
Citation: Wang, J.; Golden, B.;

Cerrone, C. Carousel Greedy

Algorithms for Feature Selection in

Linear Regression. Algorithms 2023,

16, 447. https://doi.org/10.3390/

a16090447

Academic Editors: Sándor Szénási

and Gábor Kertész

Received: 7 August 2023

Revised: 11 September 2023

Accepted: 14 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Carousel Greedy Algorithms for Feature Selection in
Linear Regression
Jiaqi Wang 1,* , Bruce Golden 2,* and Carmine Cerrone 3

1 Department of Mathematics, University of Maryland, College Park, MD 20742, USA
2 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA
3 Department of Economics and Business Studies, University of Genoa, 16126 Genoa, Italy;

carmine.cerrone@unige.it
* Correspondence: jqwang@umd.edu (J.W.); bgolden@umd.edu (B.G.)

Abstract: The carousel greedy algorithm (CG) was proposed several years ago as a generalized
greedy algorithm. In this paper, we implement CG to solve linear regression problems with a
cardinality constraint on the number of features. More specifically, we introduce a default version
of CG that has several novel features. We compare its performance against stepwise regression and
more sophisticated approaches using integer programming, and the results are encouraging. For
example, CG consistently outperforms stepwise regression (from our preliminary experiments, we
see that CG improves upon stepwise regression in 10 of 12 cases), but it is still computationally
inexpensive. Furthermore, we show that the approach is applicable to several more general feature
selection problems.

Keywords: carousel greedy; feature selection; linear regression

1. Introduction

The carousel greedy algorithm (CG) is a generalized greedy algorithm that seeks
to overcome the traditional weaknesses of greedy approaches. A generalized greedy
algorithm uses a greedy algorithm as a subroutine in order to search a more expansive
set of solutions with a small and predictable increase in computational effort. To be more
specific, greedy algorithms often make poor choices early on and these cannot be undone.
CG, on the other hand, allows the heuristic to correct early mistakes. The difference is
often significant.

In the original paper, Cerrone et al. (2017) [1] applied CG to several combinatorial
optimization problems such as the minimum label spanning tree problem, the minimum
vertex cover problem, the maximum independent set problem, and the minimum weight
vertex cover problem. Its performance was very encouraging. More recently, it has been
applied to a variety of other problems; see Table 1 for details.

CG is conceptually simple and easy to implement. Furthermore, it can be applied to
many greedy algorithms. In this paper, we will focus on using CG to solve the well-known
linear regression problem with a cardinality constraint. In other words, we seek to identify
the k most important variables, predictors, or features out of a total of p. The motivation is
quite straightforward. Stepwise regression is a widely used greedy heuristic to solve this
problem. However, the results are not as near-optimal as we would like. CG can generate
better solutions within a reasonable amount of computing time.

In addition to the combinatorial optimization problems studied in Cerrone et al. (2017) [1],
the authors also began to study stepwise linear regression. Their experiments were modest
and preliminary. A pseudo-code description of their CG stepwise linear regression ap-
proach is provided in Algorithm 1. For the problem to be interesting, we assume that the
number of explanatory variables to begin with (say, p) is large and the number of these
variables that we want in the model (say, k) is much smaller.

Algorithms 2023, 16, 447. https://doi.org/10.3390/a16090447 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090447
https://doi.org/10.3390/a16090447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0001-9427-3776
https://orcid.org/0000-0002-5270-6094
https://orcid.org/0000-0002-6243-4512
https://doi.org/10.3390/a16090447
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090447?type=check_update&version=2

Algorithms 2023, 16, 447 2 of 17

Table 1. Recent applications of CG.

Year Problem Authors

2023 Knapsack Problem with Forfeits D’Ambrosio et al. [2]

2022 Knapsack Problem with Forfeits Capobianco et al. [3]

2022 Maximum Network Lifetime Problem with Time Slots and Coverage Constraints Cerulli et al. [4]

2021 Grocery Distribution Plans in Urban Networks with Street Crossing Penalties Cerrone et al. [5]

2021 Finding Minimum Positive Influence Dominating Sets in Social Networks Shan et al. [6]

2020 Knapsack Problem with Forfeits Cerulli et al. [7]

2020 Remote Sensing with Unmanned Aerial Vehicles (UAVs) Hammond et al. [8]

2020 Close-Enough Traveling Salesman Problem Carrabs et al. [9]

2019 Community Detection in Complex Networks Kong et al. [10]

2019 Strong Generalized Minimum Labeling Spanning Tree Problem Cerrone et al. [11]

2019 Sentiment Analysis Hadi et al. [12]

2018 A Distribution Problem Cerrone et al. [13]

2017 Maximum Network Lifetime Problem with Interference Constraints Carrabs et al. [14]

Algorithm 1 Pseudo-code of carousel greedy for linear regression from [1].

Input I (I is the set of explanatory variables)
Input n (n is the number of explanatory variables you want in the model)

1: Let S←model containing all the explanatory variables in I
2: R← partial solution produced by removing from S, |S| − n elements according to the

backward selection criteria
3: for αn iterations do
4: remove from tail of R an explanatory variable
5: according to the forward selection criteria, add an element to head of R

. R is an ordered sequence, where its head is the side for adding and the tail for
removing

6: end for
7: return R

The experiments were limited, but promising. The purpose of this article is to present
a more complete study of the application of CG to linear regression with a constraint on
the number of explanatory variables. In all of the experiments in this paper, we assume
a cardinality constraint. Furthermore, in the initial paper on CG, Cerrone et al. (2017) [1]
worked with two datasets for linear regression and also assumed a target number of
explanatory/predictor variables. This is an important variant of linear regression and it
ensures that different subsets of variables can be conveniently compared using RSS.

