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Abstract— This paper deals with the problem of robust
stability analysis of Moving Horizon Estimator (MHE) for
Linear Parameter Varying (LPV) systems. We introduced novel
stability analysis tools which guarantee exponential robust
convergence of the MHE under the incremental Exponential
Input-Output-to-State Stability (i-EIOSS) assumption without
observability condition. An application on a steering-controlled
lateral vehicle model is provided to show the effectiveness of
the proposed estimation scheme.

I. INTRODUCTION

Mathematical modeling is a good tool for engineers to
develop autonomous vehicles that meet the requirements
of comfort, stability, and safety performance standards. In
particular, the vehicle’s cornering behavior, known as lateral
dynamics, plays a crucial role in the design of autonomous
vehicles. However, it remains critical to estimate and control.
For this, engineers need fairly simple models to design
control systems while guaranteeing sufficient information to
capture all the essential characteristics of dynamics [1], [2],
[3]. In this paper, we consider a steering-controlled lateral
vehicle model with two degrees of freedom, lateral and yaw,
borrowed from [2].

The precision of the vehicle dynamics state estimation de-
termines how reliable vehicle control algorithms are. Several
estimation methods have been developed in the literature to
estimate the vehicle state. In this paper, our focus is on
Moving Horizon Estimation (MHE), one of the estimation
techniques commonly mentioned in the literature along with
Kalman filtering and state observer techniques. MHE is based
on the idea of minimizing an estimation cost function defined
over a sliding window composed of a finite number of
time steps [4], [5], [6], [7], [8]. To ensure that systems
affected by noise, disturbances, and measurement errors
remain stable, we rely on a more general notion of stability:
the state input stability (ISS). ISS guarantees that the system
remains globally exponentially stable up to a measured input-
dependent error term via the essential supremum norm [9],
[10], [11].

In our recent work [12], we provided new sufficient
conditions to ensure the Exponential Robust Stability (ERS)
of the MHE by assuming that the system is incremental
Exponential Input Output-to-State Stability (i-EIOSS). In this
work, we establish a simpler proof of such a sophisticated
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result. First, in Lemma (1), we present a key result that we
will exploit to analyze the robustness of the MHE without
observability conditions. This result can applied to various
control design problems such as time-delay systems [13],
or model-trajectory based approach . The main result is
then stated in Theorem 1. We provide sufficient conditions
to ensure the Exponential Robust Stability (ERS) of the
MHE by only assuming that the system is i-EIOSS without
observability condition as done in [14], [15]. Finally, we
apply the proposed algorithms to a steering-controlled lateral
vehicle model [2] represented with two degrees of freedom,
lateral and yaw. In conclusion, the MHE estimation strategy
developed in this paper provides an accurate estimation of
the original states.

A. Problem Formulation and Preliminaries

The moving horizon estimation technique (MHE) is a state
estimation method that is particularly useful for nonlinear or
constrained dynamic systems. Consider the following LPV
discrete-Time system:

{ Tip1 = Alpe)xs + wy 1)

Yyt = Clpt)zs + vy
where z; € X C R™ is the state of the system; p; C &, C
R™ with X, is a compact set; y; € R™ is the output vector
and wg € W C R"™ and v; € V C R™ are unknown external
disturbances. The parameter p; is assumed to be known in
real-time. The estimation scheme can be obtained by defining
Tt—N41jts > T¢j¢ as estimates generated by Z;_ )¢ through
the dynamics
Tivie = Alpi)die, i=t—N,..,t—1.

The MHE technique is based on the idea of minimizing
a quadratic estimation cost function defined on a sliding
window composed of a finitc number of time stages. We
consider the classic quadratic objective function,

TN (@e-n) = plEs-n — Zon "
t—1
+v Y 0Ty = Clp)a? @)
i=t—N
where 7 € (0,1) and p, v > 0 under the constraints
Eey1 = Ape) . (3)
and

Tt-N = A(pt-N-1)Tt-N_1)t—N—-1- &)



The system states are derived by solving the following
optimization problem

Zo € { argmin Jf (£0)
ToEX

s.t. (3) holds for t = 1,...,N}

. . N /=
Ty € { argmin J;" (Z;— )
T NEX

For further ease of presentation and for use later in the
paper, note that the cost function Jf (%) for t < N is clearly
defined as follows:

J{(20) = plEo — Zo|*n’
t—1
+vy 0 iy = Cp)af?, Yt < N. (5)
=0

We rely on the modified prediction equation (4). This
modified prediction is a copy of the original system where the
computation of Z;_ y depends on the estimated state at time
t—N —1, namely &t N_1j¢—N—1, instead of Zy_N—1)t—1 like
with the classical prediction equation. This new prediction
equation will play an important role in deriving the stability
conditions in terms of required necessary assumptions while
ensuring ERS of the MHE y. For further ease of presentation
and for use later in the paper, note that the cost function
J}(Zo) for t < N is clearly defined as follows:

J{(Z0) = pldo — Zo|*n*

t—1
+v Y 0ty — Clpa)af?, VE< N (6)
i=0

In the rest of the paper, let j = t—N —1 to avoid cumbersome
notations. We start by providing two key definitions used
in this paper. We first introduce the following definition of
the exponential robust stability of an estimator. For that, we
focus only on MHE .

