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A B S T R A C T   

Machine Learning tools to enhance systems’ resilience received an increased impetus driven by energy transition, 
climate change and digitalization, but critical challenges on system requirement definition and reliability of 
learning processes need to be addressed. This study proposes a systematic framework based on system engi
neering and focused on the reliability of the learning process of the Hidden Markov Model (HMM) coupled with 
the Baum-Welsh algorithm. The HMM hidden states may represent the precursors of accidental events, being the 
states between a regular performance and a failure of a sub-system. The Baum-Welch algorithm, estimating the 
parameters of the HMM, iteratively updates the estimates of the state transition and observation probabilities. 
The framework was applied to a real case of LNG bunkering, showing that the system can learn from incomplete 
data, improve the learning quality given a new set of observations, make predictions about the latent states and 
enhance system resilience. The novelty of this work lies in ensuring the learning process and contributing to the 
attainment of an explainable, robust, and interpretable data-driven approach.   

1. Introduction 

Even though “risk” and “resilience” are both terms with a long his
tory, as pointed out by Aven (2022) their relation is strongly debated. 
The most acceptable approach is to consider risk as an aspect of resil
ience: the assessment and management of risk is rooted in preventing, or 
counteracting threats before they occur, whereas the core of resilience 
assessment and management is the system adaptation in the aftermath 
of threats. A crucial ability of a resilient industrial organisation is the 
anticipation of the system weak signals. Early detection, representing 
one of the main pillars of resilience (Pawar et al., 2021), refers to the 
recognition of precursors of undesired events and results in a more 
effective response to disturbances, which could otherwise potentially 
lead to dangerous and difficult situations (Jain et al., 2018). Detection 
and recognition of early warning signals should be emphasised besides 
design of error-tolerant equipment, plasticity of mind, and recover
ability to ensure effective emergency responses. In this respect, artificial 
intelligence (AI) represents an important tool to continuously monitor 
the risk level of plants, enabling improved semi-automated hazard 

identification, more accurate risk assessment by pattern recognition, 
advanced statistics and revealing cause-effect structures (Pasman, 
2021). Recently, data-driven approaches to risk analysis have become 
widespread, showing a good ability to dynamically represent the risk 
(Kamil et al., 2021) and to capture co-dependencies of complex systems 
(Mamudu et al., 2021; Sarbayev et al., 2019), possibly allowing 
early-fault detection on the basis of an effective solution to 
time-dependent sequence learning problem (Arunthavanathan et al., 
2021). The most widely used approach involves the extension of 
Bayesian networks (BNs), originated from the exploration of uncertainty 
in the field of AI to the traditional risk assessment techniques (Meng 
et al., 2022; Nhat et al., 2020; Vairo et al., 2020; Yang et al., 2013). BNs 
proved to be one of the most effective theoretical models for repre
senting uncertainty and reasoning (Guo et al., 2021) and showed satis
factory performance in the quantitative calculation of complex systems 
in applications, such as process safety assessment (Ghosh et al., 2020) 
and analysis of risk factors that may cause blowout accidents in deep
water drilling (Liu et al., 2021). Resilience can be considered as a for
ward and proactive defense (Dinh et al., 2012) with a focus on the 
dynamic assessment of the system’s capacity at each moment of its life 
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(Linkov, Trump, 2019). On these grounds AI and ML techniques can 
provide the right support by analysing large amounts of data in real-time 
to provide reliable predictions, consider system evolution and make 
corrections based on new evidence (Paltrinieri et al., 2019). It should be 
noted that we are experiencing challenging times in a rapidly evolving 
risky world, where three drivers play a determining role, namely digi
talization, climate change and energy transitions. Notably, the 
still-evolving Covid-19 pandemic demonstrated the need for robust tools 
to face with unexpected events by a critical and balance application of 
novel developments in data science and digital technologies with 
fundamental science and engineering principles (Fabiano et al., 2022). 
The introduction of new threats and hazards, lack of historical data, and 
the complex interaction between plants and the surrounding environ
ment (Pasman and Fabiano, 2021), the support to expert knowledge of 
AI in monitoring, learning, predicting, and effectively responding is 
essential for building resilience, which is here declined as the ability to 
thrive in adversity, i.e., to absorb fluctuations without diminishing 
performance. More recently, the integration of prior knowledge of 
physical processes with machine learning attracted interest to improve 
ML robustness and capability in identifying early signals of hazardous 
deviations (Vairo et al., 2023). Despite the above-mentioned advantages 
of data-driven models, their actual applicability remains limited, due to 
a certain lack of explainability and, in some cases, a lack of interpret
ability of the results. Several factors can affect a machine learning 
model, including the quality and diversity of the training data, the 
complexity of the model, and the presence of overfitting or underfitting. 
To assess the resilience of complex systems through a machine learning 
model, it is important to carefully select and pre-process the training 
data, choose an appropriate model architecture, and use techniques such 
as regularization and cross-validation to prevent overfitting and 
improve generalization, as real-world environments are often complex 
and dynamic, and the model may fail to deliver accurate or reliable 
results. The issues of explainability and trustworthiness of Machine 
Learning (ML) models still represent an open challenge. In fact, by na
ture, AI can be considered a black box and trusting a ML agent involves 
opening the box to an extent related with its intended use (Samek and 
Müller, 2019). Four building blocks are identified for addressing the 
challenges of data-driven learning approaches (EASA, 2021), namely: AI 
trustworthiness analysis, learning assurance, AI explainability, and AI 
safety risk mitigation. 

