y, i.e. from

y = Kx∗ + ζ,

where K is a linear bounded blurring operator and ζ is a random noise vector. A standard
approach is to assume that the original image is well approximated by the solution of the
following constrained minimization problem:

min
u∈RN2

{∥Du∥1,2 : Ku = y} , (TV)

Here,

∥ · ∥1,2 : (R2)N
2 → R, p→

N∑
i=1

N∑
j=1

∥pij∥,

and D : RN2 → (R2)N
2

is the discrete gradient operator for images, which is defined by

(Du)ij =((Dxu)ij , (Dyu)ij)

with

(Dyu)ij =

{
ui+1,j − ui,j if 1 ≤ i ≤ N − 1

0 if i = N

(Dxu)ij =

{
ui,j+1 − ui,j if 1 ≤ j ≤ N − 1

0 if j = N.

In order to avoid the computation of the proximity operator of ∥D · ∥1,2, we introduce an
auxiliary variable

v = Du ∈ Y :=
(
R2
)N2

.

Since the value in each pixel must belong to [0, 1], we add the constraint u ∈ X := [0, 1]N
2
.

In this way, (TV) becomes

min
(u,v)∈X×Y

(∥v∥1,2 : Ku = y, Du = v} . (TV)
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Formulation and Algorithms

Problem (TV) is a special instance of (P), with
J : RN2 ×

(
R2
)N2

7→ R ∪ {+∞} : x := (u, v) 7→ ∥v∥1,2 + ιX(u),

A =

[
K 0
D −Id

]
, yδ =

[
y
0

]
, and p = d = 3N2.

Clearly, A is a linear non-zero operator, and R ∈ Γ0(RN2 ×
(
R2
)N2

).

Primal-Dual for total variation

Input: (p0, p−1, β0, v0) ∈ R
(
R6
)N2

×
(
R2
)N2

and (q0, q−1, z0, w0) ∈(
R3
)N2

× RN2
.

For k = 1, . . . , L:

vk+1 = vk + Γ(K(pk + βk − pk−1)k − y)
wk+1 = wk − Γ(qk + zk − qk−1) + ΓD(pk + βk − pk−1)
βk+1 = PX(pk − ΣK⊤vk+1 +Σwk+1)
zk+1 = proxΣ∥·∥1,2(q

k − ΣD⊤wk+1)

pk+1 = xk − η(xk)
(
K⊤(Kxk − y) + (Dxk − zk)

)
qk+1 = qk − η(xk)D⊤ (Dxk − zk

)
(4.5.2)

End

Table 4.3: General form of the algorithms.

We compare the algorithms listed below. Note that all proposed algorithms are different
instances of the general routine described in Table 4.3, and each of them corresponds to a
different choice of η(βk):

1. PD, the vanilla primal-dual algorithm, corresponding to η(βk) = 0;

2. PPD, the preconditioned primal-dual algorithm, obtained by η(βk) = 0 and Σ and Γ
as in [109, Lemma 2];

3. PDL, corresponding to η(βk) = 1/∥X∥2;

4. PDAL, corresponding to η(βk) = η̂(βk) as (4.4.3).

Initializing by p0 = p̄0 = β0 and q0 = q̄0 = z0, we recover the results of Theorem 4.3.1
and Corollary 4.3.4.

Remark 4.5.1. In order to implement the algorithm in 4.5.2, we first need to compute
some operators.

1. It follows from [15, Proposition 24.11] and [15, Example 24.20] that

proxΣ∥·∥1,2(v) =
(
proxΣi

∥·∥(vi)
)N2

i=1
=

((
1− Σ

max{Σ, ∥v∥}

)
vi

)N2

i=1

,

where vi ∈ R2. The projection onto X can be computed as

PX(u) =
(
P[0,1](ui)

)N2

i=1
,
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where P[0,1](ui) = min{1,max{ui, 0}}.

2. It follows from [37] that

−D⊤p = div p =


(p1)i,j − (p1)i−1,j if 1 < i < N
(p1)i,j if i = 1
−(p1)i−1,j if i = N

+


(p2)i,j − (p2)i,j−1 if 1 < j < N
(p2)i,j if j = 1
−(p2)i,j−1 if j = N.

Numerical results

Set N = 256, and let β∗ be the image “boat” in the library Numerical tours [108]. We
suppose that K is an operator assigning to every pixel the average of the pixels in a
neighborhood of radius 8 and that ζ ∼ U([−0.025, 0.025])N

2
. We use the original image as

exact solution. For denoising and deblurring, we early stop the procedure at the iteration
minimizing the mean square error (MSE), namely ∥xk − x∗∥2/N2, and we measure the
time and the number of iterations needed to reach it. Another option for early stopping
could be to consider the image with minimal structural similarity (SSIM). Numerically,
in our experiments, this gives the same results. Additionally, we use the peak signal-
to-noise ratio (PSNR) to compare the images. Note that the primal-dual algorithm with
preconditioning is the method that needs less time and iterations among all procedures.
Moreover, due to [40, Lemma 2], the condition (4.2.4) is automatically satisfied, while for
the other methods we need to check it explicitly, which is computationally costly. However,
(PPD) is the worst in terms of SSIM, PNSR, and MSE. We verify that all other algorithms
have a superior performance in terms of reconstruction, with a small advantage for the
Landweber with fixed and adaptive step-sizes, reducing the MSE of 94% with respect to
the noisy image. In addition, compared to (PD), the algorithms (PDL) and (PDAL) require
less iterations and time to satisfy the early stopping criterion. We believe that this is
due to the fact that the extra Landweber operator improves the feasibility of the primal
iterates. Visual assessment of the denoised and deblurred images are shown in Figure 4.4,
which highlights the regularization properties achieved by the addition of the Landweber
operator and confirms the previous conclusions.

Iterations Time SSIM PNSR MSE
Noisy image - - 0.4468 21.4801 0.0071
PD 54 8.9773 0.8928 32.3614 0.0006
PD (precondition) 5 1.5515 0.8581 27.3753 0.0018
PDL 46 7.1846 0.9066 34.2174 0.0004
PDAL 31 5.4542 0.9112 34.3539 0.0004

Table 4.4: Quantitative comparison of the algorithms in terms of Structural similarity
(SSIM), peak signal-to-noise ratio (PSNR), Mean square error (MSE), time, and iterations
to reach the early stopping.

4.6 Conclusion and Future Work

In this chapter we studied two new iterative regularization methods for solving a linearly
constrained minimization problem, based on an extra activation step reusing the data
constraints. The analysis was carried out in the context of convex functions and worst-
case deterministic noise. We proposed five instances of our algorithm and compared their
numerical performance with state-of-the-art methods, and we observed considerable im-
provement in run-time.
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Figure 4.4: Qualitative comparison of the 4 proposed methods.

In the future, we would like to extend Theorem 4.3.1 to structured convex problems and
other algorithms. Possible extensions are: 1) the study of problems including, in the ob-
jective function, a L-smooth term and a composite linear term; 2) the analysis of random
updates in the dual variable (see [38]) and stochastic approximations for the gradient; 3)
the theoretical study of the impact of different preconditioners; 4) the improvement of the
convergence and stability rates for strongly convex objective functions.



CHAPTER 5

Implicit regularization and
reparameterization

5.1 Reparameterization

The second part of this thesis is based on the recent success of overparameterization in
machine learning trained with gradient descent. Instead of designing an algorithm with
a fixed bias and loss, as we did in the first part of this thesis, we change our approach
by reparametrizing the linear model by fixing the loss and the algorithm (which will be
a gradient flow for simplicity). So, our goal is to find the implicit bias introduced by the
selected optimization method and the reparametrization that has been introduced.

The map
θ ∈ Rk 7→ β = q(θ) ∈ Rp

is the reparameterization. Typically, k ≥ p, and in this view, the model becomes overpa-
rameterized. The key idea is that the sequence θ(t) obtained with gradient descent defines
a sequence β(t) = q(θ(t)), which corresponds to some suitable optimization procedure to
find β under a bias R. Then, the reparameterization q defines a corresponding bias R.

Then, for a given pair of models and corresponding reparameterization, the question
is: what are the associated optimization procedures and corresponding biases?

In the following, we will tackle the above question, considering a simplified setting and
recovering and extending a number of recent studies.

Further, we will consider a restricted set of models that are amenable to study; namely, we
will assume that fθ is some kind of linear neural network. In particular, we will consider
the following networks:

• Two layers diagonal network: β = q(θ) = θ1⊙θ2, where θ = (θ1, θ2) ∈ Rp × Rp,
and k = 2p.

• Deep diagonal networks: β = q(θ) = θ⊙L, where θ ∈ Rp, L ≥ 2, and k = p.

• Multi-neuron fully linear network of depth 2: β = q(θ) =Ww, where W is a p×d
matrix, w ∈ Rd, θ = (W,w), and k = (p+ 1)d.

• Fully connected normalized linear network of depth 2: β = q(θ) = Ww, where
W is a p× d matrix, w is a unitary vector in Rd, θ = (W,w), and k = (p+ 1)d.
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• Weight normalized networks: β = h(α)w, where h : dom(h) ⊂ R 7→ R+ is a given
function, w is a unitary vector in Rp, θ = (α,w) ∈ dom(h)× Rp, and k = p+ 1.

5.1.1 Optimization by reparameterization
Let L : Rp → R be a convex functional, which can be interpreted as the data fit term. Let
q : Rk → Rp, be a differentiable map, seen as the reparameterization. For some suitable
initialization, consider the flow

θ̇(t) = −∇θL(q(θ(t))). (5.1.1)

Instead of gradient descent, we consider the gradient flow, where we indicate for clarity
the variable with respect to which the gradient is taken. The questions are:

1. If there exists a bias functional R : Rp → R such that β(t) = q(θ(t)) converges in a
suitable sense to some β∞ solving

min
β∈S

R(β), S = argmin
β∈Rp

L(β). (5.1.2)

2. If it is possible to show that the trajectory followed by β(t) corresponds to some
optimization approach to solve (5.1.2).

3. If it is possible to find an explicit expression of R in terms of q and the initialization.

Recent research has partially addressed these questions by establishing a link between
gradient flow and mirror flow. The idea can be simply summarized as follows: Starting
from the reparameterization β = q(θ) and equation (5.1.1), a simple derivation of the
composition shows that

β̇ = Jq(θ)θ̇ = −Jq(θ)∇θL(q(θ)) = −Jq(θ)Jq(θ)⊤∇L(β),

where we denote by Jq the Jacobian of q with respect to its variable. So, under the
assumption that there exists a function F : dom(F ) → R and G : dom(G) → R such that,
for every θ ∈ Rk,

Jq(θ)Jq(θ)
⊤ = G(q(θ))

[
∇2F (q(θ))

]−1
, (5.1.3)

we get that the variable β(t) follows the following generalized ("time-warping") mirror
flow:

β̇(t) = −G(β(t))
[
∇2F (β(t))

]−1∇L(β(t)). (5.1.4)

The previous computations can be understood as follows: Parameterizing β = q(θ) and
using gradient flow on θ is equivalent to applying "time-warping" mirror flow on β, with
some specific entropy F depending on the reparameterization q. The "time-warping" func-
tion can be interpreted as a non-linear preconditioner of the dynamical system. The flow
on (5.1.4) has an implicit bias R towards a specific solution in the set of minimizers of the
loss function. This bias, as we will see in the following, is related to F and G, and so to
the reparameterization q.

5.2 Case G(β) ≡ 1: Reparameterizing gradient flow
as mirror flow.

In the case when G(β) ≡ 1, the dynamical system (5.1.4) is indeed a mirror flow. In
[4] the authors show that mirror flow [3, 16, 99] on the global variable is equivalent to
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use gradient flow over the reparameterization, assuming the existence of a suitable mirror
map. This map allows for characterizing the implicit bias of the optimization process for
a given model. The equivalence between mirror flow on β and gradient flow over θ was
formalized in the following theorem:

Theorem 5.2.1. [4, Theorem 2] Let F be a strictly convex, continuously-differentiable func-
tion with domain in Rp. Let q : Rk 7→ Rp be a reparameterization function, such that k ≥ p,
expressing parameters β of F uniquely as q(θ) and ran(q) ⊆ dom(F ). Moreover, assume that

Jq(θ)Jq(θ)
⊤ =

[
∇2F (β)

]−1
,

for all β = q(θ). Then, the Mirror flow update on parameter β for the convex function F (β)
and loss L(β),

β̇(t) = −
[
∇2F (β(t))

]−1∇L(β(t)),

coincides with the gradient flow update on parameters θ for the the composite loss L ◦ q,

θ̇(t) = −∇θL(q(θ(t))),

provided that β(0) = q(θ(0)).

Remark 5.2.2. In the special case where p = k and q is separable, meaning that the i -
th component of q depends only on the corresponding component of θ, (5.1.3) can be
reduced to the following ordinary differential equation:[

∇2F (q(θ))
]−1

= Diag
(
q′(θ)⊙2

)
. (5.2.1)

In the appendix, Example A.1.1 presents the explicit computations for the case where the
reparameterization is separable and finding the mirror map is trivial, demonstrating that
the mirror map can be straightforwardly determined by solving Equation (5.2.1).

In practice, for many models, find F from (5.1.3) is not straightforward, and the result-
ing bias R is unclear. The first technical step is to express the product of the Jacobians
Jq(θ)J

⊤
q (θ) in terms of the variable β = q(θ) (see Example A.1.2 in the appendix). The

second is then to find a function F (β) such that the inverse of its Hessian is equal to the
product of the Jacobians (5.1.3).

While the previous theorem sheds light on certain aspects of how to find implicit bias,
it does not tackle the existence of a mirror map. Moreover, even if such a map exists,
uniqueness is not guaranteed, and finding the parameterization can be a challenging task.
However, in [77] the previous results are generalized, providing conditions for the ex-
istence of the parameterization. Moreover, the convergence to a feasible point is also
proved, whereas in previous works it was only assumed.

