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Learning Linear Temporal Properties for
Autonomous Robotic Systems

Enrico Ghiorzi , Michele Colledanchise , Gianluca Piquet , Stefano Bernagozzi , Armando Tacchella ,
and Lorenzo Natale

Abstract—The problem of passive learning of linear temporal
logic formulae consists in finding the best explanation for how
two sets of execution traces differ, in the form of the shortest
formula that separates the two sets. We approach the problem
by implementing an exhaustive search algorithm optimized for
execution speed. We apply it to the use-case of a robot moving
in an unstructured environment as its battery discharges, both in
simulation and in the real world. The results of our experiments
confirm that our approach can learn temporal formulas explaining
task failures in a case of practical interest.

Index Terms—Formal methods in robotics and automation,
autonomous agents, failure detection and recovery.

I. INTRODUCTION

AUTONOMOUS robotic systems must accomplish tasks
outside strictly controlled environments and minimizing

the need for human intervention. In this context and in spite of the
efforts made by system developers, not all reasons leading to a
failure can be foreseen and accounted for. Understanding the root
issue of a task failure is difficult, especially if no human operator
is observing the task execution and the cause of the failure has
to be figured out from the execution logs. Thus, it is useful to
employ learning techniques that, by examining execution logs
of both successful and unsuccessful executions, can learn the
reason why the system has failed. The problem is known as
passive learning of temporal properties.

We approach the learning problem by employing linear tem-
poral logic (LTL) formulae as learning target, assuming that
system executions produce Boolean traces labeled as either suc-
cessful or unsuccessful. The goal is to find a LTL formula that is
satisfied by all the traces produced by successful executions, and
by none of the traces produced by unsuccessful ones. Thus, the
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formula encodes the reason why some executions are successful
and some are not. The level of generality and clarity of the
formula is linked to its size: the shorter the formula, the more
general and clear it is as an explanation of the issue the system
incurs into. Thus, our goal is to find the shortest such formula.

We recall some background in Section III and stating the
problem formulation in Section IV. Then we develop a learning
algorithm based on exhaustive search, described in Section V
and optimized with various techniques detailed in Sections V-A
to V-C. In Section VI we evaluate the theoretical guarantees of
the algorithm. In Section VII we discuss the concrete implemen-
tation of the algorithm. In Section VIII we compare the perfor-
mances of our approach against those of the reference solvers
proposed in [1], [2], [3], [4]. Finally, in Section IX we apply the
learning algorithm to the concrete use-case of an autonomous
robot trying to grasp a token and take it to destination, while
preventing its battery from draining and possibly replenishing
it at a charging station. We implement such experiment as two
distinct simulations (Sections IX-A and IX-B) and in the real
world (Section IX-C).

II. RELATED WORK

The problem of learning temporal properties has been studied
extensively, with various kinds of underlying logic, semantics,
and learning strategy. Some basic theory of the complexity
of learning LTL formulae from examples is presented in [5]
together with the proof that the problem is NP-hard (at least for
some choice of logical and temporal operators).

In the literature, a common approach to learning formulae
from examples is to search through some subset of formulae
matching templates while optimizing some metric [6], [7], [8],
[9], [10], [11], [12], [13]. As we want to make no assumption
about the shape of the solution, we cannot use this approach.

Another common approach is to reduce the learning problem
to a satisfiability problem, searching in order of increasing size
of the formulae [1], [2], [3], [14], [15], [16], [17]. In [1], the
problem is reduced to a Boolean satisfiability problem and then
a solution in the form of a syntax directed acyclic diagram (DAG)
is found with the assistance of a SAT-solver. The overhead this
approach introduces makes it unsuitable to solve large samples
arising from real-world data. The work in [1] has been extended
by searching for approximate solutions to noisy data via a
Max-SAT solver and employing finite-trace semantics (which
we adopt too) [2], [3], while [15] extends it to the property spec-
ification language temporal logic (PSL). The work of [1], [2] has
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also been extended to signal temporal logic (STL), using SMT
solvers instead of SAT solvers [3], [16]. Listing exhaustively
all DAGs and then solving the Boolean satisfiability problem
for each DAG, [14] refines the work in [1], obtaining a speed-up
compared to the original method. Finally, [17] uses a SAT-solver
to learn LTL formulae encoded as alternating finite automata
as opposed to the syntax DAGs used by [1]. These learning
algorithms have been applied to robotics. For example, [18],
[19], [20] use the learning algorithm from [1], [2].

Genetic algorithms perform well but have to allow for some
misclassification and cannot guarantee minimality [21].

Finally, there are exhaustive enumeration algorithms [4], [22].
SySLite1, a state-of-the-art solver based on an enumerative
algorithm, encodes the problem as a bit-vector function synthesis
problem [4] to be solved by CVC4, a Syntax-Guided Synthesis
engine, via an optimized exhaustive search.

In this work we present an algorithm based on exhaustive
search and featuring domain-specific optimizations, with the
goal of finding complex solutions on large samples with many
variables. We verify that, for practical applications in robotics,
our approach is more efficient than the already available tools. To
obtain such performances, though, we have to limit our search to
LTL formulae, instead of learning STL formulae as other works
do [6], [7], [9], [10], [11], [13], [16], [21], [22], [23], [24].

III. BACKGROUND

Linear Temporal Logic (LTL) is an extension of Boolean logic
with temporal operators. LTL describes not just the state of a
system characterized by Boolean variables, but also its evolution
through time. For example, it can express concepts such as “P
will be true in the next time step,” “P is always true,” “P will
eventually be true,” or “P is going to be true until Q becomes
true,” where P and Q are Boolean propositions.