The trustworthiness analysis serves as a gate to the three other tech
nical building blocks and encompasses the safety and security assess
ments, which are key elements of the trustworthiness analysis concept. 
All three assessments (safety, security and ethics-based) are not only 
preliminary steps but also integral processes towards approval of such 

innovative solutions. Learning assurance is intended to cover the para
digm shift from programming to learning, as existing development 
assurance methods are not suitable to cover learning processes specific 
to AI/ML. AI explainability deals with the capability to provide human 
with understandable and relevant information on how an AI/ML 
application is coming to its results. The AI safety risk mitigation block 
considers that we may not always be able to open the ‘AI black box’ to 
the extent required and that the safety risk may need to be addressed to 
deal with the inherent uncertainty of AI. The knowledge on AI 
explainability is still very scattered and deserve further investigation 
(Vilone and Longo, 2021), due to the prominent role that ML/AI are 
expected to gain in the next future. Starting from these premises, this 
paper focuses on the learning assurance issue, by “opening” the black box 
of the ML algorithm and providing answers to the following research 
challenges:  

I. How does the framework fulfil the key requirements of learning 
process management, learning process verification and inference 
model verification?  

II. Can the combination of expert knowledge and data-driven 
approach overcome critical issues related to data-driven models?  

III. How to improve system resilience by supporting the decision- 
making process with the constant updating of the Hidden Mar
kov Model (HMM) based on new observations? 

2. Methodology 

In a previous work by Vairo et al. (2021), a preliminary approach, 
based upon data-driven modelling, was outlined to assess system resil
ience by the identification of precursor events, i.e., referring to early 
detection of “system weak” signals during the operations. In the 
following, the novel framework and applied algorithms are detailed. 

2.1. The Machine Learning framework 

The logic diagram for the proposed resilience assessment framework, 
in terms of stepwise procedure, is depicted in Fig. 1, where the systems 
resilience capabilities (monitor, learn, anticipate, and respond) can be 
pointed out. 

The model integrates into its sequential structure the four steps 
identified to achieve the specific resilience objectives, by employing the 
proposed framework. The focal point of ML models is represented by 
data investigation: all relevant dependencies, correlations and inference 
statistics can be extracted by building up a reliable data-driven model. 
Thus, it is possible to identify the significant perturbations and, by 

Nomenclature 

a state transition probability. 
AI artificial intelligence. 
b output probability. 
BN Bayesian network. 
EASA European Union Aviation Safety Agency. 
EM expectation-maximization algorithm. 
ESD emergency shut-down. 
HMM hidden Markov model. 
i variable counter. 
j variable counter. 
LNG liquefied natural gas. 
ML machine learning. 
n sequence counter. 
PERC powered emergency release coupling. 
PLC programmable logic controller. 

s1, s2, sn future time steps. 
SE system engineering. 
SIMOPS simultaneous operations. 
Sn states of the system. 
t time. 
T sequence length. 
Xn hidden state vector. 
xn actual hidden state. 
y possible observation. 
Y(n) conditional probability distribution. 
α probability of seeing observations at time t, given the 

hidden state i. 
β probability of predicting all future observations. 
θ parameters. 
ξij transition matrix. 
ϒij emission matrix.  
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training the model, anticipate the outcome of the system, to improve 
decision-making and promptly select the appropriate adjustments. Sys
tems, by definition, deliver desired capability, while resilience addresses 
the delivery of such capability – in the face of adversity (Brtis and 
McEvilley, 2019). Systems interact with their environments and nomi
nal environmental conditions often dominate the focus of Systems En
gineering (SE) activities. The concept of resilience explicitly adds the 
assessment of adversity and requires a shift in the requirement analysis, 
architecture, and design methods to establish an approach addressing 
nominal and adverse conditions under which the system should operate. 
An influence diagram representing this meaning is depicted in Fig. 2. 