2. Linear Regression and Feature Selection

The rigorous mathematical definition of the problem is:

min
θ

RSS =
n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2, (1)

subject to
p

∑
j=1

Iθj 6=0 ≤ k, (2)

where the following notation applies:
RSS: the residual sum of squares,
X ∈ Rn×p: the independent variables,
Xij: the ith row and jth column of X,
y ∈ Rn: the dependent variable,
yi: the ith element of y,

Algorithms 2023, 16, 447 3 of 17

θ ∈ Rp: the coefficient vector of explanatory variables,
θj: the jth element of θ,
n: the number of observations,
p: the total number of explanatory variables (features),
k: the number of explanatory variables we want in the model, and
Iθj 6=0: equals 1 if θj 6= 0 is true and 0 otherwise.
While we use RSS (i.e., OLS or ordinary least squares) as the objective function, other

criteria, such as AIC [15], Cp [16], BIC [17], and RIC [18], are possible. We point out that
our goal in this paper is quite focused. We do not consider the other criteria mentioned
above. In addition, we do not separate the data into training, test, and validation sets as is
commonly the case in machine learning models. Rather, we concentrate on minimizing
RSS over the training set. This is fully compatible with the objective in linear regression
and best subset selection.

There are three general approaches to solving the problem in (1) and (2). We summarize
them below.

1. Best subset selection. This direct approach typically uses mixed integer optimization
(MIO). It has been championed in articles by Bertsimas and his colleagues [19,20].
Although MIO solvers have become very powerful in the last few decades and they
can solve problems much faster than in the past, running times can still become too
large for many real-world datasets. Zhu et al. [21] has recently proposed a polynomial
time algorithm, but it requires some mild conditions on the dataset and it works with
high probability, but not always.

2. Regularization. This approach was initially used to address overfitting in uncon-
strained regression so that the resulting model would behave in a regular way. In this
approach, the constraints are moved into the objective function with a penalty term.
Regularization is a widely used method because of its speed and high performance in
making predictions on test data. The most famous regularized model, lasso [22], uses
the L1-penalty as shown below:

min
θ

n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2 + λ

p

∑
j=1
|θj|. (3)

As λ becomes larger, it will prevent θ from having a large L1-norm. At the same
time, the number of nonzero θi values will also become smaller. For any k, there
exists a λ such that the number of nonzero θi values is roughly k, but the number
can sometimes jump sharply. This continuous optimization model is very fast, but
there are some disadvantages. Some follow-up papers using ideas such as adaptive
lasso [23], L0Learn [24], trimmed lasso [25], elastic net [26], and MC+ [27] appear to
improve the model by modifying the penalty term. Specifically, L0Learn [24] uses the
L0-penalty as shown below:

min
θ

n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2 + λ

p

∑
j=1

Iθj 6=0. (4)

For sparse high-dimensional regression, some authors [28,29] use L2 regularization
without removing the cardinality constraint.

3. Heuristics. Since the subset selection problem is hard to solve optimally, a compromise
would be to find a very good solution quickly using a heuristic approach. Stepwise
regression is a widely used heuristic for this problem. An alternating method that can
achieve a so-called partial minimum is presented in [30]. SparseNet [31] provides a
coordinate-wise optimization algorithm. CG is another heuristic approach. One idea
is to apply CG from a random selection of predictor variables. An alternative is to
apply CG to the result of stepwise regression in order to improve the solution. We
might expect the latter to outperform MIO in terms of running time, but not in terms

Algorithms 2023, 16, 447 4 of 17

of solution quality. In our computational experiments, we will compare approaches
with respect to RSS on training data only.

There are different variants of the problem specified in (1) and (2). We can restrict
the number of variables to be at most k, as in (1) and (2). Alternatively, we can restrict
the number of variables to be exactly k. Finally, we can solve an unrestricted version of
the problem. We point out that when we minimize RSS over training data only, it always
helps to add another variable. Therefore, when the model specifies there will be at most k
variables, the solution will involve exactly k variables.

In response to the exciting recent work in [19,20] on the application of highly sophisti-
cated MIO solvers (e.g., Gurobi) to solve the best subset regression problem posed in (1)
and (2), Hastie et al. [32] have published an extensive computational comparison in which
best subset selection, forward stepwise selection, and lasso are evaluated on synthetic data.
The authors used both a training set and a test set in their experiments. They implemented
the mixed integer quadratic program from [20] and made the resulting R code available
in [32]. They found that best subset selection and lasso work well, but neither dominates
the other. Furthermore, a relaxed version of lasso created by Meinshausen [33] is the overall
winner.

Our goal in this paper is to propose a smart heuristic to solve the regression problem
where k is fixed in advance. The heuristic should be easy to understand, code, and use.
It should have a reasonably fast running time, although it will require more time than
stepwise regression. We expect that for large k, it will be faster than best subset selection.

In this paper, we will test our ideas on the three real-world datasets from the UCI ML
Repository (see https://archive.ics.uci.edu/, accessed on 11 April 2023) listed below:

1. CT (Computerized Tomography) Slice Dataset: n = 10,001, p = 384;
2. Building Dataset: n = 372, p = 107; and
3. Insurance Dataset: n = 9822, p = 85.
Since we are most interested in the linear regression problem where k is fixed, we seek

to compare the results of best subset selection, CG, and stepwise regression. We will use
the R code from [32], our CG code, and the stepwise regression code from (http://www.
science.smith.edu/~jcrouser/SDS293/labs/lab8-py.html, accessed on 11 September 2022)
in our experiments. For now, we can say that best subset selection takes much more time
than stepwise regression and it typically obtains much better solutions. Our goal will be to
demonstrate that CG represents a nice compromise approach. We expect CG solutions to
be better than stepwise regression solutions and the running time to be much faster than it
is for the best subset selection solutions.

We use the following hardware: CPU 11th Gen Intel(R) Core(TM) i7-11700F @ 2.50 GHz
2.50 GHz. The algorithms in this paper are implemented in Python 3.9.12, unless otherwise
mentioned. CG is implemented in Python 3.9.12 without parallelization, unless otherwise
mentioned. On the other hand, when Gurobi 10.0.0 is used, all of the 16 threads are utilized
(in parallel).

