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Abstract

The non-relativistic motion of media induces very weak effects on electromagnetic fields.
For this reason, it is extremely difficult to compute such effects with traditional techniques.
To overcome this difficulty, a novel approach is introduced in this work. It is based on
the Born approximation of the solution of electromagnetic problems involving media in
motion. The formulation of these problems makes use of equivalent field sources and is
specifically tailored to find the effects of motion on the electromagnetic field. The new
methodology exploits traditional simulators able to deal with media at rest. The motion
of the materials has to be managed by specific programs performing simple algebraic
calculations. The simplest of the methods proposed does not present any additional com-
plexity with respect to more traditional approaches to the same problems. All methods deal
with time-harmonic electromagnetic fields and, for this reason, they can manage materials
in motion with stationary boundaries. A complete set of simulations for cylinders mov-
ing in the axial direction show that the new methods outperform traditional numerical
approaches and, in some significant cases, traditional approaches based on semi-analytical
techniques. The good features of the new methodology are shown to hold true for a range
of velocity values spanning 11 decades; such a range covers most of the applications of
practical interest.

1 INTRODUCTION

The interaction of electromagnetic waves with media in motion
has always been an important research topic. It has significant
theoretical implications [1–6] and a plethora of applications [7],
including the tachometry of celestial bodies [8] or the flow
measurement of liquids, gases or solids in industrial processes
[9], biological systems or plasma physics [10]. For the indi-
cated reasons, the research community has always tried to find
reliable techniques to solve these problems. The first of these
efforts have produced several analytical methods [8, 11–16]. An
extension has recently been proposed [17]. However, all these
approaches can manage very specific problems and their useful-
ness is often limited to provide results for checking the reliability
of numerical techniques. In order to deal with problems of prac-
tical interest, in the last few years most of the work has been

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2024 The Authors. IET Science, Measurement & Technology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

devoted to the development of computational methods and
now, for problems involving media in motion with stationary
boundaries, well-posedness and finite element approximability
results are available [18, 19]. Commercial simulators with appro-
priate integrations can be used to find the approximate solutions
to these problems [20].

This situation can be considered satisfactory from several
perspectives. For example, for a given problem involving media
in motion with stationary boundaries one can refer to its solu-
tion, to the solution of the same problem with all media at rest
and to the difference between these fields [21]. The difference
field, in particular, is due to the effects of motion of the media
involved. By using the above well-posedness results one can
know in advance under which conditions both solutions and,
then, the difference field are well defined. However, the approx-
imation of the difference field, obtained by the calculation of
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the difference between the approximations of the solutions of
the two problems indicated above, could be unreliable. This
could happen in the presence of objects or materials moving
with non-relativistic velocities because, under the indicated con-
ditions, the effects of motion on the electromagnetic field are so
weak [11, 17, 22] that the difference of the two numerical solu-
tions could be smaller than the approximations accepted on the
single solutions.

In this paper we propose a new methodology for the reli-
able calculation of the very weak effects of the non-relativistic
motion of media on the electromagnetic field.

The new set of methods is obtained by using Born approx-
imations [23, 24] of different orders for electromagnetic
scattering problems formulated in terms of the difference field
of interest. Since any medium in motion in a reference frame is
perceived as a bianisotropic material in that frame [25, 26], one
could expect that the new methods have to be able to manage
bianisotropic media. This is clearly the case when the effects of
motion on the electromagnetic field are computed by calculat-
ing the difference of numerical solutions. On the contrary, this
is not necessary for the new methods: a single code able to man-
age media at rest is enough. Motion is just taken into account in
the definition of equivalent sources and it does not require any
simulation but just simple calculations involving known quan-
tities. For this reason, the new methods can be implemented
by using a single traditional simulator and do not require any
generalization of the available codes.

The simplest of the proposed methods requires the numeri-
cal solution of just two problems, like the traditional approach
which calculates the difference field by solving the problem of
interest with the media in motion and then the same problem
with the media at rest. Higher order approximations, on the
contrary, require additional simulations.

The new methods can be used for cylinders moving in the
axial direction or for axisymmetric objects in rotation around
their axis of symmetry. For the former class of problems,
a deeper analysis is possible, in the presence of TE or TM
polarized plane wave illuminations. It allows us to deepen our
understanding of some features of the new approach. This is
the reason why a specific part of the theory and all numer-
ical results refer to cylinders moving in the axial direction.
Numerical results for problems involving rotating objects will
be presented in a future work.

Although the new methodology can be based on different
time-harmonic electromagnetic simulators, all numerical results
presented in this manuscript are obtained using traditional finite
element simulators. The results show, on the one hand, the
apparent problems of the traditional approach which approxi-
mates the difference field by computing the difference between
two approximations and, on the other hand, the superiority of
the new class of numerical methods. They are by far more reli-
able than the traditional approach and, moreover, this happens
for a range of velocity values spanning several decades. In partic-
ular, they show that the new methods are able to provide reliable
results for all speed values of interest in applications.

The above considerations could also be important for test-
ing or even designing inverse scattering techniques of interest

in industrial processes [9, 27, 28] or in astrophysics [8], which
aim at recovering information on the velocity fields of moving
objects [20, 21, 29–31]. As a matter of fact, in practice it could be
difficult to understand which component of the difference field
is able to provide significant information about the velocity field
and in which region or direction this is true. This happens for
example when complex, rotating, axisymmetric scatterers are
considered [20] or in the presence of cylinders moving in the
axial direction in complex environments, like cavities or waveg-
uides [30, 31]. In these cases the new class of methods can be of
help in choosing the number, the positions and the type of sen-
sors to be used and, then, it can give a significant contribution
to the design of inverse scattering techniques. Moreover, once
the above problems are overcome, the testing phase of such
techniques usually requires reliable synthetic data to which noise
with a given signal-to-noise ratio is added [20, 21, 29]. For this
phase, too, the new approach could be very useful. Our research
activity on the proposed methodology actually started when we
noticed that in many cases the synthetic data we provided to
inverse procedures were not able to give significant information
about the velocity field and, moreover, when such information
was present, the data were affected by errors which were sev-
eral orders of magnitude larger than the effects of motion, for
velocity values of interest in many practical applications.

As a final comment on the importance of the new methods,
we observe that they are expected to be useful to compute in
a reliable way the small effects induced on the electromagnetic
field by the small bianisotropy of some natural media or artificial
metamaterials [32, 33]. In this case, too, for the same reason as
above, there will be no need to develop new simulators to obtain
such results. These considerations will not be further developed
to limit the length of the manuscript. They will be addresses in
a future work, as well.

