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The concepts of symmetry and its breakdown are investigated in two di�erent terms according to
whether the resulting asymmetry is universal or only obtained for a special con�guration: we shall
illustrate this by considering in the �rst case an example from the standard model of particles with
some consequences for cosmological scenarios related to in�ation and the problem of the cosmological
constant, and in the second case we consider an example from speci�c solutions for particle dynamics
and an example for a toy model of entangled spins.

I. INTRODUCTION

In physics, one of the most important concepts is that
of symmetry: from general coordinate covariance,through
local Lorentz covariance, to gauge covariance, symmetry
is the basis upon which all kinematical quantities can be
de�ned. And when such kinematic quantities are coupled
together into dynamic �eld equations, the requirement of
covariance is also capable of restricting the possible ways
in which this coupling can be achieved, to the point that
when re-normalizability is further assumed, the possible
terms within the Lagrangian are reduced to just a few.
For this reason, symmetry principles play a fundamen-

tal role. Nevertheless, starting from a theory that is sym-
metric, we are eventually forced to address the fact that
Nature is obviously not symmetric at all. Symmetry must
hence be followed by a breakdown, leading to asymmetry.
Because every symmetry is represented as some invari-

ance under transformations, symmetry breaking must be
described by �xing some parameter in those transforma-
tions. As parameters can be either universal or proper to
speci�c situations, it follows that there are two types of
asymmetries according to whether they are obtained for
the universe as a whole or for speci�c sub-systems. So in
the �rst case, symmetry breaking is of the type we have
in the standard model, where the Higgs vacuum φ2 =v2

is given in terms of a universal parameter, and in the sec-
ond case, symmetry breaking is of the type we have when
looking for solutions of �eld equations, where a choice of
boundary conditions is di�erent for di�erent solutions.
In the following, we will review some of the symmetries

and their breaking both for the case of universal type and
for the case of particular type, and in the last case we will
deepen the discussion presenting two distinct examples.

II. SYMMETRY BREAKING OF UNIVERSAL

TYPE: THE STANDARD MODEL

We will begin the treatment by recalling the Standard
Model in a manner that is slightly di�erent from the way
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it is usually presented, so to highlight speci�c features of
interest. Because the SM is the theory that is symmetric
under the group SU(2)×U(1) we start giving generalities
about these transformations and their properties.1

In the most general form SU(2) transformations are

U=e−
i
2
~σ·~θ (1)

so that de�ning

y2 =~θ/2·~θ/2 (2)

and hence

X=cos y (3)

~Z=
1

2

sin y

y
~θ (4)

we can write them as

U=XI−i ~Z ·~σ (5)

in explicit form. The most general form of SU(2)×U(1)
transformations is then given by the product of the above
times a unitary phase, and since they commute we have
that they can be written according to

S=Ue
i
2α=(XI−i ~Z ·~σ)e

i
2α (6)

as it is obvious. The doublet of complex scalar �elds that
transforms according to the transformation

Φ→SΦ (7)

is what is known as Higgs �eld. From it we can build

Φ†~σΦ= ~S (8)

Φ†Φ=P (9)

which are both real quantities and such that

ΦΦ†= 1
2P I+

1
2
~S ·~σ (10)

1 We have assumed the reader familiar with the Pauli matrices.



as well as

~S ·~S=P 2 (11)

valid as general geometric identities.2

Because the Higgs �eld transforms in this way, we can
prove that one can always �nd a gauge in which

Φ=φR−1
(

0
1

)
(12)

for some R and in terms of φ being a generic real scalar
�eld,and the only degree of freedom,called module. Then

~S=φ2~s (13)

and

P =φ2 (14)

such that

ΦΦ†= 1
2φ

2 (I+~s·~σ) (15)

as well as

~s·~s=1 (16)

is the normalized vector of isospin. In its polar form, the
Higgs 4 real components are re-arranged into the special
con�guration for which the real scalar degree of freedom
is isolated from the 3 real components that are passed on
into the gauge through the 3 parameters of the R matrix
that are known with the name of Goldstone bosons [1, 2].
It can be seen from expression (6) that by introducing

(∂µX ~Z −X∂µ ~Z)+ ~Z×∂µ ~Z=−1

2
∂µ~ζ (17)

we can always write

S−1∂µS=− i
2
∂µ~ζ ·~σ+

i

2
∂µαI (18)

as a general identity. Upon the introduction of two gauge

�elds ~Aµ and Bµ as what transforms according to

g ~Aµ ·~σ→U
[(
g ~Aµ−∂µ~ζ

)
·~σ
]
U−1 (19)

g′Bµ→g′Bµ−∂µα (20)

we can see that

DµΦ=∇µΦ− i
2

(
g ~Aµ ·~σ−g′BµI

)
Φ (21)

is the gauge covariant derivative of the Higgs �eld [3].
Since from the polar form of the Higgs we can see that

R−1∂µR=− i
2
∂µ~ξ ·~σ+

i

2
∂µξI (22)

2 These are just the Fierz identities.

where ξ and ~ξ are the Goldstone modes, we can de�ne

g ~Mµ=g ~Aµ−∂µ~ξ (23)

g′Nµ=g′Bµ−∂µξ (24)

which are proven to be true vector �elds, from which

DµΦ=
[
∇µ lnφ− i

2

(
g ~Mµ ·~σ−g′NµI

)]
Φ (25)

is the gauge covariant derivative of the Higgs �eld and

∇µ~s=g ~Mµ×~s (26)

are general identities. The Goldstone states are absorbed
by the gauge �elds as their longitudinal components [4].
As for the dynamics, we will consider the Lagrangian

