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Abstract. Vector Quantized Variational Autoencoders (VQ-VAEs) have
gained popularity in recent years due to their ability to represent images
as discrete sequences of tokens that index a learned codebook of vectors,
enabling efficient image compression. One variant of particular interest
is VQ-VAE 2, which extends previous works by representing images as a
hierarchy of sequences, resulting in finer-grained representations.
In this study, we further enhance such hierarchical autoencoder approach
by introducing multiple decoders, which allow to represent images as a
sum of multi-scale contributions in the pixel space. Our proposed model,
the Multi Scale (MS) VQ-VAE, not only enables better control over
the encoding of each sequence (resulting in improved explainability and
codebook usage) but, as a consequence, also shows advantages in image
synthesis. Our experiments demonstrate that the MS-VQVAE achieves
comparable or superior reconstructions on various datasets and reso-
lutions, as well as greater stability across runs. Moreover, we include a
proof-of-concept trial to showcase the potential applications of our model
in image synthesis.
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1 Introduction

Vector Quantized Variational Autoencoders (VQ-VAE) [18] are popular in Com-
puter Vision for their ability to learn discrete low-dimensional representations
of images by indexing a codebook (or dictionary) of learnable vectors. Notably,
VQ-VAE and its extensions [6, 28, 14] have been successfully combined with au-
toregressive models to perform image synthesis [19, 29, 2]. Despite this success,
the original algorithm presents limitations in reconstructing the fine-grained in-
formation of the encoded images, especially at high-resolutions, where the details
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Fig. 1. MS-VQVAE separately reconstructs the hierarchy of quantized sequences in the
pixel space, from coarse (scale 0) to fine (scale 2), thus enhancing the explainability of
what is encoded at each level. The final sample is given by the sum of these contribu-
tions. Example with three scales on the Celeb-A dataset (1024 × 1024 resolution).

are more complex and abundant. As a result, the loss of important information
may impact the quality of reconstructions. Therefore, a key challenge in current
research is to improve the accuracy of the result while preserving the compress-
ibility of the representation. Later on, VQ-VAE 2 [20] was introduced to address
these limitations by representing images as a hierarchy of sequences. This ap-
proach breaks down the image into multiple levels of abstraction, capturing its
different aspects. By constructing a sequence hierarchy, VQ-VAE 2 can better
learn the complex structure of images, leading to more accurate reconstructions.
In this study, we further enhance the hierarchical Autoencoder by introducing
multiple decoders to represent images as a sum of contributions in the pixel
space, as shown in Figure 1. Our approach is inspired by a “divide-and-conquer”
strategy, where a common CNN-Encoder generates multiple latent sequences at
different scales, each responsible for a specific contribution. The sequences are
then separately quantized and decoded at the original resolution, and the re-
sulting image at a specific scale i is obtained by adding contributions from all
scales ≤ i. The proposed method, which we name Multi Scale (MS) VQ-VAE,
improves explainability over its predecessor (VQ-VAE 2) by allowing direct con-
trol and meaningful decoding of each latent-sequence content.
In this work, we also provide a proof-of-concept study where we show the poten-
tial applications and benefits of our MS-VQVAE in image synthesis. The whole
pipeline (called 2-stage sampling) consists in training an autoregressive model
(stage-2) on top of the VQ-VAE (stage-1) discrete representations. This allows
the generation of new sequences of indices, which can be decoded with the pre-
trained Autoencoder. Since it is not necessary to sample all sequences to decode
a meaningful image, poor quality samples can be discarded after the generation
of the first scale only. Additionally, once the “coarse” part of the image is given,
it is possible to modify only its “details” (sequences at scales > 0) multiple
times, allowing for the generation of different versions of the same sample.
Further details about the used methodologies are given in Section 3, while in
Section 2 differences with respect to VQ-VAE 2 are discussed, as well as improve-
ments introduced by other hierarchical quantized autoencoders. In Section 4 we
present the experimental results and evaluate the proposed model on the Ima-
genet [3] (resolution 256 × 256) and CelebA-HQ [15] (resolution 1024 × 1024)
datasets, showing better stability and codebook usage with respect to VQ-VAE
2, as well as general better performances in terms of reconstruction. Furthermore,
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in Sections 3 to 5, we discuss the potential future applications of our model in
image-synthesis tasks.