A. Syntax

We give the syntax for LTL formulae via an inductive defi-
nition. Let Var be a non-empty finite set of Boolean variables
(which we usually denote as p, q, r...).

Definition 1: A well-formed LTL formula over Var is defined
inductively as

p | ¬φ | φ ∨ ψ | Xφ | φU ψ

wherep ∈ Var andφ, ψ are well-formed LTL formulae. The tem-
poral operators extending Boolean logic are the neXt operator X
and the Until operator U. The size of a formula is given by the
number of symbols it contains (not counting the parenthesis).

Derived operators can be defined from the base ones:

� = p ∨ ¬p
⊥ = ¬�

φ ∧ ψ = ¬((¬φ) ∨ (¬ψ))
φ⇒ ψ = ψ ∨ (¬φ)

1[Online]. Available: https://github.com/CLC-UIowa/SySLite

Fφ = �U φ

Gφ = ¬(F(¬φ))
φ R ψ = ¬((¬φ) U (¬ψ))

Aside from the usual derived logical operators, we have the
derived temporal operators Finally (F), always or Globally (G),
and Release (R). Notice that � is defined by a choice of variable
p ∈ Var, and thus uses the hypothesis that Var is non-empty.
Moreover, the definition of � assumes the use of the excluded
middle, which is fine as we are working in the context of classical
logic.

In the implementation of the algorithm described in the rest of
the section, we use formulae including some derived operators
in addition to the primitive ones, as some derived operators are
particularly useful in practice. Specifically, we include G, F,
and ∧.

B. Semantics

While Boolean formulae are interpreted over Boolean eval-
uations, LTL formulae are interpreted over infinite traces, i.e.,
infinite sequences of Boolean evaluations (this semantics is used
in [1]). We consider evaluation of LTL formulas on finite traces
instead [25], but we omit any qualification (e.g., LTLf for LTL
over finite traces) as in the context of this paper there is no
potential for confusion.

Definition 2: A Boolean valuation is a mapping Var → Bool,
and a trace t = (ti)i=0,...,l is a finite sequence of Boolean
valuations. An LTL formula φ is interpreted over a trace t at a
given moment in time i where 0 ≤ i ≤ l. We inductively define
that t satisfies φ at time i, and we write t, i |= φ, as follows:

t, i |= p iff ti(p)

t, i |= ¬φ iff t, i � φ

t, i |= φ ∨ ψ iff t, i |= φ or t, i |= ψ

t, i |= Xφ iff i < l and t, i+ 1 |= φ

t, i |= φU ψ iff ∃i≤j≤l s.t. t, j |= ψ and ∀i≤k<j t, k |= φ

If t, 0 |= φ, we say that t satisfies φ, and we write t |= φ.
Intuitively, we interpret an atomic Boolean variable by the

corresponding Boolean value provided by the 0-th Boolean
valuation in the trace (or, leveraging the temporal paradigm,
we can also say “provided by the trace at time 0”), and the
logical operators are interpreted as usual. The temporal operator
X moves the time forward onto the next time step. Finally, the U
operator states that, at some point, its right-hand-side argument
must become true, and that until that moment its left-hand-side
argument holds true.

IV. PROBLEM FORMULATION

Consider an autonomous system repeatedly executing a task.
Assuming that truth assignments to Boolean variables are suf-
ficient to characterize the state of the system, during each ex-
ecution the system produces a trace. Traces corresponding to
successful executions are labeled as “positive,” whereas traces

https://github.com/CLC-UIowa/SySLite
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corresponding to unsuccessful executions are labeled as “nega-
tive.” This leads to the following definition.

Definition 3: A sample S = (P,N) is given by two sets of
traces, the positive tracesP and the negative tracesN . A formula
φ is consistent with a sample S = (P,N) if
� t |= φ for all t ∈ P , and
� t � φ for all t ∈ N .
In other words, a formula is consistent with a sample if it

satisfies all of its positive traces and none of the negative ones.
Intuitively, a formula that is consistent with a sample provides

an explanation of what causes some traces in the sample to be
positive and others to be negative. From a philosophical point
of view, the Occam’s Razor claims that the best explanation of
a phenomenon (that is, the one that is most likely to be correct
and extend to further examples) is the shortest one. Moreover,
“small formulas are easier for humans to comprehend than large
ones” [1]. Thus, the problem of passive learning of LTL formulae
consists in finding a LTL formula of minimal size consistent with
the sample [1].

Assuming that P and N are disjoint, the problem of passive
learning always admits a solution. Indeed, all we need to show is
the existence of a formula consistent with the sample. If that is the
case, a solution of minimal size exists (although not necessarily
unique) by the well-ordering of the natural numbers (the property
that any non-empty set of natural numbers has a least element).
We prove the existence of such a formula with the following
lemma.

Lemma 1: If P and N are disjoint sets of traces, then there
exists a formula satisfying the sample S = (P,N).

Proof: Consider traces t ∈ P and s ∈ N . Since, by hypoth-
esis, t �= s, there exist a time instant i and an atomic variable
p such that ti(p) �= si(p). Let φt,s be the formula Xi p if ti(p)
is true, and ¬Xi p otherwise (where Xi is the next operator
repeated i-many times) so that t |= φt,s and s � φt,s. Then the
formula

φ :=
∨

t∈P

∧

s∈N
φt,s

is such that t |= φ for every t ∈ P and, s � φ for every s ∈ N ,
i.e., it satisfies the sample S. �

In spite of the theoretical significance, the formula produced
by lemma 1 is of little practical use, since it overfits the sample
and it is generally way too long to be understood intuitively.