3. Algorithm Description and Preliminary Experiments
3.1. Basic Algorithm and Default Settings

In contrast to the application of CG to linear regression in [1], shown in Algorithm 1,
we present a general CG approach to linear regression with a cardinality constraint in
Algorithm 2.

https://archive.ics.uci.edu/
http://www.science.smith.edu/~jcrouser/SDS293/labs/lab8-py.html
http://www.science.smith.edu/~jcrouser/SDS293/labs/lab8-py.html

Algorithms 2023, 16, 447 5 of 17

Algorithm 2 Pseudo-code of carousel greedy for linear regression with a cardinality constraint.

Input I, k, S, β, α, γ
Output R

1: R← S with β|S| variables dropped from head . β|S| rounded to the nearest integer
2: REC← R
3: RECRSS← RSS of R
4: for α(1− β)|S| iterations do
5: Remove γ variables from the tail of R
6: Add γ variables from I − R to the head of R one by one according to forward

selection criterion
7: if RSS of R < REC then
8: REC← R
9: RECRSS← RSS of R

10: end if
11: end for
12: R← Use forward selections to add elements to REC one by one until k variables are

selected
13: return R

Here, the inputs are:
I: the set of explanatory variables,
k: the number of variables we want in the model,
S: the initial set of variables with |S| = k,
β: the percentage of variables we remove initially,
α: the number of carousel loops where we have (1− β)|S| carousel steps in each

loop, and
γ: the number of variables we remove/add in each carousel step.
The starting point of Algorithm 2 is a feasible variable set S with order. We drop a

fraction of β from S. Then, we start our α carousel loops of removing and adding variables.
In each carousel step, we remove γ variables from the tail of R and add γ variables to the
head of R one by one according to forward selection. The illustration of head and tail is
shown in Figure 1. Each time we finish a carousel step, the best set of variables in terms of
RSS is recorded. When carousel loops are finished, we add variables to the best recorded
set according to the forward selection criterion one by one until a feasible set of k variables
is selected.

k=5︷ ︸︸ ︷
add−−→ V1 V2 V3 V4 V5

remove−−−→
Head Tail

Figure 1. An illustration of head and tail for k = 5, β = 0.

For a specific linear regression problem, I and k are fixed. S, β, α, γ are the parameters
which must be set by the user. In general, the best values may be difficult to find and they
may vary widely from one problem/dataset to another.

As a result, we start with a default set of parameter values and run numerous ex-
periments. These parameter values work reasonably well across many problems. We
present the pseudo-code and flowchart for this simple implementation of a CG approach in
Algorithm 3 and Figure 2.

Algorithms 2023, 16, 447 6 of 17

Algorithm 3 Pseudo-code of the default version of carousel greedy we recommend for
linear regression with a cardinality constraint.

Input I, k
Output R

1: S← the solution produced by forward stepwise regression . In the order of selection
2: R← S
3: LastImpro = 0
4: RECRSS = RSS of R
5: while LastImpro < k do
6: LastImpro = LastImprove + 1
7: Remove 1 variable from the tail of R
8: Add 1 variable to the head of R according to forward selection
9: if RSS of R < RECRSS then

10: LastImpro = 0
11: end if
12: end while
13: return R

Figure 2. Flowchart of default CG.

In other words, the default parameters are:
S = the result of stepwise regression with k variables,
β = 0,
α is set in an implicit way such that we have k consecutive carousel steps without

improvement of RSS, and
γ = 1.

3.2. Properties

There are a few properties for this default setting:

1. The RSS of the output will be at least as good as the RSS from stepwise regression.
2. The RSS of the incumbent solution is always monotonically decreasing.
3. When the algorithm stops, it is impossible to achieve further improvements of RSS by

running additional carousel greedy steps.

Algorithms 2023, 16, 447 7 of 17

4. The result is a so-called full swap inescapable (FSI(1)) minimum [24], i.e., no inter-
change of an inside element and an outside element can improve the RSS.

3.3. Preliminary Experiments

The following experiments show how CG evolves the solution from stepwise regression.
As shown in Figure 3, CG consistently improves the RSS of the stepwise regression solution
gradually in the beginning and stabilizes eventually. A final horizontal line segment of
length 1 indicates that no further improvements are possible.

(a) k = 7 (b) k = 15

(c) k = 25 (d) k = 50
Figure 3. Improvements from carousel greedy with stepwise initialization for the CT slice dataset.
The RSS of stepwise regression is at x = 0.

For the CT slice dataset we are using, the best subset selection cannot completely solve
the problems in a reasonable time. When we limit the time of the best subset selection
algorithm to a scale similar to CG, the RSS of its output is not as good as CG. Even if we
give best subset selection more than twice as much time, the result is still not as good. The
results are shown in Table 2 (the best results in Table 2 for each k are indicated in bold).

From Figures 4 and 5, some improvements from stepwise regression solutions can be
observed. However, as the number of observations (n) and the number of variables (p) in
the dataset become smaller, the model itself becomes simpler, in which case there will be less
room for CG to excel and the number of improvements also becomes smaller. Figure 5b,c
show no improvements from stepwise regression. This might mean the stepwise regression
solution is already relatively good. In that case, we may want to use other initializations to
see if we can find better solutions.