The paper is organized as follows. In Section 2, the class
of problems of interest is defined. An exact alternative for-
mulation for calculating the relevant difference field for this
study is proposed in Section 3, together with the formula-
tions giving its Born approximations. Section 4 is devoted to
the finite element approximations of the solutions to all prob-
lems introduced in previous sections. In order to get a deeper
understanding of the properties of the new approach, a spe-
cific analysis is carried out in Section 5, for cylinder moving in
the axial direction under TM illumination. Finally, in Section 6
several numerical results clearly show the reliability of the new
methods and their superiority with respect to more traditional
numerical techniques.

2 DEFINITION OF THE PROBLEM OF
INTEREST AND FIRST
CONSIDERATIONS ON THE EFFECTS OF
MOTION

The time-harmonic electromagnetic boundary value problems
of interest in this paper are summarized here. All mathematical
details, however, can be found in [18] for cylinders moving in
the axial direction and in [19] for rotating axisymmetric objects.
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RAFFETTO ET AL. 3

As it was pointed out in the Introduction, we are interested in
electromagnetic problems involving media in motion. In order
to retain the possibility to deal with time-harmonic fields, we
will consider problems in which the boundaries of the moving
objects are stationary [25]. Since all moving media are perceived
as bianisotropic [25, 26], the formulation of the problem of
interest is the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl H − j𝜔D = Je in Ω,

curl E + j𝜔B = −Jm in Ω,

D = 𝜀E + 𝜉 H in Ω,

B = 𝜁 E + 𝜇H in Ω,

H × n −Y (n × E × n) = fR on Γ,

(1)

where Ω is the domain in which the problem is formulated
and Γ is its boundary. Most of the other symbols are stan-
dard. 𝜀, 𝜉, 𝜁 and 𝜇 denote the constitutive parameters of the
bianisotropic media we have to deal with in one of their four
possible notations [34] (pp. 4-9), [32] (Section 5). The previ-
ous formulation is based on Maxwell curl equations, constitutive
relations and boundary conditions, as it is usually the case [18,
19]. It is written by using the notation usually adopted for three-
dimensional problems and, due to its generality, it can refer to
open (radiation or scattering) or cavity problems [19]. However,
it can be easily modified to manage cylindrical objects moving
in the axial direction by considering two-dimensional domains
and three-dimensional fields, as it is shown in [18].

It is very well known how to establish the well-posedness
of this kind of problems under very weak and non-restrictive
hypotheses. The details can be found in [19] and [18].

The same problem is considered in the presence of all media
at rest, as discussed in [21]. In this case the problem formulation
is the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl H0 − j𝜔D0 = Je in Ω,

curl E0 + j𝜔B0 = −Jm in Ω,

D0 = 𝜀0 E0 in Ω,

B0 = 𝜇0 H0 in Ω,

H0 × n −Y (n × E0 × n) = fR on Γ,

(2)

where 𝜀0 and 𝜇0 denote the constitutive parameters of the media
involved in (1) when they are at rest (and then we assume that
they are at most anisotropic in their rest frame).

Under these simpler conditions the well-posedness of prob-
lem (2) can be proven [35].

As a consequence of the well-posedness of problems (1) and
(2), the difference fields E − E0 and H − H0 exist, are unique
and depend continuously on the source terms Je , Jm and fR, for
almost all applications. They are a direct consequence of motion
since they become zero if media at rest are considered for (1).
For this reason, they are of particular interest for this study. In
particular, the goal of this manuscript is to define techniques

for the reliable evaluation of them, when the media involved
in problem (1) are in motion with velocity values of interest in
most engineering applications, which are very small fractions
of the speed of light in vacuum. On the other hand, when
motion takes place at very large velocities and the indicated well-
posedness results still apply [18, 19], there is no need to look
for such techniques. As a matter of fact, under the indicated
conditions, the solution of problem (1) is significantly affected
by motion and the difference field can be calculated in a very
reliable way even by using approximations of the solutions of
problems (1) and (2). This simple approach, which calculates the
difference of solutions, was adopted in our former manuscripts
dealing with the reconstruction of velocity profiles [20, 21, 29].

3 ALTERNATIVE FORMULATIONS
FOR THE DIRECT CALCULATION OF
THE DIFFERENCE FIELDS

The simple approach described above, which was adopted in
several of our former manuscripts, suffers from severe limita-
tions even for velocity values considered large in engineering
applications. This is essentially due to the fact that the cal-
culations of difference fields become unreliable, when the
effects of motion are small, even in the presence of very good
approximations of the single solutions of problems (1) and (2).

The indicated difficulties were noticed in our former publi-
cations related to the reconstruction of velocity profiles [20, 21,
29]. They will be fully analyzed in Section 6, where comparisons
of the results obtained by different techniques will be presented.

Using a mix of well known results [23, 36, 37], it is possible to
deduce alternative approximate formulations having the differ-
ence fields as unknowns. These formulations are based on Born
approximations [23] (Sec. 10.2.B, pp. 464–465), [36] (Sec. 10.4,
pp. 388–397) of an alternative formulation of the electromag-
netic problems of interest, which is obtained by the so called
volume equivalent theorem [37] (Sec. 7.7, pp. 327–328).

In particular, as discussed in [21], from problems (1) and (2),
we can deduce:

⎧⎪⎨⎪⎩

curl (H − H0) − j𝜔
(
𝜀E + 𝜉 H − 𝜀0 E0

)
= 0 in Ω,

curl (E − E0) + j𝜔
(
𝜁 E + 𝜇H − 𝜇0 H0

)
= 0 in Ω,

(H − H0) × n −Y
(
n × (E − E0) × n

)
= 0 on Γ.

(3)
It is very common, in order to deal with scattering problems [37]
(p. 328), to add j𝜔𝜀0 E − j𝜔𝜀0 E to the first equation of (3) and
j𝜔𝜇0 H − j𝜔𝜇0 H to the second one. In this way we get:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

curl (H − H0)+

− j𝜔
(
𝜀E + 𝜉 H − 𝜀0 E0 + 𝜀0 E − 𝜀0 E

)
= 0 in Ω,

curl (E − E0)+

+ j𝜔
(
𝜁 E + 𝜇H − 𝜇0 H0 + 𝜇0 H − 𝜇0 H

)
= 0 in Ω,

(H − H0) × n −Y
(
n × (E − E0) × n

)
= 0 on Γ.

(4)
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4 RAFFETTO ET AL.

