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via Dodecaneso 33, I-16146, Genova, Italy
bI.N.F.N. — Sezione di Genova,

via Dodecaneso 33, I-16146, Genova, Italy

E-mail: andrea.amoretti@ge.infn.it, danny.brattan@gmail.com,

nicodemo.magnoli@ge.infn.it, marcello.scanavino@ge.infn.it

Abstract: We consider magnetohydrodynamics with an external magnetic field. We find

that in general one must allow for a non-zero incoherent Hall conductivity to correctly

describe the DC longitudinal and Hall thermal conductivities beyond order zero in the

magnetic field expansion. We apply our result to the dyonic black hole, determining the

incoherent Hall conductivity in that case, and additionally prove that the existence of this

transport coefficient leads to a significantly better match between the hydrodynamic and

AC thermo-electric correlators.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence, Holography and

condensed matter physics (AdS/CMT), Gauge Symmetry

ArXiv ePrint: 2005.09662

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2020)097

mailto:andrea.amoretti@ge.infn.it
mailto:danny.brattan@gmail.com
mailto:nicodemo.magnoli@ge.infn.it
mailto:marcello.scanavino@ge.infn.it
https://arxiv.org/abs/2005.09662
https://doi.org/10.1007/JHEP08(2020)097


J
H
E
P
0
8
(
2
0
2
0
)
0
9
7

Contents

1 Introduction 1

2 Magnetohydrodynamics 3

2.1 The diffeomorphism and U(1) gauge symmetry Ward identities 4

2.2 Equilibrium magnetohydrodynamics 5

2.3 AC diffusivities in magnetohydrodynamics 6

2.4 Constraining hydrodynamic correlators with the Ward identities 9

3 Revisiting the dyonic black hole 11

3.1 An incoherent conductivity 13

3.2 Matching the correlators 14

4 Discussion 17

A Standard formulation of relativistic magnetohydrodynamics 18

B Miscellaneous additional results 19

1 Introduction

Magnetohydrodynamics is a collective theory of hydrodynamic modes coupled to electro-

magnetic degrees of freedom. It is an effective field theory which describes the long-range

correlations of near-equilibrium systems, when the microscopic theory is coupled to a U(1)

gauge field. The electromagnetic field can be dynamical, where the evolution of the gauge

field is governed by the Maxwell equations from a given initial configuration, or external

where the profile is arbitrary up to satisfying the Bianchi identity. We are interested in

the latter.

In recent times magnetohydrodynamics has been intensively studied. New break-

throughs in the theoretical study of magnetohydrodynamics include, among others things,

understanding the deeper underlying symmetries and structures that constrain the trans-

port coefficients and subsequently formulating classification schemes [1, 2]. There have

also been applications to the generalized global symmetry reformulation of hydrodynam-

ics [3–6]. At a more practical level the formalism has been used to analyze the physics of

relativistic plasmas [7], as well as to understand the behavior of strongly coupled condensed

matter systems [8–13].

In the earliest formulations of (2 + 1)-dimensional relativistic magnetohydrodynam-

ics [8–10, 14–18] the entire suite of physically relevant conductivities, electric, thermo-

electric and thermal, were given in terms of a single incoherent longitudinal conductivity

σ0 for “not too strong magnetic fields”. The latter requirement is a consequence of matching
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holographic and hydrodynamic results. In particular, it was discovered that if one assumes

the constitutive relation of [8, 15] for the charge current, which depends on only a single

transport coefficient σ0, then one matches precisely the DC electric and thermo-electric

conductivities. However, the holographic DC thermal conductivities match the hydrody-

namic prediction only in the extreme region where charge density completely suppresses

the effect of the magnetic field.

We claim that a more appropriate hydrodynamic theory contains two non-trivial charge

transport coefficients — the usual σ0 and an incoherent Hall conductivity σ̃H. To fix these

quantities we just use the fact that the diffeomorphism and U(1) gauge Ward identities

constrain the small frequency expansion of the charge conductivity [15, 19]. In particular,

we note that the O(ω2) piece of the charge correlator relies on the values of the DC ther-

mal conductivities. Thusly, by matching our hydrodynamic correlators at small frequency

up to and including O(ω2), we find that σ0 and σ̃H can be expressed entirely in terms

of two system dependent quantities — the longitudinal (κL) and Hall (κH) thermal DC

conductivities — and the thermodynamics. Consequently our hydrodynamic correlators,

being dependent only on σ0, σ̃H and the thermodynamics at order one in hydrodynamic

derivatives, are also expressed entirely in terms of the same variables. It is important to

note that the resultant relations are valid at any order in the magnetic field, provided that

one knows κL and κH exactly.

In [20], where (2 + 1)-dimensional parity violating hydrodynamics is considered up to

an including order one in derivatives, an incoherent Hall conductivity is included in the

constitutive relation of the U(1) charge current. However, because the authors of that

paper consider B ∼ O(∂) this Hall conductivity is only non-zero to the order worked at

if the theory violates spatial parity in the absence of the magnetic field. The incoherent

Hall conductivity we will consider is proportional to the magnetic field — which we take

to be order zero in derivatives — and exists in a theory that does not violate spatial parity

microscopically. It could potentially appear in the formalism of [20] at O(∂2), as a new

transport coefficient. In principle, our type of Hall conductivity was allowed for in the

appendix of [12], but to our knowledge it has never been shown to be non-zero. Here

we provide for the first time an expression for σ̃H (and also σ0) in terms of κL, κH and

the thermodynamics. We eventually verify the validity of our results using gauge/gravity

duality, analyzing the simple holographic model of the dyonic black hole. In these kinds of

holographic models, analytical formulae for the DC thermo-electric transport coefficients in

terms of the thermodynamic data are very well known [9, 14–17, 19, 21–28]. Consequently

we have been able, using the known result for κL and κH, to completely determine the

incoherent conductivities σ0 and σ̃H, and eventually to compare the complete hydrodynamic

correlators to the holographic ones.