V. PROPOSED SOLUTION

We propose that a practical approach to the learning problem
is simply by exhaustive search. Indeed, it is possible to recur-
sively generate all LTL formulae of a given size by starting
the recursive construction from the atomic propositions and
then combining unary and binary operators with formulae of
(suitably chosen) smaller size. Storing all the generated formulae
is memory-expensive, so we develop an algorithm, detailed in
Section V-A, to produce them in small batches. We then generate
all LTL formulae in order of increasing size, and test each of
them against the sample until one is found to be consistent with
it. Furthermore, it is possible to make the exhaustive search

more efficient through some optimizations, which we discuss
in Sections V-B and V-C.

A. Generating Formulae via Skeleton Trees

As a matter of fact, the memory required to store all of the
generated formulae quickly exceeds availability. It thus becomes
necessary to partition the generation of formulae into smaller
subsets. We do so by first generating “skeleton” formula trees,
i.e., formula trees without labels for the nodes, thus only carrying
information about the arity of their nodes. In other words, a
skeleton tree represents a general “shape” for a formula, but
does not specify the operators and atomic propositions in it. We
will then generate all possible formula trees from a skeleton
tree by “fleshing it out,” i.e., by adding suitable operators and
variables as labels to its nodes.

Formally, the grammar of such skeleton trees is

L | U t | t B t′

where L represents a leaf node, U a unary node, and B a binary
node, and t and t′ are subtrees.

Given an LTL formula, we can compute its underlying skele-
ton tree by removing the labels from all the nodes. We define
such operation T as follows:

T (p) = L (1)

T (¬t | X t) = U T (t) (2)

T (t ∨ t′ | tU t′) = T (t) B T (t′) (3)

Skeleton trees, just like formulae, have a size given by the
total number of nodes and leaves. We can generate all trees of
a given size by using again a recursive algorithm, and then, for
each tree t, we generate all the formulaeφ such that T (φ) = t by
recursively replacing L with atomic propositions, U with unary
operators ¬ and X, and B with binary operators ∨ and U. We
proceed testing each generated formula for consistency with the
sample, as before.

This updated algorithm, compared to the original one,
presents the advantage that formulae are generated in small
batches, checked and discarded before the next batch of formulae
is generated, thus preventing the computer from running out of
memory. As the great majority of computational time is spent
evaluating formulae, rather than generating them, the increased
complexity of the generating portion of the algorithm does not
result in a noticeable degradation of performances.

B. Curbing Logically Equivalent Formulae

Even with skeleton-tree optimization, the formula search al-
gorithm could still be too slow for practical applications. Indeed,
while lemma 1 guarantees that a solution to the passive learning
problem exists, the size of such solution might be quite large,
and the number of generated formulae grows exponentially with
their size. To mitigate this issue, there are two viable solutions:
to somehow reduce the number of formulae to check, and to
speed up the process of checking if a formula is consistent with
the given sample.
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We now discuss a technique to implement the former solution.
It is a standard mathematical fact that two formulae φ and
ψ can be logically equivalent, i.e., such that for every trace
t we have t |= φ if and only if t |= ψ. Logical equivalence is
an equivalence relation over the set of formulae, and logically
equivalent formulae are all consistent with the same samples,
so it is sufficient to check for consistency relative to the sample
a single formula out of each equivalence class. Unfortunately,
verifying whether two LTL formulae are logically equivalent is
a PSPACE-complete problem [26], [27]. A different perspective
would be to provide a confluent term rewriting system, and
consider only irreducible formulae. Such a rewriting system
exists for Boolean logic, and can be derived from the axioms for
Boolean ring via the Knuth-Bendix reduction algorithm [28],
[29]. The temporal operators U, G and F of LTL, though, are
fixed point operators, as they can be defined as the smallest
operators such that the following equivalences hold [30].

φU ψ ≡ ψ ∨ (φ ∧X(φU ψ)) (4)

Gφ ≡ φ ∧XGφ (5)

Fφ ≡ φ ∨XFφ (6)

Unfortunately, we know of no technique to extend the Knuth-
Bendix reduction algorithm to recursive operators.

Nonetheless, there are many known notable equivalences we
can use to filter out at least some formulae, such as the excluded
middle, φ ∨ (¬φ) ≡ �, and the duality of temporal operators,
e.g., ¬(Fφ) ≡ G(¬φ). We apply these equivalences, with no
claim to exhaustivity, to the generation of the list of formulae:
whenever a generated formula is known, via pattern-matching,
to be equivalent to a shorter one, we discard it as we know
that the equivalent formula has already been generated and
tested. Since the formula-generation algorithm is recursive and
the number of generated formulae grows exponentially with
size, discarding even a few formulae of a given size results in
way fewer formulae generated at larger sizes. Special care is
further required to deal with the associativity, commutativity and
idempotency properties of logical conjunction and disjunction.
The former is dealt with by conventionally choosing to always
associate on the left. The latter two are dealt with by imposing an
(arbitrary) total ordering� on the set of formulae, and discarding
all formulae φ ∧ ψ and φ ∨ ψ such that ψ � φ.