Algorithms 2023, 16, 447 8 of 17

Table 2. Comparisons of stepwise regression, CG, and best subset with different time limits.

k = 7 k = 15
RSS Time (s) RSS Time (s)

Stepwise regression 1,653,208 5.55 1,029,899 16.08
CG with stepwise initialization 1,471,932 28.45 973,695 97.82
Best subset (warm start + MIP) 1,570,721 28.35 1,015,076 97.69
Best subset (warm start + MIP) 1,570,681 100.00 999,294 250.00

k = 25 k = 50
RSS Time (s) RSS Time (s)

Stepwise regression 829,608 38.45 623,118 132.24
CG with stepwise initialization 791,960 440.14 609,722 1409.88
Best subset (warm start + MIP) 819,911 441.75 611,207 1413.88
Best subset (warm start + MIP) 807,925 1000.00 610,542 3600.00

(a) k = 5 (b) k = 10

(c) k = 20 (d) k = 30
Figure 4. Improvements from carousel greedy with stepwise initialization for the Building dataset.

Algorithms 2023, 16, 447 9 of 17

(a) k = 5 (b) k = 10

(c) k = 20 (d) k = 30
Figure 5. Improvements for carousel greedy with stepwise initialization for the Insurance dataset.

3.4. Stepwise Initialization and Random Initialization

As shown in Algorithm 2, there can be different initializations in a general CG algo-
rithm. We might be able to find other solutions by choosing other initializations. A natural
choice would be a complete random initialization.

We run the experiments for CG with stepwise initialization and random initialization
for the CT slice dataset. For random initialization, we run 10 experiments and look at the
average or minimum among the first 5 and among all 10 experiments.

From Table 3, we can see that the average RSS of random initialization is similar to
that of stepwise initialization and usually takes slightly less time. The results are also quite
close between different random initializations for most cases. However, if we run random
initialization multiple times, for example, 5∼10 times, the best output will very likely be
better than for stepwise initialization.

We now look back at the cases of Figure 5b,c using random initializations. We run
10 experiments on the Insurance dataset for k = 10 and 10 for k = 20 and plot the best, in
terms of the final RSS, out of 10 experiments.

As shown in Figure 6, although we are able to find better solutions using random
initialization than stepwise initialization, the improvements are very small. In this case, we
are more confident that the stepwise regression solution is already good, and CG provides
a tool to verify this.

In practice, if time permits or parallelization is available, we would suggest running
CG with both stepwise initialization and multiple random initializations and taking the
best result. Otherwise, stepwise initialization would be a safe choice.

Algorithms 2023, 16, 447 10 of 17

Table 3. CG with stepwise initialization and random initialization for the CT slice dataset.

k = 7 k = 15
RSS Time (s) RSS Time (s)

Stepwise regression 1,653,208 5.55 1,029,899 16.08
CG with stepwise initialization 1,471,932 28.45 973,695 97.82
CG with random initialization (average over 10 experiments) 1,471,932 13.52 972,886 100.44
(min RSS over 10 experiments) 1,471,932 970,712
CG with random initialization (average over 5 experiments) 1,471,932 16.88 972,674 96.32
(min RSS over 5 experiments) 1,471,932 970,712

k = 25 k = 50
RSS Time (s) RSS Time (s)

Stepwise regression 829,608 38.45 623,118 132.24
CG with stepwise initialization 791,960 440.14 609,722 1409.88
CG with random initialization (average over 10 experiments) 791,581 300.25 612,304 1057.20
(min RSS over 10 experiments) 788,836 606,865
CG with random initialization (average over 5 experiments) 791,380 273.90 612,404 1120.17
(min RSS over 5 experiments) 788,836 606,865

(a) k = 10 (b) k = 20
Figure 6. Improvements from carousel greedy with random initialization for the Insurance dataset.

3.5. Gurobi Implementation of Best Interchange to Find an FSI(1) Minimum

An alternative approach to Algorithm 3 is the notion of an FSI(1) minimum. This is
a local minimum as described in Section 3.2. The original method for finding an FSI(1)
minimum in [24] was to formulate the best interchange as the following best interchange
MIP (BI-MIP) and apply it iteratively as in Algorithm 4. We will show that CG obtains
results comparable to those from FSI(1), but without requiring the use of sophisticated
integer programming software.

BI-MIP: min
n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2, (5)

subject to −Mzi ≤ θi ≤ Mzi, ∀i ∈ [p], (6)

zi ≤ wi, ∀i ∈ S, (7)

∑
i∈Sc

zi ≤ 1, (8)

∑
i∈S

wi ≤ |S| − 1, (9)

θi ∈ R, ∀i ∈ [p], (10)

zi ∈ {0, 1}, ∀i ∈ [p], (11)

wi ∈ {0, 1}, ∀i ∈ S. (12)

Here, we start from an initial set S and try to find a best interchange between a variable
inside S and a variable outside S. The decision variables are θ, w, and z. zis indicate the
nonzeros in θ, i.e., if zi = 0, then θi = 0. wi’s indicate whether we remove variable i from

Algorithms 2023, 16, 447 11 of 17

S, i.e., if wi = 0, then variable i is removed from S. [p] is defined to be the set {1, 2, . . . , p}.
In (5), we seek to minimize RSS. In (6), for every i ∈ [p], zi = 1 if θi is nonzero and M is a
sufficiently large constant. From (7), we see that if variable i is removed, then θi must be
zero. Inequality (8) means that the number of selected variables outside S is at most 1, i.e.,
we add at most 1 variable to S. From (9), we see that we remove at least 1 variable from S
(the optimal solution removes exactly 1 variable).

In Algorithm 4 for finding an FSI(1) minimum, we solve BI-MIP iteratively until an
iteration does not yield any improvement. The pseudo-code is as follows:

Algorithm 4 Pseudo-code of finding an FSI(1) local minimum by Gurobi.

1: Initialize |S| = k by forward stepwise regression with coefficients θ
2: while TRUE do
3: S′ ← Apply BI-MIP to S
4: if RSS of S′ ≥ RSS of S then
5: Break
6: end if
7: S = S′

8: end while
9: return S

Recall that our default version of CG also returns an FSI(1) local minima. The solutions
of the two methods are expected to return equally good solutions on average. We begin
with a comparison on the CT slice dataset.

