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Abstract
The study of gearboxes for diagnostic and prognostic purposes plays a major role in industrial applications,
especially in the robotics and automation fields, where such devices are used extensively. The present work
has been focused on the cycloidal drives, which are widely adopted thanks to their compactness and stur-
diness, nevertheless they present a complex architecture. An analytical model of the vibrational behaviour
of such a device has been developed aiming to obtain an efficient simulation tool, able to consider different
faults occurring due to the natural wear of components. The model has been obtained thanks to a positional
angular-based method giving the contacts patterns construction as a time-independent function, thus any
input speed profile can be taken into account. Internal loads distribution has been a crucial aspect of the
modelling, also needed in order to provide an estimate of the machine efficiency. This simulation tool may
be finally generalized in order to extend the analysis capability to the epicyclic gear train family.

1 Introduction

In the industrial automation field, particularly in precision motion control, the cycloidal drives or speed
reducers, also known as cycloid drives (often shortened in cyclo-drives) are a family of reduction gear mech-
anisms largely adopted thanks to several advantages including: reduced size even with high reduction ratios,
about zero backlash, high torsional rigidity. As shown in Figure 1, a typical cycloid drive consists of an
eccentric high speed shaft (having one or more cranks, depending on the number of discs present) installed
in the case by means of two ”classical” bearings, one or more planet cycloid wheels (discs) meshing with
cylindrical pins mounted on an external fixed ring, and an output flange which incorporates pins engaging
with planet wheels eyelets through hollow rollers. The planet discs are characterized by an epitrochoid pro-
file, a curve belonging to the cycloids family. The operating principle is based on a first conversion of the
rotary motion of the input shaft into the orbital one of the discs thanks to the presence of the cranks (one for
each disc and oriented in a way which makes them angularly equidistant), the discs having holes arranged
on a circumference and equidistant from each other, in turn they engage the output flange by means of the
rollers which move on a circumference integral to the output flange, making its motion of a rotary type again
but the direction turns to be opposite with respect to the input shaft one (see Figure 2): in this way the speed
reduction is accomplished. The reduction ratio formula can be obtained by seeing the cyclo-drive as an
epicyclic gear train (see Figure 2), where the related fixed carrier train ratio leads to:

τ0 =
ωD

ωHG
=
ZHP

ZL
(1)

being ωD and ωHG the angular velocities of the disc and housing gear respectively, while ZHP is the number
of the housing pins and ZL is the number of the disc lobes. Letting ωC be the angular velocity of the carrier,
since the present gear train sees ωHG = 0, the reduction ratio can be derived from the Willis formula as
follows:

750



Figure 1: cycloidal drive made by Sumitomo (FC-A series), courtesy of Sumitomo Drive Technologies

τ0′ =
ωD − ωC

−ωC
= 1− ωD

ωC
=
ZHP

ZL
= τ0 (2)

∴ τ =
ωD

ωC
= 1− τ0 = 1− ZHP

ZL
= −ZHP − ZL

ZL
(3)

Figure 2: cycloidal drive operating scheme
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Scientific literature includes several works on cyclo-drives, most of them, however, are focused on the oper-
ating principles, the analytical methods for the tooth profile generation and the computation of forces acting
among the internal elements. Kudrijavcev [1] studied the cycloid drives functioning principles in details.
Litvin and Feng [2] gave a fundamental contribution on the modelling of the cycloid disc tooth-profile gen-
eration, while Chmurawa and Lokiec [3] proposed an interesting tooth-profile disc modification. Dizioglu
[4] discussed the formal problem of the cycloids family singularity points, in a continuous transition point of
view. Blanche and Yang [5] studied the effects of machining tolerances on backlash and torque ripples. Yan
and Lai [6] studied a geometry design of an elementary planetary gear train with cylindrical tooth-profiles by
applying the envelope theory to derive the surface equation. Hwang and Hsieh [7] adopted the gearing theory
to derive the mathematical model of an internal cycloidal gear with tooth difference, providing designs for
both a gerotor and a speed reducer. On the other hand, an important pioneering work on the computation
of forces acting among the internal elements of such devices, is owed to Lemhann [8], while Malhotra and
Parameswaran [9] presented a procedure to calculate the theoretical efficiency, having computed the internal
forces. Gorla et al. [10] developed an innovative cyclo-drive, modelling the contact loads and the machine
efficiency, while Thube and Bobak [11] used 3-dimensional finite element analysis in order to investigate
with more accuracy the load distributions on a cycloid disc. Sensinger [12] developed a model based on a
unified set of equations in order to optimise the design of cycloid discs taking into account several aspects
such as backlash, torque ripple, and reduction ratio. By contrast, not much has been produced regarding the
condition monitoring issue, applied to cycloidal speed reducers. By the way, the work of Bechhoefer [13] is
montioned, which proposes a modeling required for correct configuration to perform such analysis and doc-
uments the sensitivity of standard condition indicators for gear/bearing during the run to failure test. Finally,
Cochran and Bobak [14], from Sumitomo Drive Technologies identified some frequencies to be monitored,
showing tresholds amplitudes variation due to experimentally injected faults.