Then we deduce

⎧⎪⎨⎪⎩

curl (H − H0) − j𝜔𝜀0(E − E0) = Je,eq in Ω,

curl (E − E0) + j𝜔𝜇0(H − H0) = −Jm,eq in Ω,

(H − H0) × n −Y
(
n × (E − E0) × n

)
= 0 on Γ,

(5)

where

Je,eq = j𝜔
(
𝜀 − 𝜀0

)
E + j𝜔𝜉 H (6)

and

Jm,eq = j𝜔
(
𝜇 − 𝜇0

)
H + j𝜔𝜁 E (7)

are, in this more general context involving media in motion
(and, then, bianisotropic materials), the well known volume
equivalent electric and magnetic current densities [37] (p. 328).
The two equivalent sources Je,eq and Jm,eq retain most of the fea-
tures of the original approach [37] (p. 328). In particular, they
are different from zero in the region occupied by the media in
motion [21]. As a matter of fact 𝜀 − 𝜀0, 𝜉, 𝜇 − 𝜇0 and 𝜁 are
different from zero in the domain occupied by those media.
Moreover, from problem (5) we deduce that they radiate in the
presence of all media at rest [21].

From this perspective problem (5) is like problem (2). Then,
by using again classical results [35], it is well posed and, in par-
ticular, its solution (that is the difference fields E − E0 and H −
H0 of interest) depends continuously on the equivalent sources.

These sources are unknown unless the solution of prob-
lem (1) is known [37] (p. 328). However, as it has already
been pointed out, for velocity values of interest in engineering
applications the difference fields E − E0 and H − H0 are very
small [18] (for cylinders moving in the axial direction), [19] (for
rotating axisymmetric objects).

Then, by exploiting the indicated continuous dependence of
the solution on the sources, we can get a very good approxi-
mation of the solution of problem (5), the so-called first-order
Born approximation [23] (Sec. 10.2.B, pp. 464-465), [36]
(Sec. 10.4, pp. 388-397), by replacing the equivalent sources Je,eq

and Jm,eq by, respectively:

Je,eq,a1 = j𝜔
(
𝜀 − 𝜀0

)
E0 + j𝜔𝜉 H0, (8)

and

Jm,eq,a1 = j𝜔
(
𝜇 − 𝜇0

)
H0 + j𝜔𝜁 E0. (9)

The approximate solution obtained in this way will be denoted
by (E − E0)ba1 and (H − H0)ba1.

Once these approximating fields are available, we can get
a second-order Born approximation, (E − E0)ba2 and (H −
H0)ba2, by solving problem (5) with the following approximate
equivalent sources:

Je,eq,a2 = j𝜔
(
𝜀 − 𝜀0

)(
(E − E0)ba1 + E0

)
+

+ j𝜔𝜉
(

(H − H0)ba1 + H0
)
, (10)

and

Jm,eq,a2 = j𝜔
(
𝜇 − 𝜇0

)(
(H − H0)ba1 + H0

)
+

+ j𝜔𝜁
(

(E − E0)ba1 + E0
)
. (11)

Higher-order Born approximations can be obtained in an anal-
ogous way. As it will be pointed out in Section 6, there is no
practical need to consider orders higher than the second. How-
ever, in order to deduce this result, in Section 6, we will also
consider the third order approximation.

The proposed approaches do not suffer from the difficul-
ties described above which affect the reliability of the method
based on the computation of the difference of the solutions
of problems (1) and (2). In particular, the accuracy of the
approximations of the difference fields achieved in these ways
improves as the largest value of the velocity field becomes
smaller.

It is interesting to observe that the new approach based on
the first-order Born approximation requires the solution of two
problems, like the original and unsatisfactory approach that cal-
culates the difference between the solutions of problems (1) and
(2). As a matter of fact, problem (2) has to be solved to find
E0 and H0 and these fields allow us to determine Je,eq,a1 and
Jm,eq,a1 which, in turn, are necessary to approximate the differ-
ence fields of interest by solving problem (5) with the indicated
approximate current densities.

In general, the n-th-order Born approximation requires the
solution of n + 1 problems.

Problems (1), (2) and (5) can be formulated in alternative
equivalent [38] ways. We recall the variational formulation for
Problem (1) because it is the most general of the three.

Let U be the space where one looks for the solutions. We
have [19]:

U = HL2,Γ(curl, Ω) = {v ∈ H (curl, Ω) | v × n ∈ L2
t (Γ)},

(12)
where

H (curl, Ω) = {v ∈ (L2(Ω))
3 | curl v ∈ (L(Ω))3}, (13)

and

L2
t (Γ) = {v ∈ (L2(Γ))

3 | v ⋅ n = 0 almost everywhere on Γ}.
(14)

(L2(Ω))3 is the usual Hilbert space of complex-valued square
integrable vector fields on Ω with scalar product given by
(u, v)0,Ω = ∫

Ω
v∗u dV (∗ denotes the conjugate transpose).

(L2(Γ))3 is defined in an analogous way on Γ.
The variational formulation of Problem (1) is [19]:
Given𝜔 > 0, Je ∈ (L2(Ω))3, Jm ∈ (L2(Ω))3 and fR ∈ L2

t (Γ),
find E ∈ U such that

a(E, v) = l (v) ∀v ∈ U , (15)
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RAFFETTO ET AL. 5

where

a(u, v) =
(
𝜇−1 curl u, curl v

)
0,Ω

− 𝜔2
(

(𝜀 − 𝜉𝜇−1𝜁) u, v
)

0,Ω
+ j𝜔

(
𝜇−1𝜁 u, curl v

)
0,Ω

(16)

− j𝜔
(
𝜉𝜇−1 curl u, v

)
0,Ω

+ j𝜔
(
Y (n × u × n), n × v × n

)
0,Γ
,

and

l (v) = − j𝜔
(
Je, v

)
0,Ω

−
(
𝜇−1 Jm, curl v

)
0,Ω

+ j𝜔
(
𝜉𝜇−1 Jm, v

)
0,Ω

− j𝜔(fR, n × v × n)0,Γ. (17)

The corresponding variational formulations of Problems (2)
and (5), which are the same apart from the obvious differences
in the source terms, are simpler because the addends involving
𝜁 or 𝜉 are not present. Finally, the variational formulations for
problems involving cylindrical objects moving in axial direction
can be found in [18]. The simpler formulations of Problems (2)
and (5) in the presence of cylinders at rest can be deduced as
indicated above because some of the terms of the variational
formulation shown in [18] are trivial.