From a computational complexity point-of-view, the
formulae-curbing operation does not change the fact that the
number of generated formulae is exponential with respect to
the size of the formulae, but it allows us to lower the base of
such exponential. Thanks to the curbing of formulae, we obtain
a∼2× speed-up on the sample used in Section IX, and we expect
such speed-up to grow exponentially as the size of the learned
formulae increases.

C. Interleaving Traces

A further ∼2× speed-up is obtained by observing that, infor-
mally speaking, some formulae tend to be more likely than others
to satisfy a random trace. For example, by definition tautologies
are satisfied by every trace, and contradictions are satisfied by

no trace. This means that checking a formula against all positive
traces first, and then against all negative traces later, is inefficient
if the formula tends to be easily satisfied (such as a tautology);
conversely, checking a formula against all negative traces first,
and then against all positive traces later, is inefficient if the
formula tends to be rarely satisfied (such as a contradiction).
Thus, instead of testing a formula on a sample by first checking
if the formula satisfies all positive traces and then if it fails to
satisfy all negative traces, it is generally more convenient to
interleave positive and negative traces, thus alternating between
checking the ones and checking the others.

VI. THEORETICAL EVALUATION

We need to ensure that the proposed learning algorithm is
sound, complete, and it has the minimality property. Here, sound
means that the algorithm does not provide a wrong answer, i.e.,
a formula inconsistent with the sample; complete means that no
potential solution is ignored; and the minimality property means
that the solution has minimal size among all formulae consistent
with the sample.

By design, the proposed algorithm is sound, in that the pro-
duced formula is checked directly for consistency with the sam-
ple, and so it is guaranteed to satisfy the consistency requirement.

If the algorithm generates and tests all possible formulae, then
it must also be complete, as it cannot miss a solution to the
learning problem. The curbing of equivalent formulae described
in Section V-B has the effect of skipping some formulae, both
in checking them against the sample and in inductively using
them as subformulae to construct formulae of larger size. Still,
consistency of a formula with a sample is a semantic-equivalence
invariant problem, so as long as we only exclude formulae that
are equivalent to other formulae that we check for consistency
and use as subformulae of larger formulae, we are not going to
miss any solution (up to equivalence).

Finally, since the algorithm generates formulae of increasing
size, the first solution it finds must also be a minimal one. Again,
the curbing of equivalent formulae does not break this property,
because the curbed formula is always of size greater or equal
than the retained equivalent one.

VII. IMPLEMENTATION DETAILS

We implemented the algorithm presented in Section V in the
Rust programming language2. The solver is provided with a
sample encoded as a text file in either json or ron format, and
the first formula that is verified to satisfy the sample is printed
out as output.

Profiling, using tools like hyperfine3, perf4, inferno5 and
cargo-flamegraph6, shows that the vast majority of the execution
time is spent evaluating the formulae on the traces, whereas
memory usage is mostly due to the storing of all the generated
formulae. By contrast, generating the formulae takes relatively

2[Online]. Available: https://github.com/EnricoGhiorzi/learn_ltl
3[Online]. Available: https://github.com/sharkdp/hyperfine
4[Online]. Available: https://perf.wiki.kernel.org/index.php/Main_Page
5[Online]. Available: https://github.com/jonhoo/inferno
6[Online]. Available: https://github.com/flamegraph-rs/flamegraph
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little time, and evaluating them on the traces does not require
significant memory usage.

The algorithm we propose is highly parallelizable. Indeed,
testing whether a formula is consistent with the given sample can
be done independently from the testing of the other formulae.
Thus, parallelizing the algorithm via multi-threading on the CPU
is trivial, and, while on small samples with solutions of small
size the overhead of parallelism outweigh its benefits, on large
samples with solutions of large size it yields a speed-up directly
proportional to the number of available cores. This has also been
experimentally tested on a high-performance computer cluster
with up to 40 CPUs.

An implementation of a CUDA version of the algorithm has
also been attempted. A kernel has been written to evaluate a
formula on a trace, so that, after generating all formulae of a
given size, these are evaluated in parallel to find one that is con-
sistent with the sample. Unfortunately, experiments show that
this approach does not yield improved performances compared
to the CPU implementation, neither on a personal computer nor
on a computer cluster with multiple GPUs. We conjecture that
the operation of evaluating a formula on a trace is, intrinsically,
a poor fit for the GPU, as it makes essential use of loops and
branching, and thus it does not conform to the “single instruction,
multiple data” paradigm.

VIII. COMPARISON WITH STATE-OF-THE-ART

We developed our own algorithm to solve the passive learning
problem because we want to learn linear temporal properties
with large samples (such as those produced by autonomous
robotic systems, which we expect to have up to a dozen variables
and tens of traces of hundreds of time-steps of length, for a total
of tens or hundreds of thousands of Boolean values) and we need
to compute them fast (if we want a response in near-real-time) or
on limited hardware (if the computation is done on the on-board
hardware of a robotic system).

No off-the-shelf tool seems to offer the combination of fea-
tures and performances we seek. We substantiate such statement
by providing a comparative performance analysis of our tool
pitted against two state-of-the-art solvers, which implement,
respectively, the constraint-based approach and the enumerative
approach. Although there exist other approaches to learn LTL
formulae, we are not interested in comparing with those that
use approximate methods, such as those that search among
a restricted class of formulae, that use templates, or that use
stochastic methods, as these search for sub-optimal (i.e., non-
minimal) solutions in exchange for increased speed.