2 Previous Work

Improving Quantization: The original VQ-VAE work [18] suffers from a
known issue called codebook collapse (or index collapse) [12], where only a sub-
set of available codebook vectors is actually used to encode information. To
address this problem, researchers have proposed various improvements such as
Expectation-Maximization [21], Decomposed Vector Quantization [12] Contin-
uous Relaxation [16, 10] and Codebook Restart [4]. Although any of these al-
gorithms can be implemented in our method, we employ the basic EMA quan-
tization in order to fairly compare with the VQ-VAE 2 baseline, as described
in Section 3. Nevertheless, by introducing multiple decoders, we observe an in-
creased utilization of the codebook in our sequences, as shown in Section 4.
Perceptual Loss and GAN Discriminator: To improve the quality of out-
put images while keeping good compression rates, VQ-GAN [6] replaced the l2
reconstruction loss with a combination of Patch-GAN discriminator [9] and per-
ceptual loss [11, 30]. Later on, ViT-VQGAN [28] further improved this result
with a Style-GAN discriminator [24] and a Vision Transformer (ViT) [5] based
Autoencoder. Since our main concern is to fairly compare with the VQ-VAE 2
baseline, in this work we use CCN-Autoencoders and l2 loss on all sequences. An
improved implementation with more complex architectures and loss functions is
left to future research.
Hierarchical Quantized Autoencoders for Image Modeling: A distinct
category of methods proposes the concept of a hierarchical Autoencoder and
shows its advantages. Specifically, [27] utilizes Mean Squared Error (MSE ) to
compare multiple quantized sequences with their encoded counterpart in order to
achieve higher levels of compression, but without exploring possible applications
in image modeling. [7] combines the hierarchical structure with autoregressive de-
coders to enable end-to-end sampling. In Contrast, our MS-VQVAE is designed
for 2-stage sampling, which has become common practice for many different
methods [19, 29, 2]. A different category of approaches [31, 14, 1] incorporates a
stack of codes in the quantization bottleneck, which can be viewed as a form
of hierarchy. Among them, [14, 1] are notable for introducing Residual Quanti-
zation, where the stack of quantized codes is viewed in a coarse-to-fine manner
and summed to obtain the full representation. In contrast, in our MS-VQVAE,
the latent residuals exist at different scales (resolutions) and are summed only
once decoded in the pixel space. Our work is closely related to VQ-VAE 2 [20],
which involves quantizing a stack of latent codes at different resolutions, con-
catenating them, and decoding the resulting sequence. However, we observed
that this technique lacks the ability to control the content of each sequence and
often under-exploits codebook dictionaries.
In contrast to all these methods, our proposed MS-VQVAE employs multiple de-
coders that are explicitly optimized using a residual-based approach to provide
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greater control over the content of each sequence. Each Decoder is responsible
for a specific subset of the latent codes, and the resulting residuals of these
decodings are summed to obtain the full representation. Our architecture also
presents advantages for image sampling, where partial generations can naturally
be decoded in order to early remove poor quality samples, while multiple and
different “details” can be generated on top of the selected “coarse” image.

3 Methodology

3.1 Background

The core of vanilla VQ-VAE [18] is the quantization process, which defines a
learnable codebook of vectors e ∈ RK×D, where K is the codebook size and D
is the dimension of each vector ei. After encoding the image x, each latent of
the output ze(x) is associated with the nearest embedding in the codebook:

zq(x) = ek where k = argminj∥ze(x)− ej∥ (1)

Finally, the Decoder reconstructs the original image from the quantized latent
vectors zq(x). The loss function is composed of three terms:

L = ∥x− x̂∥22︸ ︷︷ ︸
recons.