4 IMPLEMENTATION OF THE
METHODOLOGY USING FINITE
ELEMENT METHODS

The approach proposed in Section 3 places no restrictions on
the method used to calculate the solutions of the different prob-
lems.

In practice, however, most of the times the solutions of the
problems presented in Sections 2 and 3 will be computed by
numerical methods.

Although we can use any numerical method, in the following
we will specifically refer to the finite element method for which
results of convergence [39] (p. 112) were established in [19] and
[18], for problems involving media in motion, or, for example,
in [35] for problems in which all media are at rest.

By introducing a triangulations h of Ω and a specific finite
element on it one can then refer to a finite dimensional subspace
Uh of U to evaluate the so-called Galerkin approximation [35].
As usual, h denotes the maximum diameter of all elements of
the triangulation [40] (p. 131).

We will denote by Eh and Hh the approximate finite element
solution of problem (1) [18, 38]. E0,h and H0,h will refer to the
finite element approximation of the solution of problem (2). In
this way, the difference field is approximated as Eh − E0,h and
Hh − H0,h.

On the other hand, from E0,h and H0,h approximate
equivalent sources for the first-order Born approximation are

obtained:

Je,eq,a1,h = j𝜔
(
𝜀 − 𝜀0

)
E0,h + j𝜔𝜉 H0,h, (18)

and

Jm,eq,a1,h = j𝜔
(
𝜇 − 𝜇0

)
H0,h + j𝜔𝜁 E0,h. (19)

By a finite element simulator we can then solve problem (5) with
the equivalent sources Je,eq and Jm,eq replaced by, respectively,
Je,eq,a1,h and Jm,eq,a1,h.

In this way, by a two-step procedure we get the finite element
solution of the first-order Born approximation (E − E0)ba1,h,
(H − H0)ba1,h.

In order to get the finite element solution of the second-order
Born approximation, (E − E0)ba2,h and (H − H0)ba2,h, one can
calculate the following equivalent sources:

Je,eq,a2,h = j𝜔
(
𝜀 − 𝜀0

)(
(E − E0)ba1,h + E0,h

)
+

+ j𝜔𝜉
(

(H − H0)ba1,h + H0,h
)
, (20)

and

Jm,eq,a2,h = j𝜔
(
𝜇 − 𝜇0

)(
(H − H0)ba1,h + H0,h

)
+

+ j𝜔𝜁
(

(E − E0)ba1,h + E0,h
)
, (21)

and solve once more problem (5), with the indicated equivalent
sources, by a finite element simulator.

In Section 6, it will be shown that the new approaches,
even for the first order of the Born approximation, guaran-
tee reliable results for the difference fields for a huge range
of velocity values and that, in particular, they can be used to
estimate the effects of motion on the electromagnetic field for
all problems of practical interest involving moving objects with
stationary boundaries.

For the indicated reason, we do not worry about the con-
vergence of the Born approximations of order n, that is of
(E − E0)ban to E − E0 and (H − H0)ban to H − H0 (in the
appropriate norms), as n →∞. By the same token, we are not
worried by the lack of convergence of (E − E0)ban,h to E − E0
and (H − H0)ban,h to H − H0 as h goes to 0, when one consid-
ers a sequence of finer and finer meshes, for any fixed order of
the Born approximation.

5 ADDITIONAL CONSIDERATIONS
ON THE EFFECTS OF MOTION FOR
CYLINDERS MOVING IN THE AXIAL
DIRECTION

In order to validate the proposed approach it is convenient to
consider problems with analytical solution. We can choose from
a limited set of alternatives, which include cylinders moving in
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6 RAFFETTO ET AL.

the axial direction [12, 17] or rotating spheres [8] in free space.
The former class, in the presence of incident fields having TE
or TM polarizations, gives crucial additional advantages with
respect to the latter because, due to a clear separation of the
effects of motion on the different components of the scattered
field, it allows for a deeper understanding of the way the new
approach works.

For this reason, in the following we will refer to electromag-
netic scattering problems involving cylinders moving in the axial
direction, made up of isotropic materials (in their rest frames)
and illuminated by time-harmonic uniform plane waves which
propagate in the plane orthogonal to the cylinder axis. Without
loss of generality, the cylinders axes will always be the z-axis and
the impinging waves will always propagate along directions lying
in the (x, y) plane. Moreover, we will consider incident fields
having a TM polarization (for a TE polarization the conclusions
could be deduced in an analogous way). Finally, analytical tech-
niques can solve problems with multilayer cylinders when each
layer has a constant axial velocity value [17]. However, since,
on the one hand, the focus of this study is on the effects of
motion when the axial speed is not relativistic and, on the other
hand, no difficulty arises if the cylinders are multilayer [17, 18],
in the following we will consider problems involving homoge-
neous cylinders moving in the axial direction with a uniform
axial velocity vz ∈ ℝ, vz ≠ 0. We will refer to this quantity, as

usual, by considering 𝛽 =
vz

c0
, where c0 is the speed of light in

vacuum.

Remark 1. The consideration of homogeneous cylinders in
uniform motion in the axial direction allows us to reduce the
mathematical formalism. However, it is important to point
out that the next analysis holds true under much weaker
hypotheses and applies, for example, to problems involving
inhomogeneous media in motion with non-constant velocity
fields [18].

Problems of the considered class have some interesting prop-
erties. We recall a couple of them which are crucial for our next
developments:

∙ the tensor fields (𝜀 − 𝜀0), 𝜉, (𝜇 − 𝜇0) and 𝜁 have all
xz, yz, zx, yz, zz entries equal to zero (see [21], equations (19)
and (20)), so that they process just the transverse x and y

components of fields and determine the x and y compo-
nents of the equivalent current densities (see any of equations
(6)-(21)),

∙ the tensor fields (𝜀 − 𝜀0) and (𝜇 − 𝜇0) present a common
factor 𝛽2 while 𝜉 and 𝜁 depend on 𝛽, for small values of 𝛽
(see [21], equations (19), (20) and the comment just above
equations (21)),

∙ in the presence of cylinders at rest made up of isotropic
materials a transverse electric (respectively, magnetic) cur-
rent density determines a solution having a trivial TM
(respectively, TE) part of the solution and a non-trivial
TE part (respectively, TM) [37] (see also [21], below
equation (28)).

The last of the above considerations implies that in the presence
of a TM illumination the solution E0, H0 of problem 2 has only
the TM part, that is:

E0,x = E0,y = H0,z = 0, (22)

while the other components, E0,z , H0,x and H0,y are, in general,
different from zero. The same conclusions apply to E0,h, H0,h
[41].

