
Citation: Sakr, F.; Berta, R.; Doyle, J.;

Capello, A.; Dabbous, A.; Lazzaroni,

L.; Bellotti, F. CBin-NN: An Inference

Engine for Binarized Neural

Networks. Electronics 2024, 13, 1624.

https://doi.org/10.3390/

electronics13091624

Academic Editor: Mehdi Sookhak

Received: 1 February 2024

Revised: 9 April 2024

Accepted: 23 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

CBin-NN: An Inference Engine for Binarized Neural Networks
Fouad Sakr 1,2, Riccardo Berta 1 , Joseph Doyle 2 , Alessio Capello 1 , Ali Dabbous 1 , Luca Lazzaroni 1,*
and Francesco Bellotti 1

1 Department of Naval, Electrical, Electronics and Telecommunications Engineering, University of Genoa,
16145 Genoa, Italy; fouad.sakr@edu.unige.it (F.S.); riccardo.berta@unige.it (R.B.);
alessio.capello@edu.unige.it (A.C.); ali.dabbous@unige.it (A.D.); francesco.bellotti@unige.it (F.B.)

2 School of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, UK; j.doyle@qmul.ac.uk

* Correspondence: luca.lazzaroni@edu.unige.it

Abstract: Binarization is an extreme quantization technique that is attracting research in the Internet
of Things (IoT) field, as it radically reduces the memory footprint of deep neural networks without
a correspondingly significant accuracy drop. To support the effective deployment of Binarized
Neural Networks (BNNs), we propose CBin-NN, a library of layer operators that allows the building
of simple yet flexible convolutional neural networks (CNNs) with binary weights and activations.
CBin-NN is platform-independent and is thus portable to virtually any software-programmable
device. Experimental analysis on the CIFAR-10 dataset shows that our library, compared to a set of
state-of-the-art inference engines, speeds up inference by 3.6 times and reduces the memory required
to store model weights and activations by 7.5 times and 28 times, respectively, at the cost of slightly
lower accuracy (2.5%). An ablation study stresses the importance of a Quantized Input Quantized
Kernel Convolution layer to improve accuracy and reduce latency at the cost of a slight increase in
model size.

Keywords: Binary Neural Network; inference engine; TinyML; Cortex-M microcontrollers; Internet
of Things; edge computing

1. Introduction

Shifting deep learning (DL)-based computer vision from cloud data centers to Internet
of Things (IoT) devices is expected to offer benefits, including lower latency, reduced
network requirements, and fewer privacy issues [1,2]. Currently, the most widespread edge
devices are microcontrollers, which are typically characterized by energy efficiency and
low costs [3]. The main challenges associated with these deployments are related to their
computational and memory limitations. To cope with such limitations, techniques have
been studied and solutions deployed aimed at reducing the computational and memory
requirements of DL models. A common paradigm is quantization, which reduces the num-
ber of bits used to represent the weights and the activations (e.g., [4,5]). Binarized Neural
Networks (BNNs) are an extreme type of DL model quantization with binary values of
typically −1 and 1 [6]. This leads to a significant reduction in memory requirements (i.e., up
to 32× [7]) and enables highly efficient inference with XNOR and PopCount operations for
binary multiplication and accumulation (i.e., up to 58× faster inference [8]) at the price of a
drop in accuracy, which can be accepted, at least in some target applications [7,8].

As the resource limitation of typical edge devices clashes with the large model size
and huge computational overhead of DL models [9], specialized solutions and develop-
ment tools have been developed for what is now called TinyML (i.e., machine learning on
embedded IoT devices). TinyML concerns specific model architectures, training, and infer-
ence. Example tools include Google TensorFlow Lite Micro [10] and Qkeras [11], Larq [12],
ARM CMSIS-NN [13], MicroTVM [14], MIT TinyEngine [15], and the STMicroelectronics
STM32Cube.AI [16].

Electronics 2024, 13, 1624. https://doi.org/10.3390/electronics13091624 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091624
https://doi.org/10.3390/electronics13091624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1937-3969
https://orcid.org/0000-0003-1840-9616
https://orcid.org/0000-0003-4277-7283
https://orcid.org/0009-0004-8978-4979
https://orcid.org/0000-0001-8092-5473
https://orcid.org/0000-0003-4109-4675
https://doi.org/10.3390/electronics13091624
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091624?type=check_update&version=1

Electronics 2024, 13, 1624 2 of 17

The goal of our research is to develop and study the performance of an inference engine
specifically devoted to BNNs to favor the development of embedded AI applications on
the edge and enable deployment on extremely constrained devices, such as mainstream
32-bit ARM Cortex-M microcontroller units (MCUs). The proposed library is written in
platform-independent C [17] and can run BNN models on bare-metal devices, so it is
intended to be seamlessly portable to most software-programmable edge devices.

The remainder of the paper is outlined in the following. Section 2 details related
works in the literature, while Sections 3 and 4 present BNNs and the CBin-NN inference
engine, respectively. Section 5 is devoted to the experimental setting and Section 6 to the
obtained results. Finally, Section 7 draws conclusions and outlines possible directions for
future research.

2. Related Works

In this section, we first describe the state-of-the-art inference engines for TinyML sys-
tems; then, we focus on solutions for BNN inference, and finally, we report on applications
addressed through BNNs. Thorough, recent reviews of the state of the art on BNN re-
search can be found in [18–21], which highlight the relevance of some now well-established
engines that we introduce in the following.

2.1. TinyML Inference Engines

TensorFlow Lite Micro (TF-Lite Micro) [10] is an open-source framework devel-
oped by Google for running deep learning models on edge devices. ARM, on the other
hand, has developed an open-source library for Cortex-M processors, namely CMSIS-
NN [13], which maximizes performance and minimizes memory requirements of neural
network applications.

MicroTVM [14] is a recent development that allows the TVM [22] compiler and deploy-
ment framework to be ported to Cortex-M7 and other MCUs. The MCUNet framework [23]
combines a neural architecture search algorithm (TinyNAS) that optimizes the search space
with a lightweight inference engine (TinyEngine) that controls resource management in a
similar way to an operating system. In other words, the TinyEngine provides the essential
code to run the customized neural network of the TinyNAS.

STMicroelectronics’ X-Cube-AI is a free (closed-source) expansion package targeted at
STM32 devices. It accepts pre-trained models from various frameworks, such as TensorFlow
Lite, Keras, and PyTorch, and generates efficient code that can run on the STM32 series [16].
This toolkit also supports quantized models from the Keras framework to further optimize
the inference phase in terms of latency and memory requirements. FANN-on-MCU [3] is
an open-source toolkit that facilitates the deployment of efficient artificial neural networks
built using the FANN open-source library [24]. The framework supports both ARM Cortex-
M processors and RISC-V Parallel Ultra-Low Power processors (PULPs). Such libraries are
tailored to quantized networks (e.g., 8-bit, 16-bit) and do not support binary data types.

2.2. BNN Inference Engines

The BMXNet-v2 library [25] is an open-source BNN library based on MXNet. The
developed BNN layers can be seamlessly integrated with other standard library C compo-
nents. The layers can also be used on both GPUs and CPUs. DaBNN [26] is an optimized
inference engine that implements BNNs on mobile platforms. It was written in C++ and
64-bit ARM assembly.

To improve inference efficiency, several acceleration and memory refinement strategies
have been developed, including bit packing, binarized convolution, and memory layout.
Larq Compute Engine (LCE) [27] is an open-source inference framework developed by
Plumerai for BNNs. LCE comes with hand-tuned binarized operators for the TensorFlow
Lite runtime as well as a converter for TensorFlow model graphs. All current Android
phones and tablets, as well as the Raspberry Pi 3 and 4, are among the 64-bit ARM devices

Electronics 2024, 13, 1624 3 of 17

that LCE primarily targets. Although these frameworks are specifically designed for BNNs,
they do not support inference on resource-constrained devices, such as ARM Cortex-M.

2.3. BNN Applications

TinyML has proven successful in a variety of fields, including computer vision, natural
language processing (NLP), industry, and robotics. Some of these applications have been
implemented on edge devices using BNNs. In the field of computer vision, Fasfous
et al. [28] presented a BNN classifier, namely BinaryCoP, which was implemented on an
embedded FPGA accelerator for detecting correct face mask wearing and positioning.
Cerutti et al. [29] adopted an NLP application and implemented a BNN on the GAP8
microcontroller for sound event detection. Lo et al. [30] proposed an FPGA-based Binarized
Convolutional Neural Network for cloud detection on a satellite payload, working on
8-bit images captured by a near-infrared camera sensor. Chung et al. [31] propose a real-
time CNC machinery fault detection solution using a binary weight CNN working with
vibrational signals. Pau et al. [32] compared two industry frameworks used to train BNNs,
namely Larq and Qkeras. Two different models were implemented, one for human activity
detection (computer vision) and the other for anomaly detection (industry). They reported
inference time on ARM Cortex-A and Cortex-M CPUs using custom C functions designed
for binary layer execution. Dabbous et al. [33] proposed a Spiking Neural Network (SNN)
architecture for real-time tactile object shape recognition implemented on Raspberry Pi.
Younes et al. [34] proposed a hybrid fixed-point CNN (H-CNN) implemented on an FPGA
for robot touch modality classification.