Before to present the existence result, we recall some definitions presented in Chapter
2

Definition 5.2.3. A regular parameterization q : Rk → Rp is a C1 parameterization such
that Jq(θ) is of rank p for all θ ∈ Rp.

Definition 5.2.4. A C2 parameterization q : Rk → Rp is commuting if and only if for any
i, j ∈ [p], we have that,

∇2qj(θ)∇qi(θ)−∇2qi(θ)∇qj(θ) = 0,

for all θ ∈ Rk.
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Definition 5.2.5. For any C1 function f : Rk 7→ R ∪ {+∞}, we denote by θtf (θ0) = θ(t),
where θ(t) is the solution at time t (when it exists) of{

θ̇(t) = −∇f(θ(t)), t > 0;

θ(0) = θ0 ∈ Rk.

We say θtf (β0) is well-defined at time t when the above differential equation has a solution
at time t.

Definition 5.2.6. Given a C2 parameterization q : Rk → Rp, for any θ0 ∈ Rp and t̄ ∈ Rp,
we define

ψ(θ0, t̄) := θt1q1 ◦ · · · ◦ θ
tp
qp(θ0),

when it is well-defined, i.e., the corresponding differential equations have a solution. For
any θ0 ∈ Rp, we define the domain of ψ(θ0, ·) as:

U(θ0) = {t̄ ∈ Rp | ψ(θ0, t̄) is well defined} .

Definition 5.2.7. For any parameterization q : Rk → Rp in C2 and for any function L : Rp →
R ∪ {+∞} in C1, given any starting point θ0 ∈ Rp, we define the reachable set Ω(θ0, q) as

Ω(θ0, q) =
{
θtL◦q(θ0) | t > 0.

}
.

Now, we present sufficient assumptions for the reparametrization, presented in [77],
which ensure the existence of a mirror map and allow its implicit bias to be character-
ized.

Assumption 5.2.8. [77, Assumption 3.5.] Let q : Rk 7→ Rp be a parametrization. We assume
that for any θ0 ∈ Rp and i ∈ [p], θtqi(θ0) is well-defined for t ∈]T−, T+[ such that either
lim
t→T+

∥θtqi(θ0)∥ = +∞ or T+ = +∞ and similarly for T−. Also, we assume that for any

θ0 ∈ Rp and i, j ∈ [p], we have that, θsqi ◦ θ
t
qj (θ0) is well-defined if and only if θtqj ◦ θ

s
qi(θ0)

does, for every t, s > 0.

The following intermediate lemma states that the point reached by the gradient flow with
any commuting parameterization is determined by the integral of the negative gradient of
the loss along the trajectory.

Lemma 5.2.9. [77, Lemma 4.7.] Let q : Rk 7→ Rp be a commuting parametrization. For any
initialization θ0 ∈ Rk, consider the gradient flow:

θ̇(t) = −∇θL(q(θ(t))) θ(0) = θ0.

Further define µ(t) =
∫ t
0 −∇L(q(θ(s)))ds. Suppose µ(t) ∈ U(θ0) for all t ∈ [0, T ) where

T ∈ R ∪ {+∞}, then it holds that θ(t) = ψ(θ0;µ(t)) for all t ∈ [0, T ).

Now, we present the existence of a mirror map corresponding to a specified parameteriza-
tion.

Theorem 5.2.10. [77, Lemma 4.8] Let q : Rk 7→ Rp be a commuting and regular parametriza-
tion satisfying Assumption 5.2.8. Then for any θ0 ∈ Rk, there exists a Legendre func-
tion Q : Rp 7→ R ∪ {+∞} such that ∇Q(µ) = q(ψ(θ0;µ)) for all µ ∈ U(θ0). Moreover,
let F be the convex conjugate of Q, then F is also a Legendre function and satisfies that
int(dom(F )) = Ω(θ0, q) and

∇2F (q(ψ(θ0;µ))) =
[
Jq(ψ(θ0;µ))J

T
q (ψ(θ0;µ))

]−1
.

for all µ ∈ U(θ0).
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The next theorem characterizes the implicit bias for mirror flow when the loss function is
the composition of a convex function with a linear operator. This implicit bias corresponds
to the Bregman distance between the set of minimizers of the loss and the initialization,
extending the results presented in [7, 139].

Theorem 5.2.11. [77, Lemma 4.16] Let q : Rk 7→ Rp be a commuting and regular parametriza-
tion satisfying Assumption 5.2.8. Let X ∈ Rd×p, let y ∈ Rd, let ℓ : Rd → R be differentiable
with a locally Lipschitz gradient. Assume that L = ℓ ◦X and S = {β ∈ Rp | Xβ = y}. Con-
sider the gradient flow given by (5.1.1). Then, there exists function F given Theorem 5.2.10
and a solution β∞ ∈ RP such that β∞ = lim

t→∞
β(t) and

β∞ ∈ argmin
z∈S

F (z)− ⟨∇F (β0) | z⟩ = argmin
z∈S

DF (z, β0).

Although [77] encompasses many of the existing parameterizations, there are also inter-
esting reparameterizations for which a function F such that (5.1.3) holds does not exist
if G(β) ≡ 1, making it necessary to consider G ̸≡ 1. In this case, the dynamic cannot be
expressed as vanilla mirror flow,but the flow can still be expressed as a mirror flow multi-
plied by a positive scalar function G, as it was studied in [7] for the case of a multi-neuron
fully connected linear network.

5.3 Case G(β) ̸≡ 1: Time warping Mirror Flow

If G(β) ̸≡ 1, the dynamical system (5.1.4) is a time-warped mirror flow. In this case,
the dynamics cannot be described by vanilla mirror flow; however, an entropy function
can still be found, as was studied in [7] for multi-neuron fully connected linear networks.
This flow can be understood as mirror descent with a non-linear time-warping, which
gives degrees of freedom with respect to [77] on how to choose F . This map G allows for
characterizing the implicit bias of the optimization process for a given model.

Consider, for instance, the following two leading examples along the this thesis.

Example 5.3.1 (Multi-neuron fully connected linear network of depth 2). In linear net-
works of depth 2, the reparameterization is given by β = q(θ) with θ = (W,w) ∈
Rp×m×Rm and q(θ) =Ww. The gradient flow on the reparameterization is then given by

Ẇ (t) = −∇WL(W (t)w(t)) = −∇L(β(t))w⊤(t); (5.3.1)

ẇ(t) = −∇wL(W (t)w(t)) = −W⊤(t)∇L(β(t)),

where we suppose, for simplicity in the computations, that the initialization satisfies
W⊤(0)W (0) = w(0)w⊤(0). In this case, by Lemma 2.4.5, it is possible to prove that
there is no function F such that (5.1.3) holds with G(β) = 1. On the other hand, in the
original variable β, we obtain the following dynamical system:[

∇2F (β(t))
]
β̇(t) =−G(β(t))∇L(β(t)), (5.3.2)

where
F (β) = (2/3)∥β∥3/2 and G(β) = ∥β∥1/2.

For the proofs of the statements above, see Section A.1.3 in the appendix. Note that, due
to the presence of the function G, (5.3.2) is not a mirror flow but a generalization of it.
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Example 5.3.2 (Standard weight normalization). Consider the reparameterization given
by β = q(θ) with θ = (w,α) ∈ Rp × R and q(θ) = α w

∥w∥ . The gradient flow on the
reparameterization is then given by

ẇ(t) =−∇wL(β(t)) = − α(t)

∥w(t)∥

(
Id− w(t)w⊤(t)

∥w(t)∥2

)
∇L(β(t))

α̇(t) =−∇αL(β(t)) = −
〈

w(t)

∥w(t)∥|
| ∇L(β(t))

〉
.

with initialization (w0, α0) ∈ Rp × R such that ∥w0∥ = 1 and α0 > 0. In this case, by
Lemma 2.4.5, it is possible to prove that there is no function F such that (5.1.3) holds
with G(β) = 1. On the other hand, in the original variable β, we obtain the following
dynamical system: [

∇2F (β(t))
]
β̇(t) =−G(β)∇L(β(t)),

where G(β) = ∥β∥ exp
(
∥β∥2
2

)
and F is a function that cannot be expressed explicitly. For

the proofs of the statements above, see Example 6.3.6 with L = 1.

The above examples were presented in [7] and [89, 118, 139]. However, the conver-
gence of the trajectory is assumed but not proven (see [7, 89, 139]). In the next chapter,
we study the well-posedness, convergence of the iterates, and convergence in value for
time-warped mirror flow applied to convex losses. Additionally, when the loss function
consists of a strictly convex function composed with a linear operator, we give an explicit
expression of its implicit bias.



CHAPTER 6

Learning from data via
overparameterization

Abstract

The goal of machine learning is to achieve a good prediction exploiting training data and
some a-priori information about the model. The most common methods to achieve the
last objective are explicit and implicit regularization. In the first technique, a regularizer
is explicitly introduced to find, among all the solutions, a good generalizing one. The
second technique, i.e. implicit regularization, is based on the inductive bias intrinsically
induced by the specific method used to optimize the parameters involved.

Recently, the success of learning is related to re- and over-parameterization, that are
widely used - for instance - in neural networks applications and the optimization method
used. However, there is still an open question of how to find systematically what is the
inductive bias hidden behind the model for a particular optimization scheme. The goal of
this chapter is taking a step in this direction, studying extensively many reparameteriza-
tions used in the state of the art and providing a common structure to analyze the problem
in a unified way. We show that gradient descent on the empirical loss for many reparam-
eterizations is equivalent, in the original problem, to a generalization of mirror descent.
The mirror function depends on the reparameterization and introduces an inductive bias,
which plays the role of the regularizer. Our theoretical results provide asymptotic behavior
and convergence in the simplified setting of linear models.

Keywords. Overparameterization, Implicit Regularization, Time-warping Mirror Flow, Fully con-
nected normalized linear networks, Weight normalization.

AMS Mathematics Subject Classification (2020): 34A55, 90C25, 65K10.
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In this chapter, we study a unified framework observed in various reparameterizations
presented in the state of the art, called time-warp mirror flow given in equation (6.2.1).
We provide a complete analysis consisting of several steps. Firstly, in Section 6.2, we es-
tablish conditions for the well-posedness of the dynamical system. Then, we show that
for any convex function, the sequence converges to a stationary point that minimizes the
loss function and avoids the extra stationary points that are produced by the reparame-
terization. For the specific case of a function composed with a linear operator, an implicit
bias is provided. Next, these results will be used in Section 6.3, where we look at weight
normalization techniques for functions F and G that only depend on the norm of β. These
functions are also called radial functions. Furthermore, we provide a criterion for deter-
mining a suitable weight normalization parameterization for a given function that depends
only on the norm. Finally, we explore the flexibility of our formulation by applying the
previous results to different examples related to weight normalization. Finally, in Section
6.4, we conclude this chapter with some remarks and future works.

Compared to the previous chapter, the main difference is that, for the given reparameteri-
zation, we assume the existence of F and G. Unlike in Theorem 5.2.10, where conditions
for the existence of such reparameterizations are provided and analyzed, our purpose here
is not to study these conditions. Instead of focusing on reparameterization, we examine
the convergence properties of the time-warping mirror flow and its implicit bias, as out-
lined in Theorem 5.2.11.

6.1 Introduction

Classic algorithm design in machine learning (ML) is based on fitting some chosen model
to data while including some bias reflecting prior knowledge on the problem [64]. In
fact, recent studies have shown that large overparameterized models can achieve excel-
lent learning performance, even without enforcing any explicit bias [58, 59, 77, 88, 93,
102, 131, 135]. A possible explanation is that the bias is implicitly incorporated through
the selection of the model and the optimization procedure used. However, uncovering
such a bias is typically a complex challenge [5, 7]. An idea is to view the overparameteri-
zation as a reparameterization of some simpler, original model. This raises the question if
the optimization of the over- or re-parameterized model has a clearer interpretation in the
original model. A natural starting point for exploring the concept of overparameterization
is to consider linear networks, which can be seen as overparameterizations of linear mod-
els. Indeed, recent results have started considering so-called diagonal networks and have
shown that gradient flow for these models corresponds to a mirror flow for the original
model [4, 77]. In this context, the bias is linked to a sparsity prior imposed on the linear
model [43, 135, 147]. As observed in [7], a more general form of mirror flow, including
a time-warping factor, allows for a much more general treatment. In this paper, we de-
velop this latter line of work. First, we provide a general analysis of time-warped mirror
flow. In particular, we study its convergence both in the value of the loss function and in
the iterations. Additionally, we provide rates of convergence and characterize the implicit
bias of the limit point. Second, we discuss in detail the case of one-hidden-layer linear
networks and study the effect of different types of weight normalization. Our results show
that for a given radial function, i.e., a function that only depends on the norm, we can
find a suitable parameterization such that the implicit bias is given by the radial function.
We note that weight normalization has been previously considered in [44, 89, 118, 139],
but using the framework of time-warping mirror flow, we explore more general reparam-
eterizations. To the best of our knowledge, the analysis of general linear one-hidden-layer
neural networks is new.
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6.1.1 Related work

In this subsection, we will briefly analyze the literature most related to this chapter.

Reparameterizing gradient flow as mirror flow: The first paper relating gradient flow
on the reparametrization to mirror flow [3] on the original variable is [4]. The relation
between the two flows holds under quite restrictive assumptions on the reparametriza-
tion, which ensure the existence of a mirror map. This map allows for characterizing the
implicit bias of the optimization process for a given reparametrization. The existence of
the mirror map and its analytic form given a reparametrization is not addressed in [4],
neither the question of establishing whether different reparametrizations lead to the same
implicit bias. A further step has been taken in [77]. This is the only paper where existence
and convergence of a solution of the mirror flow is discussed. In addition, conditions
on a parametrization are given for the existence of the mirror map. Although [77] en-
compasses many of the existing linear reparameterizations, there are still examples that
cannot be cast under its setting, such as matrix times vector overparametrizations and
weight normalization. In these two examples, the dynamic in the original variable cannot
be expressed as a mirror flow. The paper [7] proposed a generalized version of mirror flow,
that is the one analyzed in this paper, for the case of matrix times vector overparametriza-
tion. Their interpretation proposes to relate gradient descent on the reparametrization to
mirror descent with a non-linear time-warping in the original variable. This gives more
degrees of freedom with respect to [77] and allows to cover in principle a more general
class of reparametrizations.