In the following we will use a more compact notation for a
vector A:

A = Ax
‚x + Ay

‚y + Az
‚z = At + Az

‚z. (23)

It is now clear that Equation (22) implies E0,t = 0. Moreover,
by the first item of the previous list (𝜀 − 𝜀0)E0,z

‚z = 0 and
𝜁 E0,z

‚z = 0. Then:

Je,eq,a1 = j𝜔
(
𝜀 − 𝜀0

)
E0 + j𝜔𝜉 H0 = (24)

= j𝜔
(
𝜀 − 𝜀0

)
E0,t + j𝜔𝜉 H0,t = j𝜔𝜉 H0,t ,

and

Jm,eq,a1 = j𝜔
(
𝜇 − 𝜇0

)
H0 + j𝜔𝜁 E0 = (25)

= j𝜔
(
𝜇 − 𝜇0

)
H0,t + j𝜔𝜁 E0,t = j𝜔

(
𝜇 − 𝜇0

)
H0,t .

The same conclusion applies to Je,eq,a1,h and Jm,eq,a1,h. We will
not repeat this statement later on since our next conclusions
will also apply to the corresponding finite element quantities
(current densities or fields).

Since E0 and H0 are independent of 𝛽 by definition, the sec-
ond item of the previous list guarantees that the (L2(Ω))2 norm
of Je,eq,a1 is controlled by 𝛽, at least for small values of 𝛽. As
a matter of fact, from Equation (24) and taking account of the
properties of 𝜉 we deduce:

‖Je,eq,a1‖(L2(Ω))2 = ‖𝜔𝜉 H0,t‖(L2(Ω))2 ≤ C𝛽, (26)

where C is a real constant independent of 𝛽. Analogously,
Jm,eq,a1 is controlled by 𝛽2, for small values of 𝛽.

Then, by the linearity of problem (5), the continuous depen-
dence of its solution on the sources and the property recalled in
the third item of the previous list we deduce:

∙ the norms of (E − E0)ba1,z and (H − H0)ba1,t are controlled
by 𝛽2,

∙ the norms of (H − H0)ba1,z and (E − E0)ba1,t are controlled
by 𝛽.

Now from Equations (10) and (11) we get

Je,eq,a2 = j𝜔
(
𝜀 − 𝜀0

)(
(E − E0)ba1 + E0

)
+

+ j𝜔𝜉
(

(H − H0)ba1 + H0
)
=
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RAFFETTO ET AL. 7

= j𝜔
(
𝜀 − 𝜀0

)
E0 + j𝜔𝜉 H0+

+ j𝜔
(
𝜀 − 𝜀0

)
(E − E0)ba1 + j𝜔𝜉 (H − H0)ba1 =

= Je,eq,a1+ (27)

+ j𝜔
(
𝜀 − 𝜀0

)
(E − E0)ba1 + j𝜔𝜉 (H − H0)ba1

= Je,eq,a1+

+ j𝜔
(
𝜀 − 𝜀0

)
(E − E0)ba1,t + j𝜔𝜉 (H − H0)ba1,t .

In an analogous way we deduce:

Jm,eq,a2 =Jm,eq,a1+ (28)

+ j𝜔
(
𝜇 − 𝜇0

)
(H − H0)ba1,t + j𝜔𝜁 (E − E0)ba1,t .

One then obtains that the L2 norm of Je,eq,a2 − Je,eq,a1 is con-
trolled by 𝛽3 whereas the same norm of Jm,eq,a2 − Jm,eq,a1

presents a term which depends on 𝛽4 and another one which
is controlled by 𝛽2 (the overall dependence of Jm,eq,a2 − Jm,eq,a1

is then on 𝛽2).
Again, by the properties of problem (5) recalled above, we

can say that

∙ the norms of (E − E0)ba2,z − (E − E0)ba1,z and (H −

H0)ba2,t − (H − H0)ba1,t are controlled by 𝛽2,
∙ the norms of (H − H0)ba2,z − (H − H0)ba1,z and (E −

E0)ba2,t − (E − E0)ba1,t are controlled by 𝛽3.

From these considerations we deduce that the Born approxi-
mation of the second order provides negligible corrections to
(H − H0)ba1,z and (E − E0)ba1,t obtained by the Born approxi-
mation of the first order, when 𝛽 is small. On the contrary, it
provides significant corrections, proportional to 𝛽2, on (E −
E0)ba1,z and (H − H0)ba1,t , which have norms of the same
order of magnitude of the rectifications. In other words, the
Born approximation of the first order is not reliable for all com-
ponents of the difference field, no matter how small 𝛽 is. It is
reliable just for the TE part of such a field. On the contrary,
the Born approximation of the second order is fully reliable for
both, for small values of 𝛽.

Without going into the details it is easy to verify with some
additional steps that the Born approximation of the third
order provides in any case negligible corrections to the results
obtained by the Born approximation of the second order, when
𝛽 is small: as a matter of fact such corrections are proportional
to 𝛽4 on the TM part and to 𝛽3 on the TE part.

These results prove that in order to fully understand the
effects of motion it is convenient to consider at least a second-
order Born approximation. Moreover, they suggest that there is
no practical need to consider a third order Born approximation,
for small values of 𝛽.

Remark 2. One could expect that just the first order effects of
motions are important in practice. However, this is not always

the case. For example, for applications related to the recon-
struction of velocity profiles one could use sensors measuring
single electromagnetic field components. As a consequence, it
could happen, as we have shown for cylinders moving in the
axial direction, to be forced to deal with components affected
by motion by second order effects. This is the reason why first
and second order effects are carefully analyzed in this work. By
the same token, higher order effects are not studied in details
because the authors of this manuscript are not aware of applica-
tions of practical interest in which components are affected by
motion just by n-th order effects, with n > 2.

6 NUMERICAL RESULTS

A useful byproduct of our former analysis is that the compar-
ison of the numerical results can be carried out by presenting
figures related just to the axial components (E − E0)z and
(H − H0)z or to their approximations. As a matter of fact, the
transverse parts of the difference fields share their properties
with the axial ones. In particular, for our problems H0,z = 0 and
H0,h,z = 0 so that (H − H0)z = Hz and Hh,z − H0,h,z = Hh,z .

Let us now consider some specific examples. According to
our previous considerations, in the following we will present
results obtained when cylinders are homogeneous, have a circu-
lar cross section and are illuminated by a TM-polarized uniform

plane wave propagating in vacuum with Einc = ‚ze j2𝜋 f
√
𝜇0𝜀0y,

where f = 1 GHz (the factor e j𝜔t is assumed and suppressed,
as usual).