As shown in Table 4, the final RSS by Gurobi is very close to CG (the best results in
Table 4 for each k are indicated in bold), but the running time is much longer for small k and
not much faster for larger k. This is the case even though Gurobi uses all of the 16 threads
by default while CG uses only one thread by default in Python. Therefore, our algorithm is
simpler and does not require a commercial solver like Gurobi. It is also more efficient than
the BI-MIP by Gurobi in terms of finding a local optima when k is small.

The circumstance can be different for an “ill-conditioned” instance. We tried to apply
Algorithm 4 to the Building dataset, but it is a very simple model where k = 1 cannot
be solved. Meanwhile, CG can solve it without any difficulty. The source of the issue
is the quadratic coefficient matrix. The objective of BI-MIP is quadratic. When Gurobi
solves quadratic programming, a very large difference between the largest and smallest
eigenvalues of the coefficient matrix can bring about a substantial numerical issue. For
the Building dataset, the largest eigenvalue is of order 1015, the smallest eigenvalue is of
order 10−10. That’s intractable for Gurobi. Therefore, CG is numerically more stable than
Algorithm 4 using Gurobi.

Table 4. Iterated BI-MIPs by Gurobi (Algorithm 4) for the CT slice dataset (using up to 16 threads).

k = 5 k = 7
RSS Time (s) RSS Time (s)

Stepwise regression 2,129,794 3.41 1,653,208 5.55
CG with stepwise initialization 2,104,917 10.03 1,471,932 28.45
Iterated BI-MIPs by Gurobi with stepwise initialization 2,106,992 59.89 1,471,932 99.64

k = 10 k = 15
RSS Time (s) RSS Time (s)

Stepwise regression 1,307,711 8.22 1,029,899 16.08
CG with stepwise initialization 1,198,650 47.63 973,695 97.82
Iterated BI-MIPs by Gurobi with stepwise initialization 1,198,650 161.9 970,712 286.43

Algorithms 2023, 16, 447 12 of 17

Table 4. Cont.

k = 20 k = 25
RSS Time (s) RSS Time (s)

Stepwise regression 911,080 25.99 829,608 38.45
CG with stepwise initialization 870,346 214.43 791,960 440.14
Iterated BI-MIPs by Gurobi with stepwise initialization 870,346 303.65 792,731 566.38

k = 30 k = 35
RSS Time (s) RSS Time (s)

Stepwise regression 767,448 52.70 723,472 68.81
CG with stepwise initialization 741,317 437.13 700,462 566.73
Iterated BI-MIPs by Gurobi with stepwise initialization 751,680 406.33 699,196 457.45

k = 40 k = 45
RSS Time (s) RSS Time (s)

Stepwise regression 685,136 85.31 651,250 107.74
CG with stepwise initialization 666,991 453.45 638,087 493.93
Iterated BI-MIPs by Gurobi with stepwise initialization 666,991 416.42 643,517 353.18

k = 50
RSS Time (s)

Stepwise regression 623,118 132.24
CG with stepwise initialization 609,722 1409.88
Iterated BI-MIPs by Gurobi with stepwise initialization 609,478 768.68

3.6. Running Time Analysis

Each time we add a variable, we need to run the least squares procedure (computing
(XT

S XS)
−1XT

S y, where XS is the n × k submatrix of X whose column is indexed by S) a
total of p times. For each addition of a variable, from basic numerical linear algebra, the
complexity is O(k2(k + n)). Therefore, for each new variable added, the complexity is
O(pk2(k + n)). If n is much larger than k, which is often the case, the complexity is about
O(npk2). From the structure of Algorithm 2, we will add a variable α(1− β)γk times. As a
result, the complexity of CG is O(α(1− β)γnpk3). We can treat α, β, γ as constants because
they are independent of k, n, p. Therefore, the complexity of CG is still O(npk3).

4. Generalized Feature Selection

In this section, we will discuss two generalized versions of feature selection. Recall
the feature selection problem that we discussed is

min
θ

n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2, (13)

subject to
p

∑
j=1

Iθj 6=0 ≤ k. (14)

This can be reformulated (big-M formulation) as the following MIP (for large enough
M > 0):

min
θ,z

n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2, (15)

subject to −Mzi ≤ θi ≤ Mzi, ∀i ∈ [p], (16)

∑
i∈[p]

zi ≤ k, (17)

zi ∈ {0, 1}, ∀i ∈ [p]. (18)

Here, zi is the indicator variable for θi, where zi = 1 if θi is nonzero and zi = 0 otherwise.

Algorithms 2023, 16, 447 13 of 17

The problem can be generalized by adding some constraints.

Case A: Suppose we have sets of variables that are highly correlated. For example, if
variables i, j, and k are in one of these sets, then we can add the following constraint:

zi + zj + zk ≤ 1. (19)

If l and m are in another set, we can add

zl + zm ≤ 1. (20)

Case B: Suppose some of the coefficients must be bounded if the associated variables are
selected. Then we can add the following constraints:

lizi ≤ θi ≤ uizi, ∀i ∈ [p]. (21)

In (21), we allow li = −∞ or ui = ∞ for some i to include the case where the coefficients
are unbounded from below or above.

CG can also be applied to Cases A and B. Let us restate CG and show how small
modifications to CG can solve Cases A and B.

Recall that, in each carousel step of feature selection, we delete one variable and add
one. Assume Sd is the set of variables after deleting one variable in a step. Then, the problem
of adding one becomes: Solve unconstrained linear regression problems on the set Sd ∪ {l}
for each l /∈ Sd and return the l with the smallest RSS. Expressed formally, this is

argminl /∈Sd
f (l, Sd). (22)

Here f (l, Sd) indicates the RSS we obtain by adding l to Sd. It can be found from the
following problem:

f (l, Sd) = min
θ

n

∑
i=1

(∑
j∈Sd∪{l}

Xijθj − yi)
2. (23)

In (23), only a submatrix of X with size n × (|Sd| + 1) is involved. That is, we solve a
sequence of smaller size unconstrained linear regression problems for each l /∈ Sd and
compare the results.