The sources of adversity may be natural, technological, or human, 
and may include sources external to, or within the system. A high-level 
view of the steps to assess systemic resilience should include in-depth 
knowledge of the following items:  

1. system architectures and/or designs;  
2. system functional behaviour, data and control flows to deliver the 

required capability;  
3. capabilities of interest, how are measured, and the required levels 

of delivery;  
4. adversities that may affect the system;  
5. system behaviour in response to adversities. 

The term capability represents the system’s ability to achieve 
the desired effects. This provides an umbrella term for consid
ering many objectives and outcomes achieved by SE activities 
that are relevant to resilience, such as mission objectives, user 
needs, user requirements, system requirements, derived 

requirements, etc. The seven pillars of SE approach (Boardman 
and Sauser, 2008) are summarized as follows:  

6. Life Cycle: it is by definition the time period between the concept 
phase and retirement.  

7. Gates: are intended to ensure a safe progression along the project 
life cycle by providing intermediate checks during the 
development.  

8. Requirements: connections between the problem space and the 
solution space.  

9. Perspectives: integration of the different stakeholder’s viewpoints 
in the early design stage.  

10. Trade-offs: the project is a matter of decisions. The goal is to find 
the optimal solution satisfying all requirements. 

11. Modelling and simulations: to forecast the efficiency and perfor
mance of the system.  

12. Operational effectiveness: must be ensured in a long-term vision of 
the project. 

A broader view of the system can be attained according to the well- 
known V-model (Fig. 3), which is a useful guideline to manage the 
project, starting from the definition (the system is right), until the 
fulfilment of the defined requirements (it is the right system). 

As depicted in Fig. 3, two sides can be identified. The left-hand one 
represents the analytical approach to the problem. Here a complex 
system is divided into sub-systems, which can be easily managed. In the 
right-hand side of Fig. 3, the sub-systems are combined back, so the 
whole system can be validated for ensuring that the requirements are 
met. The overall process corresponds to a stepwise sequence, namely: 
design, detail design, implementation, verification, and validation. 
Verification represents a critical item, as it ensures that all the steps to 
reach the goal have been well developed, testing as well whether both 
the assembled sub-systems meet the requirements and the whole system 
fulfils the designed performance. 
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model
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Fig. 1. The framework for resilience assessment. 
(Adapted from Vairo et al., 2021). 
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Fig. 2. Influences in Systems resilience. 
Adapted from Brtis and McEvilley (2019)). Fig. 3. The V-model based on the seven pillars of System Engineering.  
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2.2. The W-model 

Recent enormous progress in ML has been made possible partly due 
to a simultaneous increase both in the amount of data available and in 
computational power even though at the burden of more complexity in 
ML models, possibly posing challenges in safety-critical domains. The 
most relevant challenges concerning ML trustworthiness can be sum
marized as follows (EASA, 2020):  

1. traditional Development Assurance frameworks are not suitable for 
machine learning;  

2. difficulties in keeping a comprehensive description of the intended 
function;  

3. lack of predictability and explainability of the ML application 
behaviour;  

4. lack of guarantee of robustness and of no ‘unintended function’; 
5. lack of standardized methods for evaluating the operational perfor

mance of the ML applications;  
6. the issue of bias and variance in ML applications;  
7. complexity of architectures and algorithms;  
8. adaptive learning processes. 

As shown in Fig. 4, the modified W-model, here introduced starting 
from the above considerations, is focused on the selected key element, i. 
e., the learning process. 

The steps of the W-shaped process, thoroughly investigated in the 
remainder of this paper are:  

1. Learning process management, which includes all the steps required 
before the training: metrics, strategy to use for model selection, 
models/architectures to evaluate as well as the setup of software/ 
hardware environment where the actual training takes place.  

2. Learning process validation, where the outcome of the previous step, a 
single trained model, is evaluated on the test dataset. This evaluation 
includes understanding generalizability (performance guarantees) 
and failure cases, which can then be fed into a safety assessment. 