+ ∥sg[ze(x)]− e∥22︸ ︷︷ ︸
codebook

+β ∥ze(x)− sg[e]∥22︸ ︷︷ ︸
commitment

(2)

where x̂ is the Decoder reconstruction, sg denotes the stop gradient operation
and β is a constant term usually set to 0.25. The three terms represent the
reconstruction, the codebook, and the commitment loss, respectively. A variation
is also proposed, where the second term is removed and the embeddings are
learned using an Exponential Moving Average (EMA). In detail, each codebook
entry ei is updated at every step t following:

e
(t)
i := m

(t)
i /N

(t)
i (3)

where m
(t)
i , N

(t)
i represent at each step the mean vector and the usage count

with respect to codeword ei, and they are updated according to the n
(t)
i encoder

outputs that are closest to the embedding ei at step t:

m
(t)
i := m

(t−1)
i · γ +

n
(t)
i∑
j

z
(t)
i,j (1− γ); N

(t)
i := N

(t−1)
i · γ + n

(t)
i (1− γ) (4)

Here γ is a constant factor set between 0 and 1, usually to 0.99.

3.2 Multi Scale VQ-VAE

The proposed MS-VQVAE architecture is depicted in Figure 2. The input image
is fed to a fully convolutional Encoder, which produces M latent images ze,m
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Fig. 2. Full pipeline of our method using three scales (32×32, 64×64, 128×128) on an
example taken from the CelebA-HQ dataset (1024× 1024). The encoding process pro-
duces the three sequences ze,0, ze,1, ze,2, which are separately quantized to zq,0, zq,1, zq,2.
The decoding process results in the three contributions C0, C1, C2, which are added to
obtain the reconstruction at each scale. During decoding, the intermediate sequences
of the first two scales zd,0, zd,1 are concatenated to ze,1, ze,2, respectively.

at different scales m ∈ {0, 1, . . . ,M − 1}, where ze,0 encodes global content and
ze,M−1 encodes the finest details. Each latent sequence has its own codebook of
vectors em ∈ RK×D, and the quantization process follows Equation (1) to obtain
M quantized latents zq,m. We use EMA strategy for the learning of each code-
book (Equation (4)) and we do not prevent codebook collapse, in order to ensure
fair comparisons with previous work. Decoding involves M separate decoders
that upsample each sequence to the original size. For m ∈ {0, 1, . . . ,M − 2} the
latents undergo a two-step decoding process, with intermediate sequences zd,m
that are concatenated to ze,m+1 (before quantization) to allow an information
flow between decoders. For scale m = M −1, the sequence is directly upsampled
to the final resolution. The decoding process produces M residual images Cm.
The reconstruction at a given scale m is then the result of the summation of
contributions 0, 1, . . . ,m− 1:

x̂m =

m∑
i=0

Ci (5)

which implies that x̂0 = C0.
The overall loss function is a generalization of Equation (2) for multiple scales,
without the codebook term due to the EMA algorithm:

L =

M∑
m=0

∥xm − x̂m∥22︸ ︷︷ ︸
MS recons.

+

M∑
m=0

β∥ze,m(x)− sg[em]∥22︸ ︷︷ ︸
MS committment

(6)
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where x̂m is defined as in equation Equation (5). In the reconstruction term, the
ground-truths images xm are defined M as:

xm =

{
x if m = M - 1

B(xm+1, κ, σ) otherwise
(7)

where B denotes the Gaussian Blur operation, κ is the kernel which depends
on the image resolution r and is computed as

√
r − 1, and σ is the standard

deviation given as a function of the kernel:

σ =
1

3

(
(κ− 1)

2
− 1

)
+

4

5
(8)

By doing so, the ground truths corresponding to lower scales appear as low-
frequency versions of the original sample. This mechanism forces the early se-
quences to focus only on the global structure of images, ignoring the high-
frequency details. The explainability of our method is provided by the multi-
scale reconstruction mechanism, since we can asses and show that low scales
encode low frequency information (the global content of images), while higher
scales encode the high frequencies (details).