L =DµΦ†DµΦ− 1
2λ

2
(
v2−Φ†Φ

)2
(27)

with the v and λ constants and SU(2)×U(1) invariant.3

Plugging the polar form of the gauge covariant deriva-
tive we obtain the polar form of the Lagrangian

L =∇µφ∇µφ+ 1
4φ

2(g2 ~Mµ · ~Mµ+g′2NµNµ −

−2gg′Nµ ~Mµ ·~s)− 1
2λ

2
(
v2−φ2

)2
(28)

where we have no information about the direction of the
isospin. If it is along the third axis of the internal space

−g ~Mµ ·~s=gM3
µ (29)

and the Lagrangian becomes

L =∇µφ∇µφ+ 1
4φ

2[g2(M1
µM

µ
1 +M2

µM
µ
2 ) +

+(gM3
µ+g′Nµ)(gMµ

3 +g′Nµ)]− 1
2λ

2
(
v2−φ2

)2
(30)

so that after diagonalizing as

1√
2

(
M1
µ ± iM2

µ

)
= W±µ (31)

gMµ
3 +g′Nµ =

√
g2+g′2Zµ (32)

−g′Mµ
3 +gNµ =

√
g2+g′2Aµ (33)

we eventually obtain

L =∇µφ∇µφ+ 1
4φ

2[2g2W+W− +

+(g2+g′2)Z2]− 1
2λ

2
(
v2−φ2

)2
(34)

as it is easy to see. The potential is de�ned so to be zero
at its minimum. It has two equilibria, an unstable one at
φ=0 and a stable one at φ2 =v2 exactly like in the usual
version of the standard model. The universe starts with
an initial symmetric con�guration φ=0 for which

L =− 1
2λ

2v4 (35)

3 This potential is slightly di�erent from the usual one for reasons

that will become apparent later on.
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which is a positive and large cosmological constant term,
with the consequence that the Einstein gravitational �eld
equations become 8Rαν =−λ2v4gαν in which Rαν is the
Ricci tensor and gαν is the metric tensor. As well known,
when the Ricci tensor is proportional to the metric tensor
with negative proportionality constant, the scale factor is
an exponential function of the cosmological time and an
in�ationary epoch might take place. Nevertheless, such a
condition is unstable, so that it will spontaneously move
toward a stable state. The stable con�guration φ2 =v2 is
such that in it the cosmological constant is cancelled by
the vacuum of the Higgs �eld, quenching in�ation. But in
the new vacuum, symmetry has been broken. Therefore
we can re-parametrize this new vacuum according to

φ=v+H (36)

and consequently

L =∇µH∇µH− 1
4m

2
HH

4/v2−m2
HH

3/v−m2
HH

2 +

+(H2/v2+2H/v)(m2
WW

+W−+ 1
2m

2
ZZ

2) +

+(m2
WW

+W−+ 1
2m

2
ZZ

2) (37)

where we have set 2λ2v2 =m2
H as the Higgs mass together

with g2v2 =2m2
W and v2(g2+g′2)=2m2

Z as the two vector
boson masses like it is done in the usual standard model.
The known phenomenology, apart from the dynamical

structure of the Lagrangian, is obtained by the conditions
sa=−(0, 0, 1) and φ=v+H which together form the full
symmetry breaking conditions. Both are universal in the
sense that they are a choice of �elds and parameters that
is the same throughout the whole cosmological setting.
We will next observe that this is not always the case.

III. SYMMETRY BREAKING OF PARTICULAR

TYPE: SPINORIAL FIELDS

We continue the presentation introducing the concept
of tetrads, or frames, in the general theory of relativity.4

The initial point is that of assuming the existence of a
metric tensor gµν =gνµ with inverse gµν =gνµ such that
we have gµρg

ρα=δαµ where δαµ is the Kronecker delta. We
specify that this metric need not be in Minkowskian form
because we retain the right to employ whatever system
of coordinates, even in �at space-times. Nonetheless, we

4 It is important to specify from the start that here with general

relativity we do not mean the dynamical theory of Einsteinian

gravity, obtained by assigning the �eld equations that link the

space-time curvature to the energy tensor and interpreting the

space-time curvature as gravitation. Here with general relativity

we mean the kinematical theory that implements the principle of

general covariance under curvilinear coordinate transformations

by employing tensor quantities. As such we are simply meaning

to retain the possibility to study �elds in whatever system of

reference, whether or not the space-time has a curvature.

can always introduce bases of vectors eµa and e
a
µ such that

eµae
b
µ=δba eµae

a
ν =δµν (38)

called tetrads and for which

eaµe
b
νg
µν =ηab eµae

ν
b gµν =ηab (39)

where η is the Minkowskian matrix. That we can always
choose to do this comes from the fact that we can always
make the ortho-normalization procedure on the tetradic
�elds. The tetradic �elds have two indices, the Latin one
indicates what vector of the basis we choose, the Greek
one denotes what component of that vector we pick. Like
for the metric, the Greek index is associated to a general
coordinate transformation. The Latin index is associated
to a new type of transformation shu�ing vectors within
the basis and consequently this transformation must be
a Lorentz transformation since we wish the Minkowskian
matrix to be preserved. By indicating such a real Lorentz
transformation as Λ we have that it acts according to

eaν→(Λ)abe
b
ν eνa→(Λ−1)bae

ν
b (40)

as the transformation on tetrads. We also introduce a set
of Cli�ord matrices γa verifying the relations