The present analysis adopts, as a reference model, the Fine Cyclo FCA 25G 29 made by Sumitomo Drive
Technologies company, whereas the main constructive parameters are reported in the Table 1. Apart from
the present introduction section, the work is structured as follows: in Section 2, the vibration signal gen-
eral model, which is based on characteristic frequencies [15], is presented, starting from a well-established
equation developed to describe the vibration signal of a localized fault occurring in the bearings [16]. Then
the analytical model building algorithm is summarized in its steps, where the main aspect is represented by
transposition of the purely time-depending characteristic frequencies in the angular domain, making them
functions of the time by means of an angular coordinate, allowing to take into account any motion profile of
the input shaft. Since the model adopts a SDOF impulse response as a filter function, its parameters must to
be identified. Hence, in this regard, a numeric procedure is proposed. Section 3 is focused on the internal
loads distribution computation, following as the outline, the approach adopted by Gorla et al. [10] and related
to an innovative cycloid drive having however a single disc, whereas the present case is more complex since
a 3-discs cyclo drive is studied: some simplifying hypotheses are considered, among which the strongest
concerns the neglect of sliding and friction effects. Then, a machine efficiency estimate is provided, which
can be useful in order to make some assessments, thanks to experimental evidence (input torque monitoring),
about the power loss due to lubricant degradation and increasing wear. In Section 4 are reported some simu-
lation output spectra, where both a constant and a customized velocity profiles, as input data, are taken into
account. The latter case has required an order analysis, since the frequency one turns out to be an ineffective
tool. Finally, Section 5 offers some conclusions and suggestions for further developments and future work.

Table 1: Sumitomo Fine Cyclo FCA 25G 29: some constructive parameters

Symbol Description Value
ZD no. of discs 3
ZL no. of lobes for each disc 58
ZHP no. of housing pins 60
ZOR no. of output rollers 12
τ reduction ratio 29

e eccentricity 1e−3 [m]
ϕ eccentricity directions phase shift (2/3)π [rad]
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2 Analytical model of the vibration signal

2.1 Introduction

The development of the model is based on a step-by-step construction of a time array skeleton, which is
mathematically represented by a binary output vector, where each component represents a time sample and
can therefore assume the value 1, if that given instant of time contemplates an impulsive nature event bor-
rowed from the physical reality of the problem, zero otherwise. These events can identify some dynamic
characteristics of the system in its proper functioning, or even characteristics of a damaged system. Since the
device under analysis is characterized by a no backlash functioning, the incipient fault is commonly caused
by fatigue and wear due to several friction and sliding contacts which take place continuously during the
operation, i.e. some internal elements may be affected by a local loss of material (spalling, pitting, etc...).
Whenever an element of the cyclo impacts on a damaged part, it is possible to detect a load fluctuation that
excites a system structural resonance and the vibration sensor one (if the latter is present). The repetition
of the impacts produces a series of impulses that depends on the rotational velocity and on the geometry of
the object. The amplitude of the vibration signals depends on the wear state of the damaged part, the load
applied and the position of the internal elements. As regards the bearings, this has been established [17], and
it is expected that is also valid for devices such as the one under analysis. The vibration signal of a localized
fault occurring in the bearings is modelled as follows [16]:

x(t) =

∞∑

i=−∞
h(t− iT − τi)q(iT ) + n(t) (4)

where, with reference to the present study case, h(t) is the impulse response due to the impact on the
damage point, T is the interval between two consecutive impacts due to a specific type of damage, q(iT ) is
the modulation of the signal produced by the load distribution, τi takes into account the uncertainties due
to the random slipping1 of the rollers (housing or output ones), n(t) is the background noise and i is the
integration time step (time samples index).