The presented applications show the importance of BNNs in various fields, but their
realization typically involves a custom hardware implementation (e.g., an FPGA design),
and no open-source solutions are provided, which would support a much wider develop-
ment and deployment by third parties. The state-of-the-art TinyML engines offer powerful
quantization solutions that allow achieving ML performance not far from their original,
unquantized counterparts [4]. Still, they lack facilities for binary-specific optimizations,
particularly in terms of memory footprint. This was a major motivation for our exploration
and overall work.

3. Binary Neural Networks

State-of-the-art Convolutional Neural Networks (CNNs) are often unsuitable for
embedded systems with limited resources because of their huge model size and high
computational cost. Quantization is an optimization technique useful for deploying CNNs
on resource-constrained devices. Binarization is the extreme case of quantization. By
restricting both activations and weights to {−1, +1}, a 32-time memory saving is achieved
compared with 32-bit floating-point networks. The Sign function shown in Equation (1)
is normally used to binarize the activations and weights in the forward propagation
as follows:

Sign(x) =

{
+1, i f x ≥ 1
−1, otherwise

(1)

Not only does binarization reduce memory requirements but it also simplifies com-
putational logic. While CNNs use expensive multiplication and accumulation (MAC)
operations for convolutional layers, binary convolution can be implemented using much
simpler XNOR and PopCount (counts the number of 1s in a word) operations, as shown in
Figure 1. XR, WR, XB, and WB are the real and binary values of activations and weights,
respectively. To avoid the use of two bits, −1 is encoded as 0.

Electronics 2024, 13, 1624 4 of 17

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18

in Figure 1. 𝑋ோ , 𝑊ோ , 𝑋 , and 𝑊 are the real and binary values of activations and
weights, respectively. To avoid the use of two bits, −1 is encoded as 0.

Figure 1. A convolution implemented as a MAC operation in float vs. binary XNOR and PopCount.

The binary weights of a BNN must first be learned through backpropagation.
Training BNNs using the traditional gradient descent algorithm is not possible since the
derivative of the sign function is equal to 0, where defined. The straight-through estimator
(STE) was used to solve this issue [7], as shown in Figure 2. STE can be expressed as a
clipped identity function as follows: ∂𝑋𝐵∂𝑋𝑅 = 1|𝑋𝑅|≤1 (2)

where 𝑋ோ and 𝑋 are the real-valued input and binarized output of the sign function,
respectively, and 1|ೃ|ஸଵ takes a value of 1 if |𝑋ோ| ≤ 1 and is 0 otherwise (see Figure 2).
The gradient of the cost function C with respect to the real-valued weights using the chain
rule can be written as follows: ∂𝐶∂𝑋𝑅 = ∂𝐶∂𝑋𝐵 ∂𝑋𝐵∂𝑋𝑅 = ∂𝐶∂𝑋𝐵 ∗ 1|𝑋𝑅≤1| (3)

To prevent the latent weights (i.e., the full precision weights) from getting out of
control without affecting the binary weights, a clip function is also added as follows: clip(𝑊ோ, −1,1) = max൫−1, min(1, 𝑊ோ)൯ (4)

Figure 1. A convolution implemented as a MAC operation in float vs. binary XNOR and PopCount.

The binary weights of a BNN must first be learned through backpropagation. Training
BNNs using the traditional gradient descent algorithm is not possible since the derivative
of the sign function is equal to 0, where defined. The straight-through estimator (STE) was
used to solve this issue [7], as shown in Figure 2. STE can be expressed as a clipped identity
function as follows:

∂XB
∂XR

= 1|XR |≤1 (2)

where XR and XB are the real-valued input and binarized output of the sign function,
respectively, and 1|XR |≤1 takes a value of 1 if |XR|≤ 1 and is 0 otherwise (see Figure 2). The
gradient of the cost function C with respect to the real-valued weights using the chain rule
can be written as follows:

∂C
∂XR

=
∂C

∂XB

∂XB
∂XR

=
∂C

∂XB
∗ 1|XR≤1| (3)

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18

in Figure 1. 𝑋ோ , 𝑊ோ , 𝑋 , and 𝑊 are the real and binary values of activations and
weights, respectively. To avoid the use of two bits, −1 is encoded as 0.

Figure 1. A convolution implemented as a MAC operation in float vs. binary XNOR and PopCount.

The binary weights of a BNN must first be learned through backpropagation.
Training BNNs using the traditional gradient descent algorithm is not possible since the
derivative of the sign function is equal to 0, where defined. The straight-through estimator
(STE) was used to solve this issue [7], as shown in Figure 2. STE can be expressed as a
clipped identity function as follows: ∂𝑋𝐵∂𝑋𝑅 = 1|𝑋𝑅|≤1 (2)

where 𝑋ோ and 𝑋 are the real-valued input and binarized output of the sign function,
respectively, and 1|ೃ|ஸଵ takes a value of 1 if |𝑋ோ| ≤ 1 and is 0 otherwise (see Figure 2).
The gradient of the cost function C with respect to the real-valued weights using the chain
rule can be written as follows: ∂𝐶∂𝑋𝑅 = ∂𝐶∂𝑋𝐵 ∂𝑋𝐵∂𝑋𝑅 = ∂𝐶∂𝑋𝐵 ∗ 1|𝑋𝑅≤1| (3)

To prevent the latent weights (i.e., the full precision weights) from getting out of
control without affecting the binary weights, a clip function is also added as follows: clip(𝑊ோ, −1,1) = max൫−1, min(1, 𝑊ோ)൯ (4)

Figure 2. The sign and the STE function (a,b) its derivative that favors gradient descent [35].

To prevent the latent weights (i.e., the full precision weights) from getting out of
control without affecting the binary weights, a clip function is also added as follows:

clip(WR,−1, 1) = max(−1, min(1, WR)) (4)

Electronics 2024, 13, 1624 5 of 17

Therefore, BNNs can be trained with the same gradient descent algorithms as real-
valued CNNs using the techniques described above. Numerous optimization techniques
have been proposed in recent years and have shown to be effective [36]. However, BNNs
still suffer from accuracy degradation due to the severe information loss caused by pa-
rameter binarization, and the gap with their real-valued counterparts is still significant in
several cases [37].

4. CBin-NN Inference Engine

We present CBin-NN, an open-source BNN inference engine for constrained devices.
CBin-NN provides an optimized binarized implementation of all the basic CNN layer
operators. The library is written in platform-independent C language to ensure seamless
portability to most software-programmable edge devices. The project was built using the
GCC compiler provided within STM32CubeIDE [38]. This GCC compiler is pre-configured
for cross-compilation targeting the ARM Cortex-M architecture used by STM32 micro-
controllers. During the development of CBin-NN, we did not limit the STM32CubeIDE
environment but we also tested CBin-NN using GCC with MinGW in Windows. We
verified that the produced assembly code was identical to that of the STM32CubeIDE
framework. We also utilized the ARM GNU toolchain in Windows for cross-compilation,
specifically targeting Cortex-M microcontrollers. These steps ensure that not only is the
proposed library optimized for STM32 devices but it is also compatible with a wider range
of development environments and target architectures.

The following subsections introduce the techniques we used to convert a real-value
model for the inference phase, the operators implemented to execute the inference on the
edge, and the optimizations made to increase inference efficiency.