Following this idea, by using CG, we solve a sequence of smaller size unconstrained
linear regression problems where the cardinality constraint is no longer in any subproblem.

For generalized feature selection, CG has the same framework. The differences are
that the candidate variables to be added are limited by the notion of correlated sets for
Case A, and the sequence of smaller size linear regression problems become constrained,
as in (21), for Case B. The term we designate for the new process of adding a variable is the
“generalized forward selection criterion.” Let us start with Case A.

Case A: The addition of one variable is almost the same as for Algorithms 1–3, but
the candidate variables should be those not highly correlated with any current variables,
instead of any l /∈ Sd. As an example, suppose variables i, j, and k are highly correlated.
(For the sake of clarity, we point out that the data for variable i is contained in X·i.) We
want no more than one of these in our solution. At the l-th carousel step before adding a
variable, we check whether one of these three is in Sd or not. If i is in Sd, we cannot add i or
k. If i is not in Sd, we can add i, j, k or any other variable.

Case B: We can add variables as usual, but the coefficients corresponding to some of
these variables are now bounded. We will need to solve a sequence of bounded variable
least squares (BVLS) problems of the form

argminl /∈Sd
f (l, Sd). (24)

Here, f (l, Sd) can be obtained from the following problem:

Algorithms 2023, 16, 447 14 of 17

f (l, Sd) = min
θ

n

∑
i=1

(∑
j∈Sd∪{l}

Xijθj − yi)
2, (25)

subject to li ≤ θi ≤ ui, ∀i ∈ Sd ∪ {l}. (26)

We extract the general subproblem of BVLS from the above:

min
θ

n

∑
i=1

(∑
j∈S

Xijθj − yi)
2, (27)

subject to li ≤ θi ≤ ui, ∀i ∈ S. (28)

This is a quadratic (convex) optimization problem within a bounded and convex region (a
p-dim box), which can be solved efficiently. There are several algorithms available without
the need for any commercial solver. For example, a free and open-source Python library
“Scipy” can solve it efficiently. The pseudo-codes for the application of CG and MIP to
generalized feature selection can be found in Appendix A.

5. Conclusions and Future Work

In this paper, we propose an application of CG to the feature selection problem. The
approach is straightforward and does not require any commercial optimization software.
It is also easy to understand. It provides a compromise solution between the best subset
selection and stepwise regression. The running time of CG is usually much shorter than
that of the best subset selection and a few times longer than that of stepwise regression.
The RSS of CG is always at least as good as for stepwise regression, but is typically not as
good as for best subset. Therefore, CG is a very practical method for obtaining (typically)
near-optimal solutions to the best subset selection problem.

With respect to the practical implications of our work, we point to the pervasiveness
of greedy algorithms in the data science literature. Several well-known applications of the
greedy algorithm include constructing a minimum spanning tree, implementing a Huffman
encoding, and solving graph optimization problems (again, see [1]). In addition, numerous
greedy algorithms have been proposed in the machine learning literature over the last
20 years for a wide variety of problems (e.g., see [34–38]). CG may not be directly applicable
in every case, but we expect that it can be successfully applied in many of these cases.

We also show that the result of our CG can produce a so-called FSI(1) minimum.
Finally, we provide some generalizations to more complicated feature selection problems
in Section 4.

The implementation of CG still has some room for improvement. We leave this for
future work, but here are some ideas. The computational experiments in this paper are
based mainly on Algorithm 3, which includes a set of default parameter values. However,
if we work from Algorithm 2, there may be a better set of parameter values, in general, or
there may be better values for specific applications. Extensive computational experiments
would have to focus on running time and accuracy in order to address this question.
Furthermore, we think there are some more advanced results from numerical linear algebra
that can be applied to improve the running time of the sequence of OLS problems that
must be solved within CG. In addition, we think our approach can be applied to other
problems in combinatorial optimization and data science. For example, we are beginning to
look into the integration of neural networks and CG. The key idea is to replace the greedy
selection function with a specifically trained neural network. CG could be employed to
enhance the decisions recommended by the neural network. Again, we hope to explore
this in future work.

Algorithms 2023, 16, 447 15 of 17

Author Contributions: Conceptualization, B.G.; methodology, J.W., B.G. and C.C.; software, J.W.;
validation, J.W., B.G. and C.C.; formal analysis, J.W.; investigation, J.W.; resources, B.G. and C.C.;
data curation, J.W.; writing—original draft preparation, J.W.; writing—review and editing, B.G.;
visualization, J.W.; supervision, B.G. and C.C.; project administration, B.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets presented in this study are available in UCI ML Repository
at https://archive.ics.uci.edu/ (accessed on 11 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Pseudo-Code of Algorithms for Generalized Feature Selection

For generalized feature selection, all we need to do is to replace all of the forward
selection steps in Algorithms 1–4 by generalized forward selection steps. For example,
steps 1 and 8 for Algorithm A1 vs. Algorithm 3 reflect this change. Similarly, steps 1 and
3 for Algorithm A2 vs. Algorithm 4 reflect this change. Generalized forward selection
includes both Case A and Case B. We provide the pseudo-codes of the generalizations of
Algorithms 3 and 4 in Algorithms A1 and A2. The pseudo-codes of the generalizations of
Algorithms 1 and 2 are left for the readers to deduce.

Algorithm A1 Pseudo-code of the default version of carousel greedy that we recommend
for generalized feature selection.