3.3 Image Sampling: Intuitions

Fig. 3. Left : Causal Attention matrix as it would be computed in a case with two
sequences s0, s1 of length 4 and 16, respectively. Each token s1,i can attend to all
s0 and previous s1,j<i, according to Equation (9). Right : Local attention defined on
two sequences of the same length, when considering two kernels 1 × 1 and 3 × 3. The
attention matrix reduces to O(16×(1+8)). The left part shows what indices the tokens
S1,1 (corner case) and S1,10 can attend.

In their paper [20], the authors propose to train M different models (one for
each hierarchy), in order to perform autoregressive sampling of the VQ-VAE 2
learned tokens (codebook indices). For sequence sm, the likelihood of each token
i is a function of previous tokens of the same sequence sm,j<i and all tokens of
previous sequences sn<m:

p(sm) =
∏
i

p(sm,i|sm,j<i, sn<m) (9)
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However, this approach presents a significant challenge as increasing the number
of hierarchies and their sequence length requires huge resources in terms of mem-
ory storage and sampling time. For instance, the base attention mechanism of
Transformers [25] would have a space complexity of O(m ×N) and a sampling
time complexity of O(m), where m is the length of the current sequence and
N is the sum of the lengths of all sequences up to m (Left part of Figure 3).
As a direct consequence, autoregressive models still struggle to synthesise high-
resolutions images, and the state-of-the-art in this field is detained by Generative
Adversarial Networks [24, 23].
Leveraging the fact that our MS-VQVAE is directly optimized to separate be-
tween the coarse and fine-grained details at different scales (due to Equation (7)),
we hypothesise that a sampling algorithm based on Transformers [25], would not
require all the previous context information for sequences sm>0. Instead, one can
define m different local kernels K1,...,m that would provide all the needed con-
text for the sampling of a token i of sequence sm, with a significant reduction in
terms of memory requirements (see the right part of Figure 3). In Section 4 we
provide a proof-of-concept experiment that shows the feasibility of this method.

4 Experiments

MS-VQVAE: We conducted a comparative study of our proposed MS-VQVAE
with the existing literature, specifically VQ-VAE 2, on two widely used datasets,
namely Imagenet [3] and CelebA-HQ [15], with image resolutions of 256 × 256
and 1024× 1024, respectively. To perform a fair comparison, we replicated and
trained the original VQ-VAE 2 model, adopting its original hyperparameters
as closely as possible. All our training runs have been trained for 250 epochs
employing the Adam optimizer [13] with a learning rate of 3e− 4 and betas 0.9
and 0.5. Moreover, our MS-VQVAE utilized a warmup learning rate for the first
five epochs, followed by a cosine decay for the rest of training. For each run, we
report several reconstruction metrics evaluated with the torchmetrics [17] library,
in order to ensure fairness and reproducibility. More in detail, the reconstructions
are measured in terms of Mean Squared Error (MSE), Structural Similarity
Index [26] (SSIM), Learned Perceptual Image Patch Similarity [30] (LPIPS),
Peak Signal-to-Noise Ratio (PSNR) and relative Frechet Inception Distance [8]
(rFID). In order to provide a complete comparison, we also report for each
experiment the number of training parameters and the codebook usage and
perplexity, which indicate the proportion of used codebook vectors and how well
they are distributed, respectively.

Table 1 presents the comparison between our MS-VQVAE and the re-implemented
VQ-VAE 2 on three experiments which we name as “Large” (L): 8×8, 16×16, 32×
32, “Medium” (M): 16×16, 32×32, 64×64 and “Small” (S): 32×32, 64×64, 128×
128. In all runs, we utilized a fixed latent vector dimension of 64 and a codebook
size of 256, which we determined to be adequate to capture the variances of the
dataset.
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Fig. 4. Qualitative comparison of the “Small” runs on the CelebA-HQ dataset. Our
MS-VQVAE (left) achieves a very similar reconstruction quality with respect to VQ-
VAE 2 (center). In both cases, some fine-grained information is lost (e.g. some eye and
skin details) when compared to the ground truth (right).