4.1. Conversion to Inference Model

The smallest data type in the C language occupies 1 byte (8 bits). In the case of BNNs,
each parameter occupies 1 bit owing to binarization. If BNN parameters were allocated as
a single variable, 1 byte would be allocated for each of them, which would cancel out the
memory savings compared to 8-bit quantized models. Bit packing is a common procedure
for BNNs in which N elements are binarized into 1-bit each and then packed into an N-bit
vector. In this way, XNOR can be performed directly between binarized vectors. CBin-NN
uses bit packing so that the actual in-memory implementation achieves the ideal gain of
an 8× improvement over quantized 8-bit networks and a 32× memory saving over the
full-precision ones. To store the model parameters, bit packing is performed offline using
a Python script that extracts the network parameters and transforms them into a suitable
format for on-device inference. For the sake of compatibility with other frameworks that
support BNN training (e.g., PyTorch), the script accepts an h5 model (trained with the
Larq framework [39], see Section 5.2). As mentioned earlier, Larq BNN weights are also
restricted to W ∈ {−1, 1}. To avoid using two bits, −1 is encoded as 0. The weights are
then bit packed to a multiple of 32 across the input channels or padded if less than 32,
to achieve the best memory access patterns on MCUs. Common BNNs already have a
multiple of 32 channels in all layers, so no padding is performed in practice. During
inference computation, CBin-NN binarizes the activations by extracting the sign bit, which
is then packed into a multiple of 32 over the input channels to make optimal use of memory.
Padding is applied when the size of the input is not a multiple of 32. Thus, the whole
network operates on multiples of 32 input channels. The above-described workflow is
depicted in Figure 3.

Electronics 2024, 13, 1624 6 of 17
Electronics 2024, 13, x FOR PEER REVIEW 6 of 18

Figure 3. Workflow of BNN training, deployment, and inference on a microcontroller using CBin-
NN.

4.2. CBin-NN Operators
The CBin-NN library provides a binarized implementation of the fundamental CNN

layer operators, as described in the following (Table 1 provides an overview).
A common practice in BNNs, for higher accuracy reasons, is to keep the first and last

layers in full precision [40]. Since the inputs to the network are not binary, they must be
treated by a specific operator. Thus, the first two operators that will be presented (i.e.,
QBConv2D and QQConv2D) are designed to be the first network layer, and it is up to the
user to choose among them, depending on requirements and results.

Table 1. CBin-NN operators.

Operator Input Weights Output Notes
QBConv2D 3 8-bit quantized 32-bit packed 32-bit packed Comparator + BN 1 Fusion

QBConv2D Optimized 3 8-bit quantized 32-bit packed 32-bit packed Comparator + LU 2 + BN
Fusion

QBConv2D Optimized PReLU 3 8-bit quantized 32-bit packed 32-bit packed Comparator + LU + BN and
PReLU Fusion

QQConv2d 3 8-bit quantized 8-bit quantized 32-bit packed Comparator + BN Fusion

QQConv2D Optimized 3 8-bit quantized 8-bit quantized 32-bit packed Comparator + LU + BN
Fusion

QQConv2D Optimized PReLU 1 8-bit quantized 8-bit quantized 32-bit packed Comparator + LU + BN and
PReLU Fusion

BBConv2D 32-bit packed 32-bit packed 32-bit packed
XOR and PopCount + BN

Fusion

BBConv2D Optimized 32-bit packed 32-bit packed 32-bit packed
XOR and PopCount + LU +

BN Fusion

BBConv2D Optimized PReLU 32-bit packed 32-bit packed 32-bit packed
XOR and PopCount + LU +

BN and PReLU Fusion

BBPointwiseConv2D 32-bit packed 32-bit packed 32-bit packed
XOR and PopCount + BN

Fusion

Figure 3. Workflow of BNN training, deployment, and inference on a microcontroller using CBin-NN.

4.2. CBin-NN Operators

The CBin-NN library provides a binarized implementation of the fundamental CNN
layer operators, as described in the following (Table 1 provides an overview).

Table 1. CBin-NN operators.

Operator Input Weights Output Notes

QBConv2D 3 8-bit quantized 32-bit packed 32-bit packed Comparator + BN 1 Fusion

QBConv2D Optimized 3 8-bit quantized 32-bit packed 32-bit packed Comparator + LU 2 + BN
Fusion

QBConv2D Optimized PReLU 3 8-bit quantized 32-bit packed 32-bit packed Comparator + LU + BN and
PReLU Fusion

QQConv2d 3 8-bit quantized 8-bit quantized 32-bit packed Comparator + BN Fusion

QQConv2D Optimized 3 8-bit quantized 8-bit quantized 32-bit packed Comparator + LU + BN Fusion

QQConv2D Optimized PReLU 1 8-bit quantized 8-bit quantized 32-bit packed Comparator + LU + BN and
PReLU Fusion

BBConv2D 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + BN
Fusion

BBConv2D Optimized 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + LU +
BN Fusion

BBConv2D Optimized PReLU 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + LU +
BN and PReLU Fusion

BBPointwiseConv2D 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + BN
Fusion

BBPointwiseConv2D Optimized 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + LU +
BN Fusion

BBPointwiseConv2D Optimized
PReLU 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + LU +

BN & PReLU Fusion

bMaxPool2D 32-bit packed - 32-bit packed Bit-wise OR

Electronics 2024, 13, 1624 7 of 17

Table 1. Cont.

Operator Input Weights Output Notes

bMaxPool2D Optimized 32-bit packed - 32-bit packed 32-bit Simultaneous OR

BBFC 32-bit packed 32-bit packed 32-bit packed Comparator + BN Fusion

BBFC Optimized 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + BN
Fusion

BBFC Optimized PReLU 32-bit packed 32-bit packed 32-bit packed XOR and PopCount + BN &
PReLU Fusion

BBQFC 4 32-bit packed 32-bit packed Quantized 5

8-, 16-, 32-bit)
Comparator + BN Fusion

BBQFC Optimized 4 32-bit packed 32-bit packed Quantized 5

(8-, 16-, 32-bit)
XOR and PopCount + BN

Fusion

BBQFC Optimized PReLU 4 32-bit packed 32-bit packed Quantized 5

(8-, 16-, 32-bit)
XOR and PopCount + BN &

PReLU Fusion
1 BN stands for batch normalization. 2 LU stands for loop unrolling. 3 Usable as the first layer of a network.
4 Usable as the last layer of a network for classification. 5 The cumulative output for the classification layer. It is
an integer that can be 8, 16, or 32 bits long.

A common practice in BNNs, for higher accuracy reasons, is to keep the first and
last layers in full precision [40]. Since the inputs to the network are not binary, they must
be treated by a specific operator. Thus, the first two operators that will be presented
(i.e., QBConv2D and QQConv2D) are designed to be the first network layer, and it is up to
the user to choose among them, depending on requirements and results.

4.2.1. QBConv2D

Quantized Input Binarized Kernel Convolution. QBConv2D receives quantized inputs
and binary kernels and writes the corresponding bit-packed outputs. The convolution
operation in this function is computed using a comparator. A weight of −1 (encoded as 0)
leads to a negative accumulation of the inputs, while a weight of 1 leads to a positive
accumulation of the inputs. In addition, QBConv2D supports layer fusion for batch
normalization (BN) according to Equation (5) as follows:

yi = γ

(
xi − µ√
σ2 + ϵ

)
+ β (5)

The parameters γ, β, µ, σ, and ϵ can be obtained after training, and xi and yi are the
inputs and outputs of the BN layer. BN is applied after convolution and has been shown to
be essential to train deep NNs [41]. We can rewrite Equation (5) as follows:

yi = α2i(xi − α1i)

αi1 =
(

µ −
√

σ2+ϵ
γ β

)
αi2 = γ√

σ2+ϵ

(6)

This fusion is applied to the accumulator values before storing them in memory. In
this way, additional reads and writes are avoided, which would occur if the BN layer
was treated separately. The resulting output activations are then binarized using the sign
function, and finally, the binary activations are bit packed as described in Section 4.1.

4.2.2. QQConv2D

Quantized Input Quantized Kernel Convolution. This operator receives quantized
inputs and quantized weights. It writes bit-packed outputs. Unlike QBCon2D, the weights
are not binary but 8-bit quantized to increase accuracy. The weights are stored using the

Electronics 2024, 13, 1624 8 of 17

“int8_t” data type, which occupies 1 byte of memory, which is the smallest allocatable
memory in C. The convolution operation performed by QQConv2D harnesses processor-
optimized MAC functionalities, indirectly accessed through higher-level C constructs for
enhanced computational efficiency. This approach is more efficient than the comparator
used in QBConv2D in terms of inference latency but it comes at the cost of a slight increase
in model size. Likewise, BN fusion is supported in this function and follows the same steps
as in QBConv2D. Finally, the final outputs are binarized and bit packed.