3. Inference model verification and integration, where the desired prop
erties of the deployed model are verified. 

2.3. The resilience scenario 

Scenarios are a useful way to represent the system needs, by 
describing the effect to be achieved and the reference environment and 
establishing the baseline for the measures, targets, and conditions 
(including adversities) by which acceptable capabilities will be judged. 
To be achieved and ensured, resilience must be effectively represented 
as a system requirement. The challenge is that resilience lumps the con
cepts of functional, performance and environmental requirements. This 
compound requirement must be captured, so standard SE practices can 

trade system resilience against other system properties expressed in the 
system requirements. Thus, specifying resilience requires that several 
parameters, whose aggregation is the resilience scenario, be identified, 
as detailed in the following (Jackson and Ferris, 2012): 

1. The capability of interest (note: a system may deliver several capa
bilities each of which may have different levels of resilience).  

2. The measure(s) (and units) of the capability.  
3. The target(s) (required amount) of the capability.  
4. System modes of operation (e.g., operational, contingency, training, 

exercise, maintenance, update).  
5. The adversity(s) being considered for this resilience scenario and the 

affecting level that the adversities can impose on the system.  
6. Understanding of the effects that the adversity imposes on the system 

and how the system reacts to those effects in terms of its ability to 
deliver capability.  

7. The timeframe of interest.  
8. The required resilience (performance) of the capability in the face of 

each identified resilience scenario (e.g., expected availability, 
maximum allowed degradation, the maximum length of degradation, 
etc.). 

Any of these factors and parameters may vary over the timeframe of 
the scenario, and this fact must be addressed by the systems engineer. 
The capability is likely to be a functional requirement of the system. 
Resilience then extends such requirements into a resilience scenario by 
adding environmental requirements (adversities) and performance re
quirements. For defining an applicative scenario and applying the 
abovementioned concepts of validation, verification, and assurance to 
the Resilience Assessment framework, we consider an LNG bunkering 
operating plant, where the HMM is the ML model to be verified. The 
selection is motivated also by the ambitious middle term goals defined 
by the RePower EU to manage the energy security supply, caused by the 
Ukraine war. Table 1 identifies the modelling information that needs to 
be captured during the various lifecycle stages to support the effective 
development and documentation of resilience scenarios and resilience 
requirements (Brtis and McEvilley, 2019). This modelling information is 
the main point of the proposed resilience assessment framework 
depicted in the already mentioned Fig. 1. 

2.3.1. System description: the physical system 
The LNG transfer unit is equipped with:  

1. quick-release hooks; 

Fig. 4. The modified W-model. 
Adapted from EASA (2021). 

Table 1 
System safety requirements at each life-cycle stage.  

Life cycle stage Information Resilience 
Assessment 

Mission and 
Stakeholder Needs 
Analysis 

Insert adversities in the context 
diagram as actors. 
Insert resilience scenarios as use 
cases. 

Operative control: 
ability to monitor 

Stakeholder 
Requirements 

Develop use case interaction 
diagrams to document the 
interaction of actors and 
architectural modules during the 
scenarios. 
Develop sequence diagrams to 
represent the activity flow during 
scenarios. 

Decision: ability to 
respond 

System Requirements Develop activity diagrams to show 
the states of the system (and 
adversities) during scenarios. 

Early detection: 
ability to anticipate 

Architecture and 
System Design 

Develop state models of the 
scenarios. 
Model events and signals among the 
architectural nodes. 

Forecast: ability to 
learn  

T. Vairo et al.                                                                                                                                                                                                                                    



Process Safety and Environmental Protection 172 (2023) 632–641

636

2. fenders;  
3. dock monitoring system to check the ship’s position and speed of 

approach, weather and sea conditions;  
4. pier control room. 

The quick-release hooks will be installed on the dock. All hooks are 
capable of moving both vertically and horizontally and each of them 
is designed to be released independently of the other. The pier con
trol room is equipped with control apparatuses for the emergency 
stop of the LNG transfer, for the release of the LNG transfer 
connection for the remote control of the fire extinguishing system. 
The Ship-to-Shore connection is used to reciprocally exchange 
Emergency Shut-Down (ESD) between the ship and the ground sys
tem. 

The connection between the ship and the plant takes place via a 
loading arm, with two independent lines: one for the liquid phase 
(LNG) discharged from the ship to the plant and a flexible line for the 
gas phase (steam return from the plant to the ship); vice versa, the 
steam to the plant and the LNG to the ship, during the bunkering of a 
barge. 