Cylinders will be made up of isotropic media characterized
in their rest frame by 𝜇 = 𝜇0, 𝜎 = 0 [18], 1 < 𝜀r ≤ 2. The

wavelength in such media will be in the range [
𝜆0√

2
, 𝜆0), with

𝜆0 = 0.299792458 m. 𝛽 will belong to (0,
1√
𝜀r

) (the indications

would be the same if 𝛽 assumed negative values with magnitude
in the indicated range). The radius of cylinders is in any case

Rc =
𝜆0√

2
.

For all our examples the domain will be a disk, having a radius
Rd = 14Rc , which is almost equal to 10𝜆0. All finite element
solutions will be computed by using a first-order Lagrangian
approximation for the axial component of the unknown field
and a first-order edge element approximation for its transverse
part [18, 41]. We will use almost uniform meshes with p con-
centric circles. An example obtained for p = 20 is shown in
Figure 1. We will always choose the number p in such a way
that the meshes will have about 14 elements per wavelength.
This number is slightly larger than the usual value, which is equal
to 10 for first-order finite element approximations. Our choice
is useful to limit the errors due to finite element discretizations
and ease the analysis of the approximations introduced by the
Born approximations of order 1 and 2.

In the following we will present comparisons among the
results obtained by the difference of finite element solutions
of problems (1) and (2) (Eh,z − E0,h,z or Hh,z − H0,h,z ), by
the difference of semi-analytical solutions [12] of the same
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8 RAFFETTO ET AL.

FIGURE 1 An example of the quasi-uniform meshes used in our
simulations. It was obtained for p = 20.

problems or directly by finite element solutions of Born approx-
imations of order one ((E − E0)ba1,h,z or ((H − H0)ba1,h,z ) and
two ((E − E0)ba2,h,z or (H − H0)ba2,h,z ).

Finite element solutions are usually computed by iterative
solvers [42] (p. 307). Since we are interested in the calculation of
small quantities the stopping criterion and the involved param-
eters are particularly important. We will adopt “criterion 2” of
[43] (p. 60), with a residual 𝛿 = 10−n, n ∈ {8, 12}. These val-
ues slightly extend the range usually adopted for computations
with double precision arithmetic (e.g. [43] (pp. 58–60) suggests
the range [9,12]) to get clearer indications of the effects of this
parameter. Some additional details about the stopping criterion
can be found in [41].

On the contrary, the unknown coefficients of all semi-
analytical expansions of the solutions are calculated by direct
methods and then they will not be affected by 𝛿.

In the first set of simulations we consider a cylinder with
𝜀r = 2 in its rest frame, for different values of 𝛽 = 10−m , m ∈
{1, 2, 3, … , 11, 12}. n is set to 12 and p to 196.

The numerical results for the axial component of the mag-
netic field are almost the same for m ∈ {1, 2, 3, … , 10, 11}.
Moreover, they are very good approximations of the corre-
sponding semi-analytical solutions. Instead, for m = 12, that
is for m ≥ n, Hh,z − H0,h,z is corrupted by numerical noise,
whereas the other three solutions retain the same features as for
m < 12. The wrong results of Hh,z − H0,h,z , which in this case
are not of interest for its practical implications since the axial
velocities are smaller than 0.3 mm per second, are due to the fact
that |Hz | is smaller than the main TM component of the solu-
tion by a factor equal to 𝛽. Since it is equal to 10−12, it is of the
same order of magnitude of 𝛿 = 10−12 and there is no guarantee
that the iterative solver will compute it in a reliable way.

FIGURE 2 Approximations of |(E − E0 )z | along the x axis for
𝛽 = 10−5, 𝛿 = 10−12, p = 196 and 𝜀r = 2. The result obtained by computing
the difference of semi-analytical solutions are well approximated by
(E − E0 )ba2,h,z and Eh,z − E0,h,z , even though the latter has spurious
oscillations where the effects of motions are smaller. Instead, (E − E0 )ba1,h,z
presents errors of the same order of magnitude of the quantity it has to
approximate, as theoretically expected.

This behaviour was already pointed out in [41] (see Figure 5
of that paper). For this reason we do not present any
figure related to these results.

On the contrary, the results on the effects of motion on
the axial component of the electric field are different and new.
For example, the fields Eh,z − E0,h,z are completely overlapped
to the corresponding solutions obtained by the Born approx-
imation of order 2 for m ∈ {1, 2, 3, 4}. Both are very good
approximations of the differences of semi-analytical solutions.
For m = 5 Eh,z − E0,h,z presents errors which are not negligible,
while the second-order Born approximation and the difference
of semi-analytical solutions retain the same features they had for
m ≤ 4. Figure 2 presents the magnitudes of the results obtained
in this case along the x axis. All plots have an even symmetry
and just the data for x ≥ 0 are reported.

Eh,z − E0,h,z becomes totally unreliable for m ≥ 6 and the
other comparisons become more challenging. This is because
the difference of semi-analytical solutions is slightly corrupted
by numerical noise when m = 6, is significantly affected by noise
when m = 7, becomes totally unreliable when m = 8 (but it is
still different from zero) and is equal to zero when m ≥ 9. The
results for the case m = 8 are shown in Figure 3.

The behaviours of the differences of semi-analytical solutions
change with 𝛽 because the effects of motion on the axial com-
ponent of the electric field get smaller and smaller, by a factor
𝛽2, with respect to the main TM component of the field and
no algorithm based on double precision arithmetic can reliably
calculate such effects when 𝛽 ≤ 10−8.

The Born approximations, instead, have the expected
behaviours for all values of m considered. In particular, (E −
E0)ba2,h,z , as it has already been pointed out, approximate very
well the differences of semi-analytical solutions when they are
reliable (for m ≤ 6; see Figure 2) and gets smaller and smaller
with 𝛽, by a factor equal to 𝛽2, for the other values of m. For
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RAFFETTO ET AL. 9

FIGURE 3 Approximations of |(E − E0 )z | along the x axis for
𝛽 = 10−8, 𝛿 = 10−12, p = 196 and 𝜀r = 2. Eh,z − E0,h,z is clearly completely
unreliable in this case. The difference of semi-analytical solutions is unreliable,
too. In particular, it is evidently corrupted by numerical noise and, moreover, it
is not 106 times smaller than the corresponding plot shown in Figure 2, as it
should be. Instead, (E − E0 )ba2,h,z and (E − E0 )ba1,h,z look the same as the
corresponding plots reported in Figure 2, with the correct scaling.
(E − E0 )ba1,h,z has the usual expected problem.

example, the magnitude of (E − E0)ba2,h,z in Figure 3 has the
same behaviour as that of Figure 2, apart from the factor 10−6.