Finally, it is worth noting that all of the examples in this section
are relatively easy to solve, and so our tool is able to produce a
solution in a short time and with minimal memory footprint (a
few MB at most). Still, since the computational complexity of the
problem is exponential, it is easy to find samples that either cause
the solver to run out of memory or that take a prohibitively long
time to solve. For example, searching among formulae of size
greater than 12–14 (depending also on the number of Boolean
variables) is usually enough to crash the solver because of lack
of memory.

TABLE I
BENCHMARK COMPARISON WITH SAT SOLVER

A. Comparison With SAT Approach

Our main references on the problem of passive learning of
LTL formulae propose an algorithm based on SAT solvers [1],
[2]. In a nutshell, given a sample S and a positive integer n,
the algorithm defines a Boolean formula φS,n whose potential
models, found by a SAT solver, induce an LTL formula of size
n that is consistent with S. Notice that the notion of “size” in
this paper differs from the one in [1], [2], but for the practical
purposes of the performance comparison it does not make a
qualitative difference, especially since on short formulae the
two notions tend to agree. Unfortunately, the algorithm has, in
the worst case, exponential complexity not only on the size of
the formulae that are being searched, but also on the size of the
sample (meaning the cumulative length of all the traces in the
sample). Indeed, the number of variables in φS,n is proportional
to n and to the size of S (see [1, Remark 1]), and in the worst
case a SAT solver has exponential complexity in the number
of variables in the input formula. This makes the algorithm
unsuitable to deal with large samples, even though the solution
might be a short formula.

The work in [1], [2] comes with an implementation of
the proposed SAT-based algorithm, to which our tool aims
to be a competitive alternative. Thus, we compare our tool,
benchmarked with the aforementioned hyperfine tool, with the
the SAT-based algorithm presented in [2]7, passing the —-
test_sat_method option (the direct comparison with [1] is
more problematic because it uses an infinite-traces sematics). We
use the same sets of synthetically generated samples “absence”
and “universality” used in [2]8, and report the cumulative time to
solve all samples in the sets. We repeat the experiment for both
the single- and multi-thread implementations of our algorithm,
keeping in mind that, while the former is deterministic, the latter
is not and thus the results are subject to larger experimental
error. The benchmarks in Table I, which we run on a laptop PC9,
show that our approach is faster by 5 orders of magnitude. Thus,
in spite of the limitations in comparing different algorithms
solving the passive learning problem, we claim that our approach
is overall significantly faster and more capable than the one
proposed in [1], [2]. On the one hand, the optimizations we
applied to the exhaustive search algorithm and described in
Sections V-B and V-C leverage specific domain knowledge about
LTL which would be harder to apply to SAT-based algorithms,

7[Online]. Available: https://github.com/cryhot/samples2LTL
8[Online]. Available: https://github.com/cryhot/samples2LTL/tree/master/

traces/finite/perfect_class
9Dell Inc. XPS 15 9500 with 16,0 GiB RAM, Intel Core

TM
i7-10750H CPU

2.60 GHz à 12 cores, and GeForce GTX 1650 Ti Mobile.

https://github.com/cryhot/samples2LTL
https://github.com/cryhot/samples2LTL/tree/master/traces/finite/perfect_class
https://github.com/cryhot/samples2LTL/tree/master/traces/finite/perfect_class


GHIORZI et al.: LEARNING LINEAR TEMPORAL PROPERTIES FOR AUTONOMOUS ROBOTIC SYSTEMS 2935

TABLE II
BENCHMARK COMPARISON WITH SYSLITE

as these have to rely on a third-party SAT solver which works as
a black box. On the other hand, those optimizations account for
a speed up of only one order of magnitude, so this shows that
even a naive exhaustive search would be significantly faster than
any SAT-based algorithm currently proposed in the literature, as
those are all within a margin of one order of magnitude faster
then those in [1], [2].

B. Comparison With SySLite

We now compare our tool with SySLite. We consider a set of
samples from the SySLite repository, which have also been used
in [4] to perform a performance comparison with the algorithm
from [1], [2]. Other than converting the sample files from the
original format to our own, we reverse the order of the valuations
in each trace to account for the fact that SySLite uses past-time
LTL [4], so that the solutions found by the two tools match
(up to renaming of the temporal operators). The benchmark
results are reported in Table II, from which we see that our
implementation is significantly faster than SySLite. Moreover,
SySLite only searches among formulae starting with a G opera-
tor, while our tool is not subject to such restriction and thus has
to search among a larger set of formulae. We conjecture that our
tool performs better because, unlike SySLite, it hard-codes the
learning problem instead of relying on an external, more general
solver.

IX. EXPERIMENTAL VALIDATION

To validate the application of passive learning of LTL formu-
lae in the context of autonomous systems and the computational
viability of the proposed learning algorithm, we performed
experiments in which the R1 robot [31] attempts to grasp an
item handed from a user and carry it to a destination point.
There is also a charging station where the robot can recharge its
battery. Potential issues which can prevent R1 from completing
its task include running out of battery, finding a physical obstacle
blocking the way, and incurring into an uncooperative user who
refuses to hand the item.

The log produced during the execution of the simulation
provides us with the following data:
� Whether R1 is grasping an object, as a Boolean value.
� Battery level, as a floating-point percentage.

� Spatial coordinates x and y as floating-point numbers in
the ranges [x0, x1] and [y0, y1], respectively.

For every new log message we consider the updated state of
the system, translate all data into Boolean variables, and append
a new Boolean valuation to the trace. Boolean variables, such as
the one determined by the grasping status, translate directly into
the trace. Numerical variables, such as battery level or spatial
coordinates, require choosing some sort of encoding.