It can be hypothesized that damages may affect the housing ring pins, the lobes of the discs or the output
rollers, as well as the elements of the bearings present in the cyclo which, however, are not taken into account
in this discussion. Therefore, letting frot,IS be the rotational frequency of the input shaft, being interested
in housing pin fault, in addition to the rotational frequency itself, the other to be monitored is the mesh one
[14], whose expression is the following:

fm(λ) = λ× ZHP × frot,IS , λ = 1, 2, 3 (5)

where, since the housing pins have interactions with all discs and a fault can occur along a portion falling
between ∼ 0 and the entire length of the pin, fm is placed as function of the index λ in order to take into
account the possibility that the fault area may have interaction with 1, 2 or 3 discs. A possible damage
affecting a disc lobe is related to the rotational frequency of the disc itself (i.e. the output flange rotational
frequency frot,OF ) given by:

fD = frot,OF = τ × frot,IS (6)

Finally, since the output rollers motion is marked by frot,IS (being ideally the contact given by output roller
and eyelet of the disc a rigid connection running as the input shaft eccentric bearing) and they are constantly
in contact with all discs, same considerations made about the pins are valid, thus a possible fault related to
such elements may be detected by monitoring the frot,IS as a function of λ, then:

fOR(λ) = λ× frot,IS (7)

1However, this term is not object of the present discussion.
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2.2 Model building

Borrowing the approach adopted by Molano et al. [15] for a case study application of the bearing fault, the
procedure consists of the steps listed below.

1. Define an n-components vector x filled with zeros representing the expected vibration signal recorded
by a sensor placed on the cyclo housing. Each cell of the vector corresponds to the time sample:
ti = 1/fs, where fs is the sampling frequency of the sensor [Hz].

2. Resample the defined motion profile θ(ti), i = 1, 2, ..., n and the zero-initialized load vector q(ti) at
the sensor sampling frequency fs.

3. Replace 1 in the cells of vector x, which index values are defined according to the periodical ”events”
and faults to be taken into account. Being the latter related to the frequencies presented in the previous
section, in order to contemplate any motion profile of the input shaft, it is necessary to think in terms
of (angular) position rather than time, i.e. two contacts involving the same ”damaged” element are
thought as located at the edge of a certain angle ∆θ, being known the angular motion law of the input
shaft θ(ti). Then, since Θ denotes an input shaft complete rotation, one has:

∆θHP (λ) = ∆θOR(λ) = Θ/λ (8)

∆θMF (λ) = Θ/(λ ZHP ) (9)

∆θDL = Θ
τ + 1

τ
(10)

where in Eq. (8) considering an housing ring fault, ∆θHP is the angle between two faulty contacts
(expressed as function of λ, see previous section), as considering an output roller fault, ∆θOR is the
angle among two matches between a roller external surface defect and a disc (or more discs, depending
on the defect extension) eyelet. Eq. (9) provides the angle between two contiguous contacts due to the
gear mesh, and finally considering a disc lobe damaged, it impacts on two non-adjacent pins spaced
according to the Eq. (10).

4. Weight the vector x by means of the load vector q computed according to the procedure explained in
the Section 3.

5. Filter the generated vector x by means of an FFT-based technique using overlap-add method [18],
where the filter function is the second derivative2 of a SDOF system impulse response. This type
of filtering is based on the principle that the multiplication in the frequency domain is equal to the
convolution in the time domain. It operationally consists of the following phases:

• transposition of the input ”time” signal (in this case vector x) into the frequency domain through
the FFT;

• multiplication of the result obtained from the previous operation by the frequency response of
the filter function (in this case the impulse response of a SDOF system);

• transposition of the result into the time domain by using the inverse FFT.

The generated response of a SDOF system to a unit impulse in time domain is given by:

xSDOF (t) = h(t) =
1

mωd
e−ζωnt sinωdt (11)

where m is the mass system, ζ is the damping ratio, and ωd = ωn(1 − ζ2)1/2 is the damped angular
frequency while ωn is the undamped one.

In order to simulate multiple faults at the same time, step 3 sees the recursive filling of the load vector, before
vector x is weighted by it.