Finally, first-order Born approximation share most of the
features of the second-order one but presents errors on (E −
E0)ba1,h,z of the same order of magnitude of the field itself,
as it is theoretically expected for cylinders moving in the axial
direction under a TM illumination.

The first set of simulations points out that the second-
order Born approximation is not only better than the classical
numerical approach which calculates Eh,z − E0,h,z but it is also
more reliable than the approach based on the calculation of
the difference of semi-analytical solutions, for 𝛽 ≤ 10−8. With
an additional simulation (with 𝛽 = 3.336 10−8) we have veri-
fied that this is true for velocity values up to 10 [m s −1], a
large velocity value for many applications. Moreover, the Born
approximations are reliable for a huge range of velocity values,
spanning 11 decades. The new approach was expected to be able
to deal very well with small values of 𝛽. It is a surprise, instead,
its reliability for 𝛽 of the same order of magnitude of its physical
upper bound (≃ 0.707) or of the upper bound for which a well-
posedness result for the scattering problem at hand is available
(𝛽 ≃ 0.26; see [18]).

For most applications users of finite element simulators do
not have to worry about the values of the parameters of the
algebraic solvers. Unfortunately, the lack of control on param-
eters like 𝛿 could have very bad consequences on the reliability
of the calculation of interest in this paper. In order to show
them, we repeat our analysis by setting n = 8 (𝛿 = 10−8). Such
a change does not affect semi-analytical solutions. However,
all finite element solutions are affected in a very significant
way. From the considerations reported above one can deduce
that Hh,z − H0,h,z is reliable just when m < n, that is for m ∈
{1, 2, 3, … , 6, 7}, whereas (H − H0)ba2,h,z and (H − H0)ba1,h,z

FIGURE 4 Approximations of |(H − H0 )z | = |Hz | along the x axis for
𝛽 = 10−9, 𝛿 = 10−8, p = 196 and 𝜀r = 2. Hh,z − H0,h,z = Hh,z is clearly
unreliable in this case. Instead, (H − H0 )ba2,h,z and (H − H0 )ba1,h,z
approximate very well the semi-analytical solution.

FIGURE 5 Approximations of |(E − E0 )z | along the y axis for 𝛽 = 10−4,
𝛿 = 10−8, p = 196 and 𝜀r = 2. The result obtained by computing the
difference of semi-analytical solutions is well approximated by (E − E0 )ba2,h,z .
(E − E0 )ba1,h,z is affected by errors of the same magnitude of the field it has to
approximate, as usual. Finally, Eh,z − E0,h,z is completely wrong.

have satisfactory behaviours for all values of m. Figure 4
presents for example the effects of motion on the axial com-
ponent of the magnetic field along the x axis, when m = 9. It
shows that Born approximations of order 1 and 2 give very
good results, with negligible differences between them, whereas
Hh,z − H0,h,z is wrong. It is interesting to observe that, for
cylinders moving in the axial direction illuminated by a TM
polarized wave, such results are not so wrong as those related
to the electric field, when the conditions for reliability are not
verified. This is because for the magnetic field we do not have
to calculate any difference since H0,h,z = 0.

A reduction of n has also a significant impact on our capa-
bility to estimate the effects of motion on the axial component
of the electric field. For example, Eh,z − E0,h,z is totally unre-
liable for all values of m ≥

n

2
= 4. Figure 5 reports the effects
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10 RAFFETTO ET AL.

FIGURE 6 Behaviour of |Eh,z | and |E0,h,z | and of the corresponding
semi-analytical solutions along the y axis for 𝛽 = 10−4, 𝛿 = 10−8, p = 196 and
𝜀r = 2. The two numerical results are completely overlapped. The same holds
true for the two semi-analytical solutions.

of motion on the axial component of the electric field along the
y axis when m = 4. It is interesting to observe that the errors
affecting Eh,z − E0,h,z in Figure 5 are much larger than those
shown in Figure 2 for the same component, even though the
velocity is ten times larger and should guarantee better results.
This is simply due to the different values of n adopted in the
two simulations.

As for (E − E0)ba2,h,z and (E − E0)ba1,h,z , they are correct
for m ≤ n + 1, that is for m ∈ {1, 2, 3, … , 8, 9} (even though the
order one presents the usual error of the same order of 𝛽2).
Both of them are contaminated by numerical noise for m ∈
{10, 11, 12} because the considered component is too small,
with respect to the transverse ones, to be computed in a reli-
able way by iterative solvers with the selected value of n. We
can then deduce that even with n = 8 the second-order Born
approximation provides the same quality of results which can
be obtained by the difference of semi-analytical solutions, for all
values of 𝛽. However, any additional reduction of n has dramatic
effects because the second-order Born approximation cannot
provide reliable results for (E − E0)ba2,h,z when 𝛽 ≤ 10−(n+2),
that is when |vz | is up to 3 108−(n+2) [m s −1]. It is clear that
such a range includes impressive axial velocity values for small
values of n (n ≥ 1).

The results of this new set of simulations indicate that it is
not a good idea to reduce the computational time required by
finite element simulators by using small values of n, for the type
of applications of interest in this manuscript.

For the specific case m = 4 it could be useful to analyze the
behaviour of the finite element component Eh,z and to com-
pare it with E0,h,z and with the corresponding semi-analytical
components. In Figure 6, it can be observed that the two finite
element plots are completely overlapped and that the same
happens for the two plots of the semi-analytical solutions.

Moreover, the order of magnitude of the components is 108

times larger than that of their differences, which are reported in
Figure 5. The plots in Figures 5 and 6 allow us to understand,

FIGURE 7 Approximations of |(H − H0 )z | = |Hz | along the x axis for
𝛽 = 10−7, 𝛿 = 10−8, p = 140 and 𝜀r = 1.01. Hh,z − H0,h,z = Hh,z is clearly
unreliable in this case. Instead, (H − H0 )ba2,h,z and (H − H0 )ba1,h,z
approximate very well the semi-analytical solution.

on the one hand, the reason for the unreliability of the classical
numerical approach which calculates Eh,z − E0,h,z and the need
for a new way to deal with the problem. On the other hand,
they explain why the Born approximations are able to provide
exceptionally good results.