Table 1. Experiments on CelebA-HQ (1024 × 1024), grouped by latent sequences
length. ∗ reports the mean codebook usage and perplexity over all sequences.

Experiment
# params CB Usage

Perplexity
MSE ↓

SSIM ↑ LPIPS ↓ PSNR ↑ rFID↓
(M) (%) (1e−3)

VQ-VAE 2 (L) 2.2 100-69-18 (62∗) 179-146-35 (120∗) 2.35 0.75 0.39 26.28 64.47

Ours (L) 54.3 38-76-100 (71∗) 88-170-163 (140∗) 2.43 0.75 0.38 26.13 65.05

VQ-VAE 2 (M) 2.2 100-38-7 (48∗) 135-81-11 (75∗) 1.30 0.80 0.28 28.85 38.76

Ours (M) 25.3 100-100-100 (100∗) 222-195-121 (179∗) 1.15 0.81 0.25 29.36 38.38

VQ-VAE 2 (S) 2.1 100-100-35 (78∗) 110-194-54 (119∗) 0.60 0.88 0.14 32.18 6.44

Ours (S) 13.5 67-72-100 (79∗) 142-118-109 (123∗) 0.52 0.90 0.13 32.79 6.98

MS-VQVAE achieves comparable or greater performance in all runs, even
though it requires more parameters. This gap widens at higher compression rates
since more decoding layers are used. Nevertheless, we consider the increased
number of parameters to be manageable on most modern hardware, thus not
compromising the usability of our model. In general, we have not observed any
failures of our method compared to VQ-VAE 2, even at high compression rates.
The superior codebook usage in all runs highlights the stability of our method.
For the (M) run, VQ-VAE 2 primarily used one sequence, a phenomenon called
codebook collapse. This does not take place with our approach, as we optimize
the reconstruction error directly on each sequence, thereby compelling all the
contributions to be present. Avoiding codebook collapse is a major challenge in
current research as it compromises the stability and usability of the Autoen-
coder, as discussed in Section 2.
In our study of the Imagenet dataset, we conducted two separate experiments
for both methods. The first one (“Small” - (S)) utilized two sequences (32− 64)
and a codebook size of 512, while the second (“Large” - (L)) increased both
the compression rate (16 − 32) and codebook size (1024). Table 2 presents a
comprehensive comparison between the two methods and shows the superior
reconstructions of MS-VQVAE in almost all metrics, especially for higher com-
pression rates. Unlike Table 1, we did not include codebook usage, as it remained
at 100 % in all cases. This behavior is likely due to the increased complexity of
the dataset (which consists of a wide and diverse range of classes), with respect
to CelebA-HQ, which contains only human faces.
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Table 2. Experiments on Imagenet (256 × 256), grouped by latent sequences length.
∗ reports the mean perplexity over all sequences.

Experiment
# params

CB Size Perplexity
MSE ↓

SSIM ↑ LPIPS ↓ PSNR ↑ rFID↓
(M) (1e−3)

VQ-VAE 2 (L) 1.4 1024 559-699 (629∗) 1.79 0.82 0.195 27.46 22.17
Ours (L) 37.4 1024 815-599 (707∗) 1.54 0.83 0.164 28.10 18.00

VQ-VAE 2 (S) 1.3 512 273-380 (327∗) 0.59 0.93 0.058 32.23 5.39
Ours (S) 9.4 512 371-262 (317∗) 0.50 0.93 0.046 32.95 4.49

For a comprehensive evaluation, we present in Table 3 a comparison of the
rFid score for different techniques that employ distinct quantization algorithms
and reconstruction losses. A noteworthy observation can be made by comparing
the second row, which corresponds to a VQ-GAN model trained on a VQ-VAE 2
pipeline, to the standard VQ-VAE 2 method. The considerable disparity in the
rFID score, i.e., 1.45 vs 5.39, highlights the potential of employing the perceptual
loss and GAN discriminator for enhancing the quality of reconstructions. This
result may suggest the exploration of incorporating these techniques into our
MS-VQVAE model in future research.