4.2.3. BBConv2D

Binary Input Binary Kernel Convolution. This operator accepts bit-packed inputs and
weights. It writes bit-packed outputs. Binary convolution is implemented with XNOR and
PopCount operations. Since Cortex-M processors do not support the XNOR operator, the
XOR operator is used instead, and the result of PopCount is inverted as in Equation (7)
as follows:

yi =

cin
32

∑
i=0

N − 2 ∗ PopCount(xiXORwi) (7)

where xi, yi, and wi are the inputs, outputs, and weights for each convolutional step over
input channels. In other words, a convolutional step for a 5 × 5 × cin kernel is the first
column and row of the kernel across channels 1 × 1 × cin convolved over a 1 × 1 × cin
receptive field simultaneously. N is the bit width and cin is the number of input channels.
N is equal to 32 because the weights and activations are packed into multiples of 32 across
the input channels. If the number of input channels is less than 32, N would correspond
to the number of input channels before padding. Finally, this operator would perform
up to thirty-two MACs with just four instructions, namely, XOR, PopCount, Multiply,
and Subtract.

In the case of padded convolutions, which occur very frequently, the padded pixels
are skipped in the calculation because they distort the results. This is because a padding
value, which is usually 0, would be treated as −1 according to the bit packing specifications.
Similarly, BBConv2d supports BN fusion. The BN layer can be approximated by adding
an integer bias W’, which can be calculated after training according to [42]. The resulting
activations are then binarized using the sign function and bit packed.

In the following, we detail the implementation of this binary convolution opera-
tor, which also serves as an example for the others. The C snippet below calculates the
PopCount of the result obtained by XOR-ing (indicated by a ‘ˆ’) a weight and an input
value. A weight is a 32-bit integer formed by packing 32 bits together across channels.
“__builtin_popcount” is a compiler intrinsic function that counts the number of set bits
(i.e., 1s) in a word.

C Code

sum = __builtin_popcount(weight[weight_idx] ˆ input[input_idx]);

The corresponding assembly instructions generated by the GCC compiler load the
weight value, perform the XOR operation, and call the PopCount function.

Assembly Code

ldr.w r5, [r3, r1, lsl #2] ; Load weight value
eors r0, r5 ; XOR operation between weight and input
bl 0x110 <__popcountsi2> ; Call pop count function

The pop_count variable is then incremented by the difference between the doubled
cum and N (i.e., the word size in bits, which is 32 in our case) (cf. Figure 1, PopCount is
inverted since we used XOR instead of XNOR).

Electronics 2024, 13, 1624 9 of 17

C Code

pop_count += N—(sum << 1);

Assembly Code

sub.w r0, r9, r0, lsl #1 ; Calculate N—(sum[idx] << 1)
add r3, r0 ; Add the result to pop_count[idx]

The C and assembly code snippets below compute the final output tensor value of a
filter. If the value of conv_out (which is pop_count plus the filter’s batch normalization
factor) is greater than or equal to zero, SET_BIT is called on a specific bit in the out tensor.
Otherwise, CLEAR_BIT is called. Every 32 conv_out values (i.e., activations in the resulting
feature map), a 32-bit packing operation is performed to optimize storage.

C code

conv_out >= 0 ? SET_BIT(out[out_idx >> 5], out_idx & 31): CLEAR_BIT(out[out_idx >> 5],
out_idx & 31);

Assembly Code

cmp.w r11, #0 ; compares the value in register r11 with zero
bne.n 0xb0c <BBConv2D_Optimized_PReLU+1788>; Branch to address 0xb0c (set or clear
bit macros)

The branch instruction redirects the program’s execution to the C code segment,
calling the macros for clearing or setting bits in the output tensor, which are implemented
as follows.

C code

#define SET_BIT(var,pos) ((var) |= (1<<(pos)))
#define CLEAR_BIT(var,pos) ((var) & = ~(1<<(pos)))

4.2.4. BBPointwiseConv2D

Binary Input Binary Kernel Pointwise Convolution. This operator has the same
specifications as BBConv2D, with one minor change. The loops for kernel height and width
are removed since they are equal to 1. This reduces the latency that would result from
unnecessary loop branching.

4.2.5. BMaxPool2D

Binary Max Pooling. This function is applied to bit-packed inputs and simply com-
putes a bitwise OR to calculate the binary max pool efficiently. A new feature compared to
the previous version, which is found in [43], is that the operator OR is executed over the
input channels rather than bitwise. This further accelerates the computation by running a
32-bit vector OR 32-bit vector instead of 1-bit OR 1-bit.

4.2.6. BBFC

Binary Input Binary Weights Fully Connected. This operator expects bit-packed inputs
and weights. It writes bit-packed outputs. We optimize the previous version [43], which
uses a comparator to implement the vector-matrix multiplication. The comparator is now
replaced with the XOR and PopCount operators and performs 32 MACs at once. This
is possible because the inputs to this layer are multiples of 32, as are the weights. This
approach is more efficient than using a comparator that must check every bit in the input
vector and speed up performance. BBFC supports BN fusion as in BBConv2D by adding
an integer bias W’, followed by binarization and bit packing.

Electronics 2024, 13, 1624 10 of 17

4.2.7. BBQFC

Binary Input Binary Weights Quantized Output Fully Connected. Similar to BBFC,
this operator expects bit-packed inputs and weights but writes quantized outputs for the
classification layer. This layer is also optimized compared to the previous version [43] using
the same approach as BBFC. The comparator is replaced by XOR and PopCount to improve
performance. Similarly, this operator merges the BN layer by adding W’ to the accumulator.
The accumulated activations are then written to memory without binarization.

4.3. Operator Optimization

Loop unrolling is an optimization technique that aims at increasing instruction-level
parallelism by reducing the number of iterations in a loop and increasing the amount
of work performed per iteration. This approach aims to strike a balance between the
increased instruction count and the reduced loop overhead for optimized performance in
the convolutional operations discussed previously [44].

For the convolution operators, such as QBConv2D, QQConv2D, BBConv2D, and
BBPointwiseConv2D, the first loop of the convolution representing the number of filters
(i.e., output channels) is unrolled by a factor of 32. We unrolled this loop by this factor
because network architectures commonly use multiples of 32 filters. This allows 32 filters
to be processed simultaneously instead of processing each filter individually. Moreover, we
have completely unrolled the loop that iterates over the input channels in QBConv2D and
QQConv2D operators. It is possible to eliminate this loop since these operators correspond
to the first network layer. Thus, the number of iterations is set before the execution and
is equal to the number of channels in the input images. This is not possible with the
other intermediate convolution operators (BBConv2D and BBPointwiseConv2D) because
the number of input channels is variable. Moreover, the bit packing approach already
reduces the computation of this loop by a multiple of 32, as a 32-bit binary weight vector is
simultaneously convolved over a 32-bit binary receptive field.

5. Experimental Settings
5.1. Dataset

We tested the CBin-NN inference engine in a computer vision application, employing
the CIFAR-10 [45] dataset. It consists of 60,000 color images 32 × 32 in size that are divided
into 10 classes with 6000 images per class. A total of 50,000 images were used for training
and 10,000 for testing. The dataset is smaller than others dedicated to computer vision
(e.g., [46]) in terms of the number of both samples and classes, and we argue it is more
representative of the TinyML embedded vision domain [47,48].

5.2. BNN Design and Training

As a reference architecture for the tests, we used SmallCifar (see Figure 4), a small
network used in the literature [13,49] for the CIFAR dataset. It takes an image 32 × 32 in
size that is passed through three convolutional layers with a kernel size of 5 × 5 as the input
followed by a max pooling layer. As mentioned earlier, the BN layer is essential for deep
learning training. Therefore, a BN layer is added after each convolutional layer. The output
channels (i.e., number of filters) are 32, 32, and 64, respectively. The final feature maps
are flattened and passed through a linear layer with weights of 1024 × 10 to obtain the
class. The model is quite small and well-suited to embedded devices. To model and train
the BNN, we used the Larq framework [39], an open-source Python library for training
extremely low-precision networks. The network is trained for 500 epochs and a batch size
of 50. To achieve high performance, we found it useful to resort to two main solutions
concerning the binary optimizer and the activation functions, as detailed in the following.

Electronics 2024, 13, 1624 11 of 17

Electronics 2024, 13, x FOR PEER REVIEW 11 of 18

solutions concerning the binary optimizer and the activation functions, as detailed in the
following.

Figure 4. SmallCifar topology.

5.2.1. Binary Optimizer
For BNN training, we used the latent-free binary optimizer (Bop) introduced by [50].

Bop is specifically designed for BNNs and binary weight networks (BWNs). Bop has only
one action available, which is to flip weights by changing the sign. It maintains an
exponential moving average of gradients controlled by the adaptive learning rate γ. When
this average exceeds a threshold τ, a weight is flipped. We set γ to 1 × 10−4 and τ to 1 × 10−8
during training.