Input I, k
Output R

1: S← the solution produced by generalized forward stepwise regression . In the order
of selection

2: R← S
3: LastImpro = 0
4: RECRSS = RSS of R
5: while LastImpro < k do
6: LastImpro = LastImprove + 1
7: Remove 1 variable from the tail of R
8: Add 1 variable to the head of R according to generalized forward selection
9: if RSS of R < RECRSS then

10: LastImpro = 0
11: end if
12: end while
13: return R

In Algorithm A2, to apply generalized forward selection, best interchange MIP (BI-
MIP) in Algorithm 4 should be replaced by generalized best interchange MIP (GBI-MIP)
in Algorithm A2. Also, forward stepwise regression is replaced by generalized forward
stepwise regresssion in step 1. The other parts of Algorithm 4 and Algorithm A2 are the
same. GBI-MIP generalizes BI-MIP by introducing two additional constraints, one for
Case A and the other for Case B, which means we can also incorporate both cases. The
formulation of GBI-MIP is provided below:

https://archive.ics.uci.edu/

Algorithms 2023, 16, 447 16 of 17

GBI-MIP: min
n

∑
i=1

(
p

∑
j=1

Xijθj − yi)
2, (A1)

subject to −Mzi ≤ θi ≤ Mzi, ∀i ∈ [p], (A2)

∑
i∈HCj

zi ≤ 1, j = 1, ..., m, (A3)

lizi ≤ θi ≤ uizi, ∀i ∈ [p], (A4)

zi ≤ wi, ∀i ∈ S, (A5)

∑
i∈Sc

zi ≤ 1, (A6)

∑
i∈S

wi ≤ |S| − 1, (A7)

θi ∈ R, ∀i ∈ [p], (A8)

zi ∈ {0, 1}, ∀i ∈ [p], (A9)

wi ∈ {0, 1}, ∀i ∈ S. (A10)

Here (A3) and (A4) are the two additional constraints for Case A and Case B, respectively.
HCj, j = 1, . . . , m are the sets of highly correlated variables. To exclude Case A, we can let
each HCj include only one variable. That is, each variable is only highly correlated with
itself, and no other variables are highly correlated with it. To exclude Case B, we can let
li = −M, ui = M for any i ∈ [p] in (A4).

Algorithm A2 Pseudo-code of finding an FSI(1) local minimum for generalized feature
selection by Gurobi.

1: Initialize |S| = k by generalized forward stepwise regression with coefficients θ
2: while TRUE do
3: S′ ← Apply GBI-MIP to S
4: if RSS of S′ ≥ RSS of S then
5: Break
6: end if
7: S = S′

8: end while
9: return S

References
1. Cerrone, C.; Cerulli, R.; Golden, B. Carousel greedy: A generalized greedy algorithm with applications in optimization. Comput.

Oper. Res. 2017, 85, 97–112. [CrossRef]
2. D’Ambrosio, C.; Laureana, F.; Raiconi, A.; Vitale, G. The knapsack problem with forfeit sets. Comput. Oper. Res. 2023, 151, 106093.

[CrossRef]
3. Capobianco, G.; D’Ambrosio, C.; Pavone, L.; Raiconi, A.; Vitale, G.; Sebastiano, F. A hybrid metaheuristic for the knapsack

problem with forfeits. Soft Comput. 2022, 26, 749–762. [CrossRef]
4. Cerulli, R.; D’Ambrosio, C.; Iossa, A.; Palmieri, F. Maximum network lifetime problem with time slots and coverage constraints:

Heuristic approaches. J. Supercomput. 2022, 78, 1330–1355. [CrossRef]
5. . Cerrone, C.; Cerulli, R.; Sciomachen, A. Grocery distribution plans in urban networks with street crossing penalties. Networks

2021, 78, 248–263. [CrossRef]
6. Shan, Y.; Kang, Q.; Xiao, R.; Chen, Y.; Kang, Y. An iterated carousel greedy algorithm for finding minimum positive influence

dominating sets in social networks. IEEE Trans. Comput. Soc. Syst. 2021, 9, 830–838. [CrossRef]
7. Cerulli, R.; D’Ambrosio, C.; Raiconi, A.; Vitale, G. The knapsack problem with forfeits. In Combinatorial Optimization. ISCO 2020;

Lecture Notes in Computer Science; Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R., Eds.; Springer International Publishing:
Cham, Switzerland, 2020; Volume 12176, pp. 263–272.

8. Hammond, J.E.; Vernon, C.A.; Okeson, T.J.; Barrett, B.J.; Arce, S.; Newell, V.; Janson, J.; Franke, K.W.; Hedengren, J.D. Survey of
8 UAV set-covering algorithms for terrain photogrammetry. Remote Sens. 2020, 12, 2285. [CrossRef]

http://doi.org/10.1016/j.cor.2017.03.016
http://dx.doi.org/10.1016/j.cor.2022.106093
http://dx.doi.org/10.1007/s00500-021-06331-x
http://dx.doi.org/10.1007/s11227-021-03925-y
http://dx.doi.org/10.1002/net.22061
http://dx.doi.org/10.1109/TCSS.2021.3096247
http://dx.doi.org/10.3390/rs12142285

Algorithms 2023, 16, 447 17 of 17

9. Carrabs, F.; Cerrone, C.; Cerulli, R.; Golden, B. An adaptive heuristic approach to compute upper and lower bounds for the
close-enough traveling salesman problem. INFORMS J. Comput. 2020, 32, 1030–1048. [CrossRef]

10. Kong, H.; Kang, Q.; Li, W.; Liu, C.; Kang, Y.; He, H. A hybrid iterated carousel greedy algorithm for community detection in
complex networks. Phys. A Stat. Mech. Its Appl. 2019, 536, 122124. [CrossRef]

11. Cerrone, C.; D’Ambrosio, C.; Raiconi, A. Heuristics for the strong generalized minimum label spanning tree problem. Networks
2019, 74, 148–160. [CrossRef]

12. Hadi, K.; Lasri, R.; El Abderrahmani, A. An efficient approach for sentiment analysis in a big data environment. Int. J. Eng. Adv.
Technol. (IJEAT) 2019, 8, 263–266.