Table 3. rFid comparison on the validation set of Imagenet for different well-known
methods. ∗ indicates a re-trained model. The × in sequences column indicates a Resid-
ual Quantization, as described in [14]

Method Sequences CB size rFID↓
VQ-GAN [6] 16 1024 7.94
VQ-GAN 32-64 512 1.45
RQ-VAE [14] 8 × 16 16384 1.83
Vit-VQGAN [28] 32 8192 1.28
VQ-VAE 2∗ 32-64 512 5.39
Ours 32-64 512 4.49

Proof-Of-Concept Image Synthesis: We conduct a proof-of-concept study
in order to better enlighten the application of our method in the field of im-
age synthesis. In detail, we train two additional models for 200 epochs (one
for VQ-VAE 2 and one for MS-VQVAE) on a 128 px resolution version of the
Flickr-Faces-HQ (FFHQ) [24] dataset, and use them as stage-1 models to per-
form image sampling. In order to reduce the required computational resources,
both Autoencoders have highly compressed latent sequences (8× 8, 4× 4) and a
codebook size of 512.
After this first step, we prove the feasibility and advantages of the concepts in-
troduced in Section 3.3 by training different Transformer models [25], each one
performing sampling on a specific sequence. For each Autoencoder, we first train
a full autoregressive pipeline on both sequences, as depicted in Figure 3 (Left).
In the second setup, we implement a MaskGit [2] style transformer to perform
image synthesis in a fast way. In particular for the learning of scale one tokens,
we designed local-kernel attention in the style of Figure 3 (Right), with kernel
dimensions of 3 × 3 and 5 × 5, respectively. In other words, each token of the
latent sequence can attend to a maximum of 9 tokens from sequence 0 and 24
tokens from sequence 1, depending on its position. All models are trained for 50
epochs, and have 8 blocks, 8 heads, and a latent dimension of 256.
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Table 4. Reported comparison for all the sampling experiments. The Codebook Usage
is reported as the mean between sequences.

Method # params (M)
Autoencoder Image synthesis

CB Usage rFID ↓ FID ↓ IS ↑
VQ-VAE 2 AR 15.9

61.71% 97.78
137.62 1.83

VQ-VAE 2 MG 14.7 134.97 1.86

MS-VQVAE AR 23.4
75.68 % 97.26

139.29 1.86
MS-VQVAE MG 22.2 133.63 1.86

Table 4 shows the quantitative sampling results in terms of FID and Inception
Score (IS) [22] for the Autoregressive (AR) and MaskGit (MG) runs. The cu-
mulative number of parameters (sum Autoencoder and Transformers) is also
reported, as well as the mean codebook usage and the reconstruction Fid of the
Autoencoders. The results outline how the kernel-based attention can achieve
good performances while reducing the space complexity of O(n2). It is also worth
noting that our MS-VQVAE maintains its stability also in this case, with in-
creased codebook usage and comparable performances. Additionally, Figure 5
depicts how our model can be used in order to obtain multiple variations of the
same image, by generating the scale 1 samples multiple times.

Fig. 5. Samples obtained with the MaskGit-based Transformer and our MS-VQVAE
model. For each of the two “coarse” samples (generated from the 4 × 4 sequence), we
sample 4 different contributions (Top) from the 8×8 codebook and sum them to obtain
the final image (Bottom). Note that the low quality is due to the high compression rate
of the Autoencoder and the overall small size (number of parameters) of the model.

5 Conclusion and Future Work

In this paper we further developed upon the idea of a hierarchical quantized
Autoencoder model, in order to provide more robust and explainable recon-
structions. In particular, we showed how the proposed MS-VQVAE can better
utilise the information contained in each latent sequence compared to its pre-
decessor [20], while keeping a good reconstruction quality. We also provided a
proof-of-concept method that can be useful to perform image synthesis at high
resolutions reducing computational costs. We believe that future implementa-
tions of this method may be beneficial for upcoming research on autoregressive
image synthesis [19, 29, 28, 6, 2], where generating high-resolution images above
256× 256 remains a significant challenge.
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