This paper is organized into broadly two distinct sections. In section 2 we consider

in general the theory of a relativistic charged fluid in (2 + 1)-dimensions in the presence

of an external magnetic field. After reviewing the Ward identities, we show that the

incoherent conductivities σ0 and σ̃H, and eventually the hydrodynamic AC charge correlator

for general frequencies, are completely determined by thermodynamic quantities and the

DC longitudinal and Hall thermal conductivities κL and κH. In section 3 we return to
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the tried and tested example of the (3 + 1)-dimensional dyonic black hole and apply our

formalism, finding that the system is very well described by the hydrodynamics derived

in section 2. We conclude the paper with a general discussion of the results obtained in

section 4.

2 Magnetohydrodynamics

Consider a (2 + 1)-dimensional system with a conserved, global U(1) current. The (non-

)conservation equations of the stress-energy-momentum (SEM) tensor and charge cur-

rent are

∇µ〈Tµν〉 = F νµ 〈Jµ〉 , (2.1)

∇µ〈Jµ〉 = 0 . (2.2)

Here 〈Tµν〉 and 〈Jµ〉 refer to the “total currents” given by variation of the source terms

in the action describing our system. In the presence of an electromagnetic field which is

O(∂0) in derivatives the right hand side of (2.1) has an explicit source term.

We assume the existence of a preferred time-like Killing vector field uµ and SO(2)

rotational invariance. We define the following tensor structures

Πµν = gµν + uµuν , Σµν =
√
−gεµνρuρ , (2.3)

ΠµνΠνρ = Π ρ
µ , ΠµνΣνρ = Σ ρ

µ , ΣµνΣνρ = −Π ρ
µ , (2.4)

where εµνρ is the Levi-Civita symbol with ε012 = 1. With respect to these structures we

can define a gauge and Lorentz invariant electric Eµ and magnetic field B by decomposing

the field strength tensor into

Fµν = uµEν − uνEµ +BΣµν . (2.5)

Similarly we can decompose the stress tensor and the electric current in the following

manner

〈Tµν〉 = Euµuν + (Pµuν + Pνuµ) + PΠµν + T µν , (2.6)

〈Jµ〉 = Nuµ + J µ , (2.7)

where all indices not present on uµ are transverse and we have defined

E = uµuν〈Tµν〉 , P =
1

2
Πµν〈Tµν〉 , N = −uµ〈Jµ〉 , (2.8)

Pµ = −Πµ
ρ〈T ρν〉uν , J µ = Πµν〈Jν〉 , (2.9)

T µν =

(
Πµ

σΠν
ρ −

1

2
ΠµνΠρσ

)
〈T ρσ〉 . (2.10)

The two index structure T µν is symmetric and traceless.
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2.1 The diffeomorphism and U(1) gauge symmetry Ward identities

A key role in our derivation will be played by the Ward identities. Essentially, the presence

of an order zero in derivative O(∂0) source in the momentum conservation equation will

mean that the thermo-electric and thermal conductivities are completely determined by

the electric conductivity.

The Ward identities for the two point functions of the SEM tensor and charge current,

on a flat spacetime with a non-zero electromagnetic field [19], are

0 = −kµ〈JαTµν〉+ iF ν
µ 〈JαJµ〉+ kν〈Jα〉 − kµηαν〈Jµ〉 , (2.11)

0 = kµ

(
〈TαβTµν〉+ ηαν〈T βµ〉+ ηβν〈Tαµ〉 − ηµν〈Tαβ〉

)
+iηβνF α

µ 〈Jµ〉+ iηανF β
µ 〈Jµ〉 − iF ν

µ 〈TαβJµ〉 , (2.12)

where kµ = (ω,~k) is the momentum. Contracting with the fluid velocity or spatial projector

while specializing to zero wavevector we find that these identities can be written as

ω〈J µPν〉 = −ωNΠµν − iEν〈J µN〉+ iBΣ ν
ρ 〈J µJ ρ〉 , (2.13)

ω〈PρPσ〉 = − (ωE − iEµ〈J µ〉) Πρσ − iEσ〈PρN〉+ iBΣ σ
µ 〈PρJ µ〉 . (2.14)

In the case of the dyonic black hole that we investigate later, we will take Eµ ≡ 0 and

B to be constant. Evaluating the Ward identities with these restrictions causes terms

proportional to Eµ to drop out. Further, replacing Pµ by the spatially projected canonical

heat current Qµ = Pµ − µJ µ we arrive at the following relations

〈J µQν〉 = −NΠµν −
(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
〈J µJ ρ〉 , (2.15)

〈QµQν〉 = − (E + P −Nµ) Πµν −
(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
〈QµJ ρ〉 . (2.16)

The importance of the terms which depend on B/ω cannot be overstated. They are essential

to the structure of the correlation functions as they mix different orders in frequency

between the correlators. Consequently, knowing the complete AC behavior of the charge

conductivity is sufficient to determine the thermo-electric and thermal conductivities.

More explicitly, we define the AC electric, thermo-electric and thermal conductivities

to be

〈J µJ ν〉 = iωσµν(ω) , (2.17)

〈J µQν〉 = iωαµν(ω) , (2.18)

〈QµQν〉 = iωκµν(ω) , (2.19)

respectively. In terms of these totally transverse tensor structures, the Ward identities

become

αµν = i
N
ω

Πµν −
(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
σµρ , (2.20)

κµν =
i

ω
(E + P −Nµ) Πµν −

(
µΠ ν

ρ −
iB

ω
Σ ν
ρ

)
αµρ . (2.21)
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As the thermo-electric and thermal conductivities are given entirely in terms of the charge

conductivity, and the Ward identities hold for all frequencies, it follows that complete

specification of the charge conductivity at all frequencies is sufficient to determine the

other two conductivities.

The microscopic theory has SO(2) rotational invariance with B breaking spatial parity.