5.2.2. Additional Activation Function (PReLU)
Kim et al. [51] argue that an unbalanced distribution of binary activations can

improve the accuracy of BNNs. They showed that using an additional activation function
(between the binary convolution layer and the following BN layer) makes the activation
distribution unbalanced and thus improves accuracy. For this reason, we used an
additional activation function (namely a Parametric Rectified Linear Unit (PReLU) as in
[52]) after each convolutional and fully connected layer in the SmallCifar architecture.
Results are discussed in the following subsection. We should emphasize that the operators
described in Section 4.2 also support layer fusion for the PReLU activation function
according to Equation (8) as follows: PReLU (𝑥) = ൜𝑎𝑥, if 𝑥 ≤ 0𝑥, if 𝑥 > 0 (8)

where 𝑥 is the output activation and 𝑎 is a learnable array with the same shape as 𝑥.
To avoid excessive memory consumption for the convolutional layers, we have shared the
parameters over the entire space, so that each filter has only one parameter [53].

5.3. Model Deployment
For model deployment and library CBin-NN testing, we employed the STM32F746

high-end commercial microcontroller [54], which is housed on a NUCLEO-144 board [55].
The MCU is an ARM Cortex-M7 core running at 216 MHz with 320 KB SRAM and 1 MB
flash memory.

6. Results
This section presents the test results comparing our inference framework with other

existing frameworks. The comparison is in terms of accuracy, latency, and memory
requirements.

Figure 4. SmallCifar topology.

5.2.1. Binary Optimizer

For BNN training, we used the latent-free binary optimizer (Bop) introduced by [50].
Bop is specifically designed for BNNs and binary weight networks (BWNs). Bop has
only one action available, which is to flip weights by changing the sign. It maintains an
exponential moving average of gradients controlled by the adaptive learning rate γ. When
this average exceeds a threshold τ, a weight is flipped. We set γ to 1 × 10−4 and τ to
1 × 10−8 during training.

5.2.2. Additional Activation Function (PReLU)

Kim et al. [51] argue that an unbalanced distribution of binary activations can improve
the accuracy of BNNs. They showed that using an additional activation function (between
the binary convolution layer and the following BN layer) makes the activation distribution
unbalanced and thus improves accuracy. For this reason, we used an additional activation
function (namely a Parametric Rectified Linear Unit (PReLU) as in [52]) after each convolu-
tional and fully connected layer in the SmallCifar architecture. Results are discussed in the
following subsection. We should emphasize that the operators described in Section 4.2 also
support layer fusion for the PReLU activation function according to Equation (8) as follows:

PReLU(xi) =

{
aixi, ifx ≤ 0
xi, ifx > 0

(8)

where xi is the output activation and ai is a learnable array with the same shape as xi. To
avoid excessive memory consumption for the convolutional layers, we have shared the
parameters over the entire space, so that each filter has only one parameter [53].

5.3. Model Deployment

For model deployment and library CBin-NN testing, we employed the STM32F746
high-end commercial microcontroller [54], which is housed on a NUCLEO-144 board [55].
The MCU is an ARM Cortex-M7 core running at 216 MHz with 320 KB SRAM and 1 MB
flash memory.

6. Results

This section presents the test results comparing our inference framework with other exist-
ing frameworks. The comparison is in terms of accuracy, latency, and memory requirements.

6.1. Accuracy

Table 2 shows the accuracy results of different implementations of the SmallCifar
architecture. All available libraries are tailored to quantized models (typically 8-bit quan-
tization), whereas CBin-NN is specialized for BNNs. The same 8-bit quantized model is
deployed using state-of-the-art libraries ([10,13–15], TF-Lite Micro, CMSIS-NN, MicroTVM,

Electronics 2024, 13, 1624 12 of 17

and TinyEngine, respectively), reaching a 79.90% accuracy. The basic CBin-NN implementa-
tion has lower accuracy because of binarization (12.6% less). Replacing the Adam optimizer
with the Bop yields an accuracy of 71.90%. Adding the PReLU activation function after
the convolutional and fully connected layers leads to 72.53%. Another performance im-
provement is obtained by maintaining the weights of the first network layer in a quantized
8-bit representation instead of binarization (76.12%). Combining all these optimizations,
we achieve a 77.42% accuracy, which is only 2.5% less than the 8-bit quantized model.

Table 2. SmallCifar accuracy using different inference engines.

Engine Accuracy Notes
TF-lite Micro [10] 79.90% -
CMSIS-NN [13] 79.90% -
MicroTVM [14] 79.90% -
TinyEngine [15] 79.90% -

CBin-NN 67.30% Adam Optimizer 1

CBin-NN 71.90% Bop Optimizer 1

CBin-NN 72.53% Bop + PReLU 1

CBin-NN 76.12% Bop + QQConv2D 2

CBin-NN 77.42% Bop + PReLU + QQConv2D 2

1 First layer weights are binarized and QBConv2D is used. 2 First layer weights are 8-bit quantized and QQConv2D
is used.

6.2. Latency

The bar chart in Figure 5 shows that CBin-NN achieves higher inference efficiency
than the other inference engines. Our library is 3.6× and 1.4× faster than TF-Lite Micro
and MicroTVM, respectively. Compared to the CMSIS-NN library and TinyEngine, CBin-
NN provided 20% and 15% lower inference latency, respectively. This latency result was
obtained with the highest accuracy CBin-NN configuration (last row in Table 2). To calculate
latency, we used the HAL_GetTick function in the STM32 HAL library.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 18

6.1. Accuracy
Table 2 shows the accuracy results of different implementations of the SmallCifar

architecture. All available libraries are tailored to quantized models (typically 8-bit
quantization), whereas CBin-NN is specialized for BNNs. The same 8-bit quantized model
is deployed using state-of-the-art libraries ([10,13–15], TF-Lite Micro, CMSIS-NN,
MicroTVM, and TinyEngine, respectively), reaching a 79.90% accuracy. The basic CBin-
NN implementation has lower accuracy because of binarization (12.6% less). Replacing
the Adam optimizer with the Bop yields an accuracy of 71.90%. Adding the PReLU
activation function after the convolutional and fully connected layers leads to 72.53%.
Another performance improvement is obtained by maintaining the weights of the first
network layer in a quantized 8-bit representation instead of binarization (76.12%).
Combining all these optimizations, we achieve a 77.42% accuracy, which is only 2.5% less
than the 8-bit quantized model.

Table 2. SmallCifar accuracy using different inference engines.

Engine Accuracy Notes
TF-lite Micro [10] 79.90% -
CMSIS-NN [13] 79.90% -
MicroTVM [14] 79.90% -
TinyEngine [15] 79.90% -

CBin-NN 67.30% Adam Optimizer 1
CBin-NN 71.90% Bop Optimizer 1
CBin-NN 72.53% Bop + PReLU 1
CBin-NN 76.12% Bop + QQConv2D 2
CBin-NN 77.42% Bop + PReLU + QQConv2D 2

1 First layer weights are binarized and QBConv2D is used. 2 First layer weights are 8-bit quantized
and QQConv2D is used.

6.2. Latency
The bar chart in Figure 5 shows that CBin-NN achieves higher inference efficiency

than the other inference engines. Our library is 3.6× and 1.4× faster than TF-Lite Micro and
MicroTVM, respectively. Compared to the CMSIS-NN library and TinyEngine, CBin-NN
provided 20% and 15% lower inference latency, respectively. This latency result was
obtained with the highest accuracy CBin-NN configuration (last row in Table 2). To
calculate latency, we used the HAL_GetTick function in the STM32 HAL library.

 Figure 5. SmallCifar latency using various inference engines.

Table 3 analyzes the effects on latency and accuracy of the single optimization ap-
proaches. The inference time of the initial model, where the weights in the first layer are
binarized, is 128 ms. In this case, the QBConv2D operator is used to compute the convolu-
tion. This operator uses a comparator, which increases the time complexity owing to its
if-else instructions. The addition of the PReLU activation function comes at the expense of
higher latency (2 ms slower) owing to the additional computations in Equation (8). On the
other hand, when the weights of the first layer are 8-bit quantized rather than binary, the

Electronics 2024, 13, 1624 13 of 17

QQConv2D operator is used during inference, which is more efficient than the QBConv2D
operator since the classical MAC instructions are faster than comparators. This approach
improves both accuracy and latency (76.12% and 107 ms, respectively) with a small increase
in model size (see below). Similarly, the inference latency rises to 110 ms when a PReLU
activation function is added, which is 3 ms slower than without PReLU.

Table 3. SmallCifar performance with different optimizations.

Optimization Accuracy Latency
Bop 1 71.90% 128 ms

Bop + PReLU 1 72.53% 130 ms
Bop + QQConv2D 2 76.12% 107 ms

Bop + PReLU + QQConv2D 2 77.42% 110 ms
1 First layer weights are binarized and QBConv2D is used. 2 First layer weights are 8-bit quantized and QQConv2D
is used.