{γa,γb}=2Iηab (41)

where I is the identity matrix. It is then possible to de�ne
1
4

[
γa,γb

]
=σab (42)

and one can easily verify that the σab thus de�ned satisfy
the commutation relations de�ning the complex Lorentz
algebra and therefore they are the generators of the com-
plex Lorentz group. We also have that

2iσab=εabcdπσ
cd (43)

implicitly de�ning the π matrix, whose existence proves
that the complex Lorentz group is reducible. From them

γiγjγk=γiηjk − γjηik+γkηij+iεijkqπγ
q (44)

which are valid as geometric identities.5

In the most general form the complex Lorentz trans-
formation is written according to

Λ=e
1
2 θabσ

ab

(45)

so that de�ning

a=−1

8
θijθ

ij (46)

b=
1

16
θijθabε

ijab (47)

5 This matrix is usually denoted as a gamma matrix with an index

�ve. As this index has no sense in four-dimensional space-times

we will adopt a notation without any index at all.
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and then

2x2 =a+
√
a2+b2 (48)

2y2 =−a+
√
a2+b2 (49)

we can introduce

cos y coshx=X (50)

sin y sinhx=Y (51)(
x sinhx cos y + y sin y coshx

x2 + y2

)
θab +

+

(
x coshx sin y − y cos y sinhx

x2 + y2

)
1

2
θijε

ijab=Zab (52)

so to write

Λ=XI+Y iπ +
1

2
Zabσab (53)

in the most compact and explicit way. The most complete
complex Lorentz and phase transformation is therefore

S=Λeiqα=(XI+Y iπ+ 1
2Z

abσab)e
iqα (54)

called spinorial transformation. Any column of 4 complex
functions that, under general coordinate transformations,
are scalars but which, for a spinorial transformation, are
converted according to the law

ψ→Sψ (55)

is called spinorial �eld. It is possible to prove that with
the adjoint ψ=ψ†γ0 we can construct the quantities

Σab=2ψσabπψ (56)

Mab=2iψσabψ (57)

Sa=ψγaπψ (58)

Ua=ψγaψ (59)

Θ= iψπψ (60)

Φ=ψψ (61)

which are all real tensors and such that

ψψ≡ 1
4ΦI+ 1

4Uaγ
a+ i

8Mabσ
ab −

− 1
8Σabσ

abπ− 1
4Saγ

aπ− i
4Θπ (62)

as well as

Σab=− 1
2ε
abijMij (63)

with

MabΘ+ΣabΦ=U[aSb] (64)

alongside to

UaS
a=0 (65)

UaU
a=−SaSa=Θ2+Φ2 (66)

as is straightforward to prove and called Fierz identities.
If we are in the situation in which Θ2+Φ2 6=0 then we

have that it is always possible to write the spinor as

ψ=φe−
i
2βπL−1

 1
0
1
0

 (67)

in chiral representation, with L a Lorentz transformation
and with φ and β that are real scalar and pseudo-scalar
�elds,and the only degrees of freedom,called module and
Yvon-Takabayashi angle. We then can compute

Sa=2φ2sa (68)

Ua=2φ2ua (69)

as well as

Θ=2φ2 sinβ (70)

Φ=2φ2 cosβ (71)

from which

ψψ≡ 1
2φ

2e−iβπ(eiβπ+uaγ
a)(e−iβπ−saγaπ) (72)

and

uas
a=0 (73)

uau
a=−sasa=1 (74)

are the normalized velocity vector and spin axial-vector,
as well known. Written in polar form, the 8 real compo-
nents of the spinor can be rearranged in such a way that
the 2 real scalar degrees of freedom are isolated from the
6 real components that can always be transferred into the
frame through the 6 parameters of the Lorentz transfor-
mation L which can be identi�ed as Goldstone bosons.6

As above, it can be seen from (54) that de�ning

(∂µXZ
ab −X∂µZab) + 1

2 (∂µY Zij − Y ∂µZij)εijab +

+∂µZ
akZbk=−∂µζab (75)

allows us to write

S−1∂µS=
1

2
∂µζabσ

ab+iq∂µαI (76)

as a general identity. With the spin connection Ωijµ and
the gauge �eld Aµ given in terms of their transformations

1
2Ωijµσ

ij→Λ
[
1
2 (Ωijµ−∂µζij)σij

]
Λ−1 (77)

Aµ→Aµ−∂µα (78)

6 The previous analysis can be performed also in the case in which

Θ=Φ≡0 although in this case we talk about a very speci�c type

of spinors that we are not going to treat in the present work.
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we have that

∇µψ=∂µψ+ 1
2Ωijµσ

ijψ+iqAµψ (79)

is the spinorial covariant derivative of the spinor �eld [5].
From the polar form of the spinor we can also see that

L−1∂µL= iq∂µξI+
1

2
∂µξ

abσab (80)

where ξ and ξab are the Goldstone states, so de�ning

q(∂µξ−Aµ)≡Pµ (81)