The loading arm is equipped with all control and safety devices 
with critical elements identified as follows:  

5. a quick release system (PERC);  
6. a PLC, dedicated to the loading arm and connected to the plant 

control system, integrated into the Hydraulic Processing Unit; 
7. the arm will be connected to the ship by means of 2 flanged con

nections, one for the liquid and one for the vapour. 

The operations of connection/disconnection of the loading arm are 
monitored through the control system (pressure gauges and thermom
eters). The liquid and the vapour line, made of low-temperature carbon 
steel, have respectively nominal diameters of 10′′ and 8′′. 

As argued by Zarei et al. (2017), the most critical factors affecting 
performance variability represent a mandatory issue for safety and 
resilience application in complex systems, which cannot rely only on 
prior or posterior probabilities. The main causes of loss of containment 
during bunkering reside in the coupling operation of the bunkering 
manifold to the receiving vessel and are due to damage to the connection 
pipe during normal operations and SIMOPS (simultaneous operations). 
During bunkering operations, a loss of containment can occur in 
different sections of the process. In particular, the situations that can 
lead to a loss of containment concern failures of critical equipment and 
failures of the receiving vessel. 

2.3.2. System description: the ML system 
HMM is a statistical Markov model in which the system being 

modelled is assumed to be a Markov process –X – with unobservable 
("hidden") states (Sipos, 2016). HMM assumes that there is another 
process Y whose behaviour "depends" on X. The goal is to learn about X 
by observing Y. 

HMM stipulates that, for each time instance n0, the conditional 
probability distribution of Y(n0) given the history {Xn =xn}n<=n0 must 
not depend on {xn}n<=n0 (i.e., it is a Markov process). 

The probabilistic parameters of an HMM are:  

1. X - Hidden states;  
2. y - possible observations;  
3. a - state transition probabilities;  
4. b - output probabilities. 

Here, the hidden states, are the states between a regular performance 
and a failure of a sub-system. The only known states are the first (the 
component is performing well) and the last (the component fails), and 
the hidden states in between may represent the precursors of accidental 
events. The possible observations of the system are the process variable 
values. 

3. Results and discussions 

3.1. Explaining the learning process 

The core element of the proposed approach is the explainability, 
validation, and verification of the learning process (the red square in 
Fig. 4), which is performed by the Baum-Welch algorithm. 

In such a model, two parts must be trained: the Markov Chain and the 
observations. 

When no knowledge is available, the Baum-Welch algorithm can be 
used to fit an HMM. However, the Baum-Welch algorithm does not al
ways give the right answer. So, for ensuring the training process, some 
knowledge must be added to the process. 

An HMM is structured into two parts:  

1. an underlying Markov Chain that describes the logical sequence of 
the system states. This underlying state is the element of interest. If 
there are k states in the HMM, then the Markov Chain consists of:  
• a k × k matrix describing the probabilities for the system to shift 

from a state S1 to a state S2;  
• a k-length vector describing the probabilities to start off in each of 

the states;  
2. a probability model allowing to compute P[Observation|State], the 

probability of seeing an observation O if it is assumed that the un
derlying state is S. Unlike the Markov Chain, which has a fixed 
format, the model for P[Observation|State] can be arbitrarily com
plex. 

The external expert knowledge can add a-priori information on the 
transition probability. To a large degree, these two moving parts can 
be considered independently. 

After the phase of labelled data collection, (the sequence of ob
servations and a knowledge of what the underlying state is), training 
the HMM breaks down into two independent problems:  

3. firstly, train the Markov Chain with the labels;  
4. secondly, divvy up the observations based on what state they were in 

and train P[Observation|State] for each state. 

If the state labels for our data are reliable, then training the HMM is 
straightforward. However, usually we just have the sequence of obser
vations with only a little knowledge regarding the actual system state. 
So, we can guess what the state labels are and train an HMM using those 
guesses. Then, we use the trained HMM to make better guesses at the 
states and re-train the HMM on those better guesses. This process con
tinues until the trained HMM goes to convergence. This back-and-forth, 
between using an HMM to guess state labels and using those labels to fit 
a new HMM, is the core of the Baum-Welch algorithm. In order to test the 
capability of the framework, we refer to the real-case scenario of LNG 
bunkering, where the relevant observations are: pressure, temperature 
and flow rate. A simplified layout of the plant section is represented in  
Fig. 5. 