Consequently we can decompose the conductivity tensor structures into

(σ(ω), α(ω), κ(ω))µν = (σL, αL, κL)Πµν +
1

B
(σH, αH, κH)Σµν , (2.22)

where the tensors Πµν and Σµν are treated as order zero in fluctuations, namely substituting

uµ = (1,~0). In terms of this decomposition, and at low frequencies, we discover that

σL(ω) = −i
(
E + P
B2

)
ω +

κL(0)

B2
ω2 +O(ω3) , (2.23)

σH(ω) = N +
1

B2
(κH(0) + µ (2(E + P)− µN ))ω2 +O(ω3) , (2.24)

where we have used that the conductivities must be finite at vanishing ω and we have

assumed that N , E and P are independent of frequency up to and including O(ω2). In

particular, requiring finite behavior as ω → 0 in the Ward identities1 constrains

σL(0) = αL(0) = 0 , σH(0) = N , αH(0) = E + P − µN , (2.25)

but leaves κL(0) and κH(0) unconstrained and system dependent. In section 3 we will set

them to be the values befitting the dyonic black hole.

We emphasise that we have not made any magnetization subtractions in our definition

of the spatially projected currents and therefore the transport coefficients refer to the total

current and not the “free current”. Moreover we have ignored any of the normalizations

by temperature often made to the thermal conductivity so as to not clutter notation.

2.2 Equilibrium magnetohydrodynamics

A comprehensive derivation of the equilibrium configurations of polarizable matter is given

in [29]; however we shall only need the results to lowest order in derivatives. The equilibrium

charge current in a theory with only a non-vanishing magnetic field in the background (and

no electric field) has the form

〈Jµ〉 = ρuµ −∇νMνµ , (2.26)

Mµν = −mεµνρuρ , (2.27)

to all orders in derivatives where ρ = ∂F
∂µ is the charge density, m = −∂F

∂B is the magnetiza-

tion and F is the free energy. For our purposes the equilibrium configuration of the charge

current decomposed with respect to the time-like vector at zeroth order in derivatives is

N = ρ , J µ = 0 , (2.28)

where we have taken a ground state with no vorticity.

1The magnetic field gaps excitations of the system to be at or above the cyclotron frequency in energy.

Consequently one expects a smooth limit at low frequencies. This should be compared to relativistic charged

hydrodynamics without a background field strength where there is a known δ-function singularity at low

frequencies.
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Turning now to the SEM tensor, we identify the following expressions at order zero in

derivatives,

E = −P + Ts+ µρ , P = P −mB , Pµ = 0 , T µν = 0 . (2.29)

In the above P is the pressure, T the temperature and s the entropy density. Again we

have assumed the electric field vanishes in the background. Our microscopic theory will be

conformal such that the trace of the SEM tensor gives

E − 2P = (ε− 2P + 2mB) = 0 , (2.30)

where ε is the energy density. We note that the equilibrium configuration of the system

depends on the external magnetic field B; as will the leading terms in the derivative

expansion of the transport coefficients. In systems where the magnetic field is extremely

weak — such that it can be treated as O(∂) in derivatives — the thermodynamic quantities

and transport coefficients can still depend on B but this dependence appears as higher

order terms in the derivative expansion i.e. the leading terms in this latter case are B

independent.

2.3 AC diffusivities in magnetohydrodynamics

We wish to work to order one in fluctuations about a flat background at constant temper-

ature Tb, chemical potential µb and magnetic field B. Let uµ = uµb + δuµ, with uµb = (1,~0),

be the time-like Killing vector field of the system to order one in fluctuations. We require

our fluctuation to maintain uµu
µ = −1; whence it is the case that δuµ needs to be entirely

transverse. At this order in fluctuations the conservation equations have the form

∂µδ〈Tµν〉 = F νµb δ〈Jµ〉+ δFµν〈Jbµ〉 , (2.31)

∂µδ〈Jµ〉 = 0 . (2.32)

Just as for the full currents, the fluctuations can be decomposed with respect to a time-like

vector field. In this case it is useful to use uµb . Consequently, we can identify

δ〈Tµν〉 = δEuµb u
ν
b +

(
δPµuνb + δPνuµb

)
+ δPΠµν

b + δT µν , (2.33)

δ〈Jµ〉 = δNuµb + δJ µ , (2.34)

δFµν = uµb δE
ν − uνb δEµ . (2.35)

With these expressions we can decompose the spatial part of the SEM tensor (non-) con-

servation equation into the following form

uµb ∂µδP
ν = −Πνµ

b (∂µδP + ∂µδT µν) +NbδEν +BΣνµ
b δJµ , (2.36)

This will be the only relevant differential equation that we need to solve.

An unusual feature of any hydrodynamic theory with an explicitly sourced momentum

term is the ability to work in the diffusive sector assuming vanishing wavevector ~k from

the get-go. This is due to the fact that the diffusive pole does not move to the origin of the
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complex frequency plane as ~k → 0. To compare this with ungapped hydrodynamics, the

diffusive pole has the form ω = −iD~k2 and taking ~k2 → 0 in the conservation equations

(if one is not careful) gives a trivial result. This inspires us to ignore spatial derivatives in

our conservation equations such that the relevant momentum flow equations become

uµb ∂µδP
ν = NbδEν +BΣνµ

b δJµ , (2.37)

for arbitrary — slowly varying — time dependent profiles.

At the level of linear response we need only determine the fluctuating part of the

constitutive relations that are non-zero for completely time dependent profiles. We remind

the reader that the electric field is external and permitted to have any time dependence

we choose on the condition that the time dependence is sufficiently slow. As such, we will

choose it to be a plane wave at a single frequency. With this in mind the constitutive

relation for the current takes the form,

δJ µ(ω) = σ̂µν0 δEν + χ̂µνδPν(ω) , (2.38)

where the subscript 0 indicates the fundamental (incoherent) conductivity of the theory and

the tensor transport coefficients are constant. We have chosen spatial momentum rather

than spatial velocity to be one of our fluid variables as it is more convenient for solving

the resultant hydrodynamic equations of motion. Spatial rotational invariance allows us to

break the transverse tensor structures of (2.38) into a piece proportional to Πµν and one

proportional to Σµν .