∂µξij−Ωijµ≡Rijµ (82)

which are true tensor �elds, we have that

∇µψ=(− i
2∇µβπ+∇µ lnφI−iPµI− 1

2Rijµσ
ij)ψ (83)

as spinorial covariant derivative such that

∇µsi=Rjiµs
j (84)

∇µui=Rjiµu
j (85)

as general identities. The Goldstone states are absorbed
by the gauge �eld and spin connection thus becoming the
longitudinal components of the Pµ and Rjiµ tensors [4].
As for the dynamics, we consider the Dirac equations

iγµ∇µψ−XWµγ
µπψ−mψ=0 (86)

withWµ axial-vector torsion and X torsion-spin coupling
constant, added to be in the most general case [5].
In polar form these equations decompose according to

Bµ−2P ιu[ιsµ]+(∇β−2XW )µ+2sµm cosβ=0 (87)

Rµ−2P ρuνsαεµρνα+2sµm sinβ+∇µ lnφ2 =0 (88)

with R a
µa =Rµ and 1

2εµανιR
ανι=Bµ and which can be

proven equivalent to the Dirac equations. In fact they are
two special Gordon decompositions which, in polar form,
possess the same information of the Dirac equations [6].
We have no information about the direction of velocity

and spin, although we can always boost in the rest frame
and there align the spin along the third axis. In doing so
we get the possibility to choose Pν and Rijν in ways that
might allow us to �nd spinorial �eld solutions that could
be written in the radial and angular coordinates without
variable separability [7, 8]. As solutions like this depend
on the elevation angle, the spinor symmetry can never be
more than an axial symmetry even if the background had
spherical symmetry. The fact that the solution of a given
equation has less symmetry than that very equation tells
that symmetry breaking occurred. It is of particular type
as it occurs only for that speci�c solution. And it occurs
only for that solution due to the boundary conditions.
Similarly to the previous case, we have that situations

of a given symmetry allow the system to be re-con�gured
into a form in which some degree of freedom, recognized
as Goldstone states, are transferred into gauge �elds, and

symmetry breaking can occur. Di�erently from the pre-
vious case, where the symmetry breaking meant selecting
a con�guration of �elds, now symmetry breaking means
selecting a con�guration of components within a �eld.
However, for this last case, there are two ways. In the

case just described, symmetry breaking of particular type
occurs because a solution is de�ned in terms of boundary
conditions that di�er for di�erent solutions but which are
the same for a single solution. But we can also have cases
where properties of a given solution are set by boundary
conditions that di�er even for a single solution. Boundary
conditions are �xed for φ and β since they are determined
by the �eld equations. But there can be no �xing L since
there is no way to determine it from any �eld equation.
This is what we intend to do in the next section.

IV. SYMMETRY BREAKING OF PARTICULAR

TYPE: SPIN ENTANGLEMENT

The polar decomposition for spinors allows us to obtain
the equivalent of the Madelung decomposition in the case
of relativistic situations [9]. Thus relativistic spinors can
be interpreted from the hydrodynamic perspective [10].
To better see this point, consider now the polar form

of Dirac equations (87, 88) written as

Yµ−P ιu[ιsµ]+msµ cosβ=0 (89)

Zµ+P ρuνsαεµρνα−msµ sinβ=0 (90)

where (∇β−2XW+B)k=2Yk and (∇ lnφ2+R)k=−2Zk
are potentials. So we can invert the momentum [11] as

P ρ=m cosβuρ+Yνu
[νsρ]+Zµsαuνε

µανρ (91)

after straightforward manipulation. This form shows that
the momentum Pν is not just the kinematic momentum
muν but there are a number of corrections. One is in the
correction due to theYvon-Takabayashi anglecosβ which
expresses the e�ects of internal dynamics [6]. The others
are proportional to the spin axial-vector and due to the
Yν and Zµ potentials. These are given by some external
contributions of Wα and Rijα plus the derivatives of the
β and lnφ2 and as such they can be seen as the quantum
potentials in relativistic version with spin. The fact that
they are �rst-order di�erential is the consequence of their
relativistic essence and the existence of a second quantum
potential is the consequence of the internal structure that
comes from the presence of spin. Both potentials are in
terms containing the spin axial-vector, and consequently
they disappear in the macroscopic approximation.7

The above considerations also help understanding how
this formalism is the best-suited formalism in which one

7 That the macroscopic approximation be encoded by the condi-

tion sa→0 is clear from the fact that if we were not to normalize

~=1 then the spin axial-vector would be multiplied by the Planck

constant, and ~→0 is the de�nition of the non-quantum limit.
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can set the de Broglie-Bohm theory in its relativistic form
with spin. To see that, let us write the expression of the
energy of the spinorial �eld in its polar form. We have