The investigation will be limited to the leakage hazard originating in 
the part of the system between the two flanges of the connecting hose, 
technically indicated as “LNG transfer system”, from v1 to v2. Table 2 
summarizes the operating parameters and standard values during 
operations. 

The bunkering operations can maintain a constant temperature by 
managing the boil-off vapours. Thus, pressure is the relevant parameter 
to be monitored for inferring the system state. 

The probability of seeing all the observations so far, given a time t 
and a hidden state i, can be defined as follows: 

αi(t) = P (Y1 = y1,….,Yt = yt,Xt = i|θ) (1) 

Additionally, given a time t and a hidden state i, the probability of 
predicting all the future observations is: 

βi(t) = P (Yt+1 = yt+1,….,YT = yT,Xt = i, θ) (2) 
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Furthermore, given the observations, the emission probability at a 
given state i at time T is: 

Υi(t) = P(XT = i|Y, θ) (3) 

And, similarly, the transition probability from state i to state j at time 
t is: 

ξij(t) = P (Xt = i, Xt+1 = j|Y, θ) (4) 

To learn the HMM model, we need to know which states best 
describe the observations. The emission probability ϒ, namely the 
probability of state i at time t given all the observations, accounts for the 
previous reasoning. Once the distribution of ϒ and ξ (θ) are refined, it is 
possible to perform a point estimate (θ: α, β) on what will be the best 
transition and emission probability. 

HMM learning process is schematically depicted in Fig. 6: one set of 
parameters is fixed to improve others and the iteration continues until 
the solution converges. Fig. 7 shows a graphical example of the attained 
best explanation of observations. 

Within the context of the LNG bunkering scenario, the system safety 
is undoubtedly the required capability. Safety is the required emerging 
property the system must have, to ensure the desired performances 
(accident prevention, environmental protection, occupational health & 

safety, production quality, regulatory compliance, etc.) in a sustainable 
way. Thus, an appropriate resilience metric, accordingly to Brtis and 
McEvilley (Brtis and McEvilley, 2019), is the expected availability of 
required capability. On this basis, three possible hidden states have been 
defined:  

1. STATE 1: the system delivers the required capability;  
2. STATE 2: the system delivers a portion of the required capability;  
3. STATE 3: the system is no longer able to deliver the required 

capability. 

3.1.1. First guess 
As a first guess, to determine ϒ and ξ (emission and transition 

probabilities) according to the described learning process, appropriate 
set points for the process variables (from expert knowledge) should be 
defined as follows: pressure alarm at 6.8 bar, pressure block at 8 bar. 

So, the first guess is that the system states are:  

1. STATE 1: P < 6.8 bar  
2. STATE 2: 6.8 bar < P < 8 bar  
3. STATE 3: P > = 8 bar. 

3.1.2. Learning 
As previously outlined, the Baum-Welch algorithm, classified as an 

expectation-maximization (EM) algorithm, is the selected learning tool, 

Fig. 5. Schematization of the system layout.  

Table 2 
Operative parameters.  

Parameter Operative value 

Pressure 5–6 bar(g) 
Temperature -162 ◦C 
Transfer rate 600 m3/h  

Fig. 6. Graphical schematization of the HMM learning process.  

Fig. 7. The best explanation for observations.  
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calculating each time-step probability of being in each state. The HMM is 
trained to be on average the best fit over all the probabilistic guesses. In 
the expectation step, the forward and the backward formulae give the 
expected hidden states according to the observed data; the maximization 
step updates formulae and then tunes the parameter matrices to best fit 
the observed data and the expected hidden states. Subsequently, these 
two steps are iteratively repeated, by a Markov Chain Monte Carlo 
(MCMC) sampling, until attaining parameters convergence, or until the 
model has reached the required accuracy requirement. 

The issue of the Baum-Welch algorithm is the same drawback 
affecting the EM algorithm in general, i.e., solutions that are only locally 
optimal. 

There are several ways to mitigate this issue:  

1. simplification of the HMM. The number of local optima can grow 
exponentially with the number of parameters in the HMM. If the 
parameter size is reduced, the number of local optima reduces as 
well. If the observations are multinomial, it could mean reducing the 
number of possible observations;  

2. use field-knowledge intuition to have an initial HMM that is similar 
to what the outcome is expected to be. Different local optima often 
have large qualitative differences from each other. On a gross level, 
the HMM that ultimately converges is likely to resemble the first one 
and to be consistent with knowledge-based intuitions. 