We would like to highlight a point that will return later, the constitutive relation

of (2.38) represents the complete response of the charge current in hydrodynamics. We are

working at ~k = 0 so there are no derivative corrections proportional to ~k. Moreover one

cannot add derivative corrections in ω without introducing additional modes and taking

us outside the hydrodynamic regime. As we are working to order one in fluctuations and

both the electric field and momentum vanish in the background there cannot be non-

linear tensor structures that correct (2.38). Thus (2.38) contains everything consistent

with hydrodynamics.

Applying the definitions of (2.38) to (2.37) we see that the spatial momentum (non-)

conservation equation becomes

uµb ∂µδP
ν(t) = −ΓνµδPµ(t) + ΘµνδEν(t) , (2.39)

where we have defined

Γµν = −BΣ µ
b ρχ̂

ρν , (2.40)

Θµν = NbΠµν
b +BΣ µ

b ρσ̂
ρν
0 . (2.41)

It is important to note that, unlike in the case of B = 0 or B ∼ O(∂1), the conservation

equation (2.39) is a non-trivial and solvable linear differential equation for the spatial

momentum because there is a gap in excitations of the system generated by the magnetic

field. In the case of B = 0 or B ∼ O(∂1) the expression on the right hand side of (2.39)

vanishes at lowest order in derivatives.
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In the Martin-Kadanoff procedure [30] we assume that we turn on some source for

our conserved quantities at t = 0 and allow them to evolve according to the conservation

equations. Performing a Laplace transform in time (accounting for boundary conditions at

t = 0) of (2.39) we arrive at

−iωδP i(ω)− δP i0 = −ΓijδPj(ω) + Θi
jδE

j , (2.42)

where δP i0 is the perturbed value of the spatial momentum at t = 0. Consequently the

momentum evolves in frequency according to

δP(ω) = (Γ− iω12)−1 (ΘδE + δP0) , (2.43)

where indices are implied.

The frequency evolution of the charge currents can now be determined by substitut-

ing (2.43) into the charge conservation equation employing the constitutive relations (2.38).

The result for the charge current is

δJ =
(
σ̂0 + χ̂ (Γ− iω12)−1 Θ

)
δE + χ̂ (Γ− iω12)−1 δP0 . (2.44)

From these expressions the frequency evolution of the electric conductivity can be readily

determined to be

σ(ω) = σ̂0 + χ̂ (Γ− iω12)−1 Θ . (2.45)

To determine the thermal conductivity from the constitutive relations we would in principle

need a non-zero spatial momentum. However, we are saved from having to do this by

making use of the Ward identities of (2.15) and (2.16).

There are some important observations to make about our expressions for the AC

diffusivities. Firstly, all poles in these correlation functions must originate in the inverse

matrix (Γ− iω12)−1. The zeroes of the determinant of this matrix will correspond to the

quasinormal modes of our dyonic black hole model. Secondly, if we determine the AC

response of the charge conductivity, the fundamental conductivities are given entirely in

terms of other quantities,

Tr [σ(ω)] = Tr [σ̂0]− Tr
[
χ̂ (Γ− iω12)−1 Θ

]
, (2.46)

Tr [σ(ω)ε] = Tr [σ̂0ε]− Tr
[
χ̂ (Γ− iω12)−1 Θε

]
, (2.47)

with

ε =

(
0 1

−1 0

)
, (2.48)

where we assume we are away from any singularities associated with the inverse operation.

In what follows we will decompose our fundamental conductivities as

σ̂ij0 = σ0δ
ij + σ̃HF

ij , (2.49)

χ̂ij = χ0δ
ij + χHF

ij , (2.50)

– 8 –



J
H
E
P
0
8
(
2
0
2
0
)
0
9
7

where we have used spatial parity invariance to argue that the scalar Hall conductivities

σ̃H, χH must be even in B when they multiply the tensor structure F ij . We note that unlike

some previous formulations [8, 15, 31] we have allowed for an incoherent Hall conductivity

in (2.49). Such a term is not forbidden (in particular by transformations under spatial

parity as it multiplies F ij) and should therefore be included. In fact it turns out to be

necessary. It is consistent with the previous results [20] where the magnetic field is treated

as O(∂) because it would only appear at O(∂2).

2.4 Constraining hydrodynamic correlators with the Ward identities

We are now ready to compare the electric conductivities derived in (2.46) and (2.47) to

the Ward identities (2.23) and (2.24), expanding them order by order in the frequency ω.

Eventually we constrain the unknown transport coefficients σ0, σ̃H, χ0 and χH of (2.49)

and (2.50).

The order O(ω0) equations are trivial so we immediately turn to O(ω1). In the small

frequency expansion of the AC correlators, the trace relations (2.46) and (2.47) become

i

2
Tr[σ′(0)] =

ρχ0 + (σ0χH + χ0σ̃H)B2

B2
(
χ2

0 +B2χ2
H

) , (2.51)

− i
2

Tr[σ′(0)F ] =
σ0χ0 − ρχH + χHσ̃HB

2

B2
(
χ2

0 +B2χ2
H

) . (2.52)

Comparing the previous expressions with (2.23) and (2.24), at O(ω1) we can constrain

χ0 =
ρ−B2σ̃H

sT + µρ−mB
, χH =

σ0

sT + µρ−mB
, (2.53)

which agree with the standard result of (A.5) up to the introduction of the magnetization

(a known result) and a fundamental Hall conductivity.

At O(ω2) we can apply the same process, which will yield expressions for σ0 and σ̃H in

terms of the DC thermal conductivities κL(0) and κH(0) and the thermodynamic variables.

The resultant expressions are

Ξσ0(0) = (sT + µρ−mB)2κL(0) , (2.54)

Ξσ̃H(0) = −
(
m2
(
κH(0) + µ2ρ+ 6µsT

)
− ρκL(0)2

)
+

2m

B
(κH(0)(sT − µρ) + µsT (µρ+ 3sT ))

− 1

B2

(
s2T 2 − ρκH(0)

) (
κH(0) + µ2ρ+ 2µsT

)
+ 2Bµm3 , (2.55)

Ξ = B2
(
κL(0)2 + 4µ2m2

)
− 4Bµm

(
κH(0) + µ2ρ+ 2µsT

)
+
(
κH(0) + µ2ρ+ 2µsT

)2
. (2.56)

These expressions are valid to all orders in B and we remind the reader that κL(0) and

κH(0) are the DC thermal conductivities of the total currents — not the free current.