Eρσ= i
4 (ψγρ∇σψ−∇σψγρψ +

+ψγσ∇ρψ−∇ρψγσψ)−
− 1

2X(Wσψγρπψ+W ρψγσπψ) (92)

which in polar form becomes

Eρσ=φ2 [(∇β/2−XW )σsρ+(∇β/2−XW )ρsσ+

+Pσuρ+P ρuσ− 1
4 (R σ

ij ε
ρijk+R ρ

ij ε
σijk)sk

]
(93)

as it is straightforward to see. Employing (91) gives

Eρσ=2φ2m cosβuσuρ+ 1
2φ

2 [2Y σsρ+2Y ρsσ−
−2Yk(s[kuσ]uρ+s[kuρ]uσ)+

+2Zksjui(u
ρεkjiσ+uσεkjiρ)−

−Bσsρ−Bρsσ− 1
2 (R σ

ij ε
ρijk+R ρ

ij ε
σijk)sk

]
(94)

which is general. In macroscopic limit sj→0 we get

Pµ≈muµ cosβ (95)

as well as

Eρσ≈2φ2m cosβuσuρ (96)

with torsion decoupling from the spinor, so that we can
neglect it. The full energy with electrodynamics is

T ρσ≈2φ2m cosβuσuρ+ 1
4F

2gρσ−F ραFσα (97)

and because ∇ρT ρσ=0 then

q2φ2uαF
σα=m2φ2uη∇η(uσ cosβ) (98)

having used Maxwell equations and the conservation of
the electrodynamic current. Simplifying the module and
employing again (91) we eventually obtain

uη∇ηPσ=qFσαuα (99)

which is the Lorentz force in the Newton law. Notice that
we have never used any assumption on the module being
localized in order to get the macroscopic approximation,
which means that in the present derivation all points and
not only the peak of the matter distribution do follow the
classical trajectory. In absence of electrodynamics

uη∇ηPσ=0 (100)

as the Newton law. Therefore the mass can be simpli�ed,
obtaining the equivalence principle, and if also β→0 we
have uη∇ηuσ=0 identically, which is merely the geodesic
equation. Further, the entire derivation could have been
obtained also without the macroscopic approximation, in
which case we would obtain the particle trajectories with
corrections due to the quantum potentials. The full form

of the �nal expressions is too complicated to be insightful,
but even without them one can already understand that
they constitute the guiding equation. In fact, after having
solved for Pσ we can use

Pσ=m
d

ds
xσ (101)

and solve for xσ=xσ(s) giving the position of the particle
in terms of the length parameter s and which is therefore
the trajectory of the particle, as in the dBB theory [12].
As we had already mentioned, the above derivation was

based on no assumption regarding the localization of the
matter distribution, which made it more general than the
Ehrenfest theorem on the classical limit. However, it also
allows a novel de�nition of particles that does not require
them to be the manifestation of a localized module. And
in fact in the dBB theory, particles are not the peak of the
module but yet another entity that has to be postulated
independently and which rides on the module according
to the guiding equation. This interpretation, however, is
a weak point of the dBB theory. In fact, in this case, the
motion of a particle would be determined by the module,
that is the wave function, which in principle depends on
the con�guration of all other particles. Whereas this link
among all particles of the universe is non-local enough to
ensure entanglement of all particles, this entanglement is
mediated by the wave function, which is physical. Hence,
any non-local behaviour is also physical. The possibility
that acausal propagation may be observable creates some
compatibility issue with relativity. While these problems
might be circumvented by arguing that still no informa-
tion is actually exchanged between distant systems, there
seems to be no general consensus yet. Consequently, here
we would like to take a di�erent route, interpreting par-
ticles as the manifestation of a localized module, �nding
a di�erent manner to explain correlation between states.
In the following, there are then two things we will have

to do. One is to justify somehow how the module can be
localized. The other is explaining how two states can be
linked non-locally but in full compatibility with relativity.
The �rst of these two problems may be treated by con-

sidering that in full, the Dirac equations also contain the
torsion of the space-time. Consider then the Dirac equa-
tions given in the following alternative form

∇µ lnφ2−Gµ+2msµ sinβ=0 (102)

∇µβ−2XWµ−Kµ+2msµ cosβ=0 (103)

with Gµ=−Rµ+2P ρuνsαεµρνα and Kµ=−Bµ+2P ιu[ιsµ]
as yet another type of potentials. Via the straightforward
manipulation of these equations, we can obtain

∇µ
(
φ2∇µβ

)
−(8X2M−2φ2m sinβ +

+2XW ·G+∇µKµ+KµG
µ)φ2 =0 (104)

|∇β/2|2−m2−φ−1∇2φ+ 1
2 (∇µGµ +

+ 1
2G

2− 1
2K

2−2XW ·K−2X2W 2)=0 (105)

the �rst being a continuity equation and the second being
a Hamilton-Jacobi equation. Particularly interesting for
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us is the HJ equation for β→0 because in this case

∇2φ+X2W 2φ+XW ·Kφ− 1
2 (∇µGµ +

+ 1
2G

2− 1
2K

2)φ+m2φ=0 (106)

with Wµ left explicitly. As for the �eld equations for the
propagating torsion �eld [13], they can be taken in their
e�ective approximation M2Wµ=2Xφ2sµ which, upon a
direct substitution, furnish the e�ective HJ equations