2Being the accelerometers, the typical vibration sensors adopted in experimental test.
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2.3 Formalization of the optimization problem

In order to identify the SDOF system parameters, a numeric procedure may be adopted. The idea is to place
the analytical expected signal equal to an experimental acquired one, thus, considering the Eq. (4), thanks to
the following substitutions:

x(t) → c(i), h(t− iT − τi)q(iT ) → y(i), n(t) → r(i) (12)

it can be rewritten, as a fully discrete form problem, leading to n equations of the following type:

y(i) + r(i) = c(i), i = 1, 2, ..., n (13)

where, since n is the number of time samples, c(i) is the i-th time sample of the ”real” signal, r(i) is the i-th
component of a random noise array, while y(i) is the i-th component of the operator relation output, giving
by the filtering of the analytically built signal through the impulse response second derivative of the SDOF
system. Then, y(i) can be expressed as follows:

y(i) =

ns∑

j=1

s(j)x(i− j + 1),

{
x(i− j + 1), i ≥ j

0, i < j
(14)

being s(j) the j-th discrete value of the SDOF system impulse response (second derivative) and x(i− j+1)
the (i− j + 1)-th component of the analytically built signal array. Finally, ns is the filter length, which can
be also placed equal to n. A compact form of s(j) can be given by the following expression:

s(j) = Ae−ζωnt(j)[B sin (ωdt(j)) + C cos (ωdt(j))], (15)





A = ω3
n/k

B = 2ζ2−1
(1−ζ2)1/2

C = 2ζ

(16)

where {ωn, ζ, k} is the set of problem unknowns, which, as can be seen, are not j-depending (unlike time
variable: time discretization). By placing, for sake of compactness:

p(i) = c(i)− r(i) (17)

after operating the following change of notation: α(i) ≡ αi and taking into account the case: ns = n, the
system given by Eqs. (10) can be rewritten as follows:




x1 0 · · · 0 0
x2 x1 · · · 0 0
...

...
. . .

...
...

xk xk−1 · · · x1 · · · 0 0
...

...
. . .

...
...

xn−1 xn−2 · · · x1 0
xn xn−1 · · · x2 x1







s1
s2
...
sk
...

sn−1

sn




=




p1
p2
...
pk
...

pn−1

pn




(18)

∴ Xs = p ∴ s = X−1p (19)

where the latter is an overdetermined non-linear system in the unknowns, therefore its resolution can be
attempted through a numerical technique. The limit is represented by the analytically building signal, which,
before the filtering operation, is in the form of a sparse-array.
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3 Internal loads distribution

3.1 Introduction

The entire section shows a method for estimating the contact forces among the internal elements of the
gearbox. Following the approach of Gorla et al. [10], some assumptions are taken into account:

• perfect geometry;

• rigid bodies;

• negligible friction and weight3.

Considering, for sake of simplicity, the presence of a single disc 4, and therefore a single disc holder bearing,
its eccentricity with respect to the input shaft section is supposed to be lying on the x-axis (see Figure 3.(a)).

Figure 3: torque equilibrium along the axial direction: input .(a), output .(b) sections

Since the input torque is split among the three eccentric bearings which inner races are as one with the main
body of the input shaft holder sleeve 5, the torque equilibrium of the input shaft may be expressed by the
following equation (referring to the Figure 3.(a)):

Min

3
+ eR1 sin(β1 + π) = 0 (20)

hence:

Min

3
− eR1 sin(β1) = 0 ∴ R1 =

Min

3e sin(β1)
(21)

where R1 is the crank reaction due to the disc no.1, Min is the input torque, e is the eccentricity, and β1
identifies the angular position of R1 direction.

3The gearbox is considered having the axis in vertical position.
4In this regard, the discussion uses the numerical assignment with value 1, with reference to the cardinality of the set of eccentric

bearings and of the relative discs.
5For the purposes of this discussion, the sleeve identifies the input shaft.
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On the other hand, the torque equilibrium of the output flange contemplates a resistant torque which has
the direction of rotation as shown in the Figure 3.(b), since the device reverses the direction of rotation; the
resistant torque is counterbalanced by the reactions acting in the contacts among the flange eyelets and the
output rollers. Although contacts take place between all the eyelets and relative output rollers, nevertheless
only some of them take part in torque transmission (remembering that just one disc is considered), since
only compressive forces can be transmitted. The reason why the only forces involved are (ideally) those
schematized in the Figure 3.(b) will be clarified later. Finally, the torque equilibrium is described by the
following equation:

Mres

3
=

m∑

j=1

j
1Q

j
1b (22)

where Mres is the resistant torque, j
1Q is the j-th force due to the presence of the disc no.1, and j

1b is its arm
respectively.