Several different convergence criteria can be used to determine 
when the Baum-Welch algorithm has converged to a satisfactory 
solution. In the model development, a combination of the below 
criteria is adopted by setting both a maximum number of iterations 
and a threshold on the change in the log-likelihood.  

3. A fixed number of iterations: the algorithm can be run for a fixed 
number of iterations and then stopped, regardless of whether 
convergence is achieved.  

4. A termination criterion on the log-likelihood: the algorithm can be 
stopped when the change in the log-likelihood between iterations 
falls below a given threshold.  

5. A termination criterion on parameters: the algorithm can be stopped 
when the change in the estimated parameters between iterations falls 
below a given threshold. 

The goal is to design a model that is simple but not simpler, i.e., 
suitable to mitigate local optima but complicated enough to describe the 
investigated process. Additionally, this process already contains in its 
framework the sensitivity analysis, which conversely represents a 
pivotal step in approaches using simple Bayesian networks (Chang et al., 
2018). 

3.1.3. Prediction 
As shown in Table 3, once the parameters of the HMM are learned 

from data, given a partially observed data sequence, the posterior dis
tribution over the hidden states is inferred. This is a filtering task that 
can be carried out using the forward algorithm. This posterior distri
bution enables uncovering the hidden state of the system, as data 
streaming in is observed. Consequently, it is possible to compute the 
most probable state sequence path, which is updated with newly 
observed data (Hofmann and Tashman, 2020). 

As new data are streaming in, an estimate of the state over a certain 
future horizon is calculated as well as the most probable time at which 
the system will enter the failure state (terminal state). 

Those inferential tasks are important as they provide a picture of the 
current state of the system, as well as a forecast of when each sub-system 
will most likely fail. This information will then be used to optimize the 
decision-making process, modify some process parameters or interrupt 
the process itself. The cross-validation method is adopted to validate the 
performance of the Baum-Welch algorithm: the algorithm is trained on a 
portion of the verified data and tested on a held-out portion. This 
method can provide a more robust estimate of the model’s performance, 
as it allows for a more realistic assessment of the model’s ability to 
generalize to new data. In terms of loss, the Baum-Welch algorithm does 
not explicitly minimize a loss function, likewise some other ML algo
rithms. Instead, it iteratively updates the parameters of the HMM aiming 
at maximizing the likelihood of the observations. The log-likelihood of 
the observations can be thought of as a measure of the "loss" or 
discrepancy between the observations and the model, with a higher log- 
likelihood indicating a smaller loss. As the algorithm runs, the log- 
likelihood should generally increase, indicating that the model is 
becoming a better fit for the data. 

In Fig. 8, the prediction of the future system states sequence is shown 
in form of immediate readability. The future time steps are s1, s2 and s3, 
after 5, 10, and 15 min respectively from the current time. Results 
indicate that the system will be in STATE 2 (as previously defined) after 
5 min, then, after 10 min, it will enter the failure state (STATE 3), when 
it is no longer able to deliver the required capability. Table 4 shows the 
predicted state sequences given the observation on system pressure. 

Table 5 provides the first state transition prediction for each system 
subcomponent and the corresponding update of failure probability. The 
bold value is the state that has the highest expected probability, ac
cording to the Baum-Welch HMM formulation. 

3.1.4. From prediction to action 
Choosing the best action requires considering not only immediate 

effects but also long-term effects, which are not known in advance. 
Sometimes, actions with poor immediate effects can have better long- 
term ramifications, so an optimal decision requires the right trade-off 
between immediate effects and future rewards, dynamically connected 
to variable uncertainty. The goal of the optimal decision is to determine 
the best action to take for ensuring the desired system capability at any 
given point in time, given the uncertainty of current and future states. 

The constant updating of the HMM with the new observations allows 
predicting the short- and long-term effects of the actions. Fig. 9 graph
ically shows the predicted state sequence at the current time. 

Analogously, Fig. 10 shows the updated sequence prediction after 
decreasing the LNG bunkering rate. 

3.1.5. Defining system requirements 
As a core consideration, system resilience must be effectively rep

resented as a system requirement. The challenge is that the concept of 
system safety aggregates the considerations of functional, performance 
and environmental requirements. This compound requirement must be 
captured, so standard system engineering practices can trade resilience 
against other system properties expressed in the system requirements. 
Any of these factors and parameters may vary over the timeframe of the 
scenario and the systems engineer must address this evidence. The 
capability is likely to be a functional requirement of the system. Resil
ience then extends such requirements into a scenario by adding envi
ronmental requirements (adversities) and performance requirements 
(Brtis and McEvilley, 2019). 