We encode a floating-point numerical variable x in a range
[x0, x1) using a chosen number n of Booleans X1, . . . , Xn

by dividing the range in 2n-many sub-intervals and using the
Boolean variables to encode the binary representation of the
index of the interval within which x is found.

We proceed as follows:
� We normalize the interval by letting x̄ = 2n x−x0

x1−x0
, so that

x̄ ∈ [0, 2n).
� We take the integer part of x̄ and we consider its binary

representation b1, . . . , bn (n bits are sufficient).
� We let Xi be true if and only if bi = 1.
Notice that this algorithm requires the upper bound of the

interval to be open. Pragmatically, when dealing with a closed
interval [x0, x1], we consider the upper bound x1 as belonging
to the last interval.

A further issue is given by the length of the traces: since
variables are sampled frequently, if we add a time-step to the
trace at every variable sampling, we can end up with traces
that are very long, while containing the same values repeated
multiple times. This issue is exacerbated by the above encoding
of numerical variables: even when the value of a numerical
variable changes, its Boolean encoding might remain the same.
The extreme size a sample with these kind of traces can reach
actually provides an example of a sample on which our tool takes
a prohibitive amount of time to terminate, although it does not
run out of memory (we finally halted such an experiment after
16 hours of computation still yield no solution).

In principle, repeated and consecutive occurrences of the
same variable evaluation in a trace are significative: the traces
(in one variable) [true] and [true, true] are different
and they do not satisfy the same LTL formulae. In practice
though, the number of repeated occurrences of the variable
evaluations are quite irrelevant: indeed, we make no assump-
tion on the frequency or even regularity of the sampling, so
that no reliable temporal information can be deduced from
the number of repetitions. The traces from the example above
might be produced by identical executions, where in the sec-
ond trace the sampling just happens to have increased fre-
quency. Thus, to reduce the length of the traces, and con-
sequently speed up the execution of the learning algorithm,
we deduplicate all consecutive repeated occurrences of the
variable evaluations, obtaining a data compression ratio of up
to 86.

From the execution logs we extract the following variables:
� IsGrasping is true if the robot is grasping an object.
� B_1dd, B_d1d and B_dd1 encode battery level as a

three-bit binary number, where 1 means that the bit in that
position is 1 if the variable is true and 0 otherwise, and d
that we “don’t care” about that bit.
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Fig. 1. Various scenarios. The grid reflects the binary encoding of the spacial
coordinates.

� X_1ddd, X_d1dd, X_dd1d and X_ddd1 encode the
spatial coordinate on the x axis as a four-bit binary number,
with the same notation used for the battery level.

� Y_1ddd, Y_d1dd, Y_dd1d and Y_ddd1 encode the
spatial coordinate on the y axis as a four-bit binary number,
with the same notation used for the battery level.

We repeat the experiments in both simulators and the real
world, with different scenarios and increasing complexity. All
of the obtained data is available at https://github.com/piquet8/
masterThesisProject-Piquet. All of the following computations
are executed run on the same laptop used for the benchmarks
in Section VIII, but without using multi-threading to make the
results deterministic and more easily reproducible.

A. YARP Simulation

The YARP simulation10 used in [32] takes place in the IIT
open space and “kitchen” area (see Fig. 1(a)). In this 2D sim-
ulation, it is not possible to place obstacles in the scenario,
and the grasping of the item will always succeed, but all the
other features of the experiment, notably battery discharging
and recharging, are implemented.

Consider the sample RAL1.json obtained from this exper-
iment. The learning algorithm solves the sample and yields the
formula F(¬(X_d1dd ∨ X_ddd1)). This means that R1
successfully completes the task only when eventually reaches
an area approximately corresponding to the destination point.

The previous solution to the learning problem correctly iden-
tifies the destination area, but it’s slightly disappointing in that it
disregards the battery level. We run the learning algorithm after
manually disabling the variables X_d1dd and X_ddd1, in the
sense that the learning algorithm will disregard them and only
consider the remaining variables to search for a solution. We
then get the formula

F(X_dd1d ∧ X(Y_1ddd ∧ (B_1dd ∨ B_d1d)))

in about 32 s and using around 200 MB (this is the only exper-
iment in this section using significant resources). This means
that eventually R1 needs to be in the kitchen area (although
with greater approximation than the first solution). Moreover, the

10[Online]. Available: https://github.com/SCOPE-ROBMOSYS/
Verification-experiments

subformula X(B_1dd ∨ B_d1d) forces the robot to have at
least a 25% charge the moment after entering the kitchen, which
gives the robot sufficient battery charge to reach the destination.
This solution correctly satisfies the negative trace corresponding
to the execution in which R1 enters the kitchen without enough
charge to reach the destination.

B. Tour Guide Robot (In Gazebo Simulator)

The Tour Guide Robot1112 takes place in a museum, simulated
in 3D in the Gazebo Simulator (see Fig. 1(b)). Compared to the
simulator in Section IX-A, we can also place obstacles to block
the way of R1 to either the user, the charging station or the des-
tination (still placed in a room conventionally called “kitchen”).
We first execute some successful executions by not blocking any
passage. Then, we block a single passage, execute some failures,
and run our solver on the obtained sample. Blocking access to
the user (sample_w2.json) we get F(Grasp), meaning
that R1 has to eventually grasp the item. Blocking the kitchen
(sample_w3.json) we get F(G X_d1dd), meaning that
R1 has to eventually enter and remain in an area approximately
corresponding to the kitchen. Block the charging station (sam-
ple_w4.json) we get again F(G X_d1dd). If we disable
the variable X_d1dd, though, we get that F(G(¬X_1ddd)),
meaning that R1 should not go towards the charging station and
remain there (evidently, stuck in front of the closed passage until
its charge runs out).