∇2φ−4X4M−4φ5+2X2M−2K ·sφ3 −
− 1

2 (∇µGµ+ 1
2G

2− 1
2K

2−2m2)φ=0 (107)

which are now written in the form of Klein-Gordon equa-
tions for the module. They are non-linear with negative
sign for the highest-order potential, which make them the
candidate equations for a solitonic solution. Therefore, a
localized module can be dynamically justi�ed by torsion.
However, in practice, it is very di�cult to actually �nd

solutions of such non-linear �eld equations, though some
approximated solutions can be found like those of [6], or
those of [7] and [8]. Either way, the solution can be seen
as a localized but regular matter distribution in general.
To face the issue of entanglement, we begin by recalling

some general features of the theory presented so far which
may be of help. First of all, as it is well known, the Dirac
equations contain the spinor �eld and its dynamical prop-
erties but also the tetradic �elds. These tetrad �elds are
important for two reasons. A �rst is that without them we
cannot write the spinor equation, highlighting how much
the spinor �elds are sensitive to the underlying structure
of the background. Another is that tetrads contain more
information as compared to the metric within the same
background. In a given background of assigned metric, a
basis of tetrads have a richer structure which can be felt
by spinor �elds. Secondly, both information about frame
of reference and gravitational e�ects are generally found
within tetrad �elds, although only gravity can be found in
the curvature tensor and henceforth determined by �eld
equations with a source. So the information about pure
geometry that can be found inside non-trivial tetrads in
�at space-time remains undetermined. Genuine geomet-
ric e�ects in tetrads have no propagation, and no acausal
behaviour can be imputed to them. Non-local actions are
therefore not forbidden by any known physical principle.
In encoding what we can know about physics, tetrads

complement the information contained in the spinor �eld
and without being pre-determined. A �at space-time does
not imply that pure geometric e�ects cannot be present,
and in fact the tetrads can still be non-trivial, entering in
the Dirac equations in a way that can have an impact on
the spinor �eld. So in the following we will work out some
consequences of a toy model based on an exact solution
of the Dirac equations in a perfectly �at space-time.
Consider then the Minkowski metric, thus zero connec-

tion and �at space-time. We can write tetrads and spin
connection as those found in [6�8]. Whatever its form, a
solution is in general constituted by an assigned module
and Yvon-Takabayashi angle thathave to solve (87-88) in

a speci�c background that is given. Equivalently, we can
also write the spinor �eld according to the form

ψ=φe−
i
2βπe−iqα

 1
0
1
0

 (108)

solving (86) for a speci�c set of tetradic �elds that is also
given as background. These are general results [6, 7]. For
this solution, however, it is also possible to assign a very
special alternative form that is given for the same module
and Yvon-Takabayashi angle. Quite simply it is

ψ=φe−
i
2βπe−iqα

 0
1
0
1

 (109)

corresponding to the very same material distribution but
with an opposite spin. This is not a surprise because it is
well known that spinors have two basic spin orientations,
as wanted by the Pauli principle. The two solutions above
di�er from (67) for the fact that they have been taken in
their rest frame and spin aligned along the third axis, as
also customary. But nonetheless, one might wonder what
additional information could be encoded within the L−1

matrix. To keep things simple, we will still remain in the
rest frame. But there we consider a rotation of the form

L−1 =

 cos ζ/2 sin ζ/2 0 0
− sin ζ/2 cos ζ/2 0 0

0 0 cos ζ/2 sin ζ/2
0 0 − sin ζ/2 cos ζ/2

 (110)

with ζ=ωt and ω constant. The appearance of such new
term determines the appearance of an additional

L−1∂tL=−ωσ13 (111)

so that (80) yields

∂tξ13 =−ω (112)

as Goldstone mode of this state. Because of (82) we have
that Ω13t=∂tξ13 and consequently we get

Ω13t=−ω (113)

as additional component of the spin connection. As it is
clear, there is no contribution to the curvature, for which
we still have �atness. The general form of the spinor (67)
in both the above cases (108-109) is therefore

ψ=φe−
i
2βπe−iqα

 cos ζ/2
− sin ζ/2
cos ζ/2
− sin ζ/2

 (114)

having s3 =cos ζ alongside to

ψ=φe−
i
2βπe−iqα

 sin ζ/2
cos ζ/2
sin ζ/2
cos ζ/2

 (115)
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with s3 =− cos ζ therefore showing the opposition of the
two spin orientations. Then, while maintaining opposite
orientation, both spins display a �ipping that depends on
ζ over time. The Goldstone state has no dependence on
spatial coordinates and it will remain the same even when
the two solutions have space-like distance. Now, suppose
that a measurement be performed on the �rst solution so
to force it to collapse onto the stateof de�nite spin. If we
perform a measurement �xing the �rst spinor to its form

ψ=φe−
i
2βπe−iqα

 1
0
1
0

 (116)

then s3 =1 hence showing that the spin is in the up con-
�guration. Since this state would still have to be solution
of the Dirac equation, the spin connection collapses onto
the case in which we have that ω=0 and because this is
a constant then it will remain in this state, so that

Ω13t=0 (117)

and since the spin connection is uniquely de�ned as back-
ground then this must also be the value of the spin con-
nection of the second state. As we want this state to still
be a solution of the Dirac equation, then