Parenthetically, we note that on the condition κL(0) 6= 0 there is a non-zero σ0. Moreover,

the incoherent Hall conductivity σ̃H can only be zero if the thermal conductivities are

– 9 –
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related by the constraint (2.55) (with σ̃H = 0). As we will see in section 3 this is not true

in general and as such we generically expect σ̃H to be non-zero in all but a very special

subset of systems.

Our AC charge conductivity correlator at order one in hydrodynamic derivatives takes

the form

σL(ω) =
iω
(
γ2
∗ + iγ∗ω + ω2

∗
)

(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)

, (2.57)

σH(ω)

B
=

ρ

B
+
ω2ω∗(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)

, (2.58)

where

ω∗ =
B(sT + µρ−mB) (−κH(0) + 2Bµm− µ(µρ+ 2sT ))

Ξ
, (2.59)

γ∗ =
B2κL(0)(sT + µρ−mB)

Ξ
, (2.60)

and Ξ has been defined in (2.56). We include in appendix B the AC thermo-electric

and thermal conductivities. This is one of our key results as it represents an excellent

approximation to the charge correlators that yields the correct values for the DC electric,

thermo-electric and thermal conductivities. Moreover, it demonstrates that obtaining the

correct DC value of the thermal correlator has nothing to do with including higher order

derivative terms nor a frame transformation [31] — everything is fixed at O(∂) in the

constitutive relations, once one takes into account the constraints between the incoherent

and the thermal DC conductivities (2.55)–(2.56), which are dictated by the Ward identities.

Since it will be useful in what follows, we also introduce the complexified conductivity,

σ+(ω) ≡ σH(ω)

B
+ iσL(ω)

= Bσ̃H + iσ0 −
(sT + µρ−mB)(ω∗ − iγ∗)2

B2(ω − (ω∗ − iγ∗))
. (2.61)

The advantage of this complexified representation is that σ+ depends in a straightforward

way only on a single hydrodynamic pole located at ω∗ − iγ∗, as is evident in (2.61).

Some notes about (2.61) are rather important. Relativistic hydrodynamics is a deriva-

tive expansion in time and space describing the lowest lying quasinormal modes (typically

one or two such modes with similar imaginary part). In [12] for example there are two

constant terms sourcing the momentum and one finds two quasinormal modes are neces-

sary to specify the hydrodynamic limit of the AC conductivity. As hydrodynamics does

not incorporate other quasinormal modes, in our case, one expects it to at most get the

AC correlator correct to O(ω2). One can motivate this from arguing for the general form

of σ+(ω), which is

σ+(ω) =
α1 + α2ω

ω + α3
, (2.62)

where α1, α2 and α3 are complex numbers. We can use the Ward identities to fix α1, α2

and α3 in terms of the three complex DC conductivities - determining (2.62) uniquely.
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There can be no further corrections in hydrodynamics to (2.61). Any ω dependent

corrections to (2.61) necessarily introduce additional modes and take us outside the regime

of hydrodynamics. Similarly, attempting to improve the position of the quasinormal mode

necessarily requires that we modify the α3 of (2.62) and subsequently no longer match the

DC conductivities.2 There is in fact a good motivation for fixing the DC conductivities

in preference to the quasi-normal mode as one can see that errors in the position of the

latter are suppressed by the distance of the complex pole from the real frequency axis.

Hence (2.61) is the complete hydrodynamic correlator. Any errors between it and the

observed AC conductivity cannot be removed within the hydrodynamic regime.

3 Revisiting the dyonic black hole

We will check the results of the previous section using the holographic dyonic black hole.

Eventually, we consider the following action

S =

∫
d3+1x

√
−g
(
R− 6− 1

4
F 2

)
, (3.1)

where F is a U(1) gauge field strength. The bulk spacetime corresponding to a (2 + 1)-

dimensional conformal field theory at strong coupling with a non-zero charge density and

magnetic field is the asymptotically AdS4 dyonic black hole solution to the equations of

motion coming from (3.1). This black hole has the metric

ds2 =
dz2

f(z)
+
α2

z2

(
−f(z)dt2 + dx2 + dy2

)
, (3.2a)

f(z) = 1 +
(
ρ2 +B2

) ( z
α

)4
− 1

α

(
α4 + ρ2 +B2

) ( z
α

)3
, (3.2b)

with the horizon at z = 1, the boundary at z = 0 and bulk gauge field strength

F = −µdz ∧ dt+Bdx ∧ dy . (3.3)

The thermodynamics of this black brane is well known, and here we only list the results.

The temperature T , the entropy density s, the charge density ρ and the magnetization

density m are expressed in terms of the bulk data µ, α and B as follows:

T =
(3α4 − µ2 −B2)

4πα3
, ρ = αµ , m = −B

α
, s = πα2 . (3.4)

As the system is conformally invariant it satisfies a scaling Ward identity which relates the

pressure P and the energy density ε:

ε = 2 (P −mB) , ε =
1

2α

(
α4 + ρ2 +B2

)
. (3.5)

Additionally the system is extensive and therefore satisfies a first law with ε+P = µρ+sT .

2A discussion of how well our hydrodynamic expression matches the lowest quasinormal mode of the

dyonic black hole is relegated to appendix B.
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We will be interested in finite frequency fluctuations about the background (3.2)

and (3.3) corresponding to fluctuations of the boundary electric field. This requires that

we consider fluctuations of the tx and ty components, δgtx and δgty, of the metric and x

and y components of the gauge field, δax and δay. The analysis of these perturbations at

first order in small frequency was completed in [14]. We record them here

〈J µJ ν〉 = −iω ρ
B

Σµν +O(ω2) , (3.6)

〈J µQν〉 = − iω
B

(
3

2
ε− µρ

)
Σµν +O(ω2) , (3.7)

〈QµQν〉 = iω

(
(sT )2

ρ2 +B2

)
Πµν

−iω
(

ρ

B(ρ2 +B2)

(
(sT )2 − (m2 + µ2)B2

))
Σµν +O(ω2) . (3.8)

These were determined analytically and hold for all values of the magnetic field and charge.