Table 6 summarizes the resilience assessment outputs for each life 
cycle stage to demonstrate how the resilience assessment framework 
responds to system safety requirements introduced in Table 1. 

4. Conclusions 

To ensure Machine Learning models work as intended, what is 
needed can be pointed out in correctly designed data, correctly designed 

Table 3 
Dataset head.  

Time Pressure (Barg) Temperature (◦C) 

2020–10–21 10.10.00.000  5.88  − 162.02 
2020–10–21 10.15.00.000  5.91  − 162.03 
2020–10–21 10.20.00.000  5.99  − 162.05  
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learning process and correctly designed model. Each of these three el
ements may become a deal breaker if not correctly performed and 
properly verified. A combination of expert knowledge and data-driven 
methods is required for designing the right model, identifying local 
optima stuck, and interpreting the output for translating it into actions. 
The main contribution of this research is the development of a SE life- 
cycle framework based on the definition of system resilience through 
a series of system requirements that allow the system to deliver the 
required capability. The explored case study, of actual interest under the 
drivers of energy transition, climate change and war crises, exhibits high 
potentiality to model the performance of a complex system in terms of 
system resilience and safety. The abductive inferential framework, as 
declined in the proposed Hidden Markov Model, proved to be a very 
useful tool to deal with incomplete observations and update the pre
diction at each newly observed data. The approach is by definition 
explainable, being strongly model-based, rather than strictly data- 
driven. It stands to reason that the data-driven part of the model is 
fundamental to obtaining reliable predictions through the learning 
process, accomplished by properly applying the customized Baum- 
Welch algorithm. As recently pointed out (Yu et al., 2022) when 
dealing with real complex operations, a clear pre-definition of accept
able thresholds depending on the consequence selected hazards and cost 
implications is required and this item needs further refinement of the 

here presented approach. Predictive models and resilience engineering 
are two fields that often intersect, as predictive models can be used to 
identify potential failures or disruptions in complex systems and to 
develop strategies for mitigating their impact. To be effective in resil
ience engineering, predictive models need to be accurate and reliable, as 
well as resilient themselves. This means that the models should be able 
to continue performing well even in the face of changing circumstances 
or unexpected inputs. The current limitation of the model is that the 
prediction of the system’s states is not directly associated with a specific 
critical variable (apart from the fact that in the case examined, the 
critical parameters were few), and therefore, future developments go 
towards integrating reinforcement learning techniques into the model, 
so that it is not only able to predict future states, but also to propose, and 
possibly implement, the most appropriate actions to intercept de
viations. Overall, predictive models can be a valuable tool in resilience 
engineering, helping to early identify potential failures and disruptions 
and to develop strategies for mitigating their impact. 

As a concluding remark, even if further validation on complex sys
tems and real case studies is required and upon further refinement, the 
proposed framework may represent a fundamental tool to support the 
decision process for achieving system safety and designing resilient 
systems, under the requirement of explainability, verification and 
validation. 

Fig. 8. Prediction of the future system state. (a), (c), (e) represent the most probable expectations obtained from the inferential samplings given in (b), (d), and (f) 
respectively, where each different state is reported as a function of the number of samplings. 

Table 4 
Predicted sequences given the observed pressure values.  

Observed 
sequence 

Highest probability of observing 
sequence 1–2 if state is 1 

Highest probability of observing 
sequence 2–3 if state is 2 

Highest probability of observing 
sequence 2–2 if state is 2 

Highest probability of observing 
sequence 1–1 if state is 1 

Predicted 
sequence 

P1-P1  0.4127  0  0  0.5873 1–1 
P1-P1  0.3591  0  0  0.6409 1–1 
P1-P2  0.4647  0  0  0.5353 1–1 
P1-P1  0.4899  0  0  0.5101 1–1 
P1-P1  0.3561  0  0  0.6439 1–1 
P1-P1  0.3125  0  0  0.6875 1–1 
P1-P2  0.5782  0  0  0.4218 1–2 
P2-P2  0  0.4099  0.5901  0 2–2 
P2-P3  0  0.4147  0.5853  0 2–2 
P2-P3  0  0.5026  0.4974  0 2–3  
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