Definition 1: An MHEy is robustly exponentially sta-
ble (RES) if the following inequality holds:

t—1
|L12t = jt|t| S aﬂzo — folAt + Qo Z /\t_l_i|’l)i|2
i=0
t—1
oy Yy AT |2 @

i=0

for some A € (0,1) and «; > 0,Vi = 1,2,3. Further, if
inequality (7) is satisfied for all t+ > £, where / > 1 is a
natural number, we say that the MHE ; is /—RES.

In this paper, we propose novel robust stability conditions
of the MHE by considering only a particular i-IOSS no-
tion, namely the incremental Exponential Input Output-to-
State Stability (i-EIOSS) property. These definitions will be
exploited in Section II for robust stability analysis of the
MHE .

s.t. (3) holds for t:N,N—FL...}.

Definition 2: System (1) is incrementally Exponentially
Input Output-to-State-Stable (i-EIOSS) if there exist con-
stants ¢z, cy, ¢y > 0 and 7 € (0,1) such that for each pair
of initial conditions zg,Zg € X and each two disturbance
sequences wy,w; € 2, the following holds:
|2

|ze(z, w§ ™) — &e(Z, 55| < calzo — Zo|% 0"

t—1
+eo Y0 T  ya(w, wy Y oY) — (&, B )2
=0

=1
+ow 0 wy — iy ®)
1=0

for some g € (0,1) and positive reals c,, c,, and c,,.

Remark 1: Notice that the above definition is general
and does not be applied only for states at time ¢ and 0,
respectively. It can be applied, for instance, to account for
the exponential discount of the error on trajectories between ¢
and ¢—£. Especially since for the MHE problem studied here,
we will need to apply the definition for { > ¢, and between
t and ¢ — ¢, then we will use the following inequality:

lze(x, wiTy) — Ze(F, D7) < calwi_e — Fo_g|?0

t—1

+ew Y o w(w, with viTh) — v, @i, D)
i=t—¢
t—1

+ew Y 0wy — il ©
i=t—{¢

which is straightforward from (8). For more details on this
inequality, we refer the reader to [16, Eq. (28)] and [17,
Definition 2, and Lemma 7] for a more general case.

II. ROBUST STABILITY ANALYSIS OF THE MHE

In this section, we give necessary conditions that ensure
the robust convergence of the MHE without needing the
observability condition. To this end, we first present a key
result that we will exploit to analyze the robustness of the
MHE for system (1) without observability conditions. This
result is derived in a subtle way, it can be exploited in
different cases for different control design problems like
time-delay systems [13], model-trajectory based approach.
This novel stability analysis tool, combined with the new
prediction equation (4), will lead to less conservative neces-
sary conditions.

Lemma 1: Let (u;),~ _, be a nonnegative sequence of real
numbers and ¢ > 0 is a natural number such that

ut < aug_g + Bz, VE > L,

with
t—1

—1—i 2
=Y n'7 7 dy
i=t—¢
where 8 > 0,0 < o < 1, and (dj)j>e is any arbitrary
bounded sequence with d; = 0,Vj < £, by definition. Then
the following inequality holds:

(10)

t—1
<A max u M1 g,)2
=t ”Lﬁ; -

an



where

A £ max ('r;7 a%) . (12)
Further, if u; = ug for —£ < j <0, we get
t—1
u <upht 4+ B AT g (13)
i=0

Proof: Since we work in Archimedian space, then for
any t > £, there exists an integer s > 1 so that t € I, =

{st,s +1,... (s + 1)¢}. Then by backward substltutlon,
we get

8
1ut—(s+1)£ —|—ﬁZoﬂzt_J~e
3=0
8
) ,
(uj)at + Z ol z_jg
J=0
t -
¢ t=i
(uj)at + 8 Z otz

j:t—sli
Slen

Ut S a5+

< max
—£<j<0

= max

14
—£<5<0 (9

To conclude the proof of this lemma, we only need to
compute the double sum coming from the second term
in (14) by taking care with the index t — js which j Jjumps by
¢ steps for every j = 0,...,s. In (14), we have