3.2 Forces computation

The eccentric bearing, in its rotary motion, holds the disc to always be in contact with some housing pins
and all internal output rollers. The ”static” configuration in Figure 4, the one already seen with eccentricity
direction coinciding with the x-axis, shows the contacts among the disc lobes and the housing pins on the
entire right half-plane (where, since the housing pins are 60 and the lobes are 58, the pins involved in the
contact turn out to be 58/2 = 29). However, it must be borne in mind that if all these contacts generated
forces, the disc would be self-balanced with respect to the vertical translation, when it is the vertical compo-
nent of the crank reaction, to guarantee this balance. It follows that only the contacts which take place in the
first quadrant produce forces, with the exception of the pin whose center lies on the x-axis, which represents
a singularity.

Figure 4: forces acting on the disc

Seeing the gear train as an epicyclic one (referring to the Figure 4), it is easy to observe that notable point C1

represents the instantaneous rotation centre between the housing pins ring and the disc, thus all the directions
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of the forces acting among the disc lobes and the housing pins, named i=1,n
1P , converge in this point. Since

B1C1 is also the pitch radius of the disc, its calculation is based on the modulus definition, hence:

m ≜ drg
ZHP

=
dpg
ZL

∴
{
drg = mZHP = m(ZL + 2)

dpg = mZL
(23)

where drg and dpg are the pitch diameters of the housing pins ring and of the disc respectively, and by placing
eccentricity equal to the pitch radii difference:

e =
drg − dpg

2
=

m

2
(ZL + 2− ZL) = m (24)

one obtains:

B1C1 =
dpg
2

=
m

2
ZL =

e

2
ZL (25)

For the calculation of the i=1,n
1P reactions, it is necessary to consider the equilibrium in the y direction of

the disc, which leads to the following equation:

R1 sin(β1)−
n∑

i=1

| i1P sin( i1α)| = 0 (26)

where i=1,n
1α are the angles between the x-axis and the segments i

1PC1 respectively. Since the physical
system is statically indetermined, the equations which describe the rigid body equilibrium of the disc in the
plane, including Eq. (26), are not sufficient to completely determine every force. To solve the problem
without taking it into account elastic compliance, the assumption that the modules of the i=1,n

1P forces have
a sinusoidal distribution in the angular development of the first quadrant, is adopted [3, 9], leading to:

| i1P| ∝ | sin( i1α)| ∴ | i1P| = P1| sin( i1α)| (27)

whereas remembering the 2-nd of Eq. (20), i=1,n
1P expressions may be determined as:

i
1P =

Min| sin( i1α)|
3e

∑n
i=1 sin

2( i1α)
(28)

while the expression of the generic k
1α, with reference to Figure 5, is given by:

k
1α = arccos

[
h cos(k1θ)− e

2ZL√
(h cos(k1θ)− e

2ZL)2 + h cos(k1θ)
2

]
(29)

On the other hand, for the computation of j=1,m
1Q, it must be taken into account the torque equilibrium of the

disc, whereas, as shown in Figure 4 in addition to the aforementioned forces, also the vertical components
of both the crank reaction and the resultant of i=1,n

1P (named R1P |y) contribute to the torque balance (while
the horizontal component of the i=1,n

1P resultant, e.g. R1P |x, since its direction lies on the x-axis, it has no
role in the equilibrium). The equation is as follows:

m∑

j=1

j
1Q

j
1b− e(

ZL

2
− 1)R1 sin(β1) = 0 (30)
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Figure 5: scheme for the computation of generic k
1α

where at this point, an assumption similar to the case of i
1P calculation is needed, i.e. the modules of the

forces j=1,m
1Q are proportional to their arm j=1,m

1b [3, 9], leading to:

| j1Q| ∝ j
1b ∴ | j1Q| = Q1

j
1b (31)

and remembering the 2-nd of Eq. (20), one reaches:

j
1Q =

Min

3

[(
ZL

2
− 1

) j
1b∑m

j=1
j
1b

2

]
(32)

