Effect of cathodic hydrogen charging on the fracture toughness of a X52 pipeline steel welds tested with SENT specimens

<u>Flavio Catalano^a</u>, Marco Palombo^b, Marco De Marco^b, Michelangelo Mortello^b, Paolo Piccardo^a, Roberto Spotorno^a

^aDepartment of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy ^bIstituto Italiano della Saldatura, Genova, Italy [†]flavio.catalano@edu.unige.it

Università di **Genova** SYNC 2024 Symposium for Young Chemists: Innovation and Sustainability, June 24th – 28th 2024 – Rome, Italy

Introduction

In recent years, attention towards hydrogen as a green energy source has increased significantly. However, the transition to hydrogen presents some challenges regarding the fitness for service of metallic materials in a hydrogenated environment. In fact, hydrogen can diffuse within the crystalline lattices of metals, worsening their mechanical properties, in particular their fracture toughness (hydrogen embrittlement, HE [1]), without noticeable signs. A type of material that requires close attention is the API 5L family pipeline steels, because unexpected breakages in gas pipelines may be dangerously lethal [2]. The welds present in gas pipelines are critical areas because they can host residual stresses, manufacturing defects, geometric imperfections, particular microstructures which are preferential sites for hydrogen accumulation [3]. For this reason, it is necessary to assess the HE propensity of the current pipeline network to ensure its fitness for hydrogen transport.

API 5L X52 Line Pipe Steel

	Specimen	J _{Max H} /J _{Max Air}	
	BM	0,590	
	HAZ	0,686	
	FZ	0,690	
J _{MAX} is calculated by the Basic Method, accordig with BS8571 standard [4].			

- with the microstructure of the BM, HAZ, and FZ.
- The material that absorbs the most hydrogen is FZ, followed by BM and HAZ.

[1] Nagumo M. Fundamentals of Hydrogen Embrittlement. 1st ed. Springer; 2016. [2] Kim Y, Chao YJ, Pechersky MJ, Morgan MJ. On the effect of hydrogen on the fracture toughness of steel. International Journal of Fracture 2005; 134: 339-347.