6.3. Memory Footprint

Comparisons on model size are reported in Table 4. Our initial implementation is
7.5× smaller than our comparison frameworks (11.6 KB vs. 87.3 KB). This is mainly due to
binarization, where each parameter occupies only 1 bit compared to 8 bits in the quantized
representation. Adding the PReLU activation slightly increases the model size, as it requires
storing additional parameters. To improve performance, the weights of the first layer are
quantized instead of binarized (see Table 2). This increases the size of the model, as each
parameter in the first layer now occupies 1 byte instead of 1 bit. This approach does not
significantly affect the model size because the first layer usually has only three channels
corresponding to the number of channels in the input images. Thus, the size of the largest
model (quantized first layer and PReLU) increases to 14.2 KB. This, on the other hand,
improves accuracy by approximately 5%.

Table 4. SmallCifar size using different frameworks.

Engine Accuracy Size Notes
TF-Lite Micro 79.90% 87.34 KB -

MicroTVM 79.90% 87.34 KB -
CMSIS-NN 79.90% 87.34 KB -
TinyEngine 79.90% 87.34 KB -
CBin-NN 71.90% 11.58 KB Bop 1

CBin-NN 72.53% 12.12 KB Bop + PReLU 1

CBin-NN 76.12% 13.63 KB Bop + QQConv2D 2

CBin-NN 77.42% 14.17 KB Bop + PReLU + QQConv2D 2

1 First layer weights are binarized and QBConv2D is used. 2 First layer weights are 8-bit quantized and QQConv2D
is used.

In terms of peak memory (input and output activations [23] for the peak layer/block),
CBin-NN reduces memory requirements by up to 28.8 times. This is mainly due to bina-
rization, where activations are 32-bit packed. Figure 6 shows the difference between the
available inference engines in terms of peak memory usage. CBin-NN is 12.8× and 28.8×
more memory efficient compared to the TF-Lite Micro and MicroTVM libraries, respectively.
Moreover, our proposed library requires 13.4× and 9.2× less memory than the CMSIS-NN
and TinyEngine frameworks.

It is important to note that the achieved memory reductions enable the use of some
NN models on extremely constrained devices. In the case of SmallCifar, we have tested
the most accurate model (77.42%) on three additional microcontrollers (STM32F091RC,
STM32F401RE, and STM32H743Z12, which represent the entry-level, mainstream, and high-
performance families, respectively), with ROM ranging from 256 KB to 2000 KB and RAM
ranging from 32 KB to 1000 KB. Table 5 shows the latency on each one of the mentioned

Electronics 2024, 13, 1624 14 of 17

microcontrollers, which may also meet real-time constraints for some applications. Porting
the models on the different devices is straightforward since the models are stored in .h5
files and our code is platform-independent C.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18

the available inference engines in terms of peak memory usage. CBin-NN is 12.8× and
28.8× more memory efficient compared to the TF-Lite Micro and MicroTVM libraries,
respectively. Moreover, our proposed library requires 13.4× and 9.2× less memory than
the CMSIS-NN and TinyEngine frameworks.

Figure 6. SmallCifar memory footprint using various inference engines.

It is important to note that the achieved memory reductions enable the use of some
NN models on extremely constrained devices. In the case of SmallCifar, we have tested
the most accurate model (77.42%) on three additional microcontrollers (STM32F091RC,
STM32F401RE, and STM32H743Z12, which represent the entry-level, mainstream, and
high-performance families, respectively), with ROM ranging from 256 KB to 2000 KB and
RAM ranging from 32 KB to 1000 KB. Table 5 shows the latency on each one of the
mentioned microcontrollers, which may also meet real-time constraints for some
applications. Porting the models on the different devices is straightforward since the
models are stored in .h5 files and our code is platform-independent C.

Table 5. Microcontroller performance.

Optimization Accuracy
Latency (ms)

F0 F4 H7
Bop + PReLU + QQConv2D 77.42% 925 450 58

7. Conclusions and Future Work
BNNs radically reduce the memory footprint compared to 8-bit quantized models

and full precision models without a huge accuracy drop. They also reduce the
computational cost thanks to simple XNOR and PopCount operations. To support the
effective deployment of BNNs, we proposed a library of layer operators that facilitates
simple yet flexible CNNs with binary weights and activations. CBin-NN has been
developed in platform-independent C, supporting seamless porting to any software-
programmable device, including affordable but extremely memory-limited devices, such
as Cortex-M0. Experimental analysis on the STM32F746 MCU using the CIFAR-10 dataset
shows that our library, employing some specific optimizations (e.g., channel-wise max
pooling, Bop optimizer, PReLU additional activations, differentiated quantization for
input layers), speeds up inference by 3.6 times and reduces the memory required to store
model weights and activations by 7.5 times and 28 times, respectively, at the cost of
slightly lower accuracy (2.5%). An ablation study assessing the impact of (i) a binary
optimizer [50], (ii) an unbalanced distribution of binary activations obtained through an

Figure 6. SmallCifar memory footprint using various inference engines.

Table 5. Microcontroller performance.

Optimization Accuracy
Latency (ms)

F0 F4 H7
Bop + PReLU + QQConv2D 77.42% 925 450 58

7. Conclusions and Future Work

BNNs radically reduce the memory footprint compared to 8-bit quantized models
and full precision models without a huge accuracy drop. They also reduce the compu-
tational cost thanks to simple XNOR and PopCount operations. To support the effective
deployment of BNNs, we proposed a library of layer operators that facilitates simple
yet flexible CNNs with binary weights and activations. CBin-NN has been developed
in platform-independent C, supporting seamless porting to any software-programmable
device, including affordable but extremely memory-limited devices, such as Cortex-M0.
Experimental analysis on the STM32F746 MCU using the CIFAR-10 dataset shows that our
library, employing some specific optimizations (e.g., channel-wise max pooling, Bop opti-
mizer, PReLU additional activations, differentiated quantization for input layers), speeds
up inference by 3.6 times and reduces the memory required to store model weights and acti-
vations by 7.5 times and 28 times, respectively, at the cost of slightly lower accuracy (2.5%).
An ablation study assessing the impact of (i) a binary optimizer [50], (ii) an unbalanced
distribution of binary activations obtained through an additional activation function [51],
and (iii) a Quantized Input Quantized Kernel Convolution (QQConv2D) layer (with lower
inference latency but slightly increased model size) stresses the importance of last factor to
improve BNN accuracy.

CBin-NN is an open-source project within the ELM framework [56], available on
GitHub at https://edge-learning-machine.github.io/CBin-NN/, accessed on 8 April 2024.
More information can be found in [57]. We hope it can become a useful versatile toolkit for
the IoT and TinyML R&D community to deploy binarized models.

As limitations, we cite two aspects that should be addressed in the next research steps.
Our analysis does not focus on very large datasets, for which the extreme quantization
brought by binarization typically involves a significant accuracy loss [36]. Also, we have
not considered architectures specifically designed for mobile and embedded devices, such
as MobileNet, because they tend to suffer from performance degradation during bina-
rization due to their use of depth-wise convolutional layers [58]. Having demonstrated

https://edge-learning-machine.github.io/CBin-NN/

Electronics 2024, 13, 1624 15 of 17

the advantages of the proposed binarization technique in relatively simple convolutional
neural layers, the approach could now be ported to more complex operations as well.

We believe that a major goal for future research is the design of a dedicated opti-
mizer for BNNs to mitigate the performance degradation due to the gradient mismatch
problem [59]. We expect that this should allow an architecture designed specifically for
mobile/edge devices to achieve comparable accuracy to its 8-bit and full-precision coun-
terparts. In addition, we plan to further enhance the efficiency of inference by optimizing
the available operators. Specifically, we intend to employ Single Instruction Multiple Data
(SIMD) in QQConv2D, leveraging the 8-bit quantization representation of both inputs and
weights to streamline computation. Also, we plan to introduce an 8-bit packing technique
to accommodate models with a number of channels divisible by eight. To evaluate CBin-
NN’s performance thoroughly, additional datasets should be used and a comprehensive
hyperparameter study conducted to characterize the trade-off between accuracy, compu-
tational efficiency, and memory usage. Additionally, model interpretability techniques
could be explored to provide a more detailed understanding of the inference engine’s
decision-making process.