Comparing with (2.25) we see that we can identify

N = ρ , E + P =
3ε

2
, (3.9)

and additionally we have

κL(0) =
(sT )2

ρ2 +B2
, κH(0) =

ρ

ρ2 +B2

(
(sT )2 − (m2 + µ2)B2

)
. (3.10)

The AdS-CFT correspondence gives the total current as a variation of the on-shell action.

Consequently our DC conductivities are with reference to the total current, and not the

magnetization subtracted versions that sometimes appear in the literature [8, 15–18].

The Ward identities were demonstrated to hold in the holographic case of the dyonic

black hole in [15]. Through them, should we evaluate the charge conductivity at arbitrary

frequency, we will be able to determine the thermo-electric and thermal conductivities.

This analysis has been done previously and we refer the reader to [15]. The result is that

the independent response of our theory is described by the coupled bulk equations

f(z)
(
−ρE ′+(z) +BB′+(z)

)
+ ω

(
BE ′+(z) + ρB′+(z)

)
= 0 , (3.11)

ω

4z2

(
E ′+(z)− ω

f(z)
B+(z)

)
+B2B+(z)− ρBE+(z) = 0 , (3.12)

where

E+(z) = iω (δax(z) + iδay(z)) +
iB

z2
(δgtx(z) + iδgty(z)) , (3.13)

B+(z) = −Bf(z)
(
δa′x(z)− iδa′y(x)

)
. (3.14)

The asymptotic expansion of the fields E+(z) and B+(z) yield the boundary electric

field and charge currents respectively,

lim
z→0
E+(z) = Ex + iEy , −i lim

z→0
B+(z) = Jx + iJy . (3.15)
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This provides another motivation for us to consider the complex charge conductivity

lim
z→0

B+(z)

E+(z)
= σ+(ω) = σxy(ω) + iσxx(ω) . (3.16)

Expressed in terms of this complexified conductivity, and having substituted the dyonic

black hole results (3.9) for N , E and P, the Ward identities (2.23) and (2.24) give:

σ+(ω) =
ρ

B
+
sT + µρ−mB

B2
ω

+

[
2
(
κH(0) + µ2ρ+ 2µsT − 2µmB

)
2B3

+ i
κL(0)

B2

]
ω2 +O

(
ω3
)
. (3.17)

3.1 An incoherent conductivity

We now prove that the formulae for the incoherent conductivities given in (2.54) and (2.55)

are actually valid in the dyonic black hole. The usual definition of such a quantity in terms

of the charge current orthogonal to momentum [32] will no longer suffice as the magnetic

field B mixes the two spatial components of the momentum. Consequently there is no

part of the charge current which is orthogonal to the momentum at all points in space.

Instead, we return to the original motivation for defining the incoherent conductivity — it

is the contribution to the correlator that is independent of coherent dissipative mechanisms.

Such mechanisms when relevant to hydrodynamics can be introduced into the formalism

by modifying the source term of the momentum equation by shifting Γij to Γij + Γijcoherent.

With this remark in mind we define the incoherent conductivity to be the constant

term in the Laurent expansion of the complexified conductivity σ+ as defined in (2.61)

about the hydrodynamic pole located at ω∗ − iγ∗. This is invariant under the translation

ω → ω − iΓcoherent and equal to the first term of (2.61) i.e.

σinc.
+ ≡ Bσ̃H + iσ0 . (3.18)

At lowest order in B these terms are

[σ0]B=0 =

(
3α4 − ρ2

3(ρ2 + α4)2

)2

, [σ̃H]B=0 = −
16ρ

(
ρ2 + 3α4

) (
5ρ4 + 6α4ρ2 + 9α8

)
81 (ρ2 + α4)4 ,

(3.19)

when expressed in dyonic black hole data. In fact, it should be noted that σ̃H vanishes as

O(ρ) independent of the value of B for the dyonic black hole.

We have checked the validity of the relation (3.18) against the numerics. Displayed in

the upper plots of figure 1 are our analytic expressions for the incoherent conductivities

against charge density at various values of the magnetic field. For low magnetic fields the

match is excellent as expected, becoming progressively worse as we increase the magnetic

field and charge density (and therefore effectively lower the temperature). Moreover, our

result for σ0 becomes greater than one for B > ρ, in agreement with the data. The result

from the standard magentohydrodynamic approach to the dyonic black hole leads to an

incoherent conductivity σ0 bounded above by one.
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inc]O (B)/α
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(d)

Figure 1: Plots of the constant term in the Laurent expansion of the charge correlator

about the hydrodynamic pole against the charge density. The blue dots are data. Upper

left: the imaginary part of σinc.
+ against our analytic expression for σ0. The three red lines

represent B/α2 = 1/1000 (solid), 1/25 (dashed) and 3/50 (dotted). Notice that σ0 > 1

which stands in contradiction to the standard prescription where σ0 = (sT/(ε+ P ))2 ≤ 1.

Upper right: the real part of σinc.
+ against our analytic expression for σ̃H. The three red

lines represent B/α2 = 1/1000 (solid), 5/1000 (dashed) and 10/1000 (dotted). Lower left:

the leading contribution at small B to the imaginary part of the constant term. The solid

red line is the analytic expression for [σ0]B=0. Lower right: the O(B1) contribution to the

constant part of the Laurent expansion. The red line is our analytic result for [σ̃H]B=0.

Additionally, in figure 1 we display [σ0]B=0 against the numerically extracted constant

Laurent coefficient at low B in the lower left hand plot of figure 1 and the matching is

excellent. In the lower right plot we also show [σ̃H]B=0. The match is a little less accurate

as ρ increases, or equivalently T decreases. This is most likely due to higher order pole

corrections which become relevant at low T and one expects hydrodynamics to be less

accurate. These comparisons at least prove that σ̃H is nonzero in the dyonic black hole

and that (2.54) and (2.55) are accurate expressions for σ0 and σ̃H.