13. Cerrone, C.; Gentili, M.; D’Ambrosio, C.; Cerulli, R. An efficient and simple approach to solve a distribution problem. In New
Trends in Emerging Complex Real Life Problems; ODS: Taormina, Italy, 2018; pp. 151–159.

14. Carrabs, F.; Cerrone, C.; D’Ambrosio, C.; Raiconi, A. Column generation embedding carousel greedy for the maximum network
lifetime problem with interference constraints. In Proceedings of the Optimization and Decision Science: Methodologies and
Applications: ODS, Sorrento, Italy, 4–7 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 151–159.

15. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213.

16. Mallows, C.L. Some comments on Cp. Technometrics 2000, 42, 87–94.
17. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
18. Foster, D.P.; George, E.I. The risk inflation criterion for multiple regression. Ann. Stat. 1994, 22, 1947–1975. [CrossRef]
19. Bertsimas, D.; King, A. OR forum—An algorithmic approach to linear regression. Oper. Res. 2016, 64, 2–16. [CrossRef]
20. Bertsimas, D.; King, A.; Mazumder, R. Best subset selection via a modern optimization lens. Ann. Stat. 2016, 44, 813–852.

[CrossRef]
21. Zhu, J.; Wen, C.; Zhu, J.; Zhang, H.; Wang, X. A polynomial algorithm for best-subset selection problem. Proc. Natl. Acad. Sci.

USA 2020, 117, 33117–33123. [CrossRef] [PubMed]
22. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
23. Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [CrossRef]
24. Hazimeh, H.; Mazumder, R. Fast best subset selection: Coordinate descent and local combinatorial optimization algorithms.

Oper. Res. 2020, 68, 1517–1537. [CrossRef]
25. Bertsimas, D.; Copenhaver, M.S.; Mazumder, R. The trimmed lasso: Sparsity and robustness. arXiv 2017, arXiv:1708.04527.
26. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.

[CrossRef]
27. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [CrossRef]

[PubMed]
28. Bertsimas, D.; Van Parys, B. Sparse high-dimensional regression: Exact scalable algorithms and phase transitions. Ann. Stat.

2020, 48, 300–323. [CrossRef]
29. Atamturk, A.; Gomez, A. Safe screening rules for L0-regression from perspective relaxations. In Proceedings of the 37th

International Conference on Machine Learning, Virtual Event, 13–18 July 2020; Volume 119, pp. 421–430.
30. Moreira Costa, C.; Kreber, D.; Schmidt, M. An alternating method for cardinality-constrained optimization: A computational

study for the best subset selection and sparse portfolio problems. INFORMS J. Comput. 2022, 34, 2968–2988. [CrossRef]
31. Mazumder, R.; Friedman, J.H.; Hastie, T. SparseNet: Coordinate descent with nonconvex penalties. J. Am. Stat. Assoc. 2011,

106, 1125–1138. [CrossRef] [PubMed]
32. Hastie, T.; Tibshirani, R.; Tibshirani, R. Best subset, forward stepwise or lasso? Analysis and recommendations based on extensive

comparisons. Stat. Sci. 2020, 35, 579–592. [CrossRef]
33. Meinshausen, N. Relaxed lasso. Comput. Stat. Data Anal. 2007, 52, 374–393. [CrossRef]
34. Mannor, S.; Meir, R.; Zhang, T. Greedy algorithms for classification–consistency, convergence rates, and adaptivity. J. Mach. Learn.

Res. 2003, 4, 713–742.
35. Tewari, A.; Ravikumar, P.; Dhillon, I.S. Greedy algorithms for structurally constrained high dimensional problems. In Proceedings

of the the 24th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011;
Curran Associates Inc.: Red Hook, NY, USA, 2011; pp. 882–890.

36. Barron, A.R.; Cohen, A.; Dahmen, W.; DeVore, R.A. Approximation and learning by greedy algorithms. Ann. Stat. 2008, 36, 64–94.
[CrossRef]

37. Painter-Wakefield, C.; Parr, R. Greedy algorithms for sparse reinforcement learning. In Proceedings of the the 29th International
Coference on International Conference on Machine Learning, Edinburgh, UK, 26 June–1 July 2012; pp. 867–874.

38. Shafique, K.; Shah, M. A noniterative greedy algorithm for multiframe point correspondence. IEEE Trans. Pattern Anal. Mach.
Intell. 2005, 27, 51–65. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1287/ijoc.2020.0962
http://dx.doi.org/10.1016/j.physa.2019.122124
http://dx.doi.org/10.1002/net.21882
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1214/aos/1176325766
http://dx.doi.org/10.1287/opre.2015.1436
http://dx.doi.org/10.1214/15-AOS1388
http://dx.doi.org/10.1073/pnas.2014241117
http://www.ncbi.nlm.nih.gov/pubmed/33328272
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1198/016214506000000735
http://dx.doi.org/10.1287/opre.2019.1919
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1214/09-AOS729
http://www.ncbi.nlm.nih.gov/pubmed/17244211
http://dx.doi.org/10.1214/18-AOS1804
http://dx.doi.org/10.1287/ijoc.2022.1211
http://dx.doi.org/10.1198/jasa.2011.tm09738
http://www.ncbi.nlm.nih.gov/pubmed/25580042
http://dx.doi.org/10.1214/19-STS733
http://dx.doi.org/10.1016/j.csda.2006.12.019
http://dx.doi.org/10.1214/009053607000000631
http://dx.doi.org/10.1109/TPAMI.2005.1
http://www.ncbi.nlm.nih.gov/pubmed/15628268

	Introduction
	Linear Regression and Feature Selection
	Algorithm Description and Preliminary Experiments
	Basic Algorithm and Default Settings
	Properties
	Preliminary Experiments
	Stepwise Initialization and Random Initialization
	Gurobi Implementation of Best Interchange to Find an FSI(1) Minimum
	Running Time Analysis

	Generalized Feature Selection
	Conclusions and Future Work
	Appendix A
	References