Author Contributions: Conceptualization, F.S., R.B., J.D. and F.B.; methodology, F.S., R.B., J.D.
and F.B.; software, F.S.; validation, A.C., A.D. and L.L.; data curation, F.S.; writing—original draft
preparation, F.S. and F.B.; writing—review and editing, A.C., A.D., L.L. and F.B.; supervision, R.B.,
J.D. and F.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: CBin-NN is an open-source project available on GitHub at https://edge-
learning-machine.github.io/CBin-NN/, accessed on 8 April 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
2. Branco, S.; Ferreira, A.G.; Cabral, J. Machine Learning in Resource-Scarce Embedded Systems, FPGAs, and End-Devices: A

Survey. Electronics 2019, 8, 1289. [CrossRef]
3. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network

Inference at the Edge of the Internet of Things. IEEE Internet Things J. 2020, 7, 4403–4417. [CrossRef]
4. Rokh, B.; Azarpeyvand, A.; Khanteymoori, A. A Comprehensive Survey on Model Quantization for Deep Neural Networks in

Image Classification. ACM Trans. Intell. Syst. Technol. 2023, 14, 97:1–97:50. [CrossRef]
5. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A Survey of Quantization Methods for Efficient Neural Network

Inference; CRC: Boca Raton, FL, USA, 2021.
6. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks

with Weights and Activations Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.
7. Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training Deep Neural Networks with Binary Weights during Propaga-

tions. Adv. Neural Inf. Process. Syst. 2015, 28, 3123–3131. [CrossRef]
8. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks;

Springer International Publishing: Cham, Switzerland, 2016. [CrossRef]
9. Li, Y.; Bao, Y.; Chen, W. Fixed-Sign Binary Neural Network: An Efficient Design of Neural Network for Internet-of-Things Devices.

IEEE Access 2020, 8, 164858–164863. [CrossRef]
10. David, R.; Duke, J.; Jain, A.; Reddi, V.J.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; et al. TensorFlow Lite

Micro: Embedded Machine Learning on TinyML Systems. Proc. Mach. Learn. Syst. 2020, 3, 800–811. [CrossRef]
11. Coelho, C.N., Jr.; Kuusela, A.; Li, S.; Zhuang, H.; Aarrestad, T.; Loncar, V.; Ngadiuba, J.; Pierini, M.; Pol, A.A.; Summers, S.

Automatic Heterogeneous Quantization of Deep Neural Networks for Low-Latency Inference on the Edge for Particle Detectors.
Nat. Mach. Intell. 2021, 3, 675–686. [CrossRef]

12. Larq|Binarized Neural Network Development. Available online: https://larq.dev/ (accessed on 31 January 2024).
13. Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. arXiv 2018, arXiv:1801.06601.

[CrossRef]
14. microTVM: TVM on Bare-Metal—Tvm 0.16.Dev0 Documentation. Available online: https://tvm.apache.org/docs/topic/

microtvm/index.html (accessed on 19 March 2024).

https://edge-learning-machine.github.io/CBin-NN/
https://edge-learning-machine.github.io/CBin-NN/
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.3390/electronics8111289
https://doi.org/10.1109/JIOT.2020.2976702
https://doi.org/10.1145/3623402
https://doi.org/10.48550/ARXIV.1511.00363
https://doi.org/10.48550/ARXIV.1603.05279
https://doi.org/10.1109/ACCESS.2020.3022902
https://doi.org/10.48550/ARXIV.2010.08678
https://doi.org/10.1038/s42256-021-00356-5
https://larq.dev/
https://doi.org/10.48550/ARXIV.1801.06601
https://tvm.apache.org/docs/topic/microtvm/index.html
https://tvm.apache.org/docs/topic/microtvm/index.html

Electronics 2024, 13, 1624 16 of 17

15. Lin, J.; Chen, W.-M.; Lin, Y.; Cohn, J.; Gan, C.; Han, S. MCUNet: Tiny Deep Learning on IoT Devices. Adv. Neural Inf. Process. Syst.
2020, 33, 11711–11722. [CrossRef]

16. X-CUBE-AI–AI Expansion Pack for STM32CubeMX–STMicroelectronics. Available online: https://www.st.com/en/embedded-
software/x-cube-ai.html (accessed on 29 January 2024).

17. Standards (Using the GNU Compiler Collection (GCC)). Available online: https://gcc.gnu.org/onlinedocs/gcc/Standards.html
(accessed on 29 January 2024).

18. Sayed, R.; Azmi, H.; Shawkey, H.; Khalil, A.H.; Refky, M. A Systematic Literature Review on Binary Neural Networks. IEEE
Access 2023, 11, 27546–27578. [CrossRef]

19. Yuan, C.; Agaian, S.S. A Comprehensive Review of Binary Neural Network. Artif. Intell. Rev. 2023, 56, 12949–13013. [CrossRef]
20. Zhao, W.; Ma, T.; Gong, X.; Zhang, B.; Doermann, D. A Review of Recent Advances of Binary Neural Networks for Edge

Computing. IEEE J. Miniat. Air Space Syst. 2021, 2, 25–35. [CrossRef]
21. Qin, H.; Gong, R.; Liu, X.; Bai, X.; Song, J.; Sebe, N. Binary Neural Networks: A Survey. Pattern Recognit. 2020, 105, 107281.

[CrossRef]
22. Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Cowan, M.; Shen, H.; Wang, L.; Hu, Y.; Ceze, L.; et al. TVM: An Automated

End-to-End Optimizing Compiler for Deep Learning. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018. [CrossRef]

23. Lin, J.; Chen, W.-M.; Cai, H.; Gan, C.; Han, S. MCUNetV2: Memory-Efficient Patch-Based Inference for Tiny Deep Learning. arXiv
2021, arXiv:2110.15352. [CrossRef]

24. Magno, M.; Cavigelli, L.; Mayer, P.; Hagen, F.V.; Benini, L. FANNCortexM: An Open Source Toolkit for Deployment of Multi-Layer
Neural Networks on ARM Cortex-M Family Microcontrollers: Performance Analysis with Stress Detection. In Proceedings of the
2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 793–798.

25. Bethge, J.; Bartz, C.; Yang, H.; Meinel, C. BMXNet 2: An Open Source Framework for Low-Bit Networks–Reproducing,
Understanding, Designing and Showcasing. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle,
WA, USA, 12 October 2020; pp. 4469–4472.

26. Zhang, J.; Pan, Y.; Yao, T.; Zhao, H.; Mei, T. daBNN: A Super Fast Inference Framework for Binary Neural Networks on ARM
Devices. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019. [CrossRef]

27. Bannink, T.; Bakhtiari, A.; Hillier, A.; Geiger, L.; de Bruin, T.; Overweel, L.; Neeven, J.; Helwegen, K. Larq Compute Engine:
Design, Benchmark, and Deploy State-of-the-Art Binarized Neural Networks. Proc. Mach. Learn. Syst. 2021, 3, 680–695. [CrossRef]

28. Fasfous, N.; Vemparala, M.-R.; Frickenstein, A.; Frickenstein, L.; Stechele, W. BinaryCoP: Binary Neural Network-Based COVID-
19 Face-Mask Wear and Positioning Predictor on Edge Devices. In Proceedings of the 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 17–21 June 2021. [CrossRef]

29. Cerutti, G.; Andri, R.; Cavigelli, L.; Magno, M.; Farella, E.; Benini, L. Sound Event Detection with Binary Neural Networks on
Tightly Power-Constrained IoT Devices. In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics
and Design, Virtual, 26–28 July 2021. [CrossRef]

30. Lo, C.-Y.; Lee, P.-J.; Bui, T.-A. H-BNN: FPGA-Based Binarized Convolutional Neural Network for Cloud Detection on Satellite
Payload. In Proceedings of the 2023 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh, Vietnam,
27 July 2023; pp. 190–193.

31. Chung, C.-C.; Liang, Y.-P.; Chang, Y.-C.; Chang, C.-M. A Binary Weight Convolutional Neural Network Hardware Accelerator
for Analysis Faults of the CNC Machinery on FPGA. In Proceedings of the 2023 International VLSI Symposium on Technology,
Systems and Applications (VLSI-TSA/VLSI-DAT), HsinChu, Taiwan, 17 April 2023; pp. 1–4.

32. Pau, D.; Lattuada, M.; Loro, F.; De Vita, A.; Domenico Licciardo, G. Comparing Industry Frameworks with Deeply Quantized
Neural Networks on Microcontrollers. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE),
Las Vegas, NV, USA, 10 January 2021; pp. 1–6.

33. Dabbous, A.; Ibrahim, A.; Alameh, M.; Valle, M.; Bartolozzi, C. Object Contact Shape Classification Using Neuromorphic Spiking
Neural Network with STDP Learning. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
Austin, TX, USA, 27 May–1 June 2022; pp. 1052–1056.

34. Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M. Hybrid Fixed-Point/Binary Convolutional Neural Network Accelerator for Real-Time
Tactile Processing. In Proceedings of the 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS),
Dubai, United Arab Emirates, 28 November 2021; pp. 1–5.

35. de Putter, F.; Corporaal, H. How to Train Accurate BNNs for Embedded Systems? arXiv 2022, arXiv:2206.12322. [CrossRef]
36. Xu, S.; Li, Y.; Wang, T.; Ma, T.; Zhang, B.; Gao, P.; Qiao, Y.; Lv, J.; Guo, G. Recurrent Bilinear Optimization for Binary Neural

Networks. arXiv 2022, arXiv:2209.01542. [CrossRef]
37. Su, Y.; Seng, K.P.; Ang, L.M.; Smith, J. Binary Neural Networks in FPGAs: Architectures, Tool Flows and Hardware Comparisons.

Sensors 2023, 23, 9254. [CrossRef]
38. STM32CubeIDE–Integrated Development Environment for STM32–STMicroelectronics. Available online: https://www.st.com/

en/development-tools/stm32cubeide.html (accessed on 13 February 2024).
39. Plumerai Getting Started. Available online: https://docs.larq.dev/larq/ (accessed on 29 January 2024).
40. Bulat, A.; Martinez, B.; Tzimiropoulos, G. BATS: Binary ArchitecTure Search. arXiv 2020, arXiv:2003.01711. [CrossRef]

https://doi.org/10.48550/ARXIV.2007.10319
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://gcc.gnu.org/onlinedocs/gcc/Standards.html
https://doi.org/10.1109/ACCESS.2023.3258360
https://doi.org/10.1007/s10462-023-10464-w
https://doi.org/10.1109/JMASS.2020.3034205
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.48550/ARXIV.1802.04799
https://doi.org/10.48550/ARXIV.2110.15352
https://doi.org/10.48550/ARXIV.1908.05858
https://doi.org/10.48550/ARXIV.2011.09398
https://doi.org/10.48550/ARXIV.2102.03456
https://doi.org/10.48550/ARXIV.2101.04446
https://doi.org/10.48550/ARXIV.2206.12322
https://doi.org/10.48550/arXiv.2209.01542
https://doi.org/10.3390/s23229254
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://docs.larq.dev/larq/
https://doi.org/10.48550/ARXIV.2003.01711

Electronics 2024, 13, 1624 17 of 17

41. Bjorck, N.; Gomes, C.P.; Selman, B.; Weinberger, K.Q. Understanding Batch Normalization. In Proceedings of the Advances in Neural
Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2018; Volume 31.

42. Yonekawa, H.; Nakahara, H. On-Chip Memory Based Binarized Convolutional Deep Neural Network Applying Batch Normaliza-
tion Free Technique on an FPGA. In Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Orlando/Buena Vista, FL, USA, 29 May–2 June 2017; pp. 98–105.

43. Sakr, F.; Berta, R.; Doyle, J.; Younes, H.; De Gloria, A.; Bellotti, F. Memory Efficient Binary Convolutional Neural Networks on
Microcontrollers. In Proceedings of the 2022 IEEE International Conference on Edge Computing and Communications (EDGE),
Barcelona, Spain, 10–16 July 2022; pp. 169–177.

44. Cong, J.; Yu, C.H. Impact of Loop Transformations on Software Reliability. In Proceedings of the 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2–6 November 2015; pp. 278–285.

45. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. 2009. Available online: https://www.google.com.
hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf&
ved=2ahUKEwjvtf6K09eFAxUgplYBHd82Cx4QFnoECBUQAQ&usg=AOvVaw3mtyV-hQ1QzJ5miMbeD6T8 (accessed on 23
April 2024).

46. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

47. Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI
Applications. Micromachines 2022, 13, 851. [CrossRef] [PubMed]

48. Kavi, B.O.; Zeebaree, S.R.M.; Ahmed, O.M. Deep Learning Models Based on Image Classification: A Review. Int. J. Sci. Bus. 2020,
4, 75–81. [CrossRef]

49. Weber, L.; Reusch, A. TinyML–How TVM Is Taming Tiny. Available online: https://tvm.apache.org/2020/06/04/tinyml-how-
tvm-is-taming-tiny (accessed on 29 January 2024).

50. Helwegen, K.; Widdicombe, J.; Geiger, L.; Liu, Z.; Cheng, K.-T.; Nusselder, R. Latent Weights Do Not Exist: Rethinking Binarized
Neural Network Optimization. arXiv 2019, arXiv:1906.02107. [CrossRef]

51. Kim, H.; Park, J.; Lee, C.; Kim, J.-J. Improving Accuracy of Binary Neural Networks Using Unbalanced Activation Distribution.
arXiv 2020, arXiv:2012.00938. [CrossRef]

52. Tang, W.; Hua, G.; Wang, L. How to Train a Compact Binary Neural Network with High Accuracy? AAAI 2017, 31, 10862.
[CrossRef]

53. Team, K. Keras Documentation: PReLU Layer. Available online: https://keras.io/api/layers/activation_layers/prelu/ (accessed
on 29 January 2024).

54. STM32F746NG–High-Performance and DSP with FPU, Arm Cortex-M7 MCU with 1 Mbyte of Flash Memory, 216 MHz CPU,
Art Accelerator, L1 Cache, SDRAM, TFT–STMicroelectronics. Available online: https://www.st.com/en/microcontrollers-
microprocessors/stm32f746ng.html (accessed on 18 March 2024).

55. NUCLEO-F429ZI–STM32 Nucleo-144 Development Board with STM32F429ZI MCU, Supports Arduino, ST Zio and Morpho
Connectivity–STMicroelectronics. Available online: https://www.st.com/en/evaluation-tools/nucleo-f429zi.html (accessed on
18 March 2024).

56. Sakr, F.; Bellotti, F.; Berta, R.; De Gloria, A. Machine Learning on Mainstream Microcontrollers. Sensors 2020, 20, 2638. [CrossRef]
[PubMed]

57. Sakr, F. Tiny Machine Learning Environment: Enabling Intelligence on Constrained Devices; Queen Mary University of London:
London, UK, 2023.

58. Phan, H.; Huynh, D.; He, Y.; Savvides, M.; Shen, Z. MoBiNet: A Mobile Binary Network for Image Classification. arXiv 2019,
arXiv:1907.12629. [CrossRef]

59. Lin, D.D.; Talathi, S.S. Overcoming Challenges in Fixed Point Training of Deep Convolutional Networks. arXiv 2016,
arXiv:1607.02241. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf&ved=2ahUKEwjvtf6K09eFAxUgplYBHd82Cx4QFnoECBUQAQ&usg=AOvVaw3mtyV-hQ1QzJ5miMbeD6T8
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf&ved=2ahUKEwjvtf6K09eFAxUgplYBHd82Cx4QFnoECBUQAQ&usg=AOvVaw3mtyV-hQ1QzJ5miMbeD6T8
https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf&ved=2ahUKEwjvtf6K09eFAxUgplYBHd82Cx4QFnoECBUQAQ&usg=AOvVaw3mtyV-hQ1QzJ5miMbeD6T8
https://doi.org/10.3390/mi13060851
https://www.ncbi.nlm.nih.gov/pubmed/35744466
https://doi.org/10.5281/ZENODO.4108433
https://tvm.apache.org/2020/06/04/tinyml-how-tvm-is-taming-tiny
https://tvm.apache.org/2020/06/04/tinyml-how-tvm-is-taming-tiny
https://doi.org/10.48550/ARXIV.1906.02107
https://doi.org/10.48550/ARXIV.2012.00938
https://doi.org/10.1609/aaai.v31i1.10862
https://keras.io/api/layers/activation_layers/prelu/
https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html
https://www.st.com/en/evaluation-tools/nucleo-f429zi.html
https://doi.org/10.3390/s20092638
https://www.ncbi.nlm.nih.gov/pubmed/32380766
https://doi.org/10.48550/ARXIV.1907.12629
https://doi.org/10.48550/ARXIV.1607.02241

	Introduction
	Related Works
	TinyML Inference Engines
	BNN Inference Engines
	BNN Applications

	Binary Neural Networks
	CBin-NN Inference Engine
	Conversion to Inference Model
	CBin-NN Operators
	QBConv2D
	QQConv2D
	BBConv2D
	BBPointwiseConv2D
	BMaxPool2D
	BBFC
	BBQFC

	Operator Optimization

	Experimental Settings
	Dataset
	BNN Design and Training
	Binary Optimizer
	Additional Activation Function (PReLU)

	Model Deployment

	Results
	Accuracy
	Latency
	Memory Footprint

	Conclusions and Future Work
	References