C. Real-World Experiments

For real-world experiments we used the actual R1 humanoid
robot in the Robot Arena at IIT’s center CRIS13. We verified that
the results obtained in simulation in Sections IX-A and IX-B
can be replicated in the new, real-world scenario. Moreover, we
had an uncooperative human user refuse to hand the item. This
occurs in sample_grasp.json, which yields F(Grasp),
as expected.

X. CONCLUSION AND FURTHER WORK

We have shown that a robust and optimized implementation of
exhaustive search provides a practical approach to the problem of
passive learning of LTL properties in the context of autonomous
robotic systems, and it allows us to learn the root cause of failure
of such a system in a realistic scenario.

In future work, we shall explore further strategies to optimize
the learning algorithm. One improvement would be to develop a
rigorous framework to curb equivalent formulae, instead of using
a hand-picked library of notable equivalences as we currently
do. Another improvement might be to evaluate the semantic of
a formula on a trace by using bit-vectors computations [33],
similar to SySLite. Finally, while the formulae cannot all be
generated at the same time due to memory limitations, it might
be worth using memoization techniques and precompute the
semantic interpretation of at least some of the smaller formulae,

11[Online]. Available: https://github.com/piquet8/tour-guide-robot
12[Online]. Available: https://www.youtube.com/watch?v=8L_4tDIS1Gs
13[Online]. Available: https://www.youtube.com/watch?v=qedEZL8t7cs
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so that it can be looked up when the formula is found as a
subformula of a larger formula, instead of recomputing it every
time.

Another area of research is to either extend or restrict the
logical language. For example, restricting the language to a
subset of LTL, such as the subsets of syntactically (co)safe
formulae, could yield more useful results, and possibly improve
performances of the learning algorithm too.

Expanding the area of research into system monitoring, we
could extract online monitors from the learned formulae and
use these to detect anomalies in the execution of the system. An
even more ambitious goal would be to use these techniques not
just to detect anomalies once these have occurred already, but to
actively try to predict and prevent them.

REFERENCES

[1] D. Neider and I. Gavran, “Learning linear temporal properties,” in Proc.
Conf. Formal Methods Comput. Aided Des., 2018, pp. 1–10.

[2] J.-R. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu, “Learning
linear temporal properties from noisy data: A maxSAT-based approach,” in
Automated Technology for Verification and Analysis,Z. Hou and V. Ganesh,
Eds. Cham, Switzerland:Springer, 2021, pp. 74–90.

[3] J.-R. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu, “MaxSAT-based
temporal logic inference from noisy data,” Innov. Syst. Softw. Eng., vol. 18,
pp. 427–442, 2022.

[4] M. F. Arif, D. Larraz, M. Echeverria, A. Reynolds, O. Chowdhury, and C.
Tinelli, “SYSLITE: Syntax-guided synthesis of PLTL formulas from finite
traces,” in Proc. 20th Conf. Formal Methods Comput.-Aided Des.2020,
pp. 93–103.

[5] N. Fijalkow and G. Lagarde, “The complexity of learning linear tem-
poral formulas from examples,” in Proc. 15th Int. Conf. Grammatical
Inference, 2021, pp. 237–250. [Online]. Available: https://proceedings.
mlr.press/v153/fijalkow21a.html

[6] Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and C. Belta, “Temporal
logic inference for classification and prediction from data,” in Proc.
17th Int. Conf. Hybrid Syst.: Computation Control, 2014, pp. 273–282,
doi: 10.1145/2562059.2562146.

[7] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Trans. Autom. Control, vol. 62,
no. 3, pp. 1210–1222, Mar. 2017.

[8] J. Kim, C. Muise, A. Shah, S. Agarwal, and J. Shah, “Bayesian inference of
linear temporal logic specifications for contrastive explanations,” in Proc.
28th Int. Joint Conf. Artif. Intell., 2019, pp. 5591–5598, doi: 10.24963/ij-
cai.2019/776.

[9] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal logic,”
in Proc. 19th Int. Conf. Hybrid Syst.: Computation Control, 2016,
pp. 1–10, doi: 10.1145/2883817.2883843.

[10] G. Bombara, “Learning temporal logic formulae from data,” Ph.D. disser-
tation, College Eng., Boston Univ., Boston, MA, USA, 2020.

[11] G. Bombara and C. Belta, “Offline and online learning of signal temporal
logic formulae using decision trees,” ACM Trans. Cyber-Phys. Syst., vol. 5,
no. 3, pp. 1–23, 2021, doi: 10.1145/3433994.

[12] Z. Xu, M. Ornik, A. A. Julius, and U. Topcu, “Information-guided temporal
logic inference with prior knowledge,” in Proc. Amer. Control Conf., 2019,
pp. 1891–1897.

[13] G. Chen, M. Liu, and Z. Kong, “Temporal-logic-based semantic fault
diagnosis with time-series data from industrial Internet of Things,” IEEE
Trans. Ind. Electron., vol. 68, no. 5, pp. 4393–4403, May 2021.