Za;z ZZaé.rﬂll[(ﬂ

Jj=t—s¢t J=t—sli=j—L
ZleN ‘—;iEN
t ji—-1
Z Z )\t_l_i|di]2
Jj=t—stli=j—¢
ZleN
t—sl—1 t—sl—1
< Z )\t_l_i‘di|2+ Z /\t_l_i|di!2
i=t—sl—¢ i=t—sf—¢
t—0—1
Y A g +ZM ]
i=t—2¢ i=t—4¢
t—1 t—1
— Z Atfl—i ldw.‘z — Z/\t—lfi ’dl’Q

i=t—(s+1)¢ =0
(15)

since d; = 0,7 < 0 by assumption/definition. Consequently,
by substituting (15) in (14), we get (11) from (12). Finally,
if uj = up for —¢ < j < 0, then the inequality (13) is
straightforward.
|
Before providing the main theorem, it is worth noticing
that due to the definition of the cost function J t(&o), for
t < N, as in (6), we can write the inequality (21) in a

unified way for any ¢ > 1, as follows:

_ 9 .
|et|2 §2,u|et_min(t,N)| ,,’mm(t,N)

t—1
t—1—i 2
> UM ]
i=t—min(¢,N)
t—1

Z nt—l—i |wi|2

i=t—min(t,N)

+ v

+w (16)

which is nothing but the ERS condition (7) for ¢ < N.
Indeed, for t < N, the previous inequality (16) is reduced
to

les|? <2u|go|*nt

-1
+v Z nt=1t )
=0
t—1
+w Z nt i | ?
=0

17

Theorem 1: [12] Assume that system (1) is i-EIOSS ac-
cording to (8) with the prediction equation (4) and the
exponential discount parameter g. Then, the MHEy is ERS
according to the following inequality:

.2 _
‘zt - rt‘t’ < max(2p, 1)|zo — Zo|2A®

t—-1
§e VZ/\t—l—i lvi|2
=l

+ max(4u, w Z/\t 1% |wL (18)
with the exponential discount parameter
1
A2 mex (n, [4poan™] 7)), (19)

if p,v, w,n, and N > 1 satisfy the following conditions:

B o<n<1;
(i) p > 2cy;
(i) v > cy;
(iv) w > 2cy;

(v) 4poan™ <1, which means that N > 1 4 20uoa)

ln(%)

Proof: 'We start by providing an upper bound on the
estimation error e; = z; — Zy)¢. For that, we will exploit the
minimization of the cost function and the i-EIOSS property
of system (1). The upper bound on the error e; depends on
the prediction error & £ z; — Z; (or & 2 z,_n — Z4_p, at
time ¢t — V). From the definition of minimizer in

JtN(i't-Nyt) < JtN(l't—N),



we get
t—1 _
plEne = Te-nPnV + v Yt iy~ h(d,) 2
i=t—N
t—1
+w Z ,’,It—l—z',wi|2

i=t—N
t—1
Sulze-n — Ze-n PN + v Z 7 g2
i=t—N

t—1
+w Z 7t w2 (20)
i=t—N

Since we always have

1 " _ . 2
2 les—n|? < |&e—n|? + |$t—N — Z4_ e

it follows that
t—1

H 2 . .
SleenlnY v Y7ty — h(gy)?
i=t—N

i—1
+w Z nt—l—ilwiIZ

i=t—N
t—=1 )
S2le-n* N v Y pti
t=k—N
t—1 ]
+w Y g2,

i=t—N

Since the system (1) is i-EIOSS according to Definition 2,
then by applying inequality (9) with convenient parameters
i, v, w, and n such that

e<n<l1
B2 2Cs, V2 Cy, w ey

we obtain the following inequality:
leel” <2u e n|* n™

t—1
ey Z T’t—l—z |'Ui|2
i=t—N

t—1
+w D0 T
i=t—N

(21)
With the prediction (4), the term &_p in (21) can be upper
bounded as follows:

l&j+11* < 2] A(0)I?| & + 2|w; .
By substituting (22) in (21), we obtain

(22)

2
lee]® < dpoa let—veny| "
t—1

DR it

i=t—(N+1)

+v

t—1

Z ,,]t—-l—i

i=t—(N+l)

+ max(4y, w) |wi? . (23)

4

where

o4 £ sup|A(p;)|*.
§20

Without expanding the computations, we get (18) by
applying Lemma 1 with

Vv i
v/max(4p, w)w;

a=dpoan™, f=1,=N+1,

d;

and

we obtain easily (18) since the condition (v) in Theorem 1
allows applying Lemma 1. In addition by considering the
initial bounds (17) for ¢ < N —1, the relation (18) is inferred.

|

III. APPLICATION TO BICYCLE MODEL OF LATERAL
VEHICLE DYNAMICS

Lateral dynamics is concerned with the vehicle’s turning
behavior. A bicycle model of the vehicle with two degrees
of freedom is considered, as shown in Figure 1. The two