Diagonal linear neural network using least square: Deriving an Implicit bias for any
general network is still not well understood. However, this problem has been addressed
for simpler models. In [43, 135, 147], it is shown that for the simplest model, a diagonal
linear neural network with depth L (where each component is raised to the power of L),
vanilla gradient flow approximates the minimal ℓ1-norm solution. However, to achieve a
good approximation, this method requires an initialization close to zero, which in practice
makes the convergence slower. Similar results for stochastic gradient flow were obtained
in [2, 106], where it is proved that slower convergence implies better bias. The main
advantage obtained with respect to the deterministic approach is that, with the same ini-
tialization, the sequence generated by stochastic gradient flow achieves greater sparsity
than the one obtained by vanilla gradient flow.

Implicit bias of least square: The bias of different first-order optimization algorithms
and the effect of the step-size on the optimization process have been studied in [58, 138],
[76], and [93], respectively. More general models have been addressed in [7, 49, 130],
where the case of a fully connected linear neural network and a two-Layer Single (Leaky)
ReLU neuron is studied. In [44], inspired by the weight normalization technique proposed
in [118], which involves decoupling a vector into its norm and its direction, a diagonal
linear network is combined with weight normalization, providing a robust implicit bias for
large scale initialization. While in [139] is studied the inductive bias for the squared loss
function using weight normalization in the discrete and continuous settings. Moreover,
the authors also proved the convergence of the sequence generated by the algorithm to
the minimal norm solution among all the solutions of least squares. In this chapter, we
generalize this result by studying the effect of the choice of different reparameterizations
of the norm, including classical and exponential weight normalization, among others. Fur-
thermore, we give conditions to find a suitable weight normalization reparameterization
for functions that depend on the norm, including the analysis of its convergence and the
characterization of its implicit bias.
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Implicit bias of logistic loss: Similar results have been obtained by applying gradient
descent to the logistic loss function, which is commonly used in classification problems. In
[67, 68, 92, 125], it was proved that using gradient descent, the linear classifier converges
to the direction of L2 maximum margin. This result was later extended for SGD in [94].
For the case of Diagonal linear neural networks, the same result was obtained in [88]
when the initialization tends to infinity. The implicit bias of the weight normalization for
the logistic loss was also studied in [89]. The inductive bias of a 2-layer infinitely wide
ReLU neural network (i.e., a neural network with a large number of hidden units), it was
studied in [42]. In [79] the implicit regularization of the gradient descent algorithm using
the exponential loss function is studied. This work encompasses different types of param-
eterization of homogeneous neural networks, including fully connected and convolutional
neural networks with ReLU or LeakyReLU activations, and proves the convergence to a
minimal norm solution subject to margin constraints. The same technique was used in
[59], for a full-width linear convolutional network applying gradient descent.

Deep Matrix Factorization: Classic theory also covers how to induce a bias using matri-
ces. A common approach is to use matrix factorization, which is a powerful tool for sim-
plifying its representation by finding the underlying structure of a matrix. A well-known
method to induce low rank for semi-definite positive symmetric matrices is factorization,
whereby a matrix is expressed as the product of a matrix by its transpose. This technique
is useful to find a low-rank solution since, with the dimension of the parameterization, we
can impose an additional rank constraint. In [60, 75] it was demonstrated that the factor-
ization reaches the minimal nuclear norm for a sufficiently small initialization, assuming
that the sensing matrices are commutative and semi-positive definite. The generalization
for the multiplication of more than two matrices is in [5], which shows that gradient flow
can act as a preconditioner that prefers the direction of the larger eigenvalues. The algo-
rithmic bias of using mirror descent was studied in [134, 137], and the generalization for
a tensor formulation was studied in [145]. The case where the sensing matrices satisfy
the restricted isometry property was studied in [131, 136, 144]. A simplified version of a
neural network is the linear neural network, i.e., when all the activation functions are the
identity. This was studied in [6, 55, 56, 80].

6.2 Global existence and asymptotic analysis

In the setting of Section 5.1.1, given a differentiable convex loss function L : Rp → R,
β 7→ L(β), we consider the trajectory β(t) generated by the gradient flow dynamics on
a reparameterization β = q(θ). We analyze the case in which the gradient flow on the
reparameterization θ may not be expressed as a mirror flow on the original variable β; but
it can still be written as a dynamical system involving the inverse of the Hessian of F and
a positive function G, as in (5.3.2):{[

∇2F (β(t))
]
β̇(t) = −G(β(t))∇L(β(t)), t > 0

β(0) = β0 ∈ Rp.
(6.2.1)

The positive function G, already introduced in [7], can be interpreted as a non-linear
“time-warping”. In the case when G(β) ≡ 1, the dynamical system (6.2.1) is indeed a
mirror flow.

We present a comprehensive framework to study the existence and uniqueness of the
trajectory of (6.2.1) and the its minimization properties, such as the decrease of the loss’
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values along it and the corresponding convergence rates (see Theorems 6.2.4 and 6.2.8).
Moreover, we show the convergence of the trajectory to S = argminL and we explicitly
compute its implicit bias towards a specific solution in S (see Theorem 6.2.8). As our anal-
ysis shows, with respect to the classical mirror flow setting, the presence of the function
G, when supposed to be positive, does not affect the fact that the loss is a non-increasing
function in time, neither the fact that the trajectory convergences to the set of minimizers
of the loss. On the other hand, it plays a role in the selection of the specific solution to
which the trajectory is converging. The techniques used to study the mirror flows used
in this chapter are presented in [3]. However, the main difference between their work
and ours is that they focus on mirror flows in the context of constrained minimization
problems, while in our work, the constraints are encoded within the loss function itself.

Differently from previous works [6, 7, 77], here we focus on the well-posedness and
convergence over time of the dynamical system described by Equation (6.2.1). Instead
of assuming the convergence of β(t) to a minimizer of the loss function as an hypothe-
sis, as in [6, 7], we prove this fact. Additionally, we derive the implicit bias induced by
reparametrization for a general convex loss function L, while in previous work only the
least squares loss function has been considered. For the least squares loss, we recover
that the implicit bias R is the Bregman divergence of the entropy F as in [4, 77] (see
Corollary 6.2.9).

6.2.1 Well-posedness
In this section, using techniques developed in [3], we show that the system (6.2.1) is
well-posed by proving the existence of a unique solution that is defined in the entire time-
interval [0,+∞). To do so, we first list the assumptions that we require on the loss function
L (see A1), the initialization β(0) = β0 (see A3), the mirror map F and the time-warping
function G (see A2, A4, and A5). These hypotheses are also useful to prove, in Theorem
6.2.8, the convergence of the global variable β(t) to a specific minimizer of the loss func-
tion.

Assumption 6.2.1.

A1 L : Rp → R is a convex and differentiable function such that ∇L is locally Lipschitz
continuous on Rp and S = argmin

β∈Rp
L(β) ̸= ∅.

A2 There exists an open set U ⊆ Rp such that S ∩ U ̸= ∅, the function F : dom(F ) → R
is strictly convex and twice-differentiable in U , and the mapping β ∈ U 7→ [∇2F (β)] is
invertible with locally Lipschitz inverse. The function G : U → R+ is locally Lipschitz
continuous. Moreover, one of the following two conditions is satisfied:

• U := Rp\ {0};

• F is Legendre on U = int (dom (f)) (see Definition 2.4.7 in the Appendix).

A3 The initialization satisfies β0 ∈ U . If U = Rp\ {0}, we additionally suppose that
L(β0) < L(0).

A4 Set

r =
L(0)− L(β0)
2∥∇L(0)∥

> 0.
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There exists a constant C > 0 such that, for all β ̸∈ B(0, r), G(β) ≥ C.

A5 There exists z̄ ∈ S ∩ U such that the function DF (z̄, ·) is coercive (see (2.4.1) for the
expression of the Bregman divergence DF ).

Remark 6.2.2. Assumption A3 implies in particular that 0 /∈ S.

Remark 6.2.3. Assumption 6.2.1 is key to establish the well-posedness and the conver-
gence analysis of the flow given by (6.2.1). Assumption A1 requires convexity of the
loss function L, which is important to derive global convergence results. Assumptions A1
and A2 are standard in the classical theory of local existence and uniqueness of solutions
of ordinary differential equations [11, Subsection 1.2]. Similar assumptions have been
considered in a related but different setting in [3, Section 3.2]. As we will see Assump-
tions A3 and A4 ensure a suitable initialization for the flow, which avoids convergence
of the solution towards undesired stationary points of (6.2.1) which are not minimizers.
Condition A3 is the generalizetion of to the one presented in [139, Lemma 2.3] for least
squares problems. Assumption A5 is crucial to establish boundedness of the trajectory,
which is an intermediate step for proving convergence. Indeed, Theorem 6.2.4 and The-
orem 6.2.8 would still hold replacing Assumption A5 by boundedness of the trajectory.
Observe that the coercivity hypothesis could be replaced for instance by the boundedness
of the level set of the loss function.

The following theorem establishes the existence and uniqueness of the global solution of
the dynamical system (6.2.1).

Theorem 6.2.4. Under assumptions A1-A5 the dynamical system (6.2.1) has a unique so-
lution β defined on [0,+∞). Moreover, for every z ∈ S, both the Bregman divergence
DF (z, β(t)) and L(β(t)) are non-increasing functions of t ≥ 0.

Proof. Denote by TM the maximal time for the existence of a solution of (6.2.1); namely,

TM := sup
{
T > 0 | ∃ a C1 function β : [0, T ) → U solution of (6.2.1)

}
.

First we show that TM > 0. Since ∇2F is invertible on U , the dynamical system in (6.2.1)
is equivalent to the following:{

β̇(t) = −G(β(t))
[
∇2F (β(t))

]−1∇L(β(t)), 0 < t < TM

β(0) = β0 ∈ U.
(6.2.2)

Since G(β),
[
∇2F (β)

]−1, and ∇L(β) are locally Lipschitz on U , they are continuous and
bounded on bounded subsets and their product is also locally Lipschitz. Since β0 ∈ U , it
follows from [11, Theorem 1.18] that there exists a unique solution of the initial value
problem (6.2.2), and so to (6.2.1), in some time-interval [0, T1) with T1 > 0. Then,
TM > 0.
Next, we prove that TM = +∞; namely, that the solution of the dynamical system (6.2.1)
is globally defined. Now we proceed to prove the claim that TM = +∞ separately for the
two cases U := Rp\ {0} and F Legendre on U .

In order to prove Theorem 6.2.4, we establish an auxiliary result. It states that both
the Bregman distance and the loss function, along the trajectory of the flow in [0, TM ), do
not increase.
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Lemma 6.2.5. Let z ∈ S and suppose that assumptions A1 and A2 hold. Then, both the Breg-
man divergenceDF (z, β(t)) and the functional value L(β(t)) are non-increasing functions for
t ∈ [0, TM ).

Proof. To prove that t 7→ DF (z, β(t)) is decreasing, it is sufficient to note that, for every
t ∈ [0, TM ),

d

dt
DF (z, β(t)) = −

〈
∇F (β(t)) | β̇(t)

〉
−
〈
∇2F (β(t))β̇(t) | z − β(t)

〉
+
〈
∇F (β(t)) | β̇(t)

〉
= −

〈
∇2F (β(t))β̇(t) | z − β(t)

〉
= G(β(t))⟨∇L(β(t)) | z − β(t)⟩
≤ G(β(t))(L(z)− L(β(t)))
≤ 0, (6.2.3)

where we used that β is a solution of (6.2.1), the gradient inequality for the convex
function L and the fact that, for every β ∈ U , L(β) ≥ L(z) and G(β) ≥ 0. On the other
hand, for t ∈ [0, TM ), ∇2F (β(t)) is invertible (and the inverse is positive definite). Then,

d

dt
L(β(t)) =

〈
∇L(β(t)) | β̇(t)

〉
= −G(β(t))

〈
∇L(β(t)) |

[
∇2F (β(t))

]−1∇L(β(t))
〉

≤ 0,

which completes the proof.

Case U = Rp\ {0}: In this case, we start by providing a strictly-positive lower bound for
the norm of β along the trajectory, which implies that β([0, TM )]) ⊆ U , then, based on
this, we prove that TM = +∞.

To finish this case, we need an intermediate lemma.

Lemma 6.2.6. Suppose that assumptions A1, A2, A3 and A4 hold with U := Rp\ {0}. Then,
for every t ∈ [0, TM ),

∥β(t)∥ > r and G(β(t)) ≥ C. (6.2.4)

Proof. Let β ∈ U be such that ∥β∥ ≤ r. Then, the gradient inequality for the convex
function L at the point 0, the Cauchy-Schwartz inequality, and Assumptions A3 and A4
imply

L(β) ≥ L(0) + ⟨∇L(0) | β − 0⟩ ≥ L(0)− r∥∇L(0)∥ =
L(0) + L(β0)

2
> L(β0). (6.2.5)

Next, by contradiction, suppose that there exists a t̂ ∈ [0, TM ) such that ∥β
(
t̂
)
∥ ≤ r. Then,

by (6.2.5), we have that L(β0) < L(β(t̂)). This is a contradiction since Lemma 6.2.5
t 7→ L(β(t)) is non-increasing on [0, TM ). Then ∥β (t) ∥ > r for every t ∈ [0, TM ). The
second part of the statement in (6.2.4) is a consequence of the condition on G assumed in
A4.
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Lemma 6.2.6 yields ∥β(t)∥ > r for every t ∈ [0, TM ). Lemma 6.2.5 implies that DF (z, β(t))
is non-increasing for every z ∈ S and by Assumption A5, DF (z̄, ·) is coercive for some
z̄ ∈ S. Then, β([0, TM )) is bounded. Therefore β([0, TM )) is contained in a compact
subset of U . We then derive from [11, Proposition 1.57] that TM = +∞.