3.2 Matching the correlators

We can now proceed to match the full correlators (2.57) and (2.58) (considering the pole

position (2.59)) against the numerical results for the dyonic black hole. The outcome is
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Figure 2: The real parts of the AC charge conductivity as a function of frequency for two

choices of charge density and magnetic field. Blue dots are data, the solid red line is our

analytic result and the purple dashed line is the result of standard magnetohydrodynamics

(see appendix A). Upper: the longitudinal (left) and Hall (right) AC conductivities with

B/α2 = 1/100 and ρ/α2 = 1/20. Lower: the longitudinal (left) and Hall (right) AC

conductivities with B/α2 = 1/20 and ρ/α2 = 1/100 i.e. B > ρ.

shown in figure 2. We distinguish two different regimes. When ρ > B (figures 2 (a)

and (b)), the agreement between (2.57) and (2.58) and the numerics is excellent in a wide

range of temperature. In this case, at large ω the conductivity σL reaches a minimum before

approaching the conformal value (σL = 1) as shown in figure 3. The same figure shows

that the value of this minimum is very well approximated by the incoherent conductivity

σ0 defined in (2.54), which is less than 1 in this regime. The frequency at which the

conductivity shows this minimum can be considered as a high frequency cut-off for the

validity of the hydrodynamic regime. It is worth mentioning that, as it is evident from

the purple line in figure 3, the B = 0 limit of σ0, namely the well known result [σ0]B=0 =[
(sT/(ε+ P ))2

]
B=0

of standard magnetohydrodynamics (see appendix A), approximates

the minimum in a significantly worse way than the full σ0 in (3.19).

In the opposite regime, ρ < B, the matching is good in a shorter range of frequen-

cies as shown in figures 2 (c) and (d). This is reasonable since B is becoming large and

hydrodynamics is expected to be a worse approximation in this regime. In any case the cor-

relators (2.57) and (2.58) approximate the numerics consistently better than the standard

magnetohydrodynamics (see appendix A), which does not take into account the existence
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Figure 3: Turning points of the AC charge conductivity as a function of charge density

for two values of the magnetic field: B/α2 = 0.01 (top left) and B/α2 = 0.025 (top right).

The blue dots are data while the solid red line is our analytic result for the incoherent

conductivity σ0. The dashed red line indicates the point where ρ = B while the purple

line indicates the B = 0 limit of our analytic result, coinciding with the conductivity given

by [15]. In particular, the light blue uppermost dots of both figures which occur in the

region B > ρ are maxima, while the dark blue dots in the region ρ > B are minima. In the

bottom row we display a zoomed in plot of real part of the longitudinal charge conductivity

against the logarithm of frequency at B/α2 = 0.025. The leftmost plot with ρ/α2 = 1/100

such that B � ρ shows the local maximum at log ω/α ≈ −2 which corresponds to the light

blue dots in the upper right figure. The rightmost plot is taken at ρ/α2 = 3/100 so that

ρ > B and we have a minimum at log ω/α ≈ −1.5. The middle plot on the bottom row

indicates what happens in the intermediate region ρ . B.

of a non-trivial σ̃H (see the purple dashed line in figure 2 (c) and (d)). In this regime

σ0 > 1 as one can see in figure 3, and the conductivity does not show anymore a minimum

at high frequency, approaching the conformal value from above. However, when B � ρ, σ0

approximates the maximum of the conductivity, as shown in figure 3. Eventually, in this

case the frequency at which the conductivity reaches its maximum can be defined as the

UV cut-off for hydrodynamics.

We reiterate an important point in our discussion here. Hydrodynamics, like any the-

ory, depends on a set of a priori unknown variables — the transport coefficients which must

be fixed by reference to data; in our case the DC conductivities. We can of course choose

different data such as the quasinormal modes to match against. However, while hydrody-

namics remains a theory of a single quasinormal mode there are at most three complex
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constants one can fix (2.62). Any improvement in matching against other quantities, for

example the AC correlator at larger B or the quasinormal mode, comes at the cost of losing

an exact match with the DC conductivity.

4 Discussion

In this paper we have proved that one must include a non-zero incoherent Hall conductivity

σ̃H, in addition to the previously considered longitudinal incoherent charge conductivity

σ0, if one is to match hydrodynamics to the value of the DC thermal current beyond order

zero in the magnetic field expansion. These incoherent conductivities — and subsequently

thermo-electric correlation functions — can be expressed in terms of the DC thermal con-

ductivities κL and κH and the thermodynamics once one appreciates that these thermal

DC transport coefficients fix the O(ω2) piece of the charge current correlator. This is a

consequence of the structure of the diffeomorphism and U(1) gauge Ward identities [15, 19].

Subsequently, we have shown that this modified hydrodynamics leads to the correct effec-

tive field theory necessary to describe the hydrodynamic regime of the holographic dyonic

black hole.

A fundamental future direction for the present analysis will be to analyze better the

role of the magnetic field B in the convergence of the hydrodynamic series. In fact, in this

paper we have shown that, constraining the hydrodynamic transport coefficients with the

Ward identities ensures the DC limit of all the electric, thermo-electric and thermal con-

ductivity are well described by hydrodynamics independently of the value of B. Moreover,

the comparison between magnetohydrodynamics and the dyonic black hole performed in

section 3.2 has shown that the AC conductivities are well approximated by hydrodynamics

independently of the relative value of B and the charge density ρ. This suggests in the

presence of both a temperature and a charge density, assuming that B scales in the gradi-

ent expansion as a derivative might not be the correct approach. Determining the correct

parameter for performing the hydrodynamic expansion, along the lines of what has been

discussed at T = 0 in [3], is an issue of primary importance.