ψ=φe−
i
2βπe−iqα

 0
1
0
1

 (118)

with s3 =−1 and so that the spin is now in the down con-
�guration. Summarizing, forcing the �rst solution into a
spin-up state implies, through the ω=0 condition, that a
spin-down state be �xed for the second solution, and the
full process can take place no matter how distant are the
two solutions. Notice that such process would have been
exactly the same if we had the �rst solution collapse onto
the spin-down state and the second solution collapse onto
the spin-up state. This uniform spin �ip guarantees lack
of pre-determination in spin orientation, and thus results
are statistically distributed as it is necessary in quantum
mechanics. Yet, a measurement �xing one spin also �xes
the other spin, and it does so immediately. This process
is mediated by the spin connection, and in particular by
the component that arises as Goldstone state L−1∂νL in
the structure of the spinor �eld. This degree of freedom
does not encode physical interactions since it gives rise to
no contribution in the curvature, and therefore it can not
be determined by any �eld equation. So, the information
that is transferred between the two spinors through their
common Goldstone state is not restricted to be causal as
it does not have any propagation in the �rst place. Hence
compatibility with the principles of relativity is obvious.
As an example, let us next try to apply such a concept

for a speci�c solution, that is that of [6], of which we will
consider only the exterior branch. We will have two wave

functions with an opposite spin orientation. And we will
work in spherical coordinates for compactness. Of these
two opposite-spin wave functions, the �rst that we shall
consider is given according to the following expression

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)

 1
0
1
0

 (119)

with tetrads

et0 =coshα et2 =− sinhα (120)

er1 =−1 (121)

eθ3 = 1
r (122)

eϕ0 =− 1
r sin θ sinhα eϕ2 = 1

r sin θ coshα (123)

giving spin connection

Ω13θ=−1 (124)

Ω01ϕ=− sin θ sinhα (125)

Ω03ϕ=cos θ sinhα (126)

Ω12ϕ=− sin θ coshα (127)

Ω23ϕ=− cos θ coshα (128)

where sinhα=
√
ε(2m− ε)/(m−ε) with m>ε>0 and K

a generic constant. This corresponds to the spin-up case
and it is a solution of the Dirac equations. Similarly it is
possible to consider the alternative wave function

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)

 0
1
0
1

 (129)

with tetrads

et0 =coshα et2 =− sinhα (130)

er1 =1 (131)

eθ3 =− 1
r (132)

eϕ0 =− 1
r sin θ sinhα eϕ2 = 1

r sin θ coshα (133)

giving spin connection

Ω13θ=−1 (134)

Ω01ϕ=sin θ sinhα (135)

Ω03ϕ=− cos θ sinhα (136)

Ω12ϕ=sin θ coshα (137)

Ω23ϕ=cos θ coshα (138)

where sinhα=
√
ε(2m− ε)/(m−ε) with m>ε>0 and K

generic constant. This corresponds to the spin-down case
and it is a solution of the Dirac equations. As easy to see
these solutions are square-integrable (albeit their energy
has a logarithmic divergence near the origin of the radial
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coordinate). By applying now the rotation (110) we will
get that the �rst spinor becomes of the form (114) as

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)

 cos ζ/2
− sin ζ/2
cos ζ/2
− sin ζ/2

 (139)

with the real representation of (110) inducing the corre-
sponding rotation on the tetrads

et0 =coshα et2 =− sinhα (140)

er1 =− cos ζ er3 =− sin ζ (141)

eθ1 =− 1
r sin ζ eθ3 = 1

r cos ζ (142)

eϕ0 =− 1
r sin θ sinhα eϕ2 = 1

r sin θ coshα (143)

and hence on the spin connection

Ω13t=−ω (144)

Ω13θ=−1 (145)

Ω01ϕ=− sin (θ+ζ) sinhα (146)

Ω03ϕ=cos (θ+ζ) sinhα (147)

Ω12ϕ=− sin (θ+ζ) coshα (148)

Ω23ϕ=− cos (θ+ζ) coshα (149)

while the second spinor becomes of the form (115) as

ψ= K
r
√
sin θ

e−r
√
ε(2m−ε)e−it(m−ε)

 sin ζ/2
cos ζ/2
sin ζ/2
cos ζ/2

 (150)

with the real representation inducing the corresponding
rotation on the tetrads

et0 =coshα et2 =− sinhα (151)

er1 =cos ζ er3 =sin ζ (152)

eθ1 = 1
r sin ζ eθ3 =− 1

r cos ζ (153)

eϕ0 =− 1
r sin θ sinhα eϕ2 = 1

r sin θ coshα (154)

and hence on the spin connection

Ω13t=−ω (155)

Ω13θ=−1 (156)

Ω01ϕ=sin (θ+ζ) sinhα (157)

Ω03ϕ=− cos (θ+ζ) sinhα (158)

Ω12ϕ=sin (θ+ζ) coshα (159)

Ω23ϕ=cos (θ+ζ) coshα (160)

and they are both solutions of the Dirac equations. Hence
we see thatboth wave functions display the above uniform
rotation, with the spin connection that has generated the
additional component Ω13t=−ω exactly as we discussed
above. Notice thatsuch a component does not depend on
the variables of the system but remark also that it is not
an absolute constant. The independence on the position

of the particle means that the dynamics will remain the
same even if the two particles were separated. However,
any observation breaking the rotation by �xing ω=0 will
have the e�ect of producing the collapse of both spinors
simultaneously. In fact, suppose that an observation were
performed at a time for which more or less ωt=2nπ then
solution (139-149) would be (119-128) plus the Ω13t=−ω
condition and (150-160) as (129-138) plus the Ω13t=−ω
condition. If now the system were disturbed so that ω=0
then the rotation would stop, simultaneously locking the
�rst solution to the spin-up state and the second solution
to the spin-down state. If we had about ωt=2nπ+π then
solution (139-149) would be (129-138) plus the Ω13t=−ω
condition and (150-160) as (119-128) plus the Ω13t=−ω
condition. If now the system were disturbed so that ω=0
then the rotation would stop, simultaneously locking the
�rst solution to spin-down states and the second solution
to spin-up states. This is what we had discussed above.
Contrary to the dBB interpretation, where, as already