Case F is Legendre on U : We show that TM = +∞.
Let K be the closure of β([0, TM )). Assumption A5 implies that β([0, TM )) is bounded;
therefore, K is compact. Recall that the trajectory β is continuous and that β([0, TM )) is a
subset of the open set U . If K ⊆ U , by applying [11, Proposition 1.57], we conclude that
TM = +∞. If K is not contained in U , then there exists a point β̄ ∈ U \U for which there
exists a sequence (tj)

+∞
j=1 ⊆ [0, TM ) with tj → TM and β(tj) → β̄ for j → +∞. Integrating

in time equation (6.2.1), we get that, for every j ∈ N,

∥∇F (β(tj))−∇F (β0)∥ =

∥∥∥∥∫ tj

0
G(β(t))∇L(β(t))dt

∥∥∥∥
≤
∫ tj

0
G(β(t)) ∥∇L(β(t))∥ dt

≤TM max
β∈K

G(β)max
β∈K

∥∇L(β)∥. (6.2.6)

The maxima are well-defined due to the fact that the functions G and ∥∇L∥ are locally
Lipschitz and so continuous, implying that they are bounded on the compact set K (see,
for instance, [91, Theorem 27.4]). For j → +∞, we have that β(tj) → β̄ ∈ U \ U and
therefore, since F is a Legendre function, ∇F (β(tj)) → +∞. Thus the left-hand side of
(6.2.6) tends to infinity as well, and this implies that TM = +∞.

Uniqueness: Since the right hand side of (6.2.2) is locally Lipschitz at every point, local
unqueness holds for every initial state, and therefore globally.

Remark 6.2.7. To the best of our knowledge, in previous works, e.g. in [7], the exis-
tence and uniqueness of the solution of (6.2.1) in not proved. In contrast, we provide
some sufficient conditions to ensure the well-posedness of the system. This is fundamen-
tal to guarantee that the implicit bias characterization is meaningful. Indeed, it is well
known that the trajectory of a differential equation exists globally if and only if it is locally
bounded. So, if the solution is defined on a bounded interval and not on [0,+∞), there
is a finite time for which the norm of the trajectory diverges. In this case, the limit of the
trajectory for that finite time cannot have any interesting properties, since clearly cannot
converge to some specific minimizer of L.

6.2.2 Minimization properties and implicit bias
The next theorem illustrates the minimization properties of the solution of the dynamical
system (6.2.1) for t → +∞. It states the convergence rates for the loss function and the
convergence of the trajectory towards a specific minimizer of the loss, characterized by an
implicit bias.

Theorem 6.2.8. Assume that A1-A5 hold, then L(β(t)) → L∗ := minL for t → +∞. In
addition, [L(β(t))− L∗] ∈ L1([0,+∞)), and, for every z ∈ S ∩ U and for every t > 0,

L(β(t))− L∗ ≤ DF (z, β0)

Ct
.
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Moreover, there exists β∞ ∈ S ∩ U satisfying

β∞ ∈ argmin
z∈S

{
F (z)− ⟨∇F (β0) | z⟩+

∫ +∞

0
G(β(t))⟨∇L(β(t)) | z − β(t)⟩dt

}
, (6.2.7)

such that

lim
t→+∞

β(t) = β∞.

Proof. Let z ∈ S. By the Fundamental Theorem of Calculus, inequality (6.2.3) and Lemma
6.2.6, we have that, for all t ≥ 0,

DF (z, β(t))−DF (z, β0) =

∫ t

0

d

ds
DF (z, β(s)) ds (6.2.8)

≤−
∫ t

0
G(β(s))(L(β(s))− L∗)ds

≤− C

∫ t

0
(L(β(s))− L∗)ds ≤ 0.

Since DF (z, β(t)) is non-negative, from the above inequality we derive that, for every
t ≥ 0, ∫ t

0
(L(β(s))− L∗)ds ≤ DF (z, β0)

C
.

In particular, t 7→ [L(β(t))− L∗] belongs to L1 ([0,+∞)). Moreover, since t 7→ L(β(t)) is
non-increasing by Lemma 6.2.5, we have that (L(β(t))− L∗) · t ≤

∫ t
0 (L(β(s)) − L∗)ds ≤

DF (z, β0)/C for every t ≥ 0. From the latter we obtain the rate stated in the theorem.
Next we prove the convergence of the trajectory (β(t))t>0. Since z̄ ∈ S by Assumption
A5, then DF (z̄, β(t)) is non-negative and decreasing by Lemma 6.2.5, and therefore there
exists lim

t→+∞
DF (z̄, β(t)) ∈ R. Since DF (z̄, ·) is coercive by assumption A5, we also have

that β(t) is bounded. Then there exist a sequence (tk)k≥0 and a point β∞ such that, for
k → +∞, tk → +∞ and β(tk) → β∞. From continuity of L and by [L(β(t))− L∗] ∈
L1 ([0,+∞)), we deduce that

L(β∞) = lim
k→+∞

L(β(tk)) = lim
t→+∞

L(β(t)) = L∗;

i.e., that β∞ ∈ S. We are going to show that indeed lim
t→∞

β(t) = β∞. Suppose that

there exists another sequence (tn)
∞
n=1 such that tn → +∞ and lim

t→∞
β(tn) = β̄. With the

same reasoning as above, we know that β̄ belongs to S. Continuity of DF (β∞, ·) and the
existence of lim

t→+∞
DF (β∞, β(t)) yields

DF (β∞, β̄) = lim
n→+∞

DF (β∞, β(tn)) = lim
t→+∞

DF (β∞, β(t))

= lim
k→+∞

DF (β∞, β(tk)) = DF (β∞, β∞) = 0.

Since F is strictly convex, we get β̄ = β∞. Finally, we get that lim
t→∞

β(t) = β∞. To

conclude, note that trivially

β∞ ∈ argmin
z∈S

DF (z, β∞),
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where, by (6.2.8) and (6.2.3),

DF (z, β∞) = lim
t→+∞

DF (z, β(t))

= lim
t→+∞

DF (z, β0) +

∫ t

0
G(β(s))⟨∇L(β(s)) | z − β(s)⟩ds

= F (z)− F (β0)− ⟨∇F (β0) | z − β0⟩+
∫ +∞

0
G(β(s))⟨∇L(β(s)) | z − β(s)⟩ds.

Discarding the terms that are constant with respect to z, we obtain the claim.

The next corollary characterizes the implicit bias for time-warping mirror flow when the
loss function is the composition of a convex function with a linear operator. This implicit
bias corresponds to the Bregman distance between the set of minimizers of the loss and
the initialization, extending the results presented in [7, 139].

Corollary 6.2.9. Suppose that assumptions A1-A5 hold. Let X ∈ Rd×p, let y ∈ Rd, let
ℓ : Rd → R be differentiable with a locally Lipschitz gradient. Assume that L = ℓ ◦ X and
S = {β ∈ Rp | Xβ = y}. Then, there exists a solution β∞ = lim

t→∞
β(t) satisfying

β∞ ∈ argmin
z∈S

F (z)− ⟨∇F (β0) | z⟩ = argmin
z∈S

DF (z, β0).

Proof. It follows from Theorem 6.2.8 that there exists β∞ ∈ S∩U such that β∞ = lim
t→∞

β(t)

and

β∞ ∈ argmin
z∈S

{
F (z)− ⟨∇F (β0) | z⟩+

∫ +∞

0
G(β(t))⟨∇L(β(t)) | z − β(t)⟩dt

}
.

To conclude the assertion, it is sufficient to prove that the integral is constant with respect
to z. By the chain rule, for every z ∈ S ∩ U ,∫ +∞

0
G(β(t))⟨∇L(β(t)) | z − β(t)⟩dt =

∫ +∞

0
G(β(t))

〈
X⊤∇ℓ(Xβ(t)) | z − β(t)

〉
dt

=

∫ +∞

0
G(β(t))⟨∇ℓ(Xβ(t)) | y −Xβ(t)⟩dt

which is negative, bounded below by −DF (β∞, β0), and it is independent of z ∈ S. Con-
sequently, from (6.2.7), we obtain that the limit of the trajectory satisfies

β∞ ∈ argmin
z∈S

F (z)− ⟨∇F (β0) | z⟩ = argmin
z∈S

DF (z, β0).

Remark 6.2.10. (i) The point β∞ is the Bregman projection, with respect to the en-
tropy F , of β0 on S. Since S is a convex set and F is a strictly-convex function, the
minimizer is unique. Therefore,

argmin
z∈S

DF (z, β0) = {β∞} . (6.2.9)

(ii) The limit β∞ ∈ U , the domain of the entropy F , which therefore can also implicitly
enforce some constraints. For instance, the parametrization β = θ ⊙ θ implicitly
enforces the positivity of the solution: in this case the domain of F is the positive
orthant, see the case L = 2 in equation (A.1.1).
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(iii) Even if the term
∫ +∞
0 G(β(t))⟨∇L(β(t)) | z − β(t)⟩dt is not constant with respect z, it

is upper bounded by the quantity
∫ +∞
0 G(β(t)) (L∗ − L(β(t))) dt < 0, that measures

the cumulative functional value decrease.

6.2.3 Application to fully connected linear networks

We consider the setting of Example 5.3.1, where θ = (W,w) ∈ Rp×m×Rm and β =Ww for
a loss function L satisfying Assumption A1. When L is the square loss, this setting has been
considered in [7] and is a specific instance of a more general class of overparametrizations
analyzed in [6].

Suppose that the initialization satisfies W⊤
0 W0 = w0w

⊤
0 . Then, for every t > 0, the

trajectory β(t) corresponding to the gradient flow trajectory in the reparameterization
(W (t), w(t)) considered in (5.3.1) satisfies the differential equation

∇2

(
2

3
∥β(t)∥3/2

)
β̇(t) = −∥β(t)∥1/2∇L(β(t)), (6.2.10)

namely (6.2.1) with F (β) = (2/3)∥β∥3/2 and G(β) = ∥β∥1/2 (for more details, see Sec-
tion A.1, Example A.1.3 in the appendix). The Hessian and its inverse are given by

∇2F (β) = ∥β∥−1/2

(
Id− ββ⊤

2∥β∥2

)
and

[
∇2F (β)

]−1
= ∥β∥1/2

(
Id+

ββ⊤

∥β∥2

)
.

In U = Rp \ {0}, the function G is locally Lipschitz, and F is strictly convex, twice differ-
entiable, and its Hessian is invertible, thus A2 is satisfied. If the initialization is such that
L(β0) < L(0), then A4 holds withC =

√
r. Combining this with the fact that L(β0) < L(0),

as U = Rp \ {0}, it follows that S ∩ U ̸= ∅. Consequently, A3 is also satisfied. To apply
Theorem 6.2.4 and Theorem 6.2.8, we show that assumption A5 holds, namely that there
exists z̄ ∈ S ∩ U such that DF (z̄, ·) is coercive. Indeed, the Bregman divergence DF (z, ·)
is coercive for every z ∈ Rp: from the Cauchy-Schwarz inequality,

DF (z, β) =
2

3
∥z∥3/2 − 2

3
∥β∥3/2 − ∥β∥−1/2⟨β | z − β⟩

=
2

3
∥z∥3/2 + 1

3
∥β∥3/2 − ∥β∥−1/2⟨β | z⟩

≥ 2

3
∥z∥3/2 + 1

3
∥β∥3/2 − ∥β∥1/2∥z∥

=
2

3
∥z∥3/2 + ∥β∥1/3

(
1

3
∥β∥ − ∥z∥

)
.

Then, when the norm of β tends to infinity, DF (z, β) also tends to infinity.
Therefore, Theorem 6.2.4 yields the existence and uniqueness of the solution of the dy-
namical system (6.2.10). From Theorem 6.2.8 we get that the function L(β(t)) is non-
increasing in t ≥ 0 and that, for every z ∈ S and for every t > 0,

L(β(t))− L∗ ≤ (2∥∇L(0)∥)1/2DF (z, β0)

(L(0)− L(β0))1/2t
.

Moreover, lim
t→+∞

β(t) = β∞, where

β∞ ∈ argmin
z∈S

∥z∥3/2 − ⟨β0 | z⟩√
∥β0∥

+

∫ +∞

0

2

3
∥β(t)∥3/2⟨∇L(β(t)) | z − β(t)⟩dt.
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Remark 6.2.11. In the specific case of the quadratic loss function L(β) = ∥Xβ − y∥2 for
some X ∈ Rd×p and y ∈ Rd, Corollary 6.2.9, implies

lim
t→+∞

β(t) = β∞ ∈ argmin
z∈S

∥z∥3/2 − ⟨β0 | z⟩√
∥β0∥

.

Therefore we recover the implicit bias presented in [7], and our result generalizes the
latter to general losses. Moreover, in [7], the authors assume the convergence of the
trajectory to a feasible point while we prove it.

Remark 6.2.12. Our results can be contrasted to those in [6]. In the latter paper, given
N matrices Wi ∈ Rpi × Rpi+1 for every i with p1 = p, pN+1 = 1, the authors consider
the reparametrization β = W1 . . .WN . For the special case N = 2, this setting coincides
with ours. In [6, Claim 2], the flow (A.1.9) has been derived, and interpreted in a differ-
ent way. Our results shed new light on their result, thanks to time warping mirror flow
interpretation. Thanks to this, we can transform the impossibility result [6, Theorem 2],
stating that the trajectory β(t) does not follow any gradient flow, into an existence result
if the geometry is modified through a time warped mirror function. Morever, the mirror
flow interpretation gives the possibility of naturally deriving an implicit bias.

Remark 6.2.13. The paper [7] considered the case when W⊤(0)W (0)−w(0)w⊤(0) = γId
for γ ̸= 0. Observe that for suitable initializations, the assumptions of Theorem 6.2.8 still
remain valid. In this case, we could compute the implicit bias, which is the generalization
of the one proposed in [6][7, Theorem 2] for the least square, see [7, Appendix B]. The
computations are very technical and are beyond the scope of this paper.