Figures 6 and 7 show the typical result of the distributions of forces with Min = 9 [Nm]. In Figure 6
the graphs refer to the case of a single disc, while taking into account also the two remaining ones, the
distributions appear as shown in Figure 7, where as regards the P -type forces, the pattern referred to the
single disc case is also repeated for the other ones with the exception of some pins among them which
are completely discharged, this is because the configuration of the three discs is continuously such that the
directions of the eccentricities lie on incident axes which are out of phase by 120 [deg], i.e. the load is
symmetric with respect to an angular excursion of 120 [deg]. As for the Q-type forces, on the other hand,
the interaction of the three discs modifies the appearance of the pattern resulting from the ”presence” of a
single disc.

Figure 6: forces distributions referred to a simplified configuration including only one disc
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Figure 7: forces distributions referred to the standard configuration including all discs

3.3 Machine efficiency

By following the Malhotra method [9], which is more precautionary with respect to the Gorla’s one [10], the
power losses listed below are considered:

1. bearing friction in the mounting of the discs on the input shaft (→W1);

2. rolling contact friction between output rollers and eyelets in the discs (→W2);

3. rolling contact friction between housing pins and the discs (→W3);

4. bearing friction in the mounting of the output rollers (→W4);

5. bearing friction in the mounting of the housing pins (→W5).

Since dθ is the infinitesimal rotation of the output flange, the related contributions to the frictional infinitesi-
mal work are respectively given by the following expressions:





dW1 = fr1γ1
∑ZD

l=1Rl(θ)ψ1dθ

dW2 = fr2
∑ZD

l=1

∑m∗
j=1Ql,j(θ)ψ2dθ

dW3 = fr3
∑ZD

l=1

∑n∗
i=1 Pl,i(θ)ψ3dθ

dW4 = fs1γ4
∑m∗∗

j=1 Qj(θ)ψ4dθ

dW5 = fs2γ5
∑n∗∗

i=1 Pi(θ)ψ5dθ

(33)

, where fr1,fr2 and fr3 are the lever arms of rolling friction, while fs1 and fs2 are sliding friction coefficients.
The constants γ1, γ4 and γ5 are the ratio between the pitch diameter of the eccentric bearings and its rollers
diameter, the output rollers radius and the housing ring pins radius respectively, while coefficients ψu=1,5

quantify the rotations of the elements involved in the dWu=1,5 contributions respectively, with respect to dθ
(where ψ1 = ψ2 = ψ4 = τ−1). Finally, the values of the indices m∗, n∗, m∗∗, n∗∗, are the number of
elements involved in the respective contributions dWu=1,5 with respect to the total of m and n respectively.
The instantaneous efficiency is then:

ηi =
Minτ

−1dθ −∑
u dWu

Minτ−1dθ
(34)

By integrating dWu=1,5 contributions over the duration of one rotation of the input shaft, i.e. 2πτ rotation
of the output flange, the overall efficiency can be expressed as follows:

ηo =
Min2π −

∫ 2πτ
0

∑
u dWu

Min2π
(35)
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4 Simulation output

4.1 Constant velocity profile

This section deals with the first of the two analytically built signal examples, where in this case a constant
input shaft rotational speed is considered. A possible output of a hypothetical accelerometer fixed on the
cyclo-drive case, with a radial acquisition axis is shown in Figure 8 in terms of the signal frequency spectrum
while in Table 2 the values of the adopted parameters and the expected frequencies are shown (it is arbitrarily
choosen to consider only the rotation and mesh frequencies). These parameters must be tuned starting from
a set of experimental data, following for example the procedure proposed in Section 2.3. Furthermore,
to validate the simulation tool, it would be advisable to calibrate the amplitude thresholds of the peaks
identifying the frequencies to be monitored, on the basis of the experimental data, first adopting nominal
load and a ”healthy” machine, then adopting same worn one, which will require greater input torque (a
parameter which represents an input data for the simulation), with the same output one due to the higher
dissipation. Here, the load vector q was generated with a simplified procedure by adopting the maximum
value among those of the forces acting between the housing ring pins and the lobes of the discs (i=1,n

1P ,
see Section 3.2), this value is present recursively in q with a periodicity related to the mesh frequency, while
concerning the rotational frequency the load value adopted is given byMin/3/e. Finally, since each variation
of the mechanical system configuration leads to different results in terms of signal output, keep in mind that
tuning operations must be carried out for each new configuration taken into account.