mentioned, entanglement is due to observable degrees of
freedom, and thus non-local e�ects are real, here the cor-
relation of two observables occurs through the Goldstone
degrees of freedom, which have no local restriction given
that their propagation is not restricted by anything. With
the original terminology [14, 15], [16] we may say that in
the dBB interpretation non-local hidden variables are the
positions of the particles, while here the non-local hidden
variables are the Goldstone state of the spinorial �eld.
The single measurement is also completely determined

through the knowledge of the parameter ζ=ωt and ulti-
mately on t but this requires the knowledge of the initial
time t0 as boundary condition. Knowledge of this bound-
ary condition is therefore the condition in terms of which
of all possible states only a special state is selected hence
entailing a form of symmetry breaking. It is of particular
type as it occurs for a special state. And again it occurs
only for that special state due to boundary conditions.
Analogies with the previous case are found in the fact

that both types of symmetry breaking are speci�c to one
given wave function. Di�erently from the previous case,
where symmetry breaking meantchoosing one solution of
many, here symmetry breaking means choosing a speci�c
observable property for a given assigned solution.

V. CONCLUSION

In this paper, we have considered symmetry breaking
occurring in two situations, universally and particularly,
and we have discussed these ideas in terms of three possi-
ble examples. The �rst was about cosmological e�ects of
the standard model of particle physics. We recalled the
way in which symmetry gets broken by the Higgs vacuum
and by the choice of the speci�c gauge �eld con�guration
selected by the Higgs isospin. Since these selections occur
throughout the universe, symmetry breaking is universal.
The second case was a situation that was formally anal-

ogous to the one of the Higgs �eld. We have shown how,
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similarly to the Higgs �eld, general spinor �elds are writ-
ten in polar form. For them we identi�ed the Goldstone
states and shown that they are absorbed as longitudinal
components in the Pα and Rijα tensors. So we have seen
that there arises a speci�c spin axial-vector and we have
recalled how its direction selects a speci�c spinor �eld as
solution to the Dirac equations. Because the selection of
this solution is due to boundary conditions that are valid
for such a case solely, symmetry breaking is particular.
The third case was an entirely di�erent situation, that

was regarding the process of measurement within general
quantum mechanical systems. After having presented the
version of the dBB formalism that was written in a wholly
relativistic form and in presence of spin, we had shown a
toy model in which a pair of spin-up and spin-down states
were found to possess a uniform rotation that could have
been maintained over large distances but which could also
be made to collapse for one spin state instantly forcing a
collapse of the other spin state. This toy model for pairs
of entangled spins does not have compatibility problems
with relativity because in it the correlation of two states
is ensured by the component of the spin connection aris-
ing from the Goldstone degrees of freedom of the spinor
�eld, which have a peculiar property. They are given by
the term L−1∂νL and as such they do not contribute to
the curvature tensor, showing that they cannot carry any
gravitational information but only frame-related types of
information in general. As the gravitational information
would go into the curvature and as such it would have to
verify Einstein equations ensuring the causal propagation
of all gravitational degrees of freedom, information about
frames does not go in the curvature and so for it there is
no �eld equation restricting its propagation. Whereas an
interaction mediated by some physical �eld would have
to respect physical locality, entanglement as described by
frames does not have to obey constraints. In other words,
even if locality must be ensured for all �elds that are the

solutions of �eld equations, not all �elds are solutions of
�eld equations. There might be non-local objects even in
a full relativistic environment. And thus employing them
to have a description of a non-local action is compatible
with relativity. In our toy model, they are the Goldstone
states ofspinor �elds,and theyare recognized as non-local
hidden variables. These are �xed by boundary conditions
such as the time t0 that make the wave function collapse
onto a single state. As the boundary conditions pick only
one state, the resulting symmetry breaking is particular.
To conclude this discussion about symmetry breaking

types, we would like to stress that the example of univer-
sal type and the �rst example of particular type seem to
be more alike than the two examples of particular type,
for the following reasons. The example of universal type
and the �rst example of particular type are di�erent for
the fact that in the former the symmetry group is among
di�erent �elds while in the latter the symmetry group is
among di�erent components of the same �eld, but apart
from this they are analogous in any aspect, even formally.
The two examples of particular type are di�erent in the

fact that while in the former the choice of the boundary
conditions is made for β and φ2 in the latter the choice of
the boundary conditions is made for the Goldstone states
of the spinor �elds. While the Dirac equations specify the
physical properties of the wave function, no equation can
determine the propagation of its Goldstone states. Hence
one type of boundary conditions is the usual type needed
to specify the solution of a given �eld equation whereas
the other type of boundary conditions is a new type that
speci�es an observable property of a given solution.
In our toy model, the property in exam was the orienta-

tion of the spin axial-vector, which cannot be determined
by �eld equations and yet it is necessary to establish the
results of spin observations. This analysis points toward
the importance of Goldstone states of a spinor �eld in
encoding non-directly observable information.
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