We can further characterize the limit point for fully connected linear networks of depth
2, in the linear setting of Corollary 6.2.9. The proof uses techniques similar to those in
[139].

Corollary 6.2.14. In the setting of this section, suppose that, as in Corollary 6.2.9, L(β) =
ℓ(Xβ) and S = {β ∈ Rp | Xβ = y}, where X ∈ Rd×p and y ∈ Rd. Additionally, suppose
that assumption A1 is satisfied, that the initialization satisfies W⊤(0)W (0) = w(0)w⊤(0)
and that L(β0) < L(0). Let β∗ be the (unique) solution of

min
z∈S

∥z∥2. (6.2.11)

Let P : Rp → Rp be the projection operator onto the kernel of X. Then the trajectory
β(t) =W (t)w(t) satisfies that lim

t→+∞
β(t) = β∞, where

β∞ = β∗ + P (β0)

√
∥β∞∥
∥β0∥

, and

∥β∞∥ =
∥P (β0)∥2 +

√
∥P (β0)∥4 + 4∥β0∥2∥β∗∥2
2∥β0∥

.

Proof. As shown in Section 6.2.3 all the assumptions of Theorem 6.2.4 and Theorem 6.2.8
are satisfied. Recall that ker(X) ⊆ Rp is a closed subspace and that ker(X)⊥ = ran(X⊤) =
ran(X⊤) (see for instance [15, Fact 2.25 (iv)]). Let us define P⊥ = Id− P , the projection
onto ker(X)⊥. Then we can write β∞ as

β∞ = P (β∞) + P⊥(β∞).

First, we compute P (β∞). Theorem 6.2.4 implies that equation (A.1.9),

β̇(t) =− ∥β(t)∥
(
Id+

β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t)), (6.2.12)



6.2. GLOBAL EXISTENCE AND ASYMPTOTIC ANALYSIS 73

has a unique solution defined on [0,+∞) and ∥β(t)∥ > 0 for every t ≥ 0. Since P (∇L(β)) =
P
(
X⊤∇ℓ(Xβ)

)
= 0, if we apply the linear operator P to (6.2.12), we obtain that

d

dt
P (β(t)) = P (β̇(t)) =− ∥β(t)∥P (∇L(β(t)))− P (β(t))

∥β(t)∥
⟨β(t) | ∇L(β(t))⟩

=− P (β(t))

∥β(t)∥
⟨β(t) | ∇L(β(t))⟩. (6.2.13)

On the other hand, (6.2.12) yields

d

dt
∥β(t)∥ =

〈
β(t)

∥β(t)∥
| β̇(t)

〉
= −2⟨β(t) | ∇L(β(t))⟩. (6.2.14)

Combining equations (6.2.13) and (6.2.14), we obtain the following differential equation:

d

dt
(P (β(t))) =

P (β(t))

2∥β(t)∥

(
d

dt
∥β(t)∥

)
. (6.2.15)

Equation (6.2.15) implies

d

dt

(
P (β(t))

∥β(t)∥1/2

)
=

1

∥β(t)∥1/2
d

dt
(P (β(t)))− P (β(t))

2∥β(t)∥3/2

(
d

dt
∥β(t)∥

)
=

1

∥β(t)∥1/2

(
d

dt
(P (β(t)))− P (β(t))

2∥β(t)∥

(
d

dt
∥β(t)∥

))
= 0.

The previous result implies that the term P (β(t))

∥β(t)∥1/2 remains constant for every t > 0 and so

it is equal to P (β0)

∥β0∥1/2
. Consequently, we obtain the following expression:

P (β(t)) = P (β0)

(
∥β(t)∥
∥β0∥

)1/2

.

Recall that, from Theorem 6.2.8, lim
t→∞

β(t) = β∞. From the continuity of the projection

and of the norm, taking the limit for t→ +∞ in the previous equation, we get

P (β∞) = P (β0)

(
∥β∞∥
∥β0∥

)1/2

.

Next we compute P⊥(β∞). Recall that β∞ ∈ S, where S = {β ∈ Rp | Xβ = y}. We have
that

y = Xβ∞ = X(P (β∞) + P⊥(β∞)) = XP⊥(β∞).

Thus, P⊥(β∞) ∈ S. Similarly, since β∗ ∈ S, we have that

y = Xβ∗ = X (P⊥(β∗) + P (β∗)) = XP⊥(β∗).

Then, P⊥(β∗) ∈ S, meaning that it is a feasible point for the minimization problem
(6.2.11). Moreover, since β∗ is a solution of problem (6.2.11), we have that

∥β∗∥2 ≤ ∥P⊥(β∗)∥2 ≤ ∥P⊥(β∗)∥2 + ∥P (β∗)∥2 = ∥β∗∥2.

Therefore, we conclude that P (β∗) = 0 and so that β∗ ∈ ker(X)⊥. Moreover, since Xβ∗ =
y = Xβ∞, we obtain that β∗ − β∞ ∈ kerX. Then, since β∗ ∈ ker(X)⊥, we derive from(

∀p ∈ ker(X)⊥
)
⟨p− β∗ | β∞ − β∗⟩ = 0,
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that P⊥(β∞) = β∗. Then,

β∞ = P (β∞) + P⊥(β∞) = P (β0)

√
∥β∞∥
∥β0∥

+ β∗.

Finally, we obtain the value of ∥β∞∥ by solving the following second order equation:

∥β∞∥2 = ∥P⊥(β∞)∥2 + ∥P (β∞)∥2 = ∥β∗∥2 + ∥P (β0)∥2
∥β∞∥
∥β0∥

.

The previous result establishes that when we run gradient flow on θ = (W,w), the corre-
sponding trajectory is biased towards a specific element of S, that is β∞ given by the sum
of two terms: β∗, the minimal-norm vector in S; and a rescaling of P (β0), the projection
of the inizialization onto ker(X).

Remark 6.2.15. We compare the previous result with the well-known one for vanilla
gradient flow, namely {

˙̃
β = −∇L(β̃(t))
β̃(0) = β̃0.

(6.2.16)

On the one hand, the system (6.2.16) is an instance of (6.2.1) with F (β) = (1/2)∥β∥2
and G(β) = 1. Therefore, DF (z, β0) = (1/2)∥z − β0∥2, and we derive from (6.2.9) that
β̃(t) → β̃∞, where β̃∞ is the projection onto S of β̃0. Following a similar reasoning to the
one in the proof of Corollary 6.2.14, it is possible to show that

β̃∞ = β∗ + P (β̃0).

We derive that the main difference in the implicit bias between running vanilla gradient
flow on β and gradient flow on the reparametrization β = Ww is given by the scaling

factor on P (β0), namely
√

∥β∞∥
∥β0∥ . In particular β∞ = β̃∞ if β0 ∈ ker(X)⊥.

6.3 Reparameterizing Mirror Descent for radial func-
tions as Projected Gradient Descent

In this section we consider reparametrizations in terms of polar coordinates, related to
weight normalization [89, 118, 139], namely of the form

β = h(α)
w

∥w∥
,

where h : R → R is a given function and α ∈ R and w ∈ Rp are the new variables. The
associated gradient flow on the reparameterization is given by:

ẇ(t) =−∇wL(β(t)) = −h(α(t))
∥w(t)∥

(
Id− w(t)w⊤(t)

∥w(t)∥2

)
∇L(β(t)) (6.3.1)

α̇(t) =−∇αL(β(t)) = −h′(α(t))
〈

w(t)

∥w(t)∥|
| ∇L(β(t))

〉
. (6.3.2)

In the following we will show that this flow is equivalent to a generalized mirror one, for
a mirror function of the form F (β) = f(∥β∥) and a time warping of the form g(∥β∥). To
derive the main result of this section, we need an auxiliary Lemma, providing a reformula-
tion of (6.2.1) for radial functions. From now on, unless explicitly stated otherwise, when
we refer to assumption A2, we mean it with U = Rp\ {0}.
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Lemma 6.3.1. Let assumptions A1 and A3 hold. Let f : [0,+∞) → [0,+∞) be a twice
differentiable function on (0,+∞) such that f ′(s) > 0, f ′′(s) > 0 for every s > 0 and 1/f

′′

is locally Lipschitz on (0,+∞). Let g : [0,+∞) → [0,+∞) be locally Lipschitz on (0,+∞)
and such that, defining r as in Assumption A4, there exists C such that g(s) > C for every
s > r. For every β ∈ Rp, define F (β) = f(∥β∥) and G(β) = g(∥β∥). Then assumptions A2
and A4 hold, and the dynamical system (6.2.1) corresponding to F and G can be written
equivalently as

β̇(t) = −g(∥β(t)∥)∥β(t)∥
f ′(∥β(t)∥)

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

− g(∥β(t)∥)
f ′′(∥β(t)∥)

β(t)β⊤(t)

∥β(t)∥2
∇L(β(t)), t > 0

β(0) = β0 ∈ Rp \ {0} .

(6.3.3)

Proof. The function F is strictly convex since it is the composition of the increasing strictly
convex function f with the convex function β 7→ ∥β∥. The gradient and the Hessian of
F (β) = f(∥β∥), for β ̸= 0 are

∇F (β) =f ′(∥β∥) β

∥β∥
and

∇2F (β) =f ′′(∥β∥) ββ
⊤

∥β∥2
+
f ′(∥β∥)
∥β∥

(
Id− ββ⊤

∥β∥2

)
, (6.3.4)

and clearly F is twice differentiable on Rp \ {0}. Using the Sherman-Morrison formula
(2.2.1) with a =

(
f ′′(∥β∥)− f ′(∥β∥)

∥β∥

)
β

∥β∥2 , b = β, and M = f ′(∥β∥)
∥β∥ Id, since b⊤M−1a+ 1 =

∥β∥f ′′(∥β∥)
f ′(∥β∥) ̸= 0 we get that

[
∇2F (β)

]−1
=

1

f ′′(∥β∥)
ββ⊤

∥β∥2
+

∥β∥
f ′(∥β∥)

(
Id− ββ⊤

∥β∥2

)
. (6.3.5)

which is locally Lipschitz in U \ {0} since 1/f ′′ and f ′ are locally lipschitz in (0,+∞).
In addition, S ∩ U ̸= ∅ since 0 is not a minimizer of L by Assumption A3. Local lips-
chitzianity of g implies that G is locally lipschitz. Therefore Assumption A2 is satisfied.
Assumption A4 is also trivially satisfied, therefore Lemma 6.2.6 implies that the solution
of the dynamical system is bounded away from zero; namely, that ∥β(t)∥ ≥ r > 0 for every
t ≥ 0. This implies that all the quantities in (6.3.4) and in (6.3.5) are well-defined along
the trajectory. The statement then follows by plugging the explicit form of

[
∇2F (β)

]−1 in
equation (6.2.2), which is equivalent to (6.2.1).

Remark 6.3.2. By (6.3.3), we get that

1

2

d

dt
∥β(t)∥2 =

〈
β(t) | β̇(t)

〉
= − g(∥β(t)∥)

f ′′(∥β(t)∥)
⟨β(t) | ∇L(β(t))⟩

d

dt

β(t)

∥β(t)∥
=

1

∥β(t)∥

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
β̇(t) = − g(∥β(t)∥)

f ′(∥β(t)∥)

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t)).

This computation shows that if the second term on the right-hand side of (6.3.3) is zero,
then the norm is constant.

In the next theorem, we focus on reparametrizations of the form β = h(α) w
∥w∥ . This

theorem establishes a sufficient condition that allows us to derive from the gradient flow
with respect to α and w a time-warping mirror flow with respect to β, as in (6.2.1).
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Theorem 6.3.3. Let assumption A1 hold. Consider the weight normalization parameteriza-
tion β = h(α) w

∥w∥ and the dynamics on (α,w) defined in (6.3.1)-(6.3.2) with initialization
(α0, w0) such that h(α0) > 0 and ∥w0∥ = 1 and assume that assumption A3 holds for
β0 = h(α0)w0/∥w0∥. Assume that there exists a function f : [0,+∞) → [0,+∞) twice differ-
entiable on (0,+∞) such that f ′′(s) > 0 for every s > 0, 1/f ′′ is locally Lipschitz on (0,+∞)
and satisfying the following equality

(h′(α))2 =
f ′(h(α))h(α)

f ′′(h(α))
. (6.3.6)

Suppose in addition that there exists c > 0 such that f ′(s) > c/s for every s > r (r is defined
in Assumption A3) and define g : R+ → R as g(s) = sf ′(s). Then the assumptions A2 and
A4 are satisfied, and for every t > 0, ∥w(t)∥ = 1, h(α(t)) > 0, and β(t) solves the following
dynamical system, for t ≥ 0

β̇(t) = −∥β(t)∥2
(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

− f ′(∥β(t)∥)
f ′′(∥β(t)∥)

β(t)β⊤(t)
∥β(t)∥ ∇L(β(t)), t > 0

β(0) = β0 ∈ Rp \ {0} .

(6.3.7)

i.e., the dynamic of β(t) satisfies (6.2.1), with F (β) = f(∥β∥) and G(β) = g(∥β∥).

Proof. We first show that t ∈ (0,+∞) 7→ ∥w(t)∥ is constant. Since w is a solution of the
dynamical system in (6.3.1), we obtain

d

dt
∥w(t)∥2 = 2⟨w(t) | ẇ(t)⟩ = 0,

therefore the norm of w(t) is constant. Moreover, since ∥w(0)∥ = 1 by assumption, for
every t > 0, ∥w(t)∥ = 1. We next derive an equation for β(t) using (6.3.1)-(6.3.2). The
derivative of the product yields

β̇(t) =h(α(t))ẇ(t) + h′(α(t))α̇(t)w(t)

=− (h(α(t))2

∥w(t)∥

(
Id− w(t)w⊤(t)

∥w(t)∥2

)
∇L(β(t))

−
(
h′(α(t))

)2
w(t)w⊤(t)∇L(β(t)). (6.3.8)

We now prove that, for every t > 0, h(α(t)) > 0 and consequently ∥β(t)∥ = h(α(t)). It
follows from (6.3.8) that

d

dt
L(β(t)) =

〈
∇L(β(t)) | β̇(t)

〉
=− (h(α(t))2

∥w(t)∥
∥∇L(β(t))∥2 + (h(α(t))2

∥w(t)∥

〈
∇L(β(t)) | w(t)

∥w(t)∥

〉2

−
(
h′(α(t))

)2 ⟨∇L(β(t)) | w(t)⟩2

≤−
(
h′(α(t))

)2 ⟨∇L(β(t)) | w(t)⟩2

≤ 0.