Another interesting question is to understand if the present discussion can be general-

ized to systems with Goldstone bosons in the presence of the magnetic field, like the charge

density wave models described in [33–37]. In fact, a key assumption of the present analysis

is that, as is the case in standard magnetohydrodynamics, all the correlators have a smooth

ω → 0 limit. In the presence of Goldstone bosons, the correlation functions involving these

fields often present poles at ω = 0, and analyzing how the method presented in this paper

can be generalized to this case constitutes a natural question which must eventually be

addressed.
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A Standard formulation of relativistic magnetohydrodynamics

We take a moment here to compare our expressions with the standard versions in magneto-

hydrodynamics in the Landau frame. We set δuµ = (0, ~v) and note the constitutive relation

for the current

〈Jµ〉 = quµ + σQ

(
Fµνuν − TΠµν∇ν

(µ
T

))
. (A.1)

The fluctuation of this expression around a flat background of constant µ, T and B gives

δ〈Jµ〉 = δquµb + Πµν
b

((
ρΠb

νρ +BσQΣb
νρ

)
δuρ + δEν − σQ∂νδµ+ σQ

µb
Tb
∂νδT

)
. (A.2)

Examining only time dependent profiles we identify the spatial part of the current

δ ~J = (ρ12 + σQBε) δ~v + σQδ ~E , ε2 = −12 . (A.3)

From the constitutive relation of the stress-energy-momentum tensor we have

δ ~P(ω) = (ε+ P )δ~v(ω) , (A.4)

to order one in fluctuations which we can back substitute into (A.3). Employing this

relationship we determine

χ =
1

B
(ωc12 + γcε) , σ0 = σQ1 , ωc =

ρB

(ε+ P )
, γc =

σ0B
2

(ε+ P )
, (A.5)

where ωc is the cyclotron frequency and γc is the cyclotron decay rate and σQ = (sT/(ε+

P ))2. From these expressions it follows that

Γ = γc12 − ωcε , Θ = ρ12 + σ0Bε . (A.6)

In the standard formulation of magnetohydrodynamics it follows from our expres-

sions that

(Γ− iω12)−1 =
1

(ω + iγc)
2 − ω2

c

(−ωcε (iω − γc)12) . (A.7)

From this we determine that the charge conductivity is

σ(ω) = σQ

ω
(
ω + iγc + iω

2
c
γc

)
(ω + iγc)

2 − ω2
c

12 −
ρ

B

ω2
c − 2iγcω + γ2

c

(ω + iγc)
2 − ω2

c

ε , (A.8)

which agrees with [15] and [8]. We know that this expression fails to correctly evaluate the

thermal conductivities except at extremely small magnetic fields.
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Figure 4: Plots of the longitudinal and Hall thermal conductivites at B/α2 = 1/100

against ρ/α2. The blue dots represent data while the red lines are analytic expressions.

The matching is generally on the order of ∼ 10−15.

B Miscellaneous additional results

As a check on the strength of our numerics, we have extracted numerically κL and κH using

the c2 coefficient of the Laurent expansion around ω = 0,

c2 =
1

2π

∮
Γ
dω

σ+(ω)

ω3
(B.1)

and compared to the analytical expressions (3.10). The results for B/α2 = 1/100 as

a function of ρ/α2 are displayed in figure 4, showing that the analytical and numerical

results match with a very high degree of accuracy. We have confirmed this for general B.

For completeness we record here the longitudinal and Hall thermo-electric and thermal

AC conductivities. These are given by the expressions

αL(ω) =
iω(sT + µρ−mB)

(
Bω∗ − µ

(
γ2
∗ − iγ∗ω + ω2

∗
))

B2 ((ω − iγ∗)2 − ω2
∗)

, (B.2)

αH(ω) = −B(ω + iγ∗)(µρω − i(sT −mB)γ∗) +Bω2
∗(sT −mB)

B2 ((ω − iγ∗)2 − ω2
∗)

−µω∗(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)
ω2 , (B.3)

and

κL(ω) =
(sT + µρ−mB)

(
B2(ω + iγ∗)− 2Bµωω∗ + µ2ω

(
γ2
∗ − iγ∗ω + ω2

∗
))

B2 ((ω − iγ∗)2 − ω2
∗)

, (B.4)

κH(ω) =
Bµω2

∗(2sT + µρ− 2Bm)− ω∗
(
B2 + µ2ω2

)
(sT + µρ−mB)

B2 ((ω − iγ∗)2 − ω2
∗)

+
iµ(ω + iγ∗)(2Bγ∗m− iµρ(ω − iγ∗)− 2γ∗sT )

B ((ω − iγ∗)2 − ω2
∗)

, (B.5)

respectively. Defining complex correlators and expanding about the pole at ω = ω∗ − iγ∗
we find that the incoherent conductivities satisfy the relationship

αinc. = −µσinc. , κinc. = µ2σinc. , (B.6)

– 19 –
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Figure 5: Plots of the logarithm of the absolute difference between our analytic expression

for the position of the hydrodynamic mode and the numerical position for the dyonic black

hole against the magnetic field at ρ/α2 = 1/20. The red dashed line indicates the point

where B = ρ. Left: the difference in the real part. The trough in the data indicates the

point where our analytic result almost coincides with the numerical result. On the left of

this trough the difference grows as B3 while on the right it behaves as B5. Right: the

difference in the imaginary part. Again, the trough in the data indicates the point where

our analytic result almost coincides with the numerical result. On the left of this trough

the difference grows as B4 while on the right it behaves as B6.

which, up to the usual normalization of αinc. and κinc. by temperature (which we chose

not to include in our work) is a known result. In terms of real and imaginary parts this

relationship becomes

α0 = −µσ0 , κ0 = µ2σ0 , (B.7)

αH = −µσ̃H , κH = µ2σ̃H . (B.8)

To get an idea of the error in our hydrodynamic charge correlator compared to the

numerical charge correlator one can compare the quasi-normal mode defined by the pole

in our correlator — see (2.59) and (2.60) — to the numerics. We do this in figure 5. We

can see that the accuracy and precision are quite good, although there is a systematic

difference. The trough in the plots corresponds to a point where our analytic result almost

matches the numerical one. To the left of this trough the analytic result overestimates the

position, while to the right it underestimates.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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