Lane

Fig. 1. Lateral vehicle dynamics

degrees of freedom are represented by the vehicle lateral
position y and the vehicle yaw angle. The vehicle’s lateral
position is measured along the lateral axis of the vehicle to
point O which is the center of rotation of the vehicle. The
vehicle yaw angle is measured with respect to the global
axis X. The longitudinal velocity of the vehicle at the c.g.
is denoted by V. The influence of road bank angle will
be considered later. Ignoring road bank angle for now and
applying Newton’s second law for motion along the axis [18]

may = Fys + Fy, (24)

2 5 .
where a, ‘;—tiﬂ is the inertial acceleration of the

vehicle at the c.g. in'the direction of the y axis and Fy ¢ and
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F,. are the lateral tire forces of the front and rear wheels
respectively. Two terms contribute to a,: the acceleration §j
which is due to motion along the y axis and the centripetal
acceleration qu/'). Hence

ay =+ Vo) (25)
m (§+UVa) = Fyy + By (26)
L) =4;Fy; — L,.F,, 27

where ¢ and ¢, are the distances of the front tire and the
rear tire respectively from the c.g. of the vehicle.

The next step is to model the lateral tire forces F,s and
F,, that act on the vehicle. Experimental results show that
the lateral tire force of a tire is proportional to the slip-
angle” for small slip-angles. The slip angle of the front
wheel is

af = d— GV f (28)
where 0, is the angle that the velocity vector makes with
the longitudinal axis of the vehicle and 4 is the front wheel
steering angle. The rear slip angle is given by

(29)

Qp = _GVT

Fyr =2Ca5 (0 — bvy) (30)
where the proportionality constant C,, ¢ is called the corner-
ing stiffness of each front tire, ¢ is the front wheel steering
angle and 0y ¢ is the front tire velocity angle. Similarly, the
lateral tire for the rear wheels can be written as

Fyr = 2C4y (_er) (31
where C,, is the cornering stiffness of each rear tire and

v, is the rear tire velocity angle. The following relations
can be used to calculate 6y and Gy, :

tan (avf) = Vy——;ﬂ
tan (fy, ) = w (32)

Using small angle approximations and using the notation
Vy =1,

0. — UL
i 7
Oy, = w (33)

x

Substituting from Egs. ((28),(29), (33) into Eqgs.(26) and(27),
the state space model can be written in the continuous-time

as follows [2]:

01 0
0 _2ACr+Cup(®) _ 2Csls+Crl)p(t)
i = M M
0
0 _20sCr=t:Cr)p(t) _2(52Cs+12C)p(t)
T. 2
0 0
2(Cs+Cr) 20,
- M M
0 T+ 0 )
2(1yCy—1-Cy) 2L;Cy
I. I,

C=[1 0 d, 0 (34)

The LPV lateral vehicle model is described under the
form (1) after Euler discretization with sampling period
T, = 0.01. The values of the front wheel steering angle
d and the LPV parameter p(t) = V%; are computed by

p(t) = 0.06 + % lsin(26)], (¢) = 0.2sin (%) .

For more details on the lateral model, we refer the reader
to [2], [19].

Symbol | Nomenclature Value

M mass 1529.98 kg

I, Yaw moment of inertia 4607.47 kg/m?

Cr Rear tire cornering stiffness 1.02 x 10° N/rad
[¥] Front tire cornering stiffness 1.02 x 10° N/rad
Tl length of the front-end and rear-end | { £ = 1.13906,
foir to the c.g, of the vehicle respectively | I = 2.77622 — I
[ Front wheel steering angle rad

Vi Longitudinal velocity at the c.g. Vo = ﬁ

TABLE I
SUMMARY OF LATERAL MODEL PARAMETERS

The minimization of the cost function can be carried out
by means of a descent method. The optimization was per-
formed by using the general-purpose Matlab routine finincon
with a cost function with the parameters p = 0.4, v = 1,
and 7 = 0.9, for different values of NV and tolerance in the
stopping criterion. The initial and estimated states given by
[1 1 1 1] and [-1 -1 -1 —-1]", respectively.
Figure 2 illustrates the results obtained in simulation runs
with system and measurement noises generated according to
zero-mean Gaussian distributions with covariances equal to
0.01. The MHE scheme developed in this paper provides an
accurate estimation of the original states.

IV. CONCLUSION AND PERSPECTIVES

The main result of this paper was to give sufficient
conditions guarantying exponential robust convergence of the
MHE under the i-EIOSS assumption without observability
condition. In future work, we aim to work on an extension
of the results proposed in this paper to nonlinear systems. We
also aim to make a link between LMI-based LPV/nonlinear
observer design and MHE by using new prediction equations.
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