Therefore t ∈ (0,+∞) 7→ L(β(t)) is decreasing. Next, we provide a strictly-positive lower
bound for the norm of β along the trajectory. Let β ∈ Rp \ {0} be such that ∥β∥ ≤ r =
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L(0)−L(β0)
2∥∇L(0)∥ . Then, convexity of L and the Cauchy-Schwarz inequality yield

L(β) ≥ L(0) + ⟨∇L(0) | β − 0⟩
≥ L(0)− r∥∇L(0)∥

=
L(0) + L(β0)

2
> L(β0). (6.3.9)

This implies on the one hand that ∥h(α0)w0∥ = h(α0) > r otherwise we would derive
a contradiction from (6.3.9) choosing β = β0. On the other hand, from (6.3.9) we de-
rive that ∥β(t)∥ > r for every t > 0 since L(β(t)) is decreasing. Then,for every t ≥ 0,
∥h (α(t)) ∥ > r, which implies that h(α(t)) = ∥β(t)∥, since the sign of h(α(t)) remains
positive. Replacing w(t) = β(t)

∥β(t)∥ , ∥w(t)∥ = 1, ∥β(t)∥ = h(α(t)), and

(h′(α))2 =
f ′(h(α))h(α)

f ′′(h(α))
,

in (6.3.8), we deduce that

β̇(t) =− ∥β(t)∥2
(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

− f ′(∥β(t)∥)∥β(t)∥
f ′′(∥β(t)∥)

β(t)β⊤(t)

∥β(t)∥2
∇L(β(t))

Finally, Lemma 6.3.1 with F (β) = f(∥β∥) and G(β) = g(∥β∥) = ∥β∥f ′(∥β∥) implies
(6.3.7) and proves the statement.

Remark 6.3.4. 1. If h(α) > 0, from the definition of weight normalization reparame-
terization β = h(α) w

∥w∥ , we have that ∥β∥ = h(α). The previous theorem guarantees
also that, if the initialization satisfies h(α0) > 0, then h(α(t)) > 0 for every t > 0
and, consequently, ∥β(t)∥ = h(α(t)) for every t > 0.

2. The same dynamic for β could be derived from other reparametrizations (for in-
stance, see Example 5.3.1 and Remark 6.3.6(ii)). However, the proposed reparam-
eterization only requires p + 1 parameters, which, in practice, makes this approach
more efficient than other overparameterization schemes. Furthermore, this tech-
nique involves only one additional variable compared to vanilla gradient descent,
and requires only matrix-vector multiplications and gradient calculations.

3. The previous theorem gives a sufficient condition on the functions h, f , and g to cast
the gradient flow over α and w into a time-warping mirror flow on β, as in Theorems
6.2.4 and 6.2.8. This result allows us to establish the existence and uniqueness of
the trajectory β and convergence to an implicit bias.

4. If (h′(α))2 can be expressed in terms of h(α) as (h′(α))2 = φ(h(α)) for some function
φ : R+ → R+, we can determine f ′ in (6.3.6) by solving the following differential
equation:

φ(s)f ′′(s)− f ′(s)s = 0, s > 0.

In the context of Corollary 6.2.9, where the loss is a composition of a convex function with
a linear operator and the solution set is a linear subspace, the next corollary allows us to
further characterize the limit point of the flow deriving from weight normalization. Simi-
larly to Corollary 6.2.14, the limit point can be expressed as the sum of the minimal norm
solution and a term in the kernel of the linear operator. We generalize the techniques used
in [139, Theorem 2.6] to a broader class of weight-normalization reparameterizations.
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Corollary 6.3.5. Under the same assumptions of Theorem 6.3.3, suppose that, L(β) =
ℓ(Xβ) and S = {β ∈ Rp | Xβ = y}, where X ∈ Rd×p and y ∈ Rd. Additionally, suppose
that assumption A5 is satisfied. Let β∗ be the (unique) solution of

min
z∈S

∥z∥2.

Moreover, let P : Rp → Rp be the projection operator onto the kernel of X. Then, for
t→ +∞, β(t) → β∞ = argminz∈S f(∥z∥)−

f ′(∥β0∥)
∥β0∥ ⟨β0, z⟩, and

β∞ = β∗ + P (β0)
f ′(∥β0∥)∥β∞∥
∥β0∥f ′(∥β∞∥)

.

Proof. Let P be the projection operator onto ker(X) and let P⊥ := Id − P , the projection
onto ker(X)⊥. Then

β∞ = P (β∞) + P⊥(β∞).

First, we compute P (β∞). It follows from Theorem 6.3.3 that the differential equation

β̇(t) =− ∥β(t)∥2
(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

− f ′(∥β(t)∥)∥β(t)∥
f ′′(∥β(t)∥)

β(t)β⊤(t)

∥β(t)∥2
∇L(β(t)). (6.3.10)

has a unique solution such that β(0) = β0 defined on [0,+∞). Since P (∇L(β)) =
P
(
X⊤∇ℓ(Xβ)

)
= 0, if we apply the linear operator P to both sides of the previous

equation, we obtain that the differential equation

d

dt
P (β(t)) = P (β̇(t)) =− ∥β(t)∥2P (∇L(β(t)))

+ P (β(t))⟨β(t) | ∇L(β(t))⟩
(
1− f ′(∥β(t)∥)

f ′′(∥β(t)∥)∥β(t)∥

)
=− P (β(t))⟨β(t) | ∇L(β(t))⟩

(
f ′(∥β(t)∥)

f ′′(∥β(t)∥)∥β(t)∥
− 1

)
. (6.3.11)

Equation(6.3.10) implies

d

dt
∥β(t)∥ =

〈
β(t)

∥β(t)∥
| β̇(t)

〉
= − f ′(∥β(t)∥)

f ′′(∥β(t)∥)
⟨β(t) | ∇L(β(t))⟩. (6.3.12)

Combining equations (6.3.11) and (6.3.12), we obtain the following differential equation:

d

dt
P (β(t)) =P (β(t))

(
1

∥β(t)∥
− f ′′(∥β(t)∥)
f ′(∥β(t)∥)

)
d

dt
∥β(t)∥. (6.3.13)

By multiplying the equation (6.3.13) by the integrating factor f ′(∥β(t)∥)
∥β(t)∥ (which is strictly

positive as proven in Lemma 6.2.6) and then rearranging the terms, we obtain the follow-
ing result:

d

dt

(
P (β(t))f ′(∥β(t)∥)

∥β(t)∥

)
=
f ′(∥β(t)∥)
∥β(t)∥

d

dt
(P (β(t)))

+ P (β(t))

(
f ′′(∥β(t)∥)
∥β(t)∥

− f ′(∥β(t)∥)
∥β(t)∥2

)
d

dt
∥β(t)∥

=
f ′(∥β(t)∥)
∥β(t)∥

d

dt
(P (β(t)))

− f ′(∥β(t)∥)
∥β(t)∥

P (β(t))

(
1

∥β(t)∥
− f ′′(∥β(t)∥)
f ′(∥β(t)∥)

)
d

dt
∥β(t)∥ = 0.
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Thus the term P (β(t))f ′(∥β(t)∥)
∥β(t)∥ remains constant for every t > 0 and it is equal to P (β0)f ′(∥β0∥)

∥β0∥ .
Consequently, we obtain the following expression:

P (β(t)) = P (β0)
f ′(∥β0∥)∥β(t)∥
∥β0∥f ′(∥β(t)∥)

.

Recall that, from Theorem 6.2.8, lim
t→∞

β(t) = β∞. From the continuity of the projection

and the continuity of the norm, taking the limit for t → +∞ in the previous equation, we
get

P (β∞) = P (β0)
f ′(∥β0∥)∥β∞∥
∥β0∥f ′(∥β∞∥)

.

Next we proceed with the computation of the second term, namely P⊥(β∞). Since β∞ ∈ S,

y = Xβ∞ = X(P (β∞) + P⊥(β∞)) = XP⊥(β∞).

Thus, P⊥(β∞) ∈ S. Similarly, since β∗ ∈ S, P⊥(β∗) ∈ S, meaning that it is a feasible
point for the minimization problem (6.2.11). Moreover, since β∗ is a solution of problem
(6.2.11), we have that

∥β∗∥2 ≤ ∥P⊥(β∗)∥2 ≤ ∥P⊥(β∗)∥2 + ∥P (β∗)∥2 = ∥β∗∥2.

Therefore, we conclude that P (β∗) = 0 and so that β∗ ∈ ker(X)⊥. Moreover, since Xβ∗ =
y = Xβ∞, we obtain that β∗ − β∞ ∈ kerX. Then, since β∗ ∈ ker(X)⊥,(

∀p ∈ ker(X)⊥
)
⟨p− β∗ | β∞ − β∗⟩ = 0.

This, according to [15, Theorem 3.16], implies that P⊥(β∞) = β∗. Then,

β∞ = P (β∞) + P⊥(β∞) = P (β0)
f ′(∥β0∥)∥β∞∥
∥β0∥f ′(∥β∞∥)

+ β∗.

Note that, compared to the analogous result in Corollary 6.2.14, this is a fixed point
equation, in the sense that we cannot compute the norm of β∞ explicitly.

In the following two examples we explore the flexibility of our formulation. By choosing
appropriately h and f , we obtain the two well-known reparameterizations corresponding
to polynomial and exponential weight normalization [89, 118, 139].

Example 6.3.6. Polynomial Weight normalization. Let Assumption A1 be satisfied, and
consider the dynamics defined in (6.3.1)-(6.3.2) corresponding to

h(α) = αL,

with an initialization such that ∥w0∥ = 1 and h(α0) > 0, so that Assumption A3 holds. Let
f : [0,+∞) be such that

f ′(s) = exp

(
s2/L

2L

)
for every s > 0,

so that equation (6.3.6) is satisfied. Note that f is twice differentiable on (0,+∞), f ′(s) >
0, f ′′(s) > 0 for all s > 0, and 1/f ′′ is locally Lipschitz. Define g(s) = sf ′(s) for every
s ≥ 0 and let r be as in Assumption A4. Since g is increasing, g(s) ≥ g(r) for every s ≥ r.
Then Theorem 6.3.3 and Lemma 6.3.1 imply that Assumptions A2 and A5 are satisfied
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with U = Rp \ {0} and the differential equation in the original variable β corresponding
to the gradient flow on the variables (α,w) is

β̇(t) =− ∥β(t)∥2
(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

− L2β(t)β
⊤(t)

∥β(t)∥2/L
∇L(β(t)). t > 0

This equation has a unique solution β(t) defined on [0,+∞) for the initial condition β0 =
h(α0)w0. Note that, from Lemma 6.2.6, along the trajectory β(t), the scalar function G
is bounded below by a strictly positive constant. This allows us to avoid the undesired
stationary point zero. To derive the implicit bias, we need to apply Theorem 6.2.8. To
do so, it remains to show that assumption A5 holds. Let z̄ ∈ S ∩ U . We next prove that
DF (z̄, ·) is coercive. It follows from convexity of f that for every s > 0

f(s) + f ′(s)(∥β∥ − s) ≤ f(∥β∥).

Dividing the previous inequality by ∥β∥ yields

f ′(s) = lim
∥β∥→∞

f(s) + f ′(s)(∥β∥ − s)

∥β∥
≤ lim inf

∥β∥→∞

f(∥β∥)
∥β∥

= lim inf
∥β∥→∞

F (β)

∥β∥
.

Since s > 0 is arbitrary and f ′(s) → +∞ as s → +∞, we deduce that F is supercoercive.
It follows from [14, Lemma 7.3 (viii)] that the DF (z, ·) is coercive for every z ∈ U , which
implies assumption A5. The implicit bias is given in Theorem 6.2.8 and specialized in
Corollary 6.3.5. For the weight normalization proposed by [118], which corresponds to
the choice L = 1, in the setting of Corollary 6.3.5, we obtain

β∞ = β∗ + P (β0)
∥β∞∥
∥β0∥

e
∥β0∥

2−∥β∞∥2
2 , (6.3.14)

where we recall that P is the projection operator on the kernel of X. Note that when
β0 ∈ ran(X⊤) = ker(X)⊥, then β∞ is equal to the minimal norm solution β∗. Our results
guarantee that the trajectory exists for t → +∞, which is something usually assumed,
and not proved. The implicit bias for this example has been studied in [139] and [89]
for the least squares and the logistic loss, respectively. In [139], the authors analyze the
convergence to a stationary point (zero loss or zero norm) in the continuous and discrete
settings, and they derive the expression in (6.3.14). The squared weight normalization
corresponds to the case L = 2. For this choice, we can explicitly compute the function f .
Indeed, let

h(α) = α2, f(s) = 4e
s
4 , and g(s) = se

s
4 .

In addition, in the setting of Corollary 6.3.5, we get that

β∞ = β∗ + P (β0)
∥β∞∥
∥β0∥

e
∥β0∥−∥β∞∥

4 .