The cylinders considered so far are all characterized by 𝜀r −
1 = 1. Since the dielectric parameters of the media in motion
have important consequences on the motion effects, in the third
and last set of simulations we study the scattering by cylinders
having 𝜀r = 1.01, so that 𝜀r − 1 = 0.01. Such a value could be of
interest when the medium in motion is, for example, a gas [28].
The mesh for all these cases is obtained by setting p = 140, in
order to have again about 14 elements per wavelength.

Figure 7 shows the behaviour of |(H − H0)z | = |Hz | along
the x axis for 𝛽 = 10−7 and 𝛿 = 10−8. The small density of the
scatterer is a big problem for the traditional approach based on
the direct calculation of Hh,z , in spite of the large velocity value
considered (about 30 m/s) and of a significant first order effect
of motion on such a component. This unreliability is like the one
shown in Figure 4 for the same component and is due to the fact
that the quantity of interest is of the same order of magnitude
(in both figures the largest magnitude is about 2 10−12 [A/m]).
The effects of a much larger velocity value are balanced by a
much small value of 𝜀r − 1 of the scatterer. On the contrary,
(H − H0)ba2,h,z and (H − H0)ba1,h,z approximate very well the
semi-analytical solution.

The results for |(E − E0)z | along the y axis for 𝛽 = 10−6 and
𝛿 = 10−12 are reported in Figure 8. It shows that the usual finite
element approach provides unreliable results. Also the differ-
ence between semi-analytical solutions is slightly corrupted by
numerical noise, especially where it assumes small values. On the
contrary, the two Born approximations provide the best results.
It is important to observe that, in this case, the first-order Born
approximation is not affected by errors as it was the case for
scatterers with larger values of 𝜀r .

The reduced effects of motion for small values of 𝜀r −
1 can be easily understood by a more traditional Born
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RAFFETTO ET AL. 11

FIGURE 8 Approximations of |(E − E0 )z | along the y axis for
𝛽 = 10−6, 𝛿 = 10−12, p = 140 and 𝜀r = 1.01. The result obtained by
computing the difference of semi-analytical solutions is corrupted by noise
where the magnitudes are small. The two Born approximations, (E − E0 )ba2,h,z
and (E − E0 )ba1,h,z provide the same results, in this case, and are the most
reliable solutions. Finally, Eh,z − E0,h,z is completely wrong.

approximation. As a matter of fact, the field H0,t , which appears
in equations (24) and (25), can be thought as the superposition
of the incident and the scattered field [37] (p. 328)

H0,t = Hinc,t + H0,sc,t , (29)

where the scattered field is generated by the equivalent source
[37] (p. 328)

Je,eq,standard = j𝜔𝜀0(𝜀r − 1)E0. (30)

For small values of 𝜀r − 1 and limited extensions of the scat-
terers a very good approximation of E0 is given by Einc , which
is independent of 𝜀r by definition. Then H0,t in Equation (29)
can be very well approximated by H0,t ,a, which is the sum
of a field independent of 𝜀r − 1 and of another field whose
norm is controlled by 𝜀r − 1, at least for small values of the
same quantity.

Taking into account that, for small values of 𝛽 the tensor
fields (𝜀 − 𝜀0) and (𝜇 − 𝜇0) depend on 𝛽2(𝜀r − 1) while 𝜉 and 𝜁
present a factor 𝛽(𝜀r − 1) [41] (see the second paragraph below
equation (24) of that paper), one can then repeat the proce-
dure presented in Section 5 by replacing H0,t with H0,t ,a in
equations (24) and (25).

At the end of the procedure, for small values of 𝛽 and 𝜀r − 1,
one obtains that the norms of (E − E0)ba1,z and (H − H0)ba1,t

are controlled by 𝛽2(𝜀r − 1), while the norms of (H − H0)ba1,z
and (E − E0)ba1,t are smaller than or equal to a constant inde-
pendent of 𝛽 and 𝜀r multiplied by 𝛽(𝜀r − 1). It is easy to verify
that such a quantity assume the same value in the cases con-
sidered in Figures 4 and 7. This clarifies the meaning of our
previous comment on the results of Figure 7.

Moreover, the same procedure guarantees that the norm of
(E − E0)ba2,z − (E − E0)ba1,z is controlled by 𝛽2(𝜀r − 1)2. It

has an additional (𝜀r − 1) factor with respect to the norm of
(E − E0)ba1,z . This explains why the difference between the sec-
ond order Born approximation and the first order one cannot be
detected in Figure 8.

The same conclusion does not apply to our former analysis,
which considered 𝜀r = 2.

The final set of simulations show that the upper bound for m

for the reliability of the different approximations is affected by
𝜀r but this is in any case in agreement with our previous deduc-
tions. For example, the difference of finite element solutions
is not reliable for the calculation of (E − E0)z when m ≥

n

2
if

𝜀r = 2 and when m ≥
n

2
− 2 if 𝜀r = 1.01. The same reduction by

2 is present for all upper bounds of m which guarantee the reli-
ability of the different approaches, when the 𝜀r of the scatterer
at rest is reduced from 2 to 1.01.

At the same time, the final results confirm that the approx-
imation of Hz obtained by the Born approximations are
extremely good, for any of the values considered for m, n and 𝜀r .

7 CONCLUSIONS

In this paper a new methodology is presented that aims
at the reliable calculation of the very weak effects of the
non-relativistic motion of media on the electromagnetic field.

The new methods do not require the development of numer-
ical simulators because they need to solve problems involving
just media at rest. The bianisotropic constitutive parame-
ters of media in motion are managed in the definition of
equivalent sources and require simple algebraic calculations
involving known quantities. Moreover, the simplest of the
new methods requires the solution of two problems, like the
traditional approach.

Even though the new methods can be used to deal with cylin-
ders moving in the axial direction or with axisymmetric objects
in rotation around their axes of symmetry, in this first work the
numerical results are focused just on the first of the two classes
of problems.

All results are computed by using finite element sim-
ulators. They show that the traditional approach provides
unreliable results in many situations of practical interest. More-
over, they clearly show the reliability of the new methods.
This was largely expected for non-relativistic velocity val-
ues. However, the extension of the range of speed values
for which the new methods are shown to provide satisfac-
tory results is beyond authors’ expectations. As a matter of
fact, the reliability is guaranteed for large fractions of the
speed of light in vacuum, too. Finally, it is shown that for
velocity values up to several meters per second the results
provided by the new methods could be better than those
deduced by the calculation of the difference of semi-analytical
solutions.

The effects of the approximations introduced by iterative
solvers are considered together with a study of the effects
of the density of the scatterer on the performances of the
new methods.
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