[14] H. Riener, “Exact synthesis of LTL properties from traces,” Proc. Fo-
rum Specification Des. Lang., 2019, pp. 1–6. [Online]. Available: http:
//infoscience.epfl.ch/record/280073

[15] R. Roy, D. Fisman, and D. Neider, “Learning interpretable models in the
property specification language,” in Proc. 29th Int. Joint Conf. Artif. Intell.,
2021, pp. 2213–2219.

[16] N. Baharisangari, J.-R. Gaglione, D. Neider, U. Topcu, and Z. Xu,
“Uncertainty-aware signal temporal logic inference,” in Software Verifi-
cation. Cham, Switzerland: Springer, 2022, pp. 61–85.

[17] A. Camacho and S. A. McIlraith, “Learning interpretable models expressed
in linear temporal logic,” in Proc. Int. Conf. Autom. Plan. Scheduling, 2021,
pp. 621–630. [Online]. Available: https://ojs.aaai.org/index.php/ICAPS/
article/view/3529

[18] I. Gavran, E. Darulova, and R. Majumdar, “Interactive synthesis of
temporal specifications from examples and natural language,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, 2020, Art. no. 201,
doi: 10.1145/3428269.

[19] G. Chou, N. Ozay, and D. Berenson, “Explaining multi-stage tasks
by learning temporal logic formulas from suboptimal demonstrations,”
in Proc. Robot. Sci. Syst., 2020. [Online]. Available: http://www.
roboticsproceedings.org/rss16/p097.pdf

[20] G. Chou, N. Ozay, and D. Berenson, “Learning temporal logic formu-
las from suboptimal demonstrations: Theory and experiments,” Auton.
Robots, vol. 46, pp. 149–174, 2022.

[21] L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, “A robust genetic
algorithm for learning temporal specifications from data,” in Quantitative
Evaluation of Systems,A. McIver and A. Horvath, Eds. Cham, Switzerland:
Springer, 2018, pp. 323–338.

[22] S. Mohammadinejad, J. V. Deshmukh, A. G. Puranic, M. Vazquez-
Chanlatte, and A. Donzé, “Interpretable classification of time-
series data using efficient enumerative techniques,” in Proc. 23rd
Int. Conf. Hybrid Syst.: Computation Control, 2020, pp. 1–10,
doi: 10.1145/3365365.3382218.

[23] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identification
of temporal properties,” in Runtime Verification, S. Khurshid and K. Sen,
Eds. Berlin, Germany:Springer, 2012, pp. 147–160.

[24] P. Vaidyanathan et al., “Grid-based temporal logic inference,” in Proc.
IEEE 56th Annu. Conf. Decis. Control, 2017, pp. 5354–5359.

[25] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear dynamic
logic on finite traces,” in Proc. 23rd Int. Joint Conf. Artif. Intell., 2013,
pp. 854–860.

[26] A. P. Sistla and E. M. Clarke Jr, “The complexity of propositional
linear temporal logics,” J. ACM, vol. 32, no. 3, pp. 733–749, 1985,
doi: 10.1145/3828.3837.

[27] M. Y. Vardi, “An automata-theoretic approach to linear temporal logic,” in
Logics for Concurrency. Berlin, Germany:Springer, 1996, pp. 238–266,
doi: 10.1007/3-540-60915-6_6.

[28] D. E. Knuth and P. B. Bendix, “Simple word problems in universal
algebras,” in Automation of Reasoning. Berlin, Germany:Springer, 1983,
pp. 342–376, doi: 10.1007/978-3-642-81955-1_23.

[29] J. Hsiang and N. Dershowitz, “Rewrite methods for clausal and non-clausal
theorem proving,” in Automata, Languages and Programming,J. Diaz, Ed.
Berlin, Germany:Springer, 1983, pp. 331–346.

[30] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA:MIT Press, 2008.

[31] A. Parmiggiani et al., “The design and validation of the R1 personal
humanoid,” in Proc. IEEE RSJ Int. Conf. Intell. Robots Syst.2017,
pp. 674–680.

[32] M. Colledanchise, G. Cicala, D. E. Domenichelli, L. Natale, and A.
Tacchella, “Formalizing the execution context of behavior trees for runtime
verification of deliberative policies,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2021, pp. 9841–9848.

[33] L. Baresi, M. M. Pourhashem Kallehbasti, and M. Rossi, “Efficient scal-
able verification of LTL specifications,” in Proc. IEEE/ACM 37th Int. Conf.
Softw. Eng., 2015, vol. 1, pp. 711–721.

Open Access funding provided by ‘Istituto Italiano di Tecnologia’ within the CRUI CARE Agreement

https://proceedings.mlr.press/v153/fijalkow21a.html
https://proceedings.mlr.press/v153/fijalkow21a.html
https://dx.doi.org/10.1145/2562059.2562146
https://dx.doi.org/10.24963/ijcai.2019/776
https://dx.doi.org/10.24963/ijcai.2019/776
https://dx.doi.org/10.1145/2883817.2883843
https://dx.doi.org/10.1145/3433994
http://infoscience.epfl.ch/record/280073
http://infoscience.epfl.ch/record/280073
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://dx.doi.org/10.1145/3428269
http://www.roboticsproceedings.org/rss16/p097.pdf
http://www.roboticsproceedings.org/rss16/p097.pdf
https://dx.doi.org/10.1145/3365365.3382218
https://dx.doi.org/10.1145/3828.3837
https://dx.doi.org/10.1007/3-540-60915-6_6
https://dx.doi.org/10.1007/978-3-642-81955-1_23


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