Example 6.3.7. Exponential weight normalization. Under Assumption A1, consider the
dynamic defined in (6.3.1)-(6.3.2) with an initialization (α0, w0) such that ∥w0∥ = 1 and
L(β0) < L(0), where β0 = h(α0)w0. Let, for some τ > 0,

h(α) = e
α
τ , f(s) =

sτ
2+1

τ2 + 1
, and g(s) = sτ

2+1.
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On the interval (0,+∞), we have f ′ > 0, f ′′ > 0 and 1/f ′′ locally Lipschitz. In addition,
equation (6.3.6) is satisfied, g(s) = sf ′(s) for all s ≥ 0 and g(s) > rτ

2+1 for every s > r.
Then it follows from Theorem 6.3.3 that β(t) = h(α(t)) w(t)

∥w(t)∥ , where the trajectories of
w(t) and α(t) follow the dynamical system (6.3.1)-(6.3.2), solves the differential equation

β̇(t) = −
[
∥β(t)∥2Id−

(
1− 1

τ2

)
β(t)β⊤(t)

]
∇L(β(t)). t > 0

To apply Theorem 6.2.8, it remains to prove assumption A5, that requires the existence of
z̄ ∈ S ∩ U such that DF (z̄, ·) is coercive. Indeed,

DF (z, β) =
∥z∥τ2+1

τ2 + 1
− ∥β∥τ2+1

τ2 + 1
− ∥β∥τ2−1⟨β | z − β⟩

=
∥z∥τ2+1

τ2 + 1
+

∥β∥τ2+1

τ2 + 1

(
τ2 − τ2 + 1

∥β∥2
⟨β | z⟩

)
≥ ∥z∥τ2+1

τ2 + 1
+

∥β∥τ2+1

τ2 + 1

(
τ2 − τ2 + 1

∥β∥
∥z∥
)

and so DF (z, β) is coercive with respect to β for every z ∈ U . Theorem 6.2.8 then yields
lim

t→+∞
β(t) = β∞, where

β∞ ∈ argmin
z∈S

∥z∥τ2+1

τ2 + 1
− ∥β0∥τ

2−1⟨β0 | z⟩+
∫ +∞

0
∥β(t)∥τ2+1⟨∇L(β(t)) | z − β(t)⟩dt.

Moreover, in the setting of Corollary 6.3.5, we obtain that

β∞ = β∗ + P (β0)
∥β0∥τ

2−1

∥β∞∥τ2−1
.

Note that, when τ = 1√
2
, the mirror function F is the same function obtained in Example

5.3.1, showing that different reparametrizations may have the same implicit bias.

6.3.1 Weight normalization of a fully connected network
In this subsection, we combine the two main examples presented in this chapter: fully
connected linear network and weight normalization. The reparameterization involves
decomposing the vector β into the product of three terms: a scalar that represents the
norm of β, and the product of a matrix by a vector, product that represents the direction
of β with unitary norm.

Consider the over-parameterization β = h(α) Ww
∥Ww∥ , where h : R → R+ is a given function,

while α ∈ R, W ∈ Rp×m and w ∈ Rm are the new variables. The associated gradient flow
on the reparameterization is given by the following dynamical system:

ẇ(t) =−∇wL(β(t)) = − h(α(t))

∥W (t)w(t)∥
W⊤(t)

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t)) (6.3.15)

Ẇ (t) =−∇WL(β(t)) = − h(α(t))

∥W (t)w(t)∥

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))w⊤(t) (6.3.16)

α̇(t) =−∇αL(β(t)) = −h′(α(t))
〈

β(t)

∥β(t)∥
| ∇L(β(t))

〉
. (6.3.17)
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We consider, for simplicity of computations, an initialization (α0,W0, w0) such that ∥W0w0∥ =
1 and w0w

⊤
0 =W⊤

0 W0. In the next theorem, we derive a time warping mirror flow on β as
in (6.2.1) from the gradient flow defined in (6.3.15)-(6.3.17) over w, W , and α, respec-
tively. We then apply Theorems 6.2.4 and 6.2.8, providing the existence and uniqueness
of solution for the dynamical system and convergence in value and in trajectory. In the
case where the loss is a composition of a convex function and a linear operator, the limit
point can be characterized as the Bregman projection on the solution set for a given mirror
map, which depends on the choice of the reparameterization.

Theorem 6.3.8. Consider the overparameterized model β = h(α) Ww
∥Ww∥ and the dynamic

defined in (6.3.15)-(6.3.17) with initialization such that ∥W0w0∥ = 1 and w0w
⊤
0 =W⊤

0 W0.
Assume that assumptions A1 and A3 holds for β0 = h(α0)

W0w0
∥W0w0∥ . Assume that there exists a

function f : [0,+∞) → [0,+∞) twice differentiable on (0,+∞) such that f ′′(s) > 0 for every
s > 0, 1/f ′′ is locally Lipschitz on (0,+∞) and satisfying the following equality

(h′(α))2 =
f ′(h(α))h(α)

f ′′(h(α))
. (6.3.18)

Suppose in addition that there exists c > 0 such that f ′(s) > c/s for every s > r (r is defined
in Assumption A3) and define g : R+ → R as g(s) = sf ′(s). Then the assumptions A2 and
A4 are satisfied, and for every t > 0, ∥W (t)w(t)∥ = 1, h(α(t)) > 0, and β(t) solves the
following dynamical system, for t ≥ 0

∇2 (f(∥β(t)∥)) β̇(t) = −g(∥β(t)∥)∇βL(β(t)); (6.3.19)

i.e., the dynamic of β(t) satisfies (6.2.1), with F (β) = f(∥β∥) and G(∥β∥) = g(∥β∥).

Proof. If we multiply (6.3.15) by w⊤(t) on the right and (6.3.16) by W⊤(t) on the left, we
obtain that

W⊤(t)Ẇ (t) = ẇ(t)w⊤(t). (6.3.20)

Adding the transpose of (6.3.20) yields

W⊤(t)Ẇ (t) + Ẇ⊤(t)W (t) = ẇ(t)w⊤(t) + w(t)ẇ⊤(t).

Since W⊤(0)W (0) = w⊤(0)w⊤(0), we obtain

W⊤(t)W (t) = w(t)w⊤(t). (6.3.21)

Multiplying (6.3.21) by w⊤(t) on the left and by w(t) on the right, we have that ∥w(t)∥4 =
∥W (t)w(t)∥2, for every t. Analogously, multiplying by W (t) the equation (6.3.21) on the
left and by W⊤(t) on the right we deduce that

(W (t)W⊤(t))2 =
β(t)β⊤(t)

∥β(t)∥2
∥W (t)w(t)∥2. (6.3.22)

Thus, ∥w(t)∥2 = ∥W (t)w(t)∥. In addition, since W (t)W T (t) is positive semidefinite and
symmetric, it is the unique square root of the right hand side of (6.3.22) and therefore

W (t)W⊤(t) =
β(t)β⊤(t)

∥β(t)∥2
∥W (t)w(t)∥,
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since the right hand side of (6.3.22) is a rank one matrix. Moreover, note that

˙W (t)w(t) =Ẇ (t)w(t) +W (t)ẇ(t)

=− h(α(t))

∥W (t)w(t)∥

(
∥w(t)∥2Id+W (t)W⊤(t)

)(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

=− h(α(t))

(
Id+

β(t)β⊤(t)

∥β(t)∥2

)(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

=− h(α(t))

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t))

and

∂t
∥W (t)w(t)∥2

2
=
〈
W (t)w(t) | Ẇ (t)w(t) +W (t)ẇ(t)

〉
F

=

〈
β(t)

∥β(t)∥
| Ẇ (t)w(t) +W (t)ẇ(t)

〉
F

=− β⊤(t)

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t)) = 0,

which implies that ∥W (t)w(t)∥ = 1 for every t. Then,

β̇(t) = α̇(t)h′(α(t))W (t)w(t) + h(α(t))Ẇ (t)w(t) + h(α(t))W (t)ẇ(t)

= −h′(α(t))2β(t)β
⊤(t)

∥β(t)∥2
∇L(β(t))− ∥β(t)∥2

(
Id− β(t)β⊤(t)

∥β(t)∥2

)
∇L(β(t)).

Equation (6.3.19) then follows from (6.3.18) and Lemma 6.3.1.

Remark 6.3.9. Choosing h, f , and g as in Examples 6.3.6 and 6.3.7, the assumptions of
Theorem 6.3.8 are satisfied. Consequently, β(t) satisfies the properties derived in Theorem
6.2.4, Theorem 6.2.8 and Corollary 6.2.9.

6.3.2 Fully connected normalized linear network of depth 2

In this subsection, we study a new reparameterization of β(t). The reparametrization
decomposes the vector β into the product of a matrix times a unitary vector. Then, we
apply vanilla gradient flow to update the vector and the matrix. The main difference with
respect to the previous examples is that the unitary vector is multiplied by a matrix which
encode the norm of β, rather than a scalar. We name this parametrization connected
normalized linear network of depth 2. More formally, we set β =W w

∥w∥ where W ∈ Rp×m

and w ∈ Rm. We define the gradient flows of W and w as:

Ẇ (t) =−∇WL
(
W (t)

w(t)

∥w(t)∥

)
= −∇L(β(t)) w

⊤(t)

∥w(t)∥
(6.3.23)

ẇ(t) =−∇wL
(
W (t)

w(t)

∥w(t)∥

)
=− 1

∥w(t)∥

(
Id− w(t)w⊤(t)

∥w(t)∥2

)
W⊤(t)∇L(β(t)). (6.3.24)

The next theorem shows that the corresponding trajectory in β is a preconditioned gradi-
ent flow as in (6.2.1). It turns out that, for some specific initialization, the corresponding
trajectory β(t) is just vanilla gradient flow. We then apply Theorems 6.2.4 and 6.2.8 to
get existence and uniqueness of the trajectory of the flow, optimization properties and
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convergence to a specific solution asymptotically for t approaching infinity.

Theorem 6.3.10. Consider the dynamic defined in (6.3.23)-(6.3.24) initialized with (W0, w0)
such that ∥w0∥ = 1, set β0 =W0w0/∥w0∥ and suppose that L(β0) < L(0). Then:

1. The variable β(t) is governed by the following differential equation:

β̇(t) =− (Id+ S(t))∇L(β(t)), (6.3.25)

where S(t) :=W (t)W⊤(t)− β(t)β⊤(t) ⪰ 0.

2. If S0 =W0W
⊤
0 − β0β

⊤
0 = 0, β(t) is governed by the following differential equation:

β̇(t) =−∇L(β(t)).

Proof. We provide the proof of Theorem 6.3.10, which is divided in several steps.

1. We first prove that ∥w(t)∥ is constant. Multiplying (6.3.24) by w⊤(t) we obtain

∂t∥w(t)∥2 = 2⟨w(t) | ẇ(t)⟩ = 0.

Then, if ∥w(0)∥ = 1, we get that ∥w(t)∥ = 1. Equations (6.3.23)-(6.3.24) and the
derivative of the product’s rule yield

β̇(t) = Ẇ (t)
w(t)

∥w(t)∥
+W (t)

(
ẇ(t)

∥w(t)∥
− w(t)w⊤(t)ẇ(t)

∥w∥3

)
= Ẇ (t)

w(t)

∥w(t)∥
+W (t)

˙w(t)

∥w(t)∥

= −∇L(β(t))w
⊤(t)w(t)

∥w(t)∥2

− W (t)

∥w(t)∥2

(
Id− w(t)w⊤(t)

∥w(t)∥2

)
W⊤(t)∇L(β(t))

= −
(
Id+W (t)W⊤(t)− β(t)β⊤(t)

)
∇L(β(t))

= − (Id+ S(t))∇L(β(t)),

which establishes equation (6.3.25). Moreover, note that S(t) = W (t)W⊤(t) −
β(t)β⊤(t) ⪰ 0. Indeed,

(∀y ∈ Rp) y⊤(WW⊤ − ββ⊤)y =y⊤
(
WW⊤ −W

w

∥w∥
w⊤

∥w∥
W⊤

)
y

=∥W⊤y∥2 −
∥∥∥∥ w⊤

∥w∥
W⊤y

∥∥∥∥2
≥∥W⊤y∥2 −

∥∥∥∥ w⊤

∥w∥

∥∥∥∥2 ∥W⊤y∥2

=0.

2. The proof is divided in three parts.
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(a) Derivation of the evolution of S(t) =W (t)W⊤(t)− β(t)β⊤(t):

Ṡ(t) = Ẇ (t)W⊤(t)− β̇(t)β⊤(t) +W (t)Ẇ⊤(t)− β(t)β̇⊤(t). (6.3.26)

It follows from (6.3.23) that

Ẇ (t)W⊤(t) = −∇L(β(t))β⊤(t). (6.3.27)

Multiplying (6.3.25) on the right by β⊤, (6.3.27) implies

β̇(t)β⊤(t) =Ẇ (t)W⊤(t)

−
(
W (t)W⊤(t)− β(t)β⊤(t)

)
∇L(β(t))β⊤(t)

=Ẇ (t)W⊤(t)− S(t)∇L(β(t))β⊤(t). (6.3.28)

Analogously

β(t)β̇⊤(t) = −β∇L(β(t))⊤(I + S(t))

= Ẇ (t)W⊤(t)− β(t)∇L(β(t))⊤S(t). (6.3.29)

It follows from (6.3.26), (6.3.27), (6.3.28) and (6.3.29) that

Ṡ(t) = S(t)∇L(β(t))β⊤(t) + β(t)∇L(β(t))⊤S(t). (6.3.30)

(b) Show that S(t) = 0 in a neighborhood of zero: Let us denote by ∥ · ∥F the
frobenius norm of a matrix. Then 1

2∂t∥S(t)∥
2
F = ⟨Ṡ(t)S(t)⟩F = Tr(Ṡ(t)S(t)).

Equation (6.3.30) and the linearity and cyclical property of the trace imply

1

2
∂t∥S(t)∥2F = Tr

(
S(t)∇L(β(t))β⊤(t)S(t)

)
+Tr

(
β(t)∇L(β(t))⊤S2(t)

)
= Tr

(
∇L(β(t))β⊤(t)S2(t)

)
= +Tr

(
β(t)∇L(β(t))⊤S2(t)

)
= Tr

((
∇L(β(t))β⊤(t) + β(t)∇L(β(t))⊤

)
S2(t)

)
=
〈(

∇L(β(t))β⊤(t) + β(t)∇L(β(t))⊤
)
| S2(t)

〉
F

≤ ∥∇L(β(t))β⊤(t) + β(t)∇L(β(t))⊤∥F ∥S2(t)∥F
≤ 2∥∇L(β(t))∥∥β(t)∥∥S(t)∥2F , (6.3.31)

where in the last inequality we used that, for every u ∈ Rp and v ∈ Rp,
∥uvT ∥F = ∥u∥∥v∥.