Figure 8: frequency spectrum of the simulated vibration signal

Table 2: simulation data

adopted parameter value output frequency value
fn 140 [Hz] 1× frot,IS 4 [Hz]
ζ 5e−4 1× fm ≡ fm(1) 240 [Hz]
k 2e13 [Nm−1] 2× fm ≡ fm(2) 480 [Hz]

n = ns 4e5 3× fm ≡ fm(3) 720 [Hz]

fs = 2e4 [Hz] Min = 9 [Nm] SNR = 0
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4.2 Customized velocity profile

Thanks to position-based model building (see Section 2.2), it is possible to obtain signal output simulations
where any motion (velocity) profile of the input shaft can be taken into account. Hence, the customized
non-trivial profile shown in Figure 9 is considered in this session.

Figure 9: velocity profile pattern

Since a ”traditional” frequency domain investigation is not very interesting in this case because the graph
would be poor in information we are searching for, it is necessary to use a homologous analysis tool able to
provide a spectrum which neatly show peaks relating to the significant events characterizing the simulation.
Hence, an order analysis is performed, where a certain order represents the frequency with which an event
occurs along a complete rotation of a reference point or element (in this case, the input shaft). A dummy
accelerometer fixed on the cyclo-drive case with a radial acquisition axis is considered again, giving, as
the simulation output, the order map shown in Figure 10. The waterfall plot sees the order numbers along
the x-axis, the time axis as the y-axis and the RMS amplitudes along the z-axis. Since the graph does not
present variation along the time axis, a more interesting projection in the x-z plane, named order spectrum, is
displayed in Figure 11, showing the expected order numbers of the simulation. Letting ONep and MON(λ)
be the order number related to the elementary pattern repetition and to the meshing contacts one respectively
(where λ assumes the meaning which was presented in Section 2.1), they clearly appear in Figure 11 where
some harmonics are also present. The values of the adopted parameters and the expected orders are reported
in Table 3, being considered, similarly to the previous case, only the orders related to the input shaft rotation
and to the mesh contacts. The load vector q was here generated following the same simplified procedure
adopted in the previous case, and also the same considerations made regarding the parameters tuning and the
assessment of the amplitude peaks thresholds by experimental comparison, remains valid.

Figure 10: order map of the simulated vibration signal
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Figure 11: order spectrum of the simulated vibration signal

Table 3: simulation data

adopted parameter value output order numbers value
fn 1000 [Hz] 1×ONep 5
ζ 5e−4 1×MON ≡MON(1) 60
k 2e13 [Nm−1] 2×MON ≡MON(2) 120

n = ns 1.6e5 3×MON ≡MON(3) 180

fs = 2e4 [Hz] Min = 9 [Nm] SNR→ ∞

5 Conclusions

In the present work, a signal model of a cyloid drive, representing a possible output of an accelerometric sen-
sor fixed on the running device, has been proposed. The model has been conceived for diagnostic purposes,
since main characteristic ”faults” frequencies has been identified and taken into account by the analysis. The
internal load distribution computation has also been performed, whereas the model needed a load array in
order to modulate the amplitude of the peaks generated due to the impulsive impacts simulating damages or
significant periodical events characterising the running mechanical system. Thanks to the load distribution
knowledge, it has been possible to provide a theoretical machine efficiency estimate, which can be useful to
know the power decay mechanism, occurring due to lubrication degradation and then increasing wear. Some
simulation output has been displayed for both constant and customized velocity profiles of the input shaft,
where the latter case needed to be face by means of the order analysis technique, since the frequency analysis
turns to be a not very effective tool. The simulation tool will must be refined according to experimental test-
ing response, which can be useful both for identify some model parameters and for calibrate the amplitude
thresholds of the peaks which significantly vary on general configuration of the mechanical system (layout,
misalignment, load, environment). Apart from the last issue, further developments could be taken into ac-
count: such as the possibility of enriching the analysis by including sliding and frictioning effects, which
occurs among the internal elements in contact. These effects are neglected here, since a modelling, given the
complexity of the issue, has dignity to deserve a separate work, while it goes beyond the scope of the present
one. Finally, the proposed signal model may also be adapted in order to simulate the vibrational behavior of
any speed reducer belonging to the epyciclic gear train family, of which cyclo-drives represent a subset.
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