We next prove that the term ∥∇L(β(t))∥∥β(t)∥ is bounded, to apply Grönwall’s
inequality. We proceed computing the derivative of the norm along the trajec-
tory:

(∀z ∈ S) ∂t∥β(t)− z∥2 =− 2⟨(Id+ S(t))∇L(β(t)) | β(t)− z⟩
≤ − 2⟨S(t)∇L(β(t)) | β(t)− z⟩

+ 2 (L(z)− L(β(t)) .
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If L(W0w0/∥w0∥) = L∗, then ∇L(β0) = 0. So the norm is constant and the
trajectory remains bounded. Otherwise, L(z)−L(β0) < 0 and, from S0 = 0 we
derive

(t 7→ ∂t∥β(t))− z∥2)(0) ≤ L(z)− L(β0) < 0.

Since the norm and β(t) are continuous, there exists an interval [0, t1] with
nonempty interior such that ∥β(t)−z∥2 is decreasing and bounded by ∥β0−z∥2.
This implies that {∥β(t)∥ : t ∈ [0, t1]} is bounded. Similarly, since ∇L is locally
Lipschitz, ∥∇L(β(t))∥ is bounded on [0, t1] (see, for instance, [91, Theorem
27.4]). Define, for every t ∈ [0, t1],

G(t) = e−2
∫ t
0 ∥∇L(β(s))∥∥β⊤(s)∥ds > 0,

then, for every t ∈ [0, t1], (6.3.31) implies that

∂t(∥S(t)∥2FG(t)) = G(t)(∂t∥S(t)∥2F − 2∥∇L(β(t))∥∥β⊤(t)∥∥S(t)∥2F ) ≤ 0

and therefore ∥S(t)∥2F ≤ ∥S(0)∥2F e2
∫ t
0 ∥∇L(β(s))∥∥β⊤(s)∥ds = 0.

(c) Extend the proof, for every t > 0: For every t ∈ [0, t1], we obtain

∂t∥β(t)− z∥2 ≤ L(z)− L(β(t)) ≤ 0.

Now define t∗ = sup{T ≥ 0 | ∀t ≤ T | S(t) = 0}. The previous step implies
T ≥ t1. Suppose by contradiction that t∗ < +∞, i.e., S is null only in a finite
interval. Since S(t) is continuous S(t∗) = 0 and we can proceed analogously
to the case when S(0) = 0 and prove that there exist a t2 ≥ t∗ such that, for
every t ∈ [t∗, t2), ∥S(t)∥2F ≤ ∥S(t∗)∥2F e2

∫⊤
t∗ ∥∇L(β(s))∥∥β⊤(s)∥ds = 0. This leads to

a contradiction with the maximality of t∗ and we conclude that t∗ = +∞ and
S(t) = 0, for every t ≥ 0. It follows from (6.3.25) that

β̇(t) =−∇L(β(t)),

and 2 follows.

Remark 6.3.11. Consider the dynamics defined in (6.3.23)-(6.3.24) and suppose that
A1 holds. In addition, consider an initialization such that ∥w(0)∥ = 1, W (0)W⊤(0) −
W (0)w(0)w⊤(0)W⊤(0) = 0 and L(β0) < L(0). Moreover, by Theorem 6.3.10, Assumption
A2-A5 is satisfied with F (β) = ∥β∥2

2 and G(β) = 1. Note that, in this case, the assumption
A2 holds with U = Rp. Consequently, β(t) can be characterized as described in Theorem
6.2.4 and Theorem 6.2.8.

6.4 Conclusion and Future Work

In this chapter, we studied a unified framework encompassing several reparemeterization
schemes from the existing literature. We provided assumptions that guarantee the well-
posedness of the dynamical system and convergence of the trajectory. This convergence
is both in functional value and in the variable itself, that tends to a minimizer of the loss
function avoiding the additional stationary point caused by the reparametrization. In the
case where the function is composed by a linear operator, an explicit expression of the
implicit bias is given. This comprehensive approach allows us to gain insights into the
behavior of the time warped mirror flow, providing a more comprehensive understanding
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of its properties.

We also provide a criterion to determine, for a certain function that depends only on
the norm, a suitable weight normalization parameterization. Finally, we apply the ob-
tained results to a general multi-neuron fully connected linear network of depth 2, differ-
ent schemes of weight normalization, and two different extensions of these two previous
models.

In the future, we would like to extend this work to models that are more closely related to
neural networks and that introduce non-smooth activation functions. Possible extensions
are: 1) Extend the results to more general models, such as neural networks; 2) Study
new ways to train the overparameterization, for example Stochastic Gradient Descent or
second-order methods; 3) Extend this approach to differential inclusions; 4) Study the
problem in the matricial case.





APPENDIX A

Appendix for Chapter 6

A.1 Examples

The following three examples have been adapted from [43, Theorem 1], [6, Theorem
1], and [7, Theorem 4.1], respectively. The main objective is to illustrate how to use
equation (5.1.3) and its limitations. First, in example A.1.1, we study the case when the
reparameterization is separable and find the mirror map is trivial (calculate an integral
twice). Second, in example A.1.2, we give a scenario where the derivation of the mirror
flow is not straightforward and requires a technical effort. Lastly, in Example 5.3.1, we
show that the derivation of Mirror Flow is not possible at all, but it is still possible to find
a mirror map F to express the dynamics of β(t) as mirror flow multiplied by a positive
function G, emphasizing the limitations of equation (5.1.3) justifying our choice of model.

Example A.1.1. Consider a L-layer’s overparameterized vector factorization, which can
be mathematically expressed as β = q(θ) = θ⊙L ∈ Rp with L ≥ 2. We define the flow over
θ as:

θ̇(t) = −∇θL(q(θ(t))) = −L∇L(β(t))⊙θ⊙(L−1)(t),

where the last equality comes from the chain rule.

Note that q satisfies (5.1.3) with F equal to:

F : β 7→


1
4

k∑
n=1

(βn log(βn)− βn) If L = 2

1
2L(2−L)

k∑
n=1

β
2
L
n If L > 2.

, (A.1.1)

Indeed, if we compute Jq(θ)Jq(θ)T , we get:

Jq(θ)Jq(θ)
T =

(
q′(θ)

)⊙2
= L2θ⊙(2L−2) = L2β⊙(2− 2

L
) =

[
∇2F (β)

]−1
.

Then, β(t) follows the dynamic:

β̇(t) = −
[
∇2F (β(t))

]−1∇L(β(t)).

The previous flow coincides with the one derived in [43, 135]. Moreover, if L(β) =
∥Xβ − y∥2, for X ∈ Rd×p and y ∈ Rd, then by [77, Theorem 4.17], we get:

β(t) → β∞ and Xβ∞ = y (Convergence and Feasibility) (A.1.2)

∇F (β∞)−∇F (β0) ∈ ran(X⊤) (Stationarity point) (A.1.3)
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which are the KKT conditions of

min
Xz=y

DF (z, β0). (A.1.4)

For a deeper discussion about the KKT conditions we refer the reader to [113, Section 28].

Example A.1.2. Consider the Two layers vector-vector parameterization; i.e., β = q(θ)
with θ = (θ1, θ2) ∈ Rk × Rk and q(θ) = θ1⊙θ2, which is indeed an overparameterization
because there are more learnable parameters than variables to predict. Then, the gradient
flow on the reparameterization is given by

θ̇1(t) = −∇θ1L(θ1(t)⊙θ2(t)) = −∇L(β(t))⊙θ2(t);

θ̇2(t) = −∇θ2L(θ1(t)⊙θ2(t)) = −∇L(β(t))⊙θ1(t) with θ⊙2
1 (0)− θ⊙2

2 (0) = −→γ ,

where −→γ ∈ Rp. Let us compute the Jacobian of q

Jq(θ) = [Diag(θ2) Diag(θ1)] and Jq(θ)(θ)J
⊤
q(θ)(θ) = Diag

(
θ⊙2
1 + θ⊙2

1

)
.

Which is not straightforward to express the previous in terms of β. However, if we multiply
the equation of θ̇1(t) component-wise by θ1(t) and we do the same for θ̇2(t) by θ2(t), we
get:

θ1(t)⊙θ̇1(t) = −∇βL(β(t))⊙θ1(t)⊙θ2(t) = θ2(t)⊙θ̇2(t).

From the previous equality and the initialization θ⊙2
1 (0) − θ⊙2

2 (0) = −→γ , we deduce that,
for every t ≥ 0,

θ⊙2
1 (t) = θ⊙2

2 (t) +−→γ . (A.1.5)

Multiplying the latter component-wise by θ⊙2
2 (t) and recalling that β⊙2(t) = θ1(t)⊙θ2(t),

we obtain the following biquadratic equation:

θ⊙4
2 (t) +−→γ ⊙θ⊙2

2 (t)− β⊙2(t) = 0.

Since θ⊙2
2 (t) ≥ 0, the previous equation has only one positive solution and from (A.1.5),

we have that:

θ⊙2
2 (t) =

−−→γ +
√

−→γ ⊙2 + 4β⊙2(t)

2
and θ⊙2

1 (t) =

−→γ +
√

−→γ ⊙2 + 4β⊙2(t)

2
.

Consider the following entropy function:

F (β) :=
1

4

k∑
n=1

(
2βn log

(
2βn +

√
−→γ 2 + 4β2n

)
−
√
−→γ 2 + 4β2n

)
.

It follows from the definition of the derivative of the product and the computation of the
gradient that

β̇(t) = θ̇1(t)⊙θ2(t) + θ1(t)⊙θ̇2(t) =−
(
θ⊙2
1 + θ⊙2

2

)
⊙∇L(β(t))

=−
√−→γ 2 + 4β2 ⊙ ∇L(β(t))

=−
[
∇2F (β(t))

]−1∇L(β(t)).

Finally by [77, Theorem 4.17], we have convergence to feasible stationary point (equa-
tions (A.1.2) and (A.1.3)), and we can characterize the implicit bias (A.1.4).
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Example A.1.3. Consider a multi-neuron fully connected linear network of depth 2; i.e.,
β = q(θ) with θ = (W,w) ∈ Rp×m × Rm and q(θ) = Ww. The gradient flow on the
reparameterization is then given by{

Ẇ (t) = −∇WL(W (t)w(t)) = −∇L(β(t))w⊤(t)

ẇ(t) = −∇wL(W (t)w(t)) = −W⊤(t)∇L(β(t))
(A.1.6)

with W⊤(0)W (0) = w(0)w⊤(0).

Observe that Jq(W,w)J⊤
q (W,w) = ∥w∥2Id +WW⊤ and therefore it is not clear how to

express it in terms of β. Proceeding in the same way as in [5], if we multiply the expression
of Ẇ (t) on the left by W⊤(t) and the one of ẇ(t) on the right by w⊤(t), we get that Who
derived this expression first

W⊤(t)Ẇ (t) = −W⊤(t)∇βL(β(t))w⊤(t) = ẇ(t)w⊤(t).

Adding to the previous equality the one obtained by transposing it, we have that,

d

dt

(
W⊤(t)W (t)

)
=W⊤(t)Ẇ (t) + Ẇ⊤(t)W (t)

=ẇ(t)w⊤(t) + w(t)ẇ⊤(t)

=
d

dt

(
w(t)w⊤(t)

)
.

Then, from the latter equation and the initializationW⊤(0)W (0) = w(0)w⊤(0), we deduce
that, for every t ≥ 0,

W⊤(t)W (t) = w(t)w⊤(t). (A.1.7)

Multiplying by w(t) on the right, by w⊤(t) on the left and recalling that β(t) = W (t)w(t),
we have that ∥β(t)∥2 = ∥w(t)∥4 and so ∥β(t)∥ = ∥w(t)∥2.

Analogously, multiplying (A.1.7) byW (t) on the left and byW⊤(t) on the right, we deduce
that (W (t)W⊤(t))2 = β(t)β⊤(t). Since both W (t)W⊤(t) and β(t)β⊤(t) are symmetric pos-
itive semi-definite, equality (W (t)W⊤(t))2 = β(t)β⊤(t), implies

W (t)W⊤(t) =
β(t)β⊤(t)

∥β(t)∥
.

Equation (A.1.6) yields

β̇(t) = Ẇ (t)w(t) +W (t)ẇ(t) = −∇L(β(t))∥w(t)∥2 −W (t)W⊤(t)∇L(β(t)). (A.1.8)

Plugging in (A.1.8) the expressions of ∥w(t)∥2 and W (t)W⊤(t) in terms of β(t), we get

β̇(t) =−
(
∥β(t)∥Id+ β(t)β⊤(t)

∥β(t)∥

)
∇L(β(t)). (A.1.9)

According to Lemma 2.4.5, there does not exist an entropy function F such that the pre-
vious dynamical system can be written as a mirror flow, therefore the flow cannot be
formulated as vanilla mirror flow and the results in [77, Theorem 4.6] cannot be applied.
However, as derived in [7]

∇2

(
2

3
∥β∥3/2

)
= ∥β∥−1/2

(
Id− ββ⊤

2∥β∥2

)
. (A.1.10)
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Then, multiplying (A.1.9) on the left by (A.1.10), we obtain the following time-warped
dynamical system:

∇2

(
2

3
∥β(t)∥3/2

)
β̇(t) =− ∥β(t)∥1/2∇L(β(t)), (A.1.11)

which is a special case of (6.2.1) with F,G : Rp → R given by F (β) = 2
3∥β∥

3/2 and
G(β) = ∥β∥1/2. which comprises a time-